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Abstract

This paper introduces the prophet/critic hybrid condi-
tional branch predictor, which has two component pre-
dictors that play the role of either prophet or critic. The
prophet is a conventional predictor that uses branch history
to predict the direction of the current branch. Further ac-
cesses of the prophet yield predictions for the branches fol-
lowing the current one. Predictions for the current branch
and the ones that follow are collectively known as the
branch’s future. They are actually a prophecy, or predicted
branch future. The critic uses both the branch’s history and
future to give a critique of the prophet’s prediction for the
current branch. The critique, either agree or disagree, is
used to generate the final prediction for the branch.

Our results show an 8K+8K byte prophet/critic hybrid
has 39% fewer mispredicts than a 16K byte 2Bc-gskew
predictor—a predictor similar to that of the proposed Com-
paq∗ Alpha∗ EV8 processor—across a wide range of appli-
cations. The distance between pipeline flushes due to mis-
predicts increases from one flush per 418 micro-operations
(uops) to one per 680 uops. For gcc, the percentage of mis-
predicted branches drops from 3.11% to 1.23%. On a ma-
chine based on the Intel R© Pentium R© 4 processor, this im-
proves uPC (Uops Per Cycle) by 7.8% (18% for gcc) and
reduces the number of uops fetched (along both correct and
incorrect paths) by 8.6%.

1. Introduction

Processor design is an exercise in trading off perfor-
mance, power, and energy. Techniques that don’t require
making this tradeoff, that is, that provide a win for all three
metrics, are highly desirable because they can give your de-
sign an advantage over competing designs. Better branch
prediction is such a technique. It increases performance by
reducing the time spent speculating on mispredicted paths,
reduces power by allowing the processor to run at a lower

Intel R© and Pentium R© are trademarks or registered trademarks of In-
tel Corporation or its subsidiaries in the United States and other countries.

∗Other names and brands may be claimed as the property of others.

frequency (and hence voltage) and still meet its perfor-
mance target, and reduces energy consumption by reduc-
ing the work wasted on misspeculation.

In addition, the branch predictor is not tightly coupled
with the microarchitecture, making it relatively simple to
replace with a better one, so that an improved version of
the processor can be made available to customers. De-
spite abundant research on branch prediction, however, the
branch prediction problem has not been solved. Leading
microarchitects and researchers have said branch predic-
tion will be even more important as pipelines deepen and
issue widths increase [30, 29].

This paper introduces a technique for better branch pre-
diction, which we call prophet/critic hybrid branch predic-
tion. We will initially describe this technique by drawing
an analogy between running a program and taking a ride in
a taxicab. The taxi is the processor, the driver is the branch
predictor, and the passenger is the pipeline. The system
of roads represents the possible control flow paths through
the program. The intersections are branches; that is, points
where the driver must decide a particular path to follow.
It is the driver’s job to navigate the taxi through the sys-
tem of roads, making the correct turns at intersections, to
get to the destination; i.e., the end of the program. Wrong
turns waste the passenger’s time.

Conventional predictors are analogous to a taxi with just
one driver. He gets the passenger to the destination using
knowledge of the roads acquired from previous trips; i. e.,
using history information stored in the predictor’s mem-
ory structures. When he reaches an intersection, he uses
this knowledge to decide which way to turn. The driver ac-
cesses this knowledge in the context of his current loca-
tion. Modern branch predictors access it in the context of
the current location (the program counter) plus a history of
the most recent decisions that led to the current location.

Prophet/critic hybrids are analogous to a taxi with two
drivers: the front-seat and the back-seat. The front-seat
driver has the same role as the driver in the single-driver
taxi. This role is called the prophet. The back-seat driver
has the role of critic. She watches the turns the prophet
makes at intersections. She doesn’t say anything unless she
thinks he’s made a wrong turn. When she thinks he’s made
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a wrong turn, she waits until he’s made a few more turns
to be certain they are lost. (Sometimes the prophet makes
turns that initially look questionable, but, after he makes
a few more turns, in hindsight appear to be correct.) Only
when she’s certain does she point out the mistake. To re-
cover, they backtrack to the intersection where she believes
the wrong-turn was made and try a different direction.

Using prophet/critic hybrids greatly reduces the num-
ber of mispredicts. And, as the critic uses more future bits
(i. e., waits for the prophet to make more turns before re-
porting they are lost), the reduction in mispredicts grows.
Our experiments use some of the best predictors proposed
in literature to play the roles of prophet and critic. Depend-
ing on the prophet and critic, a critic using 1 future bit re-
duces mispredicts by 10–20% over a prophet scaled up to
the same size as the prophet/critic hybrid. For 12 future
bits, this reduction grows to 15–30%.

2. Related work

Abundant research has been done in the field of dynamic
branch prediction. See Evers and Yeh [8] for a good in-
troduction. We will only review the work most relevant to
prophet/critic hybrid branch prediction.

McFarling [20] first proposed hybrid branch predictors.
His hybrid is composed of two component predictors and
a selector that decides which one is used to predict each
branch. Each component can exploit a different kind of
predictability, so a particular branch can be predicted by
the component that best captures its behavior. McFarling
also introduced a simple mechanism for selecting the com-
ponent to use for a particular branch, in which a two-bit
counter read from a table indicates which component is
more accurate for the branch.

Chang et al. [3] proposed a mechanism to classify
branches. Using profile information, the hybrid component
is selected that best predicts each branch’s behavior. Evers
et al. [6] added flexibility by increasing the number of com-
ponent predictors that can be combined in a hybrid. Their
Multi-Hybrid predictor also incorporates a new selection
mechanism that permits fast predictor training under con-
text switches.

