
Checkpoint Processing and Recovery:
Towards Scalable Large Instruction Window Processors

Haitham Akkary Ravi Rajwar Srikanth T. Srinivasan

Microprocessor Research Labs, Intel Corporation
Hillsboro, Oregon 97124, USA�

haithamx.h.akkary, ravi.rajwar, srikanth.t.srinivasan � @intel.com

Abstract

Large instruction window processors achieve high per-
formance by exposing large amounts of instruction level
parallelism. However, accessing large hardware structures
typically required to buffer and process such instruction
window sizes significantly degrade the cycle time. This pa-
per proposes a novel Checkpoint Processing and Recovery
(CPR) microarchitecture, and shows how to implement a
large instruction window processor without requiring large
structures thus permitting a high clock frequency.

We focus on four critical aspects of a microarchitecture:
1) scheduling instructions, 2) recovering from branch mis-
predicts, 3) buffering a large number of stores and forward-
ing data from stores to any dependent load, and 4) reclaim-
ing physical registers. While scheduling window size is
important, we show the performance of large instruction
windows to be more sensitive to the other three design is-
sues. Our CPR proposal incorporates novel microarchitec-
tural schemes for addressing these design issues—a selec-
tive checkpoint mechanism for recovering from mispredicts,
a hierarchical store queue organization for fast store-load
forwarding, and an effective algorithm for aggressive phys-
ical register reclamation. Our proposals allow a proces-
sor to realize performance gains due to instruction windows
of thousands of instructions without requiring large cycle-
critical hardware structures.

1. Introduction

Achieving high performance in modern microprocessors
requires a combination of exposing a large amount of in-
struction level parallelism (ILP) and processing instructions
at a high clock frequency. Exposing maximum ILP requires
the processor to concurrently operate upon a large num-
ber of instructions, also known as an instruction window1.

1In this paper, we consider all instructions renamed but not yet retired
to be the instruction window. In reorder buffer based processors, every
instruction that has a reorder buffer entry allocated is considered part of
the instruction window.

Hardware structures to buffer these instructions must be suf-
ficiently large. However, high clock frequencies require fre-
quently accessed structures to be small and fast. With in-
creasing clock frequencies, new designs that do not require
large cycle-critical hardware structures become necessary
for building large instruction window processors. This pa-
per presents a detailed study of performance issues related
to large instruction window processors and presents a novel
and efficient Checkpoint Processing and Recovery (CPR)
microarchitecture for such processors.

Four key aspects of a microprocessor critically affected
by the demands placed by a large instruction window and
the need for a high clock frequency are: 1) the scheduling
window, 2) branch misprediction recovery mechanism, 3)
the store queue, and 4) the physical register file. The mecha-
nisms, size, and access latency of structures associated with
these aspects are potential key parameters in achieving high
performance. In Section 3 we establish the effect on perfor-
mance due to these aspects.

The scheduling window consists of instructions renamed
but not yet issued to the execution units, and is examined
each cycle to find instructions for issue. In Section 3.1, we
show that, while scheduling windows are important, their
size is not the most critical issue when building a high-
performance large instruction window processor.

Branch mispredictions expose the long latency associ-
ated with high-frequency deep pipelines, and are the single
largest contributor to performance degradation as pipelines
are stretched [17]. Branch misprediction recovery requires
redirecting fetch to the correct instruction and restoring the
rename map table before new instructions can be renamed.
The map table can be restored from a checkpoint [11, 19],
incrementally restored from a non-speculative map table
such as the retirement register alias table [6], or incremen-
tally restored from a history buffer that stores the specu-
lative map table updates performed since the mispredicted
branch was dispatched. In Section 3.2, we show practical
implementations of these traditional recovery mechanisms
to be either too costly or too slow and in Section 4.1 we

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

present a new policy of checkpointing the map table at low-
confidence branches. This forms the basis of the CPR mi-
croarchitecture and allows a small number of checkpoints
to be sufficient for a large instruction window.

The store queue is a critical component of out-of-order
processors. Store queues serve three primary functions:
disambiguating memory addresses, buffering stores (com-
pleted and otherwise) until retirement, and forwarding data
to dependent load operations. The last operation, called
store-to-load forwarding, directly impacts cycle time. Since
a load may depend upon any store in the queue and multiple
stores to the same address may simultaneously be present,
the circuit to identify and forward data is complex and in-
curs long delays as store queue sizes increase. The store
queue must provide the dependent load with data within the
data cache access time to avoid complications of scheduling
loads with variable latencies. Designing store queues with
sizes much larger than currently feasible (Pentium 4 has a
24 entry store queue) using conventional methods is highly
unlikely, without making the forwarding circuit a critical
path, thus increasing cycle time. We study the performance
impact of the store queue in Section 3.3 and in Section 4.2
we propose a hierarchical store queue organization.

The physical register file (referred to from now on as
register file) increases ILP by removing write-after-write
and write-after-read dependences. Current mechanisms for
allocating and freeing physical registers result in the life-
time of a physical register exceeding the lifetime of the al-
locating instruction. This requires the register file size to
be of the same order as the instruction window size. For
large instruction windows, naively increasing the register
file size increases the register access time. Multi-cycle reg-
ister file accesses degrade performance and also increase
branch misprediction penalty. While different large register
file organizations have been proposed [1, 4, 20], we demon-
strate that register files need not be scaled with larger in-
struction windows if aggressive register reclamation poli-
cies are used. In Section 3.4 we study the impact of limited
physical registers on performance. In Section 4.3, we pro-
pose an aggressive register reclamation algorithm that en-
ables a register file to perform comparable to a larger con-
ventional register file by significantly reducing the average
lifetime of physical registers.

Paper contributions. The paper makes the following con-
tributions in analysis and design of high-performance large
instruction window processors.

� CPR: A new resource-efficient microarchitecture. Our
CPR microarchitecture significantly outperforms a
ROB-based design with identical buffer resources,
even for small window sizes. We argue that while the
ROB itself can be made larger, the mechanisms associ-
ated with the ROB inhibit performance and need to be

implemented differently. By off-loading all function-
ality of a ROB to other scalable mechanisms, we move
away from a centralized, ROB-based processor design.

