EECS 470 Final Exam 
Winter 2011

Name: ____________________________________    unique name: _______________
 
Sign the honor code:	
		
I have neither given nor received aid on this exam nor observed anyone else doing so.


___________________________________



Scores:
	#
	Points

	1
	/18

	2
	/7

	3
	/8

	4
	/9

	5
	/7

	6
	/12

	7
	/14

	8
	/10

	9
	/15

	Total
	/100



NOTES:
· Open book and Open notes
· Calculators are allowed, but no PDAs, Portables, Cell phones, etc.
· Don’t spend too much time on any one problem.  
· You have about 120 minutes for the exam.
· There are 11 pages, including this one.
· The last page is a duplicate—please be sure cross out the one you don’t want graded.



1) Multiple choice/fill-in-the-blank.  Pick the best answer. 
[18 points, -2 per wrong/blank answer, min 0]

a) The compiler often has difficulty moving a load above a branch in program order because there might be a true dependence / there might be a name dependence / it could cause an exception that wouldn’t otherwise occur. 

b) In the MESI bus protocol the M to I / E to I / S to M and the M to S / E to M / S to E transitions can be silent (that is with no information related to the transition appearing on the bus). 

c) A return address stack is used to predict the direction / address / address and direction of a function call / function return / function call and function return.

d) Given a 32-bit address space, a 16 KB cache with 32-byte lines that is four-way set-associative

will have _________ index bits and the total size of the tag store (not including things like valid 

bits, MESI bits, etc.) will be ___________ bytes.

e) The IA-64 has support for software pipelining.  One feature it doesn’t have is:
· a special purpose register for the loop counter
· a mechanism for removing the extra code associated with prologues and epilogues
· dynamic register renaming to move high-latency instructions.

f) A standard 2000mAh double-A battery has about 0.3Wh / 3.0 Wh / 30 Wh / 0.3kWh / 3kWh of energy.

g) In class Dr. Austin discussed how failure rates come in three stages: infant mortality, breakdown period and grace period.  Together those three terms are used to model the fact that: 
· devices tend to fail either early or late in their lifetime  
· devices tend to fail only after a long period of time
· soft and hard error rates tend to diverge over time.

h) Loop unrolling allows the compiler to reorder true dependencies / reduce the number of instructions in the executable / have a bigger window to reorder instructions statically.  

However it also makes things considerably harder for a dynamic scheduler / increases the number of instruction in the executable / shrinks the window for reordering instructions statically. 

i) When using dynamic voltage/frequency scaling to reduce the power draw by 50% will result in the performance being reduced to about 95 / 85 / 80 / 65 / 50 / 35 % of what it was.          

j) 

2) Early branch resolution [7 points]
a) If we are implementing early branch resolution using Branch Register Alias Tables (BRATs), at what point will we need to allocate a BRAT?  At what point can we free it (assuming there are no mispredictions in front of it)? [3]









b) In order to recover the PRF’s free list, we typically keep a free list associated with each BRAT.  If we wish to be able to simply copy that free list over to the main free list on a misprediction we need to do a number of things.  Circle all the things that need to happen.  You may assume this processor is not superscalar. [4, no partial credit]

· Copy the main free list to the BRAT free list after updating the free list to reflect any destination register(s) the branch might have.

· Copy the main free list to the BRAT free list before updating the free list to reflect any destination register(s) the branch might have.

· Update the BRAT free list as new instructions issue to the RS and RoB.

· Update the BRAT free list as instructions commit.
· 

3) Consider a purely in-order processor with a cache connected to a main memory with a bus (which is 32 bits wide). A read access by the processor to the cache (hit or miss) takes 1 cycle. On a miss, the entire block must then be fetched from main memory over the memory bus. A bus transaction consists of one address cycle to send an address (32 bits) to the memory, four cycles of idle-time for main memory access, and one cycle to transfer each word (32 bits) in the block to the cache. (Assume that the processor continues execution only after the last word of the block has arrived.) The following table gives the average cache miss rates of a 1Mbyte direct-mapped cache for various block sizes.[footnoteRef:1]  Show your work. [8 points]
 [1:  Taken in part from a U. of Wisconsin PhD qualifier.] 