Loh and Henry [19] improved prediction accuracy by
replacing the selection mechanism traditionally used in hy-
brids with a fusion mechanism. Typical selection mecha-
nisms pick one of the component predictors to provide a
branch’s prediction. The unpicked components don’t con-
tribute to this prediction. Their fusion mechanism, rather
than picking a component, combines all component pre-
dictions to provide the branch’s prediction.

Jiménez et al. [15] explain how predictor overriding
provides fast and accurate predictions. Two predictors are
used: a small low-latency predictor with poor accuracy and
a large high-latency predictor with good accuracy. Two pre-
dictions are initiated in parallel, one from each predictor.
Each predictor has the same pool of branch history infor-

mation from which its prediction can be computed. The
prediction from the small predictor completes first, and can
be used while the prediction from the large predictor is still
being computed. Once that prediction has been computed,
it overrides the earlier prediction if they differ, forcing all
work done based on the earlier prediction to be discarded.

Grunwald et al. [9] show that using the prediction for
the current branch in the history of the JRS confidence es-
timator [12] improves speculation control. In the terminol-
ogy of this paper, they use one future bit to get a more ac-
curate confidence estimation.

The prophet/critic hybrid combines and builds upon this
related work—it is a hybrid, and it does use overriding, and
it does use future bits. Its key distinction is that, rather than
initiating all component predictions at the same time, they
are, at least logically, initiated at different times. This al-
lows the output of the prophet to be used as the input to the
critic, eliminating the need for a selection or fusion mecha-
nism. It also allows the critic to gather multiple (i. e., more
than one) future bits for a branch. When the branch is on
the correct path but mispredicted by the prophet, the critic
uses these future bits—of which at least one is wrong due to
the mispredict—to train its prediction structures. When the
branch is encountered again, the critic uses the future bits
as context to identify if the prophet is likely to be wrong
and should be overridden. This greatly increases the pre-
diction accuracy for the branch.

3. Prophet/critic hybrid branch prediction

3.1. Overview

Current branch predictors make predictions using his-
tory information. Once a branch has been predicted, the
predictor can not use information from subsequent pre-
dictions to re-predict the branch. Our prophet/critic hybrid
can effectively use these subsequent predictions. Figure 1
shows the structure of a prophet/critic hybrid. The hybrid is
composed of two conventional predictors that play the role
of either prophet or critic.

Branch history
Branch Outcome 
Register (BOR)

UVWXYZ ABCD

time

Prophet’s 
prediction

(on branch D)

Critique

(on branch Z,
using 4 future bits:
A, B, C, and D)

Prophet Critic

UVWXYZABCD

Figure 1. Structure of a prophet/critic hybrid.
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As in a typical hybrid, the components of the
prophet/critic hybrid can be any existing predictors. The
prophet provides predictions based on the past behavior of
previous dynamic branches. Once a prediction for a branch
is made, the prophet goes on along the predicted path gen-
erating new predictions. This prediction and the new pre-
dictions form the branch future. As in current history-based
predictors, the prediction of the current branch is deter-
mined by the history, and that prediction determines the
branch’s future.

While the prophet generates the branch’s future, the
critic collects this future information, inserting the prophet
predictions into its branch outcome register (BOR). There-
fore, when a critic prediction is made, its BOR contains
two kinds of branch outcomes: (a) outcomes of branches
before the one being predicted, which are branch history,
and allow the predictor to correlate on the past, and (b)
outcomes of the branch being predicted and those after it,
which are branch future, and allow the predictor to corre-
late on the future. Using a combination of past and future
correlation, the critic provides a critique of each prophet
prediction. This critique will either agree or disagree with
the prophet prediction, and will determine the final predic-
tion for the branch. We use the term critique as a synonym
for critic prediction, but we tend to use it when we want
to stress agreement or disagreement with the prophet. For
the remainder of this paper, the critic’s prediction is the fi-
nal prediction for the branch.

The prophet/critic hybrid takes advantage of the fact that
the prophet and critic operate autonomously, predicting the
same branch at different times. In a conventional hybrid
predictor, both components are accessed in parallel, mak-
ing predictions for the same branch. A selection mecha-
nism then picks the prediction that is most suitable for the
branch. The same situation occurs for overriding predic-
tors. Two predictions begin in parallel on two different pre-
dictors. A first prediction is generated in an early pipeline
stage, while a second prediction (for the same branch) is
provided some cycles later. In both a conventional hybrid
and an overriding predictor, the predictors predict the same
branch with the same available information.

However, in the prophet/critic hybrid, although both
prophet and critic predict the same branch, the predictions
are not initiated at the same time. Since the critic initiates
its prediction some cycles later, it can incorporate infor-
mation about future code behavior (i. e., the branch future
provided by the prophet) into its prediction. 1 We will show
this future information increases prediction accuracy, espe-
cially when branch history is not enough to guess the out-
come of the branch.

Example. Consider the control flow graph shown in
Figure 2. Assume the correct path in this portion of the

1Actually, to reduce the latency of critic predictions, the prophet and
critic predictions can begin in parallel using the branch history, and the
branch future bits can later be factored into the critic prediction as the
prophet produces them.

code is shown by the shaded blocks (basic blocks 0, 1,
4, and 7). Initially, when branch A is predicted by the
prophet, the history is formed by the outcomes of the pre-
vious branches: W, X, Y, and Z (not shown in the figure).
The prophet uses this history to predict A.
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- Correct Path:       
WXYZ + ABEH

- Correct Outcome: 
wxyz | NTNT

- Prophet Predicted Path:
WXYZ + ACGJ

- Prophet Predicted Outcome: 
wxyz | TTTT

Past branches:
WXYZ

Figure 2. Example of why the critic works.

