Yo wei it i	Name: KEY You have 20 minutes for this quiz. The quiz is closed notes/closed book. If you should finish early, you are welcome to turn in your quiz and step out of the room until the lecture starts. There are 2 pages to this quiz and it is graded out of 30 points. I have neither given nor received aid on this quiz, nor observed anyone else doing so.							
1)		ort answer Consider the following access pattern: <i>A, B, C, D, E, A</i> . Assume that A, B, C, D and E are memory addresses each of which are in a different block of memory. Further, assume A, B, C, D and E are generated in a uniformly random way and that a "true" LRU replacement algorithm is used. What is the probability that the second instance of "A" will be a hit if: i) Cache is an 8-line direct-mapped cache? [4]						
		(7/8) ⁴						
		ii) Cache is a 4-line fully associative cache? [4]						
		0						
2)	pro wit	y you are working on a processor which is being targeted for portable application. The only thing the ocessor does is run a program once every 1000 seconds that consists of executing 10^{11} instructions th a near- 100% cache hit rate. When the processor is idle (not running the program) it uses 100% power. When it is active, it uses 4% of power. The processor can execute the program at a rate of 9 instructions per second (so it takes 100 seconds to run the program).						

a) What is the average power consumption of this processor running as described above? [3]

(4W*100s+0.01W*900s)/1000s=0.409W.

b) Your boss has asked you to estimate what the average power consumption would be if you used voltage scaling to drop the voltage to 80% of what it currently is. *Clearly* show your work. [5]

We're assuming power approx. proportional to voltage cubed. So when active we'll use $4W^*(.8)^3$ Watts. But we are active for 100s/.8 or 125s. Idle power will also drop, but we've not discussed by how much so that part we'll ignore (I took pretty much anything there). So $(4W^*(.8))^*125s+0.01W^*875s)/1000s=0.265W$

- 3) Consider a case of having 3 processors using a snoopy MESI protocol where the memories can snarf data. All three have a 2 line direct-mapped cache with each line consisting of 16 bytes. The caches begin with all lines marked as invalid. Fill in the following tables indicating
 - If the processor gets a hit or a miss in its cache
 - If a HIT or HITM (or nothing) occurs on the bus during snoop.
 - What bus transaction(s) (if any) the processor performs (BRL, BWL, BRIL, BIL)
 - For misses only, indicate if the miss is compulsory, capacity, conflict, or coherence. A coherence
 miss is one where there would have been a hit, had some other processor not caused an
 invalidation of that line.

In the event more than one bus transaction occurs due to a given memory read/write indicate the response for each bus transaction. Finally, indicate the state of the processor after all of these memory operations have completed. The operations occur in the order shown. [14 points, -0.5 per wrong or blank, minimum of 0]

Processor	Address	Read/Write	Bus	Hit/Miss	HIT/	"4C" miss
			transaction(s)		HITM	type (if
						any)
1	0x200	Read	BRL	Miss		Comp.
1	0x210	Write	BRIL	Miss		Comp.
1	0x110	Read	BRL/BWL	Miss		Comp.
1	0x210	Read	BRL	Miss		Cont list
1	0x200	Write		Hit		
2	0x210	Read	BRL	Miss	НІТ	Comp.
2	0x200	Write	BRIL	Miss	нітм	Comp
1	0x200	Read	BRL	Miss	нітм	Coherence

Final state:

	Proc 1		
	Address	State	
Set 0	0x200	S	
Set 1	0x210	S	

	Proc 2		
	Address	State	
Set 0	0x200	S	
Set 1	0x210	S	