	Block size (B) in words
	Miss ratio (m) %

	1
	4.5

	4
	2.4

	8
	1.6

	16
	1.0



a) What block size yields the best average memory access time? [5]








b) Assuming a 32-bit address space, what will be the size of the tag store (in bits) for the cache with a block size of 8?  [3]












4) Short-answer cache questions [9 points] 
a) Consider the following access pattern: A, B, C, A. Assume that A, B, and C are memory addresses each of which are in a different block of memory. Further, assume the addresses A, B, and C are generated in a random way (each address having an equal probability of occurring) and that a "true" LRU replacement algorithm is used. What is the probability that the second instance of "A" will be a hit if the cache is a 2-way associative cache and has 32 lines total? [4]









b) What is the main advantage of a virtually addressed cache over a physically addressed cache? [2]










c) What is the primary disadvantage of a virtually-indexed, physically tagged cache?  Briefly explain the root cause is of that problem. [3]












5) Write a Verilog module that implements a 4 to 2 encoder.  Minor syntax errors will be ignored. 
[7 points]



6) For multiprocessor systems we often find that the higher-level caches of a processor are required to be inclusive of the lower-level ones.  Answer the following questions about cache inclusion. 
[12 points]
a) Why is cache inclusion helpful to multi-processor systems? [3]








b) Cache inclusion can be tricky.  Consider a cache structure where the L1 cache is 128KB in size and two-way set-associative while the L2 cache is 1MB in size and four-way set-associative.  Both have 32-byte cache lines, use true-LRU replacement, and place the data in their cache on a miss (so an L2 miss results in the data being placed in both the L1 and L2).  Find the shortest sequence of load addresses (with addresses in 8-digit hex) that would cause the L1 cache to have a piece of data but the L2 cache to not have that data.  Your answer must start with the address 0x00000000. [5]











c) Given the above, briefly describe a reasonable algorithm for maintaining cache inclusion.  What is the negative impact of your algorithm? [4]





7) Consider a 4-core processor that uses a shared snoopy bus.  Each core has a private 2-way associative 64-KB cache with 32-byte cache lines and keeps the data in one of the MESI states.  You have found that a given program generates 1 billion loads and 250 million stores per second on one core when the other 3 cores are idle.  You see 150 million BRLs, 50 million BWLs, 25 million BRILs, and no BILs[footnoteRef:2] (each per second) from this single core when the others are idle. [14 points] [2:  BRL=Bus Read Line BRIL=Bus Read and Invalidate Line, BWL=Bus Write Line, BIL=Bus Invalidate Line] 


a) What is the hit rate of loads on this core?  Of stores? [4]

Load hit rate=______________	Store hit rate=_____________



b) What percent of misses in the cache result in the eviction of dirty data? [2]




c) All four cores are then turned on (running the same program).  All 4 cores end up generating the same number of loads and stores per second, but each core now generates 200 million BRLs, 40 million BWLs, 50 million BRILs and 10 million BILs (each per second).  Of those transactions 10% of the BRLs and BRILs result in a HITM (that is the data is dirty in another cache and is supplied by that cache).  

i) What might explain the drop in the number of BWLs? [2]






ii) What percentage of the load misses are likely due to coherency misses? [3]






iii) What percentage of the store misses are likely due to coherency misses? [3]







8) You are talking to some of your relatives about computers over the summer.  They are quite computer and math literate but don’t really know anything about computer architecture.  When they ask you why modern computers have more than one core (and that number is rising), you tell them that it is because power constraints have limited the performance of a single core.  That of course confuses them and they ask “Why can we power a lot of cores but not one core?”  Explain the issue to them.  Feel free to use math but be sure to explain the ideas behind the math.  