If the prophet correctly predicts all branches along the
correct path, the branch future of A would be formed by
the real outcomes of branches A, B, E, and H; i. e., NTNT.

Suppose the prophet mispredicts A and the execution
follows the wrong path marked with the dotted line (blocks
0, 2, 6, and 9). The prophet will predict branches A, C, G,
and J, and the results of these predictions will be inserted
into the critic’s BOR. Therefore, when the critic predicts
A, its BOR contains two kinds of information:

• Branch History: Outcomes of branches before A
(i. e., W, X, Y, and Z), which allow the predictor to
correlate on the past.

• Branch Future: Predictions for A and the branches
after it (i. e., A, C, G, and J), which allow the predic-
tor to correlate on the future.

Inserting just a single future bit into the critic’s BOR
is enough for the critic to know that the prophet mispre-
dicted the branch; that is, T was inserted instead of N. But,
as in the example in the introduction, the more future bits
that are inserted (i. e., the more turns a taxi makes after a
wrong turn), the higher the amount of information avail-
able to confirm that there was a mispredict (i. e., a wrong
turn) at branch A.

The first time the prophet generates the wrong predic-
tion for branch A and that mispredict is detected, the critic
is trained to recognize that situation. Consequently, the next
time the prophet mispredicts the branch under the same
conditions, the critic remembers the previous behavior, and
disagrees with the prophet’s prediction. Using more fu-
ture bits allows the critic to identify longer paths down
the wrong path (i. e., more precise branch future contexts).
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However, for a fixed size BOR, doing so comes at the ex-
pense of losing branch history information. In the next sec-
tions we will show how the number of future bits influences
the performance of the prophet/critic hybrid.

3.2. Updating the predictors

Updating branch history registers (BHRs) and BORs.
The prophet BHR is updated speculatively with the
prophet’s predicted branch outcome at the prediction stage.
Past studies have shown that the outcomes of the most re-
cent branches are crucial for accurate branch prediction,
and that BHRs should be speculatively updated instead of
waiting for the branches to resolve [33, 11].

The critic BOR is filled with the predicted outcomes
from the prophet, as explained earlier. The critic predic-
tions are not used to fill the critic BOR.

Updating pattern tables. The prophet and critic pattern
tables are updated non-speculatively, at commit time, when
the real outcomes of the branches are known. For example,
if the prophet (or the critic) is a two-level adaptive predic-
tor [33], the two-bit counter that provided the prediction is
only incremented if the branch was actually taken, and only
decremented if the branch was actually not-taken.

3.3. Recovering from a mispredict

On a branch mispredict, the prophet BHR and the critic
BOR are repaired via checkpointing. When the prophet
predicts a branch, a copy of the current BHR and the cur-
rent BOR are assigned to the branch. If a mispredict is
detected for the branch, the BHR and BOR are restored
from the values assigned to the branch, the mispredicted
branch’s correct outcome is inserted into the BHR and
BOR, and fetch is directed to the correct path. Other repair
mechanisms are also possible [17]. The pattern tables don’t
require repair since they are updated non-speculatively.

We would like to point out that a branch can be mispre-
dicted and still be on the correct path. It is the instructions
that follow it that are on the wrong path. Such a branch is
not flushed from the pipeline when the mispredict is de-
tected. It continues down the pipeline, and when it com-
mits, it trains the critic using the same BOR value that was
used to generate the critic prediction. This BOR value has
a single (mispredicted) future bit that corresponds to the
branch, plus future bits for the branches on the wrong path
that were flushed. If the BOR value did not contain the
future bits for the wrong path, the critic would never be
trained to recognize when the prophet has mispredicted a
branch and gone down the wrong path.

4. Filtering the critic

The critic’s accuracy can be limited by multiple
branches contending for the same prediction resources; that
is, by conflicts. Chang et al. [2] realized that conflicts can

be reduced by filtering easy-to-predict branches from a pre-
dictor. They (dynamically) identified the easy-to-predict
branches and predicted them with a simple predictor. Only
the difficult branches were predicted with the original pre-
dictor, for which conflicts were a problem. By allowing
fewer branches to access the original predictor’s tables,
they were able to reduce the number of conflicts among
branches, and increase overall prediction accuracy.

In this paper we explore filtering the critic. The prophet
provides a prediction for every branch, so the processor
always has an available prediction regardless of whether
the critic provides a prediction. For good performance,
the critic should only provide a prediction in the cases
where the prophet is likely to be wrong. We use prophets
that correctly predict 90–95% of all branches. The critics
should then only be responsible for predicting the 5–10%
of branches that the prophets mispredict.

Figure 3 shows a filtered critic. The critic has a table of
tags it uses to filter branches. When a branch needs a cri-
tique, two actions are performed in parallel: first, the critic
is queried for its prediction; and second, the tag table is ac-
cessed to determine if there is a tag hit. If there is a hit,
the critic’s prediction is used as the critique. If there is a
miss, the critic implicitly agrees with the prophet’s predic-
tion, and the critic’s prediction is simply ignored. The critic
is only trained for branches that have hits.

tagtag

Filter

HASH

Branch Outcome 
Register (BOR)

10101001001

Branch address

=?

Hit / Miss Critic Prediction

predictionprediction

Critic
predictor

Figure 3. Filtered critic.

New entries are inserted into the table when a branch
has a tag miss and it is mispredicted. The tag for the partic-
ular branch address and BOR value combination is inserted
so that the next time that context is encountered, the critic’s
prediction will be used for the branch. The critic’s predic-
tion structures are also initialized according to the branch’s
outcome. The tags are managed using a least-recently-used
(LRU) replacement algorithm.