� Confidence-based checkpoints and aggressive regis-
ter reclamation. We show branch recovery mecha-
nisms to be critical for high performance and show
a reorder buffer (ROB) based recovery mechanism to
be a performance limiter. Instead of using a ROB,
we propose selectively creating checkpoints at low-
confidence branches. Our selective checkpointing
mechanism enables fast branch misprediction recov-
ery and minimizes checkpoint overhead. We show
eight such checkpoints are sufficient to achieve most
of the performance of a 2048-entry instruction window
processor with an ideal branch misprediction recov-
ery mechanism. In combination with the checkpoint
based recovery, we decouple register reclamation from
the ROB. We show a 192-entry register file using our
reclamation algorithm provides nearly the same per-
formance as a 512-entry register file relying on a ROB-
based reclamation.

� Hierarchical store queues. Our novel hierarchical
store queue organization can buffer a large number
of stores and perform critical store-to-load forwarding
without degrading cycle time.

� Scheduling windows. We show scheduling window
size to be less critical than other design aspects for
large instruction window processors. A significantly
smaller 128-entry scheduling window is mostly suffi-
cient to realize the performance potential of a large,
2048-entry, instruction window processor.

� Bulk retirement. While not a key performance aspect
in itself, we break the limit of in-order serialized re-
tirement imposed by reorder buffers by providing the
ability to retire hundreds of instructions per cycle.

The paper is organized as follows. We outline our simu-
lation methodology in Section 2 and present a limit study
analysis to identify key performance issues in Section 3.
Section 4 presents and evaluates individual solutions to the
key issues. Section 5 puts the individual solutions together
into a single microarchitecture and evaluates the new CPR
microarchitecture. Related work is discussed in Section 6
and we conclude in Section 7.

2. Simulation methodology

We use a detailed execution driven simulator working on
top of a micro-operation (uop) level IA32 functional sim-
ulator for executing long instruction traces (LITs). A LIT
is a snapshot of the processor architectural state, including

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Processor frequency 3.8 GHz
Rename/issue/retire width 3/5/3
Branch mispred. penalty 30 cycles
Instruction window size 128
Scheduling window size 128
Register file 96 integer, 96 floating point
Load/store buffer sizes 48/32
Functional units Pentium 4 equivalent
Branch predictor combining (64K gshare, 16K bimod)
Hardware data prefetcher Stream-based (16 streams)
Trace Cache 32 K-uops, 8-way
L1 Data Cache 16 KB, 4 cycle hit, 64-byte line
L2 Unified Cache 1 MB, 8-way, 16 cycle hit, 64-byte line
L1/L2 Line size 64-bytes
Memory latency 100 ns

Table 1. Baseline processor parameters

Suite # of Bench. Desc./Examples
SPECFP2K (SFP2K) 14 http://www.spec.org
SPECINT2K (SINT2K) 12 http://www.spec.org
Internet (WEB) 12 SPECjbb, WebMark
Multimedia (MM) 10 MPEG, speech recog.,

photoshop
Productivity (PROD) 13 SYSmark2k, Winstone,
Server (SERVER) 4 TPC-C
Workstation (WS) 14 CAD, rendering

Table 2. Simulated benchmark suites.

memory and is used to initialize the execution driven per-
formance simulator. A LIT includes all system interrupts
needed to simulate system events such as DMA traffic etc.
The simulator executes both user and kernel instructions.
Our baseline processor is based on a Pentium 4 and the pa-
rameters are shown in Table 1. A detailed memory sub-
system is also modeled. The simulated benchmark suite is
listed in Table 2. All performance numbers in this paper
are reported as normalized micro-operations per cycle (uPC
on the y-axis) where the normalization is with respect to
the performance of the baseline parameters of Table 1 and
marked as (base) in the graphs.

3. A limit study and performance analysis

In this section we analyze the following four key aspects
affected by large instruction windows in detail: the schedul-
ing window, branch misprediction recovery mechanism, the
store queue, and the register file.

To bound performance gain due to large instruction win-
dows, we first perform a limit study. In this study, the four
key aspects we identified earlier are idealized and the in-
struction window size is varied from 128 up to 2048. In
other words, for an instruction window size of 1024, the
scheduling window size is 1024, the store queue and register
file are sized ideally, and the rename map table is available
instantaneously for branch misprediction recovery. For the
studies in this section, we assume perfect memory disam-

Figure 1. Impact of instruction window size

biguation. All other parameters of the processor are similar
to the baseline microarchitecture.

Figure 1 shows the performance variation with increas-
ing instruction window sizes. The label iwN corresponds to
an instruction window of size N. As seen from the graph,
significant performance can be obtained with increasing in-
struction windows, up to 55% for 2048 entry instruction
windows, if we idealize certain aspects of the processor.

To understand the sensitivity to performance of the indi-
vidual key aspects mentioned earlier, we conduct further ex-
periments. For each experiment, we vary the aspect param-
eter under study and idealize the other key aspects. Thus,
three of the four parameters are kept idealized while one
parameter is varied. This allows us to study one aspect in
isolation without interference from other key parameters.

3.1. Impact of scheduling window size

Figure 2 shows the impact of the scheduling window size
(64 up to 2048) for a 2048-entry instruction window. The la-
bel iwN swM corresponds to an instruction window of size
N and a scheduling window of size M. We model an ideal
store queue, a sufficiently large register file, and ideal mis-
prediction recovery mechanism. As we can see, a 256-entry
scheduling window achieves nearly the same performance
as a 2048-entry scheduling window for an instruction win-

Figure 2. Impact of scheduling window size

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

dow size of 2048. For most benchmarks, even a 128-entry
scheduling window achieves a significant percentage of the
ideal performance.

An out-of-order processor’s scheduler fills and blocks
only in the presence of long latency operations – primarily
load misses to main memory. Since the scheduler can con-
tinue to issue independent instructions, only instructions de-
pendent on the load miss occupy scheduler entries for a long
period of time. Our results show a relatively small schedul-
ing window is sufficient to support a large instruction win-
dow. This suggests only a small number of instructions in
a large instruction window are waiting for cache miss data
at any given time. Similar results have been reported in an-
other earlier study [9].

