Name: Uname:

You have 25 minutes for this quiz. The quiz is closed notes/closed book. If you should finish early, you are welcome to turn in your quiz and step out of the room until the lecture starts. There are 2 pages to this quiz.

I have neither given nor received aid on this quiz, nor observed anyone else doing so.

1) Consider two different four-line caches. Assuming that the accesses "A", "B", and "C" are each to different cache lines and that the exact location of A, B and C are independent of each other, write the chance of each access being a hit. Assume both caches are initially invalid. You may provide your answers as fractions. [10 points, -1 per wrong or blank answer]

Reference	Α	В	С	B	Α	Α	В	С	Α
Hit chance on direct-	0%	0%	0%	75%	56%	100%	75%	56%	56%
mapped cache									
Hit chance on 2-way	0%	0%	0%	100%	75%	100%	100%	75%	75%
set-associative cache									

2) There are some significant limitations when it comes to having the compiler hoist loads. [5 points each] a) What issue are we primarily concerned about when we hoist a load above a store?

That the store address may conflict and so our hoisted load may end up with the wrong result.

b) What issue are we primarily concerned about when we hoist a load above a branch?

That a load that wasn't supposed to happen throws and execption.

- 6. Consider a case of having 3 processors using a snoopy MESI protocol where the memories can snarf data. All three have a 2 line direct-mapped cache with each line consisting of 16 bytes. The caches begin with all lines marked as invalid. Fill in the following tables indicating
 - If the processor gets a hit or a miss in its cache
 - If a HIT or HITM (or nothing) occurs on the bus during snoop.
 - What bus transaction(s) (if any) the processor performs (BRL, BWL, BRIL, BIL)
 - For misses only, indicate if the miss is compulsory, capacity, conflict, or coherence. A coherence miss is one where there would have been a hit, had some other processor not caused an invalidation of that line.

In the event more than one bus transaction occurs due to a given memory read/write indicate the response for each bus transaction. Finally, indicate the state of the processor after all of these memory operations have completed. The operations occur in the order shown. [10 points, -0.5 per wrong or blank, minimum of 0]

Processor	Address Read/Write		Bus Hit/Miss		HIT/	"4C" miss
			transaction(s)		HITM	type (if
						any)
1	0x200	Read	BRL	Miss		Compulsory
1	0x200	Write		Hit		
1	0x210	Read	BRL	Miss		Compulsory
1	0x100	Read	BRL/BWL	Miss		Compulsory
2	0x200	Read	BRL	Miss		Compulsory
2	0x210	Write	BRIL	Miss	HIT	Compulsory
2	0x100	Write	BRIL	Miss	HIT	Compulsory
3	0x100	Read	BRL	Miss	HITM	Compulsory
1	0x100	Write	BRIL	Miss	HIT	Coherence
2	0x210	Read		Hit		

Final state:

	Proc 1			<u>Proc 2</u>			Proc 3	
	Address	State		Address	State		Address	State
Set 0	100	Μ	Set 0			Set 0		
Set 1			Set 1	210	Μ	Set 1		