
EECS 473
Advanced Embedded Systems

Lecture 1:

Class introduction
Design in this class

Creating software interfaces to hardware



Welcome

• This is a class on embedded systems.  We will 

be… 

– Learning more about embedded systems

• Lecture, labs, and, homework.

– Gaining experience working as a group…

• …but also working by yourself on researching and learning 

material without an instructor’s guidance

– Learning (more?) about the design cycle 

• Both theory in lecture and by doing a paper-to-prototype-to-

project design.

Overview/ 

Welcome



Who am I?

• Dr. Mark Brehob

– Prefer “Mark”, “Dr. Brehob” is okay too.

– Full-time teacher (lecturer)

• Been here for 20+ years and I’ve taught a wide 

variety of courses (100, 101, 203, 270, 281, 370, 

373, 376, 452, 470, 473)

– PhD is in the intersection of computer 

architecture and theoretical computer science 

as it relates to caches.

– See http://web.eecs.umich.edu/~brehob/

Overview/ 

Welcome

http://web.eecs.umich.edu/~brehob/


Staff

• Senior Engineer

– Matt Smith

• Runs 270/373/473 labs

• GSIs:

– Guthrie Tabios

– Alan Tonkryk

– Andrew (Andy) Zaloudek



On-line resources for the class

• Web site (primary location for course materials)

– http://www.eecs.umich.edu/courses/eecs473/

– Includes all labs, handouts, old exams, etc.

– Links to Piazza and Gradescope pages at the top.

• Gradscope

– Entry code: WB3ZRW

– All assignments will be turned in there.

– All graded assignments and exams will be posted there.

• Piazza

– https://piazza.com/umich/fall2023/eecs473

– Class forum. Please feel free to answer each others questions.

– Link to join is also on the website.

http://www.eecs.umich.edu/courses/eecs473/
https://piazza.com/umich/fall2023/eecs473


Today

• Class intro

– Grading, schedule, etc.

• A bit on design

– Design requirements, engineering 

specifications, etc.

• Start on hardware interfaces

– I’ve got a lot more slides than I expect to use

• Hope to get through the breakout room stuff.

• The Arudino stuff at the end is just reference.

Overview/ 

Welcome



Class Introduction

• Learning more about embedded systems

• You’ll do 5 labs in 5 weeks

– Labs 1 and 2 are microcontroller/rapid prototyping/interfacing 

– Lab 3 covers real-time operating systems (RTOS) 

– Lab 4 introduces embedded Linux and writing Linux device drivers

– Lab 5 gives an introduction to PCB design 

• For the first 4 weeks, lecture will be mostly about supporting lab. 

– But will then focus on other issues including PCB power, 

embedded wireless, and DSP as (the) example of application-

specific CPUs. 

• Homework

– Give you more practice working with technical documents related 

to embedded systems

– Review material learned in lecture

Class overview



We will be…

• Gaining experience working as a group…

• This is more-or-less the other side of your 

Engineering 100 experience.

– We want you to use the technical knowledge you’ve learned 

in the last few years to make it through the whole 

engineering cycle with a team design.

• Your labs will be in groups of 2

• Your projects will be in groups of 4 to 5 (mostly 5)

– Your group will make a schedule, create a budget, and 

divide up the work.  

Class overview



We will be…

• …but also working by yourself on researching 

and learning material without an instructor’s 

guidance

– The project will be done without lecture to guide you.  

» Each group will be doing something different and your group 

will be more expert than any of us on the topic (at least by 

the time you are done…)

Class overview



We will be…

• Learning (more?) about the design cycle 

– Both theory in lecture and by doing a paper-to-

prototype-to-project design.

– Back to Engin 100 principles but with your 

engineering knowledge and 373 experience to 

provide context.

Class overview



Prerequisites

• You must have a background in

– Embedded design 

• Memory-mapped I/O, interrupts, serial bus interfacing, etc. 

(EECS 373)

– Digital logic, C and assembly programming 

• Pointers, Verilog/VHDL, etc. (EECS 280, 270, 370) 

– And either

• A solid programming background (EECS 281) 

• Or a reasonable circuits background (EECS 215)

Class overview



Warning 

• If you don’t have 281

– Lab 3 and 4 are going to be 

rough.

• If you don’t have any circuits or 

electromagnetics background 

(EECS 215 or Physics 240)

– About 2 weeks of lecture are 

going to be very difficult.

– Come to office hours.

• If you’ve never taken an 

embedded systems class 

before

– You’re in the wrong place.