We believe that while we need to investigate means
of building a 128 to 256-entry scheduler, building bigger
schedulers is not necessary to fully exploit large instruction
windows. For the rest of the paper, we assume a 128-entry
scheduler unless otherwise specified, and we do not evalu-
ate scheduling windows any further.

3.2. Impact of misprediction recovery mechanism

Two main contributors to performance degradation due
to branch mispredictions are: cycles to resolve a branch,
and cycles to recover after the branch misprediction is re-
solved. In this paper, we focus on misprediction recovery.
Misprediction recovery involves restarting fetch and renam-
ing instructions from the correct path. Fetch from the cor-
rect path may restart immediately after the branch mispre-
diction is resolved. However, the correct path instructions
cannot be renamed until the rename map table correspond-
ing to the mispredicted branch is restored.

Common methods for restoring the map table include:

1. Using map table checkpoints. Map table checkpoints
are created periodically either at every branch or every
few cycles [11, 19]. On a misprediction, the check-
point corresponding to the mispredicted branch is re-
stored. The number of checkpoints limits the number
of unresolved branches allowed in the instruction win-
dow.

2. Using the retirement map table (RMAP). In this
scheme, a retirement map table [6] is used in addition
to the frontend map table. Each ROB entry also has the
rename map for its corresponding instruction. Once a
misprediction is resolved, the mispredicted branch is
allowed to reach the head of the ROB at which time
the retirement map table will have the correct map ta-
ble corresponding to the mispredicted branch. At this
point, the retirement map table is copied to the fron-
tend map table, after which renaming can start. Since
all instructions prior to the mispredicted branch must
be retired before renaming can start, this scheme can

Figure 3. Impact of misprediction recovery mechanism

lead to significant delays if long latency operations
prior to the mispredicted branch stall retirement.

3. Using the retirement map table and the ROB
(RMAP+WALK). This scheme is an optimization on
the scheme above. Instead of waiting for the mispre-
dicted branch to reach the head of the ROB, we start
with the current retirement map table and pro-actively
walk from the head of the ROB towards the mispre-
dicted branch, incorporating the rename information
of each ROB entry. This allows renaming of correct
path instructions to commence without waiting for all
instructions prior to the mispredicted branch to retire.

4. Using the frontend map table and a history buffer
(HBMAP+WALK). In this scheme, a history buffer is
used to store overwritten maps of each instruction.
On a branch misprediction, we start with the current
frontend map table. We pro-actively walk from the
current tail of the ROB (i.e., the most recently al-
located instruction) towards the mispredicted branch,
incorporating the overwritten maps of each instruc-
tion. Depending on whether the mispredicted branch
is closer to the ROB head or ROB tail, RMAP+WALK
or HBMAP+WALK will perform better.

The periodic checkpoint method as described above,
while quick, is impractical to implement because hundreds
or thousands of checkpoints may be required as instruction
window sizes scale to the thousands. Further, only having
a few checkpoints made at conditional branches performed
worse than the other schemes we discuss. Hence we do not
present results for the periodic checkpoint scheme. Sequen-
tially restoring the map table, while implementable, could
contribute to a significant increase in branch misprediction
penalty since many instructions may be in the ROB or his-
tory buffer prior to the mispredicted branch and need to be
serially processed. As instruction window sizes increase,
the above methods are either costly or may become too
slow.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

We evaluate the three sequential map table restoration
schemes for large instruction windows and compare them
to an ideal misprediction recovery scheme. The scheduling
window, register file, and store queue sizes are idealized.
Figure 3 presents the results. No single scheme works for
all workloads and all show significant performance reduc-
tion compared to the ideal mechanism. The history buffer
method (HBMAP+WALK) performs the best. Neverthe-
less, on benchmarks (e.g., SPECINT 2000) with frequent
branch mispredictions the scheme suffers an 11% reduction
in performance relative to the ideal model. The above re-
sults indicate the importance of having efficient mispredic-
tion recovery mechanisms to exploit performance of large
instruction window processors.

3.3. Impact of the store queue

Large instruction windows place high pressure on the
store queue because the store queue size is directly propor-
tional to the number of stores in the instruction window.
The store queue is a cycle-critical component of modern
processors because it often needs to provide data to depen-
dent load instructions in the same time it takes to access
the data cache. A store queue with an access time larger
than the data cache hit latency requires the scheduler to deal
with an additional load latency and predict if a load hits
the store queue or not. Mechanisms to recover from sched-
uler mispredicts introduce tremendous complexity to time-
critical scheduling logic. Further, stores may stay in the
store queue for long durations because traditionally, stores
are retired in-order to allow for misprediction recovery, pre-
cise exceptions, and memory consistency requirements. A
large fraction of loads (19% to 38%) hit stores in the store
queue. Hence, store-to-load forwarding is critical to achiev-
ing high performance because it prevents dependent loads
from stalling.

Figure 4 shows the impact on performance in a 2048-
entry instruction window model as the store queue size
varies from 32 to 512 entries. The label iwN stqM corre-
sponds to an instruction window of size N and a store queue

Figure 4. Impact of store queue size

Figure 5. Impact of register file size

of size M. The scheduling window size, misprediction re-
covery mechanism, and register file are idealized. A store
queue size of at least 128 entries is required to achieve per-
formance close to the ideal 2048-entry instruction window.
Such size is a significant increase above current sizes (24-
32) and will be quite a design challenge in a naively scaled
up implementation of a large instruction window processor.

3.4. Impact of the register file size

Instructions with a destination register operand require
a physical register to be allocated. In conventional proces-
sors, a physical register is allocated at the time the corre-
sponding instruction is renamed, and is released when a
subsequent instruction that overwrites the physical regis-
ter’s corresponding logical register is retired. Thus, regis-
ter reclamation is tied to in-order instruction retirement and
the lifetime of a physical register exceeds the lifetime of its
allocating instruction. Since most instructions have a desti-
nation register operand, the register file size must scale with
the instruction window size as shown in Figure 5. The la-
bel iwN rfM corresponds to an instruction window of size
N and a physical register file with M floating point and M
integer registers.