The index into the table and the tags are computed with
two different hash functions. The hash functions are se-
lected to minimize the probability that a particular branch
address and BOR value combination will use the same ta-
ble entry and have the same tag as another combination.
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In our experiments, the hash functions are different XOR
functions of the branch address and BOR value. Our exper-
iments have shown that only 8–10 bit tags are needed to
clearly identify the different branch contexts.

5. A prophet/critic hybrid implementation

Countless front-end architectures have been proposed,
and many of them can benefit from a prophet/critic hy-
brid. For example, the front-end pipeline of the Compaq
Alpha 21264 processor [10] contains a hybrid consisting of
a line predictor and a tournament local-global branch pre-
dictor. This hybrid could be replaced with a prophet/critic
hybrid. The prophet would provide an initial prediction at
the beginning of the pipeline. This prediction would drive
the fetch unit along the predicted path, and also provide
a future bit for the critic. Several stages later, the critic
would provide a second prediction based on the future bits,
which would potentially override the prophet’s prediction.
The number of stages between the prophet and critic pre-
dictors determines the number of future bits used to gener-
ate the critique. Other front-end architectures, like the trace
cache [22] or the stream fetch architecture [23] can also
benefit from a prophet/critic hybrid.

For our uPC (Uops [i. e., micro-operations] Per Cycle)
performance results, which are presented in Section 7.4,
we modeled a decoupled front-end architecture [24] that
separates branch prediction generation from branch predic-
tion consumption. We also use an overriding scheme: the
critic’s prediction is always trusted to be correct, and will
override the prophet’s prediction for a branch.

Figure 4 shows this architecture. A queue (fetch tar-
get queue, or FTQ) decouples the hybrid from the in-
struction cache. The hybrid produces predictions and in-
serts them in the FTQ, and the cache later consumes them.
Our prophet/critic hybrid requires that the FTQ be full
(or mostly full) most of the time. To accomplish this, the
hybrid is designed to produce predictions faster than the
cache consumes them, so that the FTQ fills to capacity.
For IA32, conditional branches—averaged over all bench-
marks, not just integer—occur every 13 uops. A machine
twice as aggressive as the Intel Pentium 4 processor, fetch-
ing 6 uops per cycle, encounters a conditional branch about
every other cycle. A hybrid producing one prediction per
cycle would therefore meet the requirement.

The hybrid uses a branch target buffer (BTB) to identify
branches. When a conditional branch is identified, the hy-
brid predicts its direction. When a branch misses the BTB,
a BTB entry is allocated for the branch when it commits.
Other allocation policies are also possibly, such as only al-
locating entries for taken branches.

When a branch is identified by the BTB, the prophet
provides its initial prediction and inserts the prediction in
the FTQ. This prediction can be immediately consumed by
the cache, but, since insertions occur at the end of the FTQ
and the FTQ is typically full, the prediction usually spends

Critic

Prophet L K J I H G F E D B A I-cache 

& Fetch

Prophet Predictions
Critic 

Predictions

FTQ

BOR

Critique of 
branch C

4 future bits
(C,D,E,F)

C

Figure 4. Prophet/critic hybrid implementa-
tion on a decoupled front-end architecture.

many cycles in the FTQ before it is consumed. When the
prediction is inserted in the FTQ, it is also inserted in the
critic’s BOR as a future bit for branches previously pre-
dicted by the prophet. As subsequent predictions are in-
serted in the FTQ, the critic gathers them as future bits for
the branch. When it has gathered the required number of fu-
ture bits (this is a fixed number) for the branch, it provides
a critique of the prophet’s prediction. The critique is typi-
cally generated well before the prediction is consumed by
the cache.

If the critic agrees with the prophet’s prediction, the pre-
diction is marked as having been criticized, and then the
critic moves on to the next uncriticized prediction. In the
figure, unshaded FTQ entries hold uncriticized predictions,
and shaded FTQ entries hold predictions that are being or
have been criticized. On the other hand, if the critic dis-
agrees with the prophet, several actions are taken: (a) the
critic’s prediction overrides the prophet’s prediction, (b)
FTQ entries holding uncriticized predictions are flushed,
and (c) the prophet is redirected to the path predicted by the
critic. The flush is confined to the FTQ, since the cache and
the rest of the machine haven’t received any of the flushed
predictions. The criticized predictions are left alone, so if
the FTQ is sufficiently full, the flush causes no performance
penalty. (We’ve measured the percentage of times the FTQ
is empty when the cache requires a prediction for both a
prophet/critic hybrid and a conventional predictor, and they
are very nearly equal.)

There are cases where the cache requires a prediction
but the critic has not gathered enough future bits to pro-
vide a critique of the prediction. When this happens, either
the prediction can be passed to the cache without provid-
ing a critique, or the critic can generate a critique using the
future bits available at this point. In our experiments, the
prophet produces 2 predictions per cycle and the critic pro-
duces 1 prediction per cycle. For 8 future bits, these cases
account for less than 0.1% of the times the cache requires
a prediction. (For fewer future bits, this percentage will be
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smaller; and for more, it will be larger.) Although these
cases are rare, we obtained the best results by generating a
critique using the future bits that were available.

6. Simulation methodology

We use a cycle-accurate IA32, uop based, execution
driven simulator that executes Long Instruction Traces
(LITs). A LIT is not actually a trace, but a snapshot of the
processor state, including memory, that can be used to ini-
tialize an execution-based performance simulator. It also
contains a list of system interrupts needed to simulate sys-
tem events such as DMA. Since the LIT includes an entire
snapshot of memory, we can simulate both user and ker-
nel instructions, as well as model wrong-path effects.