This essay will be graded on the basis of A) hitting the relevant topics correctly and B) clearly and concisely explaining your answer.  Grammar and spelling will only be considered if they make your explanation unclear (i.e. we can’t be sure of what you are trying to say).  Your answer must be no more than 200 words.  Please try to write neatly. [10 points]

a) 

9) Consider the following tables that represent the state of a processor that implements what we have called Tomasulo’s second algorithm.

	RAT
	
	ROB

	Arch Reg. #
	ROB#
(-- if in ARF)
	
	Buffer
Number
	PC
	Done with EX?
	Dest. Arch Reg #
	Value 

	0
	--
	
	0
	
	
	
	

	1
	--
	
	1
	
	
	
	

	2
	--
	
	2
	
	
	
	

	3
	--
	
	3
	
	
	
	

	4
	--
	
	4
	
	
	
	

	5
	--
	
	5
	
	
	
	

	
	
	
	6
	
	
	
	

	
	
	
	7
	
	
	
	

	
	
	
	8
	
	
	
	




	RS

	RS#
	Op type
	Op1 ready?
	Op1 RoB/value
	Op2 ready?
	Op2 RoB/value
	Dest
ROB

	0
	
	
	
	
	
	

	1
	
	
	
	
	
	

	2
	
	
	
	
	
	

	3
	
	
	
	
	
	

	4
	
	
	
	
	
	




	ARF
	Reg#
	0
	1
	2
	3
	4
	5

	
	Value
	6
	5
	4
	3
	2
	1



Place the following instructions into the processor:

R3=R3+R1             // A 
R1=R1*R4             // B
R5=R3+R4             // C
R2=R1*R3             // D
R2=R2+R1             // E

Show the state of the above tables if instruction A has retired, inst B has not finished executing, while C and D have progressed as far along as possible.  Be sure to label the head and tail of the ROB.  Please place instruction A in slot 0 of the ROB and B in slot 1. When arbitrary decisions need to be made, you are to just make them.  Clearly cross out any data that is no longer valid.  [15 points]

(A second copy is available on the following page, please cross out the one you don’t want graded!)

10) (This is a copy of the state shown on the previous page.  Please cross out the one you don’t want graded!) 

	RAT
	
	ROB

	Arch Reg. #
	ROB#
(-- if in ARF)
	
	Buffer
Number
	PC
	Done with EX?
	Dest. Arch Reg #
	Value 

	0
	--
	
	0
	
	
	
	

	1
	--
	
	1
	
	
	
	

	2
	--
	
	2
	
	
	
	

	3
	--
	
	3
	
	
	
	

	4
	--
	
	4
	
	
	
	

	5
	--
	
	5
	
	
	
	

	
	
	
	6
	
	
	
	

	
	
	
	7
	
	
	
	

	
	
	
	8
	
	
	
	




	RS

	RS#
	Op type
	Op1 ready?
	Op1 RoB/value
	Op2 ready?
	Op2 RoB/value
	Dest
ROB

	0
	
	
	
	
	
	

	1
	
	
	
	
	
	

	2
	
	
	
	
	
	

	3
	
	
	
	
	
	

	4
	
	
	
	
	
	




	ARF
	Reg#
	0
	1
	2
	3
	4
	5

	
	Value
	6
	5
	4
	3
	2
	1



Place the following instructions into the processor:

R3=R3+R1             // A 
R1=R1*R4             // B
R5=R3+R4             // C
R2=R1*R3             // D
R2=R2+R1             // E

Show the state of the above tables if instruction A has retired, inst B has not finished executing, while C and D have progressed as far along as possible.  Be sure to label the head and tail of the ROB.  Please place instruction A in slot 0 of the ROB and B in slot 1. When arbitrary decisions need to be made, you are to just make them.  Clearly cross out any data that is no longer valid.  [15 points]
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