Thus, large instruction windows place tremendous pres-
sure on the register file. The register file is typically a highly
ported structure. Building large highly-ported register files
to accommodate the renaming demands of large windows
is difficult, introduces complexity, and increases cycle time.
Therefore, we must investigate alternative mechanisms to
design register files for large instruction window processors.

4. Implementing large instruction windows

In the earlier section we have shown performance of
large instruction window processors to be most sensitive
to the branch misprediction recovery mechanism and the
size of the store queue and register file. In this section
we address these three critical aspects. First, we present
a new approach to recovering the rename map table in Sec-

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

tion 4.1. Then, in Section 4.2 we present and evaluate a new
store queue organization. Finally, in Section 4.3 we discuss
an aggressive reclamation mechanism for the register file.
These three new proposals form the key components for the
CPR microarchitecture discussed in Section 5.

4.1. Selective low-confidence branch checkpoints

The misprediction recovery mechanism must be fast and
have low overhead. As discussed in Section 3.2, except
for the checkpoint mechanism, the other schemes recover
maps serially. Thus, for high performance, the checkpoint
mechanism is preferred. Our mechanism for recovering re-
name maps also uses checkpoints of the map table. How-
ever, we limit the number of such checkpoints to care-
fully selected points in the instruction window. Ideally, we
would like to create checkpoints exactly on mispredicted
branches. Hence, unlike earlier proposals where map table
checkpoints are created either at every branch or every few
instructions, we create map table checkpoints at branches
with a high misprediction probability, selected using a con-
fidence estimation scheme.

We rely on the same checkpoints created to handle
branch misprediction recovery to implement precise inter-
rupts and exceptions and to deal with architecture-specific
serializing instructions. We now discuss the conditions un-
der which checkpoints are created and then discuss check-
point buffer management policies.

4.1.1 Checkpoint creation

Since checkpoints are not created at every branch, a
branch misprediction may result in execution restarting
from the nearest checkpoint prior to the mispredicted
branch. This causes the good instructions between the
checkpoint instruction and the mispredicted branch to be
re-executed. We call this re-execution overhead the check-
point overhead (COVHD). A branch confidence estimator
[8] is used to minimize this overhead. The estimator uses a
table of 4-bit saturating counters indexed using an xor of the
branch address and global branch history. A correct predic-
tion increments the counter and a misprediction resets the
counter to zero. A counter value of 15 signals high confi-
dence while the remaining values signal low confidence. To
minimize COVHD, in addition to creating checkpoints at
low-confidence branches, a checkpoint is also created every
256 instructions.

While a checkpoint is made at low-confidence branches,
a non-checkpointed branch may be mispredicted, forcing a
recovery to a prior checkpoint. To prevent the same branch
from mispredicting again and thus degrading performance,
on a re-execution from a checkpoint, we use the branch out-
come from the previous aborted execution itself rather than
a prediction. This is done by storing the branch distance

(in number of branches) from the checkpoint and the asso-
ciated branch outcome. Furthermore, to guarantee forward
progress, once a branch misprediction is resolved and re-
execution begins from a prior checkpoint (C1), we force
a new checkpoint (C2) at the first branch (irrespective of
whether it is a low-confidence branch or not). This allows
instructions between checkpoints C1 and C2 to be retired
even in the pathological case where multiple branches get
alternatively mispredicted. To handle other events such as
exceptions and memory consistency events such as snoop
invalidations, we use a similar mechanism and allow a
checkpoint to be forced even on the very next instruction
after a prior checkpoint.

4.1.2 Checkpoint buffer management

The checkpoint buffer keeps track of map table check-
points. Checkpoints are allocated and reclaimed in a first-
in-first-out order. Each checkpoint buffer entry has a
counter to determine when the corresponding checkpoint
can be freed. The counter tracks completion of instructions
associated with the checkpoint—the counter is incremented
when an instruction is allocated and decremented when the
instruction completes execution. Counter overflow is pre-
vented by forcing a new checkpoint.

A checkpoint is allocated only if a free checkpoint is
available. If a low confidence branch is fetched and a
free checkpoint is not available, the processor ignores the
low confidence prediction of the branch and continues
fetch, dispatch and execution without creating any addi-
tional checkpoints as long as the last checkpoint’s counter
does not overflow. We find that not stalling on a checkpoint
buffer full condition is important for high performance.

The oldest checkpoint is reclaimed when its associated
counter has a value of 0 and the next checkpoint has been
allocated. This means all instructions associated with the
older checkpoint have been allocated and have completed
execution.

Each instruction has an identifier associating it to a spe-
cific checkpoint. Instructions use this identifier to access the
appropriate checkpoint buffer for incrementing and decre-
menting the counter. This identifier is also used to select in-
structions to be squashed or committed. As soon as the last
instruction belonging to a checkpoint completes, all instruc-
tions in that checkpoint can be retired instantly and the as-
sociated checkpoint is reclaimed. This provides the ability
to commit hundreds of instructions instantly thereby poten-
tially removing the in-order retirement constraints enforced
by the ROB. We will discuss this more in Section 5.2.

In our proposal, rather than using the ROB, we use a
substantially smaller checkpoint buffer for misprediction re-
covery. Importantly, the size of the instruction window is
not necessarily limited by the checkpoint buffer size be-
cause each checkpoint may correspond to a large number

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Figure 6. Selective checkpoint performance

of instructions, and their numbers can vary across check-
points. For example, if a checkpoint entry on the average
corresponds to 300 instructions, 8 checkpoints would be
sufficient to support a 2048-entry instruction window.

4.1.3 Selective checkpointing results

Figure 6 compares four methods for restoring the map
table against the ideal scheme. The scheduling window,
store queue, and register file are sized ideally. Three of the
methods are from Section 3.2 and the fourth is our selective
checkpoint proposal. Our proposal uses 8 checkpoints and
employs a branch confidence estimator for deciding when to
create a checkpoint. As can be seen from the graph, our pro-
posal performs the best on average across all benchmarks,
with the history buffer method coming second. Further, our
proposal performs within 7% of ideal.