Unlike conventional branch predictors, prophet/critic
hybrids must be evaluated on simulators that model going
down wrong paths. In a prophet/critic hybrid, the branch
future bits generated along a wrong path are essential to
the critic, because they provide the information necessary
to detect mispredicts. In addition, these future bits must be
generated by actually going down the wrong path. Gener-
ating these bits while traversing a (correct-path only) in-
struction trace provides the critic with oracle information,
which it does not actually have.

Table 1 lists the benchmark suites we use. In total, we
simulate 108 benchmarks, some of them with different in-
puts, which comprise 341 LITs. The LITs are traces of 30
million IA32 instructions extracted from the correspond-
ing benchmark after the initial startup phase and are care-
fully chosen to be representative of the overall characteris-
tics of the benchmark.

No. of Description or
Suite Bench. Sample Benchmarks

SPECint∗2K (INT00) 12 http://www.spec.org
SPECfp∗2K (FP00) 14 http://www.spec.org
Internet (WEB) 28 SPECjbb∗, WebMark∗
Multimedia (MM) 15 MPEG, speech recognition, Quake∗
Productivity (PROD) 27 SYSmark∗2K, Winstone∗
Server (SERV) 2 TPC-C∗, TimesTen∗
Workstation (WS) 12 CAD, Verilog∗

Table 1. Simulated benchmark suites.

Table 2 gives our simulation parameters. We evaluate
our prophet/critic hybrid on a superscalar out-of-order mi-
croarchitecture derived from the Intel Pentium 4 proces-
sor. This microarchitecture runs at the same frequency as
that processor, but is twice as wide and has caches that
are (roughly) twice as big and associative. We scaled up
the instruction window size (and associated buffers, the
scheduling window and load/store buffers) by a factor of
16 to reflect where we believe future microarchitectures are
headed [1]. In addition, we evaluate our hybrid on a de-
coupled front-end architecture [24], and so have replaced
the original trace-cache-based front-end with the decou-

Processor Frequency 3.8 GHz
Fetch/Issue/Retire Width 6 uops
Branch Mispredict Penalty 30 cycles
BTB 4096 entries, 4-way
FTQ Size 32 entries
Instruction Window Size 2048 uops
Scheduling Window Size 256 int, 128 mem, 384 fp (sizes in uops)
Load/Store Buffer Sizes 768 load, 512 store (sizes in uops)
Functional Units 6 int, 4 mem, 2 fp
Hardware Data Prefetcher Stream-based (16 streams)
Instruction Cache 64 KB, 8-way, 64-byte line
L1 Data Cache 32 KB, 16-way, 64-byte line, 3 cycle hit
L2 Unified Cache 2 MB, 16-way, 64-byte line, 16 cycle hit
Memory Latency 100 ns

Table 2. Simulation parameters.

pled front-end. The decoupled front-end uses a decoded in-
struction cache (storing uops) instead of a trace cache.

Predictors simulated

Any predictor can play the role of prophet or critic. The
only restriction is the critic must be able to use the predic-
tions generated by the prophet. We have implemented some
of the best predictors proposed in literature, and used them
as prophet and critic. Other predictors were also tested, but
their results are not shown due to space constraints. A brief
description of the predictors we used follows:

• Gshare [20]: McFarling found that using global his-
tory causes interference in the pattern tables of two-
level predictors, because branches tend to use a lim-
ited number of the possible table entries. His solu-
tion is to increase the usefulness of branch history, by
XORing it together with the branch address. The new
indexing mechanism allows branches to share the pat-
tern table in a more efficient way, reducing the alias-
ing among them.

• 2Bc-gskew [28]: A derivation of this predictor is im-
plemented in the Compaq Alpha EV8 processor [26].
The original 2Bc-gskew is composed of four tables ac-
cessed using global history information: a bimodal ta-
ble (BIM), two gshare-like tables (G0 and G1), and a
metapredictor table (META). Depending on the out-
put of the META table, the final prediction is given ei-
ther by the BIM table or by the majority vote of the
predictions from the BIM, G0, and G1 tables.

De-aliased branch predictors, such as 2Bc-gskew
and YAGS [5], have been shown to achieve higher pre-
diction accuracy at equivalent hardware budgets than
larger aliased global history branch predictors such as
gshare and GAs [33].

• Perceptron [32, 16]: Perceptron prediction is a two-
level scheme using perceptrons instead of two-bit
counters as the prediction unit. A perceptron is a sim-
ple implementation of a neural network that provides
predictive capabilities. Perceptrons are represented by
vectors of weights, which are implemented as signed
integers. The branch address selects a perceptron from
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Total hardware budget
2KB 4KB 8KB 16KB 32KB

gshare # entries 8K 16K 32K 64K 128K
history length 13 14 15 16 17

perceptron # perceptrons 113 163 282 348 565
history length 17 24 28 47 57

2Bc-gskew # entries (per table) 2K 4K 8K 16K 32K
history length 11 12 13 14 15

tagged gshare # entries 256*6-way 512*6-way 1024*6-way 2048*6-way 4096*6-way
BOR size 18 18 18 18 18

perceptron # perceptrons 73 113 163 282 348
filtered history length 13 17 24 28 47
perceptron filter # entries 128*3-way 256*3-way 512*3-way 1024*3-way 2048*3-way

history length 18 18 18 18 18
BOR size 18 18 24 28 47

Table 3. Prophet and critic configurations.

a pool of perceptrons that is used to compute the
branch’s prediction. Global history bits are used as in-
puts of the chosen perceptron to compute the output.
The output of the perceptron computation determines
the final branch prediction: if the output is negative,
the branch is predicted not taken and if it is positive,
the branch is predicted taken.