• Also, you’d ideally have some 

soldering experience including 

surface mount work.  If not, we 

hope to have some lessons 

available in the next few 

weeks.



Class structure

• We will meet for 3 hours/week as a class

• Weekly labs for the first 5 weeks

– Though the last lab is a bit shorter and different.

• During the first 4 weeks 

– we are going to “overstaff” the labs.

• 2 of us in the lab.

– And have about 10 hours/week of lab office hours.

• After week 4 we’ll spread out support more

– Open lab 

– Schedulable times (“reserve a GSI”)

Class overview



Office hours

Instructor

• Mark Brehob

– Monday 4:00-5:30pm 

• 4632 Beyster

– Thursday 5:00-6:00pm

• In lab (2334 EECS)

– I also will be available after 
lecture, generally in the hallway or 
outside (turn left as you leave the 
classroom) 

Lab folks (in lab, 2334 EECS)

• Alan
– Wednesday 9:30-10:30pm

– Thursday 9:30-10:30pm

– Friday 1-3pm

• Guthrie
– Tuesdays 12-3pm

• Andy
– Monday 12-3

– Friday 12-1

Class overview

We are double staffing lab during September.  Once lab is over, the GSIs will be changing hours and 

adding “flex hours”.



Work/grades

• 20% Labs 

• 5%   Homework and guest speaker 

attendance 

• 17% Midterm 

• 18% Final exam 

• 40% Final Project

Work/Grades



Labs

• There are 5 labs
– 2 Prototyping with Arduino, 1 RTOS, 1 Embedded Linux, 1 PCB

– Pre-labs are done individually and are worth ~25% of the 
lab grade.

• They are due before lab starts

– In-labs and post-labs are done in groups of two.
• They have two parts: a “sign-off” part and a “question” part.  

• The post-labs are just an extension of the “question” part of the in-
lab 

• They are due before the start of the next lab.

– Late labs lose 10% per school day late.

• Lab 5 is done entirely individually. 
– Can be done outside of the lab.

Work/Grades



Project (1/2)

• You will work in groups of 4-5 on designing and 

building an embedded system of your choosing

– Significant budget

• ~$200/student

• Sponsorship from Infineon! 

– There will be an emphasis on having a reliable 

system in place.

– If you have an external group that wants something 

made and is willing to pay for it.
• I’m open to discussion

Work/Grades



Project (2/2)

• There will be a number of due dates (proposal, 
milestones, final project)

• There will be a significant degree of formalism in your 
reports and presentations.

• Your project will be presented at the CoE design expo on 
Thursday November 30th.

• You have significant design freedom.
– The only real restrictions are that it has to use a processor, be 

doable in the time given, be technically interesting, and do 
something useful or interesting.  

• We expect groups will make a PCB.

– As you think of ideas, please feel free to run them past me.  

Work/Grades



Exams

• A bit after the 5 labs are done, there will 

be an exam.  It will cover the lab/class 

material up to that point.

– Midterm is planned to be on Wednesday 

10/18 at 6pm

• This may change, should know a few days after 

the Internet problems go away.

Work/Grades



Homework

• You will have three homework assignments.

– The first is to propose project ideas (HW0)

• Already sent out 

– The other two will be used to reinforce 

classroom material or to give you a chance to 

drill down a bit farther on topics then we can in 

class/lab.

Work/Grades



Schedule



A (Very Brief) Introduction to 
Design

Thinking about how to think about 
building things.

(yes, it’s that abstract, but also critical)



What is the design process?

• Unlike the material in 95% of your 

engineering classes, this question is a 

matter of opinion.

– There are tons of books on the topic, and they 

all use different words and emphasize 

different things. 

– That said, they (almost) all have similar ideas.

Brief design overview



The stages of design

• Where design ends is debated.  

– Pretty much everyone agrees that identifying 

a problem to be solved is the first step.

• Though some have some pretty significant steps to 

be taken here (requirements gathering, user 

surveys, marketing analysis etc.)

– But is the last step:

• Handing off the design to be manufactured?

• Dealing with manufacturing issues?

• Supporting users of the design?

• Dealing with end-of-life issues?

Brief design overview



Design stages in this class (1/4)

• Identifying the purpose*

– Identifying a problem

• Design requirements

– What characteristics does the device 

need?

• This should be things like “light-weight” or 

“easy to use” rather than “less than 8oz” or 

“iPhone-like interface”

Brief design overview

*There is often a research step between this step and developing the design

requirements.  What are current solutions/workarounds?  What do people 

really want?  What is doable in this space?  