Table 3 presents key metrics to help better understand
the behavior of our selective checkpoint scheme. CCOV de-
notes the average percentage of mispredicted branches that
are predicted to be low-confidence and checkpointed while
COVHD denotes the average number of good instructions
re-executed because of rolling back to a prior checkpoint.
We achieve a high CCOV and a very low COVHD because
of the high mispredicted branch coverage achieved by the
low-confidence estimator we use.

Selective checkpoints using a low-confidence estimator
enables the processor’s instruction window to adapt to an
application’s frequency of branch mispredictions. Consider

Misprediction Checkpoint Checkpoint
Bench. Distance Coverage Overhead (COVHD)

(MPD) (CCOV) per MP. of insn
SFP2K 1265 75% 20 1.6%

SINT2K 312 81% 12 3.8%
WEB 575 73% 31 5.4%
MM 320 74% 25 7.8%

PROD 444 84% 9 2%
SERVER 478 74% 15 3.1%

WS 568 70% 32 5.6%

Table 3. Selective checkpoint related statistics

SFP2K and SINT2k benchmark suites. The average dis-
tance between branch mispredictions (MPD) is significantly
larger for SFP2K than SINT2K (1265 uops vs. 312 uops),
while CCOV is about the same. The ratio of correctly pre-
dicted branches to mispredicted branches that are assigned
low-confidence by the confidence estimator is about 4 to
1 in general for all benchmark suites. Hence, the average
distance between checkpoints is about 253 uops (1265/5)
for SFP2K and 62 uops (or 312/5) for SINT2K. Using 8
checkpoints, we can achieve close to a 2048-entry (253*8)
and a 512-entry (62*8) instruction window for SFP2K and
SINT2K respectively. This is optimal since large instruc-
tion windows are less beneficial for performance when it is
highly unlikely that fetch can proceed along the correct path
for long due to frequent branch mispredictions.

4.2. Hierarchical store queue organization

A store queue must have the capacity to buffer all stores
within a large instruction window, typically on the order of
hundreds and, more importantly, must forward data to any
dependent load in the same time as the first level data cache
hit latency. We propose and evaluate a hierarchical store
queue: a fast and small first level store queue backed by
a much larger and slower second level store queue. Since
stores typically forward to nearby loads, most store-to-load
forwarding occurs from the first level store queue. Thus, the
hierarchical organization works well.

4.2.1 Level one store queue

The fast level one store queue (L1 STQ) is a small n-
entry buffer holding the last n stores in the instruction win-
dow. This buffer is similar to store queues in current proces-
sors and is designed as a circular buffer with head and tail
pointers. When a new store is inserted into the instruction
window, an entry is allocated for the store at the tail of the
L1 STQ. When a conventional store queue is full, instruc-
tion allocation stalls. However, when the L1 STQ is full, the
oldest store is removed from the head of the queue to make
space for the new store, and is moved into the backing level
two store queue (L2 STQ). The L1 STQ has the necessary
address matching and store select circuit to forward data to
any dependent loads.

4.2.2 Level two store queue

The level two store queue (L2 STQ) is much larger and
slower than the L1 STQ and accepts stores forced out from
the L1 STQ. Stores remain in the L2 STQ until retire-
ment. In addition, the L2 STQ has a membership test buffer
(MTB) associated with it. The MTB aids in quickly deter-
mining whether a given load address matches a store entry
in the L2 STQ.

The MTB is a direct mapped non-tagged array of coun-
ters indexed by a part of a load or store address. When a

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

address
DcacheMTB

miss hit

hit

read

missmiss

data to register file

L2 STQL1 STQL1 STQ

L1 STQ

L2 STQ Dcache

Data

Data Data

load

Figure 7. Two-level hierarchical store algorithm

store is removed from the L1 STQ and is placed into the
L2 STQ, the corresponding untagged MTB entry is incre-
mented. When a store retires, updates the data cache and
is removed from the L2 STQ, the corresponding untagged
MTB entry is decremented. A non-zero count in the MTB
entry potentially points to a matching store in the L2 STQ.
On the other hand, a zero count in the MTB entry guaran-
tees a matching store does not exist in the L2 STQ. While
tagging the MTB will prevent false matches, a non-tagged
and direct-mapped design makes the the MTB access pos-
sible under the time to access the data cache and the L1
STQ—a critical requirement to prevent complexity in the
scheduler. The MTB also contains the count of store entries
in the L2 STQ with unknown address. The counter is used
to quickly determine if there is a potential load conflict with
unknown-address stores in the L2 STQ.

4.2.3 Hierarchical store queue design

Figure 7 shows the hierarchical two level store queue or-
ganization. When a load is issued, and while the data cache
is being read, the L1 STQ and the MTB are also accessed
in parallel. If the load hits the L1 STQ, the store data is
forwarded to the load. If the load misses the L1 STQ, and
the MTB entry is zero (i.e., the L2 STQ also does not have
a matching address), the data is forwarded to the load from
the data cache. If the load misses the L1 STQ and the MTB
indicates a potential match in the L2 STQ (i.e., the MTB
entry is non-zero), the load is penalized a data cache miss
penalty to allow sufficient time to access the L2 STQ and
resolve the load-store dependency. If the load hits the L2
STQ, data is supplied to the load from the L2 STQ, else the
data is forwarded to the load from the data cache. Since
the MTB is not tagged, a non-zero MTB entry count does
not necessarily guarantee a matching store in the L2 STQ.
However, the load has already suffered a delay equivalent to
a data cache miss. Spurious hits in the MTB due to address
aliasing therefore must be minimized by making the MTB
as large as it can be, while keeping it accessible within the
time to access the L1 STQ and the data cache.

Figure 8. Hierarchical store queue performance

4.2.4 Memory disambiguation

Until now, we have assumed perfect memory disam-
biguation for our studies. In this section, we describe a
memory dependence predictor to identify loads that if al-
lowed to issue in the presence of an unknown store address
would result in a memory ordering violation and would re-
quire a re-execution. Since the processor needs to rollback
to a prior checkpoint on a memory dependence mispredic-
tion, our predictor focuses on minimizing load-store depen-
dence violations and not necessarily achieving the best pre-
diction accuracy. The predictor is based on the notion of a
store-distance of a load computed as the number of store
queue entries between the load and its forwarding store.
To reduce aliasing and allow forwarding from different in-
stances of the same store at varying distances from the load,
up to four such distances are stored in a non-tagged array
indexed by the load instruction address. A load is stalled if
the distance from a load to a current unresolved store ad-
dress matches a distance value stored in the array.