A key advantage of the perceptron predictor is its
ability to consider much longer histories than schemes
that use tables with saturating counters. This is also
an advantage for our mechanism. Note that as more
future bits are added to a critic’s BOR due to new
prophet predictions, the older history bits are lost. By
using a perceptron predictor, we can incorporate many
more future bits without losing history.

Table 3 shows the parameters used for simulating the se-
lected predictors. We considered hardware budgets ranging
from 2–32 kilobytes. History lengths for gshare and 2Bc-
gskew are the maximum that can be used for their table
sizes. For the perceptron predictor, we chose the combina-
tion of perceptron table size and history length that gives
the highest prediction accuracy [16].

Table 3 also shows configuration parameters for the fil-
tered versions of gshare and perceptron that will be used as
the critic. The tagged gshare is a variant of the gshare pre-
dictor, in which a tag is assigned to each two-bit counter.
Its structure is similar to a N-way associative cache, with
each data item being a two-bit counter. The filtered percep-
tron consists on an ordinary perceptron predictor plus an
N-way associative table of tags. The perceptron prediction
and the tag table lookup are done in parallel, as shown in
Figure 3. The critic’s prediction is given only when there
is a tag hit. A tag miss (i. e., filter miss) implies implicit
agreement with the prophet’s prediction.

In the filtered perceptron critic, the history length values
are the number of bits from the BOR that are used by each
structure. The bits used are the bits that have been most re-
cently inserted into the BOR. When the (unfiltered) percep-
tron is used as a critic, its BOR size is the history length of
the unfiltered perceptron given in Table 3.

For all critics, the number of BOR, history, and future
bits were tuned to give the highest accuracy for the given
hardware budget.

With the advance of technology, the number of cycles
required to perform a prediction increases. Since this study
is primarily concerned with the potential accuracy of the
proposed predictor, we will not consider prediction latency
in our simulations. Our assumption is that any branch pre-
dictor can be pipelined to provide the required predictor
bandwidth for the processor [14, 27].

7. Evaluation

We measure mispredict rate in mispredicts per one thou-
sand uops (misp/Kuops), and processor performance in
uops per cycle (uPC). Unless specially mentioned, all re-
sults are averaged over all benchmarks.

Section 7.1 analyzes the importance of future bits for ac-
curacy, and the impact that the number of future bits has on
the critic’s performance. Section 7.2 compares the accu-
racy of different prophet/critic combinations. Section 7.3
describes the types of critiques and their distribution. Fi-
nally, Section 7.4 presents processor performance results.

7.1. The importance of future bits

Two questions naturally arise regarding future bits: How
important are they? And, what is the optimal number
needed to provide the best critiques?

Figure 5 shows simulation results for an 8KB percep-
tron prophet with an 8KB tagged gshare critic. Mispredict
rate is shown as the number of future bits is varied from 0
to 12. We selected 6 benchmarks showing the different be-
haviors we saw when varying the number of future bits.

For all six benchmarks, adding just one future bit
decreases the mispredict rate, averaged over all six
benchmarks (“AVG” line in Figure 5) by 15% for this
prophet/critic configuration. Note that 0 future bits means
that no future information is used, which is the same way
a conventional hybrid or overriding predictor operates,
where all components have the same available history in-
formation from which they can generate predictions. The
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Figure 5. Effect of varying the number of fu-
ture bits used by the critic on prediction ac-
curacy for selected benchmarks. (prophet:
8KB perceptron; critic: 8KB tagged gshare)

first future bit is the prophet’s prediction for the branch.
Knowing whether this prediction is taken or not taken is
highly valuable information to the critic for determining
whether the prophet mispredicted the branch. Our results
with other combinations of prophets and critics also show
that adding just 1 future bit decreases the mispredict rate
over conventional hybrids.

Increasing the number of future bits beyond 1 has differ-
ent effects depending on the benchmark. For premiere
and unzip the mispredict rate continues to decrease as the
number of bits increases. However, premiere sees most
of its decrease from 0 to 1 (a 29% decrease from 0 to 1, ver-
sus 9% from 1 to 12), whereas unzip sees most of its de-
crease from 1 to 12 (8% versus 65%).

For msvc7 and flash, adding future bits decreases the
mispredict rate up to a point, after which, the rate increases.
For msvc7, this point is 8 future bits, with a 34% decrease
in mispredict rate from 0 to 8, but a 6% increase from 8 to
12. For flash, this point is 4 future bits, with a 42% de-
crease from 0 to 4. From 4 to 8, the rate increases by 30%,
and from 4 to 12, by 6%.

Both facerec and tpcc show little improvement by
going beyond 1 future bit, and for tpcc, a small degrada-
tion. facerec is insensitive to the number of future bits,
showing a 2% increase in mispredict rate from 0 to 4 bits,
but a 10% decrease from 0 to 12. For tpcc, the future bits
beyond 1 never help, increasing the mispredict rate by 4%
from 1 to 12.

In summary, adding some future bits always helps,
but more is not always better. Research has shown that
the optimal number of history bits depends on the static
branch [31] and the program’s execution phase [18]. Re-
search has also shown that for a given number of history
bits, it is possible to select only those bits that contribute to
the predictability of the branch [7]. This same research can
be applied to determine the optimal number of future bits

and to select the best future bits for a prediction.

7.2. Prediction accuracy

Figure 6 shows the average mispredict rates for dif-
ferent prophet/critic combinations of different sizes. We
experimented with many different prophet/critic combina-
tions, including combinations without perceptron predic-
tors, but only show three representative combinations. For
each configuration, we show the mispredict rate of using
the prophet alone (prophet with no critic), and the mispre-
dict rates of using the prophet/critic hybrid for critics using
various numbers (i. e., 1, 4, 8, and 12) of future bits.

