Name:	_ Uname:
<u>.</u>	is closed notes/closed book. If you should finish early, you are the room until the lecture starts. There are 2 pages to this quiz.
I have neither given nor received aid on this	quiz, nor observed anyone else doing so.
I have neither given nor received aid on this o	quiz, nor observed anyone else doing so.

1) Consider two different <u>four-line caches</u>. Assuming that the accesses "A", "B", and "C" are each to different cache lines and that the exact location of A, B and C are independent of each other, write the chance of each access being a hit. Assume both caches are initially invalid. You may provide your answers as fractions. [10 points, -1 per wrong or blank answer]

Reference	A	В	C	В	A	A	В	C	A
Hit chance on direct-	0%	0%							
mapped cache									
Hit chance on 2-way	0%	0%							
set-associative cache									

2) There are some significant limitations when it comes to having the compiler hoist loads. [5 points each]

a) What issue are we primarily concerned about when we hoist a load above a store?

b) What issue are we primarily concerned about when we hoist a load above a branch?

- 6. Consider a case of having 3 processors using a snoopy MESI protocol where the memories can snarf data. All three have a 2 line direct-mapped cache with each line consisting of 16 bytes. The caches begin with all lines marked as invalid. Fill in the following tables indicating
 - If the processor gets a hit or a miss in its cache
 - If a HIT or HITM (or nothing) occurs on the bus during snoop.
 - What bus transaction(s) (if any) the processor performs (BRL, BWL, BRIL, BIL)
 - For misses only, indicate if the miss is compulsory, capacity, conflict, or coherence. A coherence miss is one where there would have been a hit, had some other processor not caused an invalidation of that line.

In the event more than one bus transaction occurs due to a given memory read/write indicate the response for each bus transaction. Finally, indicate the state of the processor after all of these memory operations have completed. The operations occur in the order shown. [10 points, -0.5 per wrong or blank, minimum of 0]

Processor	Address	Read/Write	Bus transaction(s)	Hit/Miss	HIT/ HITM	"4C" miss type (if any)
1	0x200	Read				
1	0x200	Write				
1	0x210	Read				
1	0x100	Read				
2	0x200	Read				
2	0x210	Write				
2	0x100	Write				
3	0x100	Read				
1	0x100	Write				
2	0x210	Read				

Final state:

	Proc 1			Proc 2			Proc 3		
	Address	State		Address	State		Address	State	
Set 0			Set 0			Set 0			
Set 1			Set 1			Set 1			
			<u> </u>						