4.2.5 Hierarchical store queue performance

Figure 8 shows the performance of the hierarchical store
queue proposal, compared to the baseline and to an ideal
2048-entry instruction window. The scheduling window
size, branch recovery, and register file size are idealized. We
show two L1 STQ configurations with 32 and 48 entries. L2
STQ and MTB are each 256 entries for both configurations
(aliasing still occurs in the MTB because it is untagged).
We see the iw2k l1stq48 l2stq256 performance comes very
close to the ideal 2048-entry instruction window model.

4.3. Physical register reclamation

Current processors use in-order instruction retirement to
determine when a physical register may be freed, causing
the lifetime of a physical register to be typically much larger
than the lifetime of the instruction allocating that register.
This artificially constricts supply of free physical registers

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

and necessitates large register files.
However, most physical registers can be freed much

earlier—as soon as all readers of the physical register have
read the physical register, and the logical register corre-
sponding to the physical register has been renamed again.
Such an aggressive register reclamation scheme enables
physical register usage to more closely match the true life-
times of registers. Hence, rather than build large register
files, we focus on efficiently reclaiming physical registers
to provide the performance of a large register file without
actually building one.

The aggressive register reclamation scheme can be im-
plemented by associating a use counter and an unmapped
flag with each physical register [13]. A physical regis-
ter’s use counter is incremented in the rename stage of
the pipeline, when the input operand of an instruction (the
reader) is mapped to the physical register. The use counter
is decremented in the register read stage of the pipeline,
when the reader actually reads the physical register. A phys-
ical register’s unmapped flag is set when the logical register
corresponding to the physical register is renamed again. A
physical register can be reclaimed once its use counter value
is 0, and its unmapped flag is set.

Using map table checkpoints makes the above aggres-
sive register reclamation scheme easier to implement. Since
a checkpoint provides the ability to restore the architec-
turally correct register state, physical registers belonging to
a checkpoint (i.e., physical registers which are mapped to
logical registers at the time of checkpoint creation) should
not be released until the corresponding checkpoint is re-
leased. Hence, when a checkpoint is created, we increment
the use counters for all physical registers belonging to the
checkpoint. Similarly, when a checkpoint is released, we
decrement the use counters of all physical registers belong-
ing to the checkpoint. Using checkpoints as a reader guar-
antees physical registers are not released until all check-
points to which they belong are released.

The unmapped flags are made part of the checkpoint.
Hence, even if a misspeculated instruction overwrites a log-
ical register, a checkpoint recovery results in these flags
being restored to the correct values corresponding to the
checkpoint. Furthermore, all misspeculated instructions
drain out of the pipe, as is done in current processors, and
decrement any counters they incremented. Doing so is nec-
essary for a processor with checkpoints to function correctly
in the event of branch mispredictions, and also handle inter-
rupts and exceptions precisely.

Figure 9 shows the results. The label iwN rfM corre-
sponds to an instruction window of size N and a register file
with M integer and M floating point registers. The schedul-
ing window size, branch recovery, and store queue size are
idealized. Figure 5 in Section 3.4 shows a 512-entry register
file (512 integer and 512 floating point registers) achieves

Figure 9. Aggressive register reclamation performance

performance close to an ideal configuration. Our results
in Figure 9 show a 192-entry register file with aggressive
reclamation achieves performance similar to that of a 512-
entry register file with conventional reclamation.

5. The CPR microarchitecture

Until now we have evaluated our individual proposals
in isolation. In this section we evaluate the Checkpoint
Processing and Recovery microarchitecture which incor-
porates our earlier individual proposals for misprediction
recovery, aggressive register reclamation, and hierarchical
store queues. Section 5.1 discusses some design aspects
of CPR processors. Integrating the various mechanisms
into one microarchitecture has implications for conven-
tional ROB-based microarchitectures and we discuss them
in Section 5.2, and Section 5.3 presents performance results.

5.1. CPR microarchitecture design implications

CPR uses numerous counters—from counters for track-
ing allocated instructions, counters for reclaiming registers,
to counters in the store queues. To ease counter manage-
ment, we allow all instructions to eventually decrement the
counters, including squashed instructions that are merely
drained out of the pipeline. Only when a counter becomes
zero do we release its associated resource. For example, if
an instruction is squashed due to a branch mispredict, the
instruction will still decrement any related counters even as
it is draining out of the pipeline without affecting any other
architected state. Thus we do not require any global reset
signals for counters in the various structures.

CPR allows a commit of hundreds of instructions instan-
taneously by simply manipulating a counter. These instruc-
tions may include many branches and store operations. A
ROB-based architecture would retire stores in sequence and
update any branch predictor serially as branches are retired.
These functions traditionally associated with a single in-
struction commit, as occurs in a ROB-based design, need

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

to be handled differently with a checkpoint-based architec-
ture’s bulk commit. We update the branch predictor once
the branch executes rather than when the branch retires. We
observe that speculatively updating a branch predictor does
not degrade performance.

To enable the hierarchical store queue to handle bulk
commits, each store’s checkpoint identifier is associated
with its corresponding entry in the store queue. This iden-
tifier is used to perform a bulk commit/squash of stores in
the store queue. Manipulating similar bits in store queues is
already done in modern out-of-order processors.

5.2. CPR and reorder buffers

Reorder buffers are used in modern processors to pro-
vide in-order semantics for instructions in the instruction
window. This in-order semantic is currently needed for: 1)
recovering from branch mispredictions, 2) retiring state to
registers and memory in program order, 3) providing pre-
cise interrupts, and 4) managing the register file, either in
the form of providing storage for renamed registers or, if a
separate physical register file is used, a mechanism for re-
claiming physical registers after retirement.