Figure 6 shows that adding a critic to a single predictor
(i. e., a prophet alone) decreases the mispredict rate. The
larger the critic size, the lower the mispredict rate. Adding
future bits decreases the mispredict rate up to a point, after
which, there are no further improvements. Although adding
future bits generally improves accuracy, since the hardware
budget is fixed, it typically comes at the expense of hav-
ing to remove older history bits. At a certain point, the fu-
ture bit being added provides less information about the
branches being predicted than the history bit that must be
removed, and consequently, the mispredict rate increases.

This is especially true when the critic provides critiques
for branches easily predicted by the prophet, because the
information given by future bits for correctly predicted
branches is less important than the information given by
future bits for mispredicted branches. Figure 6(a) shows
that with an unfiltered perceptron critic, the mispredict
rate increases when more than 8 future bits are used. Be-
cause the critic is unfiltered, it provides a critique for all
branches, even the 90–95% of branches that the prophet
correctly predicts. The critiques for these correctly pre-
dicted branches are of lower quality than they could be,
since history bits were removed to make room for relatively
useless future bits, and perceptron predictors achieve high
accuracy through long histories [16]. In addition, they com-
pete against critiques for mispredicted branches for space
in the critic’s prediction structures, increasing the mispre-
dict rate.

Our solution to this problem is to filter the critic. Fig-
ures 6(b) and 6(c) show the results. With a filter, the critic
only provides critiques for branches that the prophet previ-
ously mispredicted. These critiques are more likely to use
future bits for mispredicted branches than correctly pre-
dicted branches, and these future bits provide a more im-
portant information. Also, there are fewer critiques for cor-
rectly predicted branches, reducing competition for space
(i. e., aliasing) in the critic’s prediction structures. The
overall result is that the mispredict rate continues to de-
crease as future bits are added.

Figure 7 compares the mispredict rate of the
prophet/critic hybrid to some of the best predictors pro-
posed in literature: gshare, 2Bc-gskew, and perceptron. The
prophet was made the same as one of those predictors, but
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(c) Prophet: perceptron; Critic: tagged gshare

Figure 6. Prediction accuracies of different
prophet/critic combinations and sizes.

given only half the hardware budget. The other half was
used for the critic, which was either a tagged gshare or a
filtered perceptron. The results show that a prophet/critic
hybrid with a tagged gshare critic can reduce the mispre-
dict rate by 25–31%.

0

0.5

1

1.5

2

2.5

16KB gshare

8KB gshare
+ 8KB f.perceptro

n

8KB gshare
+ 8KB t.gshare

16KB 2Bc-gskew

8KB 2Bc-gskew + 8KB f.perceptro
n

8KB 2Bc-gskew + 8KB t.gshare

16KB perceptron

8KB perceptron + 8KB f.perceptro
n

8KB perceptron + 8KB t.gshare

m
is

p
/K

u
o

p
s

24.6%
30.7%

25.5% 28% 15.2%

25.4%

(a) 16KB predictors

0

0.5

1

1.5

2

2.5

32KB gshare

16KB gshare
+ 16KB f.perceptro

n

16KB gshare
+ 16KB t.gshare

32KB 2Bc-gskew

16KB 2Bc-gskew + 16KB f.perceptron

16KB 2Bc-gskew + 16KB t.gshare

32KB perceptron

16KB perceptron + 16KB f.perceptro
n

16KB perceptron + 16KB t.gshare

m
is

p
/K

u
o

p
s

28.1%
31.2% 30% 29.5%

17.5%

26.8%

(b) 32KB predictors

Figure 7. Mispredict rates of conventional
predictors compared to prophet/critic hy-
brids using 8 future bits. Numbers indicate
percent reduction in mispredict rate.

7.3. Distribution of critiques

The critic’s critiques of the prophet’s predictions de-
termine the effectiveness of the prophet/critic algorithm.
We classify the final critique of a branch according to
the prophet’s prediction (i. e., correct or incorrect) and
the critic’s critique (i. e., agree or disagree). Ideally,
the critic disagrees when the prophet mispredicts (incor-
rect disagree). When the critic agrees with the prophet
(correct agree if the prophet didn’t mispredict; incor-
rect agree if it did), the final prediction does not change,
so there is neither gain nor harm. However in both these
cases, the use of the critic was needless since there was
no change in the final prediction; and for incorrect agree,
an opportunity was lost to correct a mispredict. The worst
case—and the case that should be minimized—is when the
critic disagrees with a prophet’s correct prediction (cor-
rect disagree).

Figure 8 shows the distribution of critiques for a filtered
critic as the number of future bits is varied. The distribu-
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4K perceptron + 4K perceptron + 4K perceptron +

2K tagged gshare 8K tagged gshare 32K tagged gshare

1 fb 4 fb 12 fb 1 fb 4 fb 12 fb 1 fb 4 fb 12 fb

% correct none 67.6 70.0 76.3 65.9 73.5 75.1 65.3 73.0 75.2

% incorrect none 1.1 1.1 1.3 0.7 0.9 1.0 0.4 0.7 0.8

% none (Total) 68.7 71.2 77.7 66.6 74.3 76.1 65.7 73.7 76.0

Table 4. Percentage of prophet predictions filtered by the critic, for varying critic sizes and numbers

of future bits. Note the size of the filter is proportional to the size of the critic.

tion is only over critiques for which there was a tag hit in
the filter; i. e., the implicit agree critiques that result from
tag misses in the filter are not shown in this graph.
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Figure 8. Distribution of critiques (prophet:
4KB perceptron; critic: 8KB tagged gshare).