As instruction window sizes increase, using the ROB
for misprediction recovery and register file management in-
hibits performance gains. While it may be possible to build
very large ROBs (mainly FIFO structures), we argue that
doing so does not provide performance because the real per-
formance limiters are the mechanisms that use the ROB, and
not the ROB itself. We have shown this in earlier sections
where branch misprediction recovery mechanisms and reg-
ister reclamation severely limit performance as processors
go to large instruction windows.

CPR uses confidence-based checkpoints and checkpoint
counters for misprediction recovery where each checkpoint
could correspond to a group of hundreds of instructions.
A branch misprediction results in rollback to the closest
checkpoint. Aggressive register reclamation occurs using
counters whereby decoupling register reclamation from the
in-order instruction retirement semantics provided by the
ROB. Further, as discussed in 4.1, the same checkpoints
above are also used for recovering from faults and in pro-
viding precise interrupts.

CPR replaces the functionality of the ROB by new and
scalable mechanisms. We have thus developed a high per-
formance ROB-free architecture. It may indeed be time to
retire the ROB itself.

5.3 CPR performance analysis

Figure 10 presents CPR processor performance results.
The CPR processor has a 128-entry scheduling window, 8
map table checkpoints made selectively at low confidence
branches, 192 integer and 192 floating point register with

Figure 10. CPR performance.

aggressive reclamation, a 48-entry L1 STQ and a 256-entry
L2 STQ. The CPR processor is compared to two conven-
tional processors and an ideal 2048-entry instruction win-
dow. The first conventional configuration (also the baseline)
has a 128-entry instruction window (iw128), a 48-entry
scheduling window (sw48), and a 24-entry store queue
(stq24) signified by iw128 sw48 stq24. The second con-
ventional configuration is iw320 sw128 stq48. Both have
appropriately sized register files. The remaining parameters
for all configurations are similar to Table 1 except now we
use a distance-based memory dependence predictor for all
schemes.

The iw320 sw128 stq48 configuration has equal buffer
capacity as the CPR processor for all timing critical param-
eters except our proposal replaces the 320-entry ROB of the
conventional processor with an 8-entry checkpoint array.

From the graph, we make two key observations:
1. CPR processor with 8 checkpoints outperforms a con-

ventional 320-entry ROB processor. SFP2000 benchmarks
gain the most. These benchmarks frequently miss the cache
and access memory. In such cases, large instruction win-
dows are necessary to look far ahead and find independent
instructions to execute. This performance gain is present
even though the processor we model in all these configura-
tions uses an aggressive 16-stream data prefetch hardware.

2. CPR processor achieves between 40% to 75% of ideal
performance for a 2048-entry instruction window. Server
benchmarks achieve the least performance gain. This is due
to load stalls resulting from a significant number of pre-
dicted load-to-store dependences. Higher performance can
be gained with better predictors and is left as future work.

Equal critical-resource comparison

To determine the resource efficiency of our microar-
chitecture, we compare the performance of a conventional
ROB-based processor to a CPR processor that uses equal
critical resources, for various processor configurations. For
each configuration, the register file, and the scheduling win-
dow are kept the same for both CPR and ROB-based pro-
cessors. The timing critical L1 STQ size used in the CPR

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Figure 11. Equal critical-resource comparison.

processor matches the store queue size used in the ROB-
based processor. The CPR processor also uses a 256-entry
L2 STQ not on the cycle critical path.

Figure 11 shows the results for the SFP2K and SINT2K
benchmarks. The x-axis label format w/x/y/z corresponds
to a design for a w-entry instruction window, x integer and
x floating point registers, a y-entry scheduling window, and
a z-entry store queue. While the CPR model uses 8 map
checkpoints for each point instead of a ROB, the ROB
model has a w-entry reorder buffer at each point. The re-
maining x, y, and z parameters are identical for the CPR
and the ROB. The y-axis has normalized uPC with respect
to the baseline configuration (128/96/48/24). The results
show, for equal buffer sizes, a CPR processor outperforms
a ROB-based processor even for small configurations. This
highlights the resource utilization efficiency of the CPR pro-
cessor and its large instruction window capacity.

6. Related work

Research in instruction scheduling has focused on logic
design for large scheduling windows [3], dependency-based
scheduling queues [14] and hierarchical scheduling win-
dows [2]. Decentralized schedulers, where a collection of
small schedulers are associated with functional units, have
also been extensively studied [6, 14]. Large instructions
buffers have been proposed from where instructions de-
pendent on other long latency instructions are reactivated
for scheduling when the long latency instructions com-
plete [10].

Hwu and Patt [7] proposed the use of checkpoints to re-
pair architectural state due to branch mispredictions and ex-
ceptions. Their proposal also did not employ a ROB but
rather used checkpoints at conditional branches to restore
state. The Pentium 4 uses a retirement register alias table
to track maps [6] while the MIPS R10000 [19] and Al-
pha 21264 [11] use a checkpoint method to recover rename
maps. The checkpoint method as used by the MIPS R10000
and Alpha 21264 do not scale as instruction windows be-
come larger. History buffers have also been proposed and

evaluated [15, 16].
Various register file organizations have been proposed [1,

4, 20]. The counter method for reclaiming physical regis-
ters has been proposed earlier [13] for a ROB-based MIPS
R10000-style processor.

The IBM Power4 provides the effect of a larger ROB
by assigning groups of up to six instructions to a ROB en-
try [18]. Here, the ROB size still grows linearly with in-
structions. However our counter method allows much larger
scaling without requiring a ROB.

The Cherry proposal [12] uses the ROB and recycles
physical registers and other resources once their associ-
ated instructions are branch-safe and memory-safe; i.e., all
branches prior to the instruction have completed and all
loads have issued. Early resource reclamation is limited to a
subset of the ROB. A checkpoint of the architected register
file is also used but only for recovering from exceptions and
the ROB is used for retiring instructions. They do not ad-
dress the problem of branch misprediction recovery latency.

Cristal et al. [5] use checkpoints created at long latency
loads and periodic intervals and release ROB entries of in-
structions, following a long latency operation, even before
they complete. This enables them to emulate a large virtual
ROB while using a small physical ROB. As the ROB entries
are released, their physical registers are also released early.
However, ROB entries are not released if a store address
is not known yet, or “when there exist chains of very close
dependent instructions.” This limits their early physical reg-
ister release and forces them to use large physical register
files of up to 2080 entries. Their register reclamation is still
tied to the in-order retirement semantics of a ROB and they
rely on a large load/store queue (up to 2048 entries).