The number of incorrect disagree is larger than the
number of correct disagree, confirming the results of Sec-
tion 7.2, in particular, those in Figure 6(c). As the number
of future bits increases from 1 to 12, the number of incor-
rect disagree increases by 20%, while the number of cor-
rect disagree decreases by 40%. Also, the number of times
the critic fails to override a prophet’s mispredict (incor-
rect agree) decreases by 43%. Note that the majority of cri-
tiques are correct agree, which don’t affect prediction ac-
curacy.

The critic may also provide two implicit critiques when
there is a miss in the filter: correct none and incor-
rect none, depending on the prophet’s prediction of this
branch. A miss in the filter occurs either the first time a
new mispredicted branch context (branch address and BOR
value combination) is found in the execution flow (no pre-
vious instance of the context was introduced in the critic
before), or when a context that was mispredicted in the
past, is mispredicted again after a long time (its entry in
the critic was replaced by another context). The best case
is that the critic filters those branches that the prophet cor-
rectly predicts, and that gives a critique for branches that
the prophet misses. Table 4 shows the percentage of pre-
dictions that were filtered and the prophet’s prediction (and,

therefore, the final prediction) was correct or incorrect. The
last row shows the sum of both correct none and incor-
rect none.

Increasing the filter size allows more contexts to be
stored in its tag table. The results show that the percent-
age of total predictions without critiques, for either incor-
rect none, correct none, or the total, generally decreases
slightly as the filter size increases. That is, there are more
tag hits as the filter size increases.

Increasing the number of future bits is also beneficial to
the filter, as it is better able to identify the contexts where
the prophet mispredicted a branch. On average, the critic
gives a critique to 1 out of every 3 branches using 1 fu-
ture bit, and to 1 out of every 4 branches using 12 future
bits. This is why, in Figure 8, the total number of critiques
decreases as the number of future bits increases.

7.4. Processor performance

Figure 9 shows our performance results. To reduce sim-
ulation time, we only simulated one LIT per benchmark
(the one that obtained the intermediate mispredict reduc-
tion of all LITs for that benchmark) and we simulated only
the first 15 million IA32 instructions of each LIT.

We simulated three prophets (i. e., gshare, 2Bc-gskew,
and perceptron) combined with a tagged gshare critic us-
ing 4, 8, and 12 future bits. The first bar in each group
is a prophet alone with the same hardware budget as the
prophet/critic hybrids.

The results show the same trend shown in previous sec-
tions for prediction accuracy: as the number of future bits
increases, performance increases as well. With 4 future
bits, speedups of 4.7% for gshare, 3.4% for 2Bc-gskew, and
2.7% for perceptron are obtained over the 16KB prophet
alone. If we use 12 future bits in the critic, speedups grow
to 8%, 7%, and 5.2%, respectively.

Figure 10 shows performance results classified per
benchmark suite. These results correspond to the “2Bc-
gskew + tagged gshare” bars shown in Figure 9. The
prophet/critic hybrid always outperforms the 2Bc-gskew
alone for all suites. Using a prophet/critic hybrid with 4 fu-
ture bits, speedups over a 16KB 2Bc-gskew predictor range
from 0.6% for FP00, to 3% for WEB, to 4.2% for INT00.
Using 12 future bits, speedups grow to 1.7% for FP00, 6%
for WEB, and 10.7% for INT00.
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8. Why it works—the theory

In 1996, Chen, Coffey, and Mudge [4] linked data com-
pression to branch prediction.

Compressors typically operate in stream-mode, com-
pressing each symbol as it is received. A predictor is used
to generate a probability distribution for the next symbol.
When the symbol is received, it is encoded according to
the distribution. The predictor is then updated to generate
the distribution for the next symbol. The better the predic-
tor, the better the compression rate.

Conventional branch predictors and prophets in
prophet/critic hybrids are similar to a stream-mode com-
pressor’s predictor. The branches are the symbols, and
have two possible values: taken and not-taken. Each branch
is predicted as it is encountered. The prediction is the sym-
bol (i. e., branch direction) with the highest probabil-
ity. After the prediction is made, the predictor is updated.

Since the predictor operates in stream-mode, it is lim-
ited to using previously encountered branches (i. e., branch
history) to generate the probability distribution. This lim-
its its accuracy.

Critics, on the other hand, are different. They do not op-
erate in stream-mode. When a branch is encountered, they
wait until they have a few following branches before they
provide its prediction. Because they wait, they can use a
probability model (e. g., a Markov model) that generates a
probability distribution for the branch using the outcomes
of the branches both before and after it; that is, using both
branch history and future. Since they are accessed with pre-
dicted branch future instead of actual future, they actually
maintain a probability model for whether the prophet’s pre-
diction is wrong, rather than a model for the branch’s out-
come. However, the predicted outcome can be easily gen-
erated from the prophet’s prediction plus the critic’s pre-
diction of whether it is wrong. Because critics do not op-
erate in stream-mode, they can delay making their predic-
tions, reducing the prophet’s mispredicts by up to 45%.

9. Conclusion

Prophet/critic hybrid branch prediction is a general tech-
nique for reducing mispredicts. This paper shows the tech-
nique works and provides some insights as to why it
works. The paper’s intent is to provide information that
can be used to build better predictors. However, the ul-
timate goal—at least when designing a processor—it to
build the best predictor. To reach this goal, microarchi-
tects should experiment with using different predictors
as prophets and critics; for example, those proposed by
Jiménez [13], Seznec [25], and Michaud and Seznec [21].
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