In contrast to the above two proposals, our CPR proposal
is ROB-free, and our register reclamation is not limited to a
subset of the instruction window. CPR provides a complete,
scalable solution based on selective checkpoints, a hierar-
chical store queue organization, and an aggressive register
reclamation algorithm that more closely matches the true
lifetime of registers.

7. Concluding remarks

In this paper we show it is possible to implement a pro-
cessor with a large instruction window without requiring
large cycle-critical buffers. We do this by carefully exam-
ining several critical aspects of large instruction windows
and studying the sensitivity to performance of each aspect
in isolation with other aspects idealized. These studies re-
veal that while larger scheduling windows are important,
other design aspects become more critical as instruction
window sizes increase. We use this insight to develop effi-
cient mechanisms for handling branch misprediction recov-
ery, forwarding data to dependent loads from large number
of stores, and physical register reclamation. We combine

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

these mechanisms to propose a new microarchitecture based
on Checkpoint Processing and Recovery (CPR).

CPR is a ROB-free architecture requiring only a small
number of rename map checkpoints selectively created at
low-confidence branches, while capable of supporting a
large instruction window of the order of thousands of in-
structions. We argue that while large ROBs can be built, the
mechanisms which depend upon the ROB, such as branch
misprediction recovery and conventional physical register
reclamation, are the real performance limiters. Thus, sim-
ply building a large ROB won’t by itself provide perfor-
mance gains. CPR decouples misprediction recovery and
register reclamation from the ROB, and uses a scalable
hierarchical store queue, thus allowing for scalable high-
performance solutions for supporting very large instruction
windows. While CPR scales easily to very large windows,
it also outperforms a conventional ROB-based design even
with the exact same cycle-critical buffer sizes.

Acknowledgements

We thank Mike Fetterman, Stephan Jourdan, Konrad Lai,
Eric Rotenberg, John Shen, Jim Smith, Jared Stark, and
Mike Upton for discussions and comments.

References

[1] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Re-
ducing the complexity of the register file in dynamic super-
scalar processors. In Proceedings of the 34th International
Symposium on Microarchitecture, pages 237–249, Decem-
ber 2001.

[2] E. Brekelbaum, J. Rupley II, C. Wilkerson, and B. Black.
Hierarchical scheduling windows. In Proceedings of the
35th International Symposium on Microarchitecture, pages
27–36, November 2002.

[3] M. D. Brown, J. Stark, and Y. N. Patt. Select-free instruction
scheduling logic. In Proceedings of the 34th International
Symposium on Microarchitecture, pages 204–213, Decem-
ber 2001.

[4] A. Capitanio, N. Dutt, and A. Nicolau. Partitioned register
files for VLIWs: A preliminary analysis of tradeoffs. In Pro-
ceedings of the 25th International Symposium on Microar-
chitecture, pages 292–300, December 1992.

[5] A. Cristal, M. Valero, J.-L. Llosa, and A. Gonzalez. Large
virtual ROBs by processor checkpointing. Technical Re-
port UPC-DAC-2002-39, Department of Computer Science,
Barcelona, Spain, July 2002.

[6] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The microarchitecture of the Pen-
tium 4 processor. Intel Technology Journal, February 2001.

[7] W. W. Hwu and Y. N. Patt. Checkpoint repair for out-of-
order execution machines. In Proceedings of the 14th An-
nual International Symposium on Computer Architecture,
pages 18–26, June 1987.

[8] E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning con-
fidence to conditional branch predictions. In Proceedings
of the 29th International Symposium on Microarchitecture,
pages 142–152, December 1996.

[9] T. Karkhanis and J. E. Smith. A day in the life of a data
cache miss. In Workshop on Memory Performance Issues,
2002.

[10] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and
E. Rotenberg. A large, fast instruction window for tolerating
cache misses. In Proceedings of the 29th Annual Interna-
tional Symposium on Computer Architecture, pages 59–70,
May 2002.

[11] D. Leibholz and R. Razdan. The Alpha 21264: A 500 MHz
out-of-order execution microprocessor. In Proceedings of
the 42nd IEEE Computer Society International Conference
(COMPCON), pages 28–36, February 1997.

[12] J. F. Martı́nez, J. Renau, M. C. Huang, M. Prvulovic, and
J. Torrellas. Cherry: Checkpointed early resource recycling
in out-of-order microprocessors. In Proceedings of the 35th
International Symposium on Microarchitecture, November
2002.

[13] M. Moudgill, K. Pingali, and S. Vassiliadis. Register re-
naming and dynamic speculation: an alternative approach.
In Proceedings of the 26th International Symposium on Mi-
croarchitecture, pages 202–213, December 1993.

[14] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. In Proceedings of the 24th
Annual International Symposium on Computer Architecture,
pages 206–218, June 1997.

[15] P. Ranganathan, V. S. Pai, and S. V. Adve. Using speculative
retirement and larger instruction windows to narrow the per-
formance gap between memory consistency models. In Pro-
ceedings of the Ninth Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 199–210, June 1997.

[16] J. E. Smith and A. R. Pleszkun. Implementation of precise
interrupts in pipelined processors. In Proceedings of the 12th
Annual International Symposium on Computer Architecture,
pages 36–44, June 1985.

[17] E. Sprangle and D. Carmean. Increasing processor perfor-
mance by implementing deeper pipelines. In Proceedings
of the 29th Annual International Symposium on Computer
Architecture, pages 25–34, May 2002.

[18] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.
POWER4 system microarchitecture. IBM Journal of Re-
search and Development, 46(1):5–25, January 2002.

[19] K. Yeager. The MIPS R10000 superscalar microprocessor.
IEEE Micro, 16(2):28–40, April 1996.

[20] J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. Two-level
hierarchical register file organization for VLIW processors.
In Proceedings of the 33rd International Symposium on Mi-
croarchitecture, pages 137–146, December 2000.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