Design stages in this class (2/4)

• Engineering specification

– The design requirements turned into 

measurable outcomes.

• “8 oz or less”

• “New users can start measurement in less 

than 10 seconds on the average”

• “48-hour battery life in the worst case”

Brief design overview



Design stages in this class (3/4)

• Work out possible solutions

– Identify a few ways to solve this problem

• Pick a solution

– Find the one you like best.

• Prototyping

– Building a prototyped device

• Likely not the right form-factor etc. 

• Probably on a breadboard, but mechanical issues also need 

to be addressed.

– Let’s you see what’s doable.

• Also gives you a testbed to develop your solution

Brief design overview



Design stages in this class (4/4)

• Implement your design

– For us this involves ordering and assembling 

a PCB and getting your software up and 

running.

• Test and debug

– Get everything working

– Test to see if engineering requirements are 

met.

Brief design overview



Design and this class

• This class is about getting a useful design 

done.

– Following the steps of the design process 

helps a lot more than you might think.

• Though we have such a time crunch that they will 

have to overlap a bit.

Brief design overview



Creating good interfaces to 
hardware

Figure from Embedded Systems Architecture 

by Tammy Noergaard



What is a hardware interface?

• A hardware interface is a set of functions, 
macros, or other programming constructs 
which allows the programmer to not worry 
about how exactly the hardware works.
– It creates a level of abstraction so the programmer 

only needs to think about a subset of the 
problem.

– This is creates a nice boundary where high-level 
code can be handed off.

• Also extremely useful even when you are the only 
programmer!

Interfaces



Servos

• Pulse Width Modulation (PWM)

• We Provide:

+5VDC
PWM Signal

Ground

0-180 Degree
Range of Motion

We Get:

Interfaces: example



Talking directly to the servo

• In fact we probably aren’t talking to the servo.

– Instead there is (hopefully) a timer that supports 
PWM.

• We can specify a period by writing a register 
– or more likely a series of registers (prescalar, clock select, etc.)

• We can specify the duty cycle in a similar way
– Generally a single register where the duty cycle is in terms of 

clock ticks

• We probably need to configure the timer to do PWM

Interfaces: example



What should the interface be 
for a servo?

• What I want you to do is to discuss:

– What basic functions you want.

– What the interface to those functions should be 
like.

– Try to get a formal description of as much as you 
can.

– You will have about 5 minutes.

– Do it yourself—no web searches.

Interfaces: example



Discuss ideas



Things change…

• Might get a new servo

– So period and duty cycle might be different

• Might get a new processor

– So timer configuration might change.

• Might need additional functionality

– Perhaps want to include stepper motors

Interfaces: example



…but in 373 we didn’t…

• Most of you didn’t create any meaningful 
interfaces in 373*
– Exposed the low-level details to the programmer

• After all you were the programmer and interface design 
takes time.

– Plus you often don’t yet know what you’re going to need.

– This makes it easy to do boneheaded things.
• Wrong MMIO address, lots of replicated code, etc.

– It also makes it hard to write good code.  
• You are worrying about too many things at once.
• Keep worrying about things like bounds checking when 

interface should do that.

*Though some did.  Often the more successful groups had well-defined and reasonably well-documented interfaces.

Interfaces: why?



Stepping back
• Can think of an 

interface as a single 
way to talk to a class of 
hardware devices.
– Each application uses 

the interface.
– Each target “just” 

needs to support the 
interface.

– What is the alternative?

• Now that we have a 
sense of what an 
interface is, let us look 
at what makes a good 
one.

Interface

Various applications

Different hardware 

platforms/targets

Interfaces: why?



Creating interfaces to hardware
• A good hardware interface has three main goals:

– It is easy to understand and use (useable)

– It is efficient

– It is portable to other hardware platforms.

• Those three things are often at odds.
– And sometimes one matters a lot more than the 

others.
• If the plan is to only use one hardware platform, portability 

matters little (though it matters a bit, as often plans change!)  
– Examples?

• If the plan is that you are the only one who will use it, easy is 
less important.  

– That plan changes more than any IME

– And easy is still powerful even if you are the only user.

Interfaces: why?



What makes an interface easy to 
understand and use?

Interfaces



What does an interface have 
to do with efficiency?

• On the silly side:
– One could imagine our servo interface having only a 

“turn 1 degree” function (direction specified)
• Covers all functionality

• But big turns require a lot of code to run.

• On the less silly side
– If we use angles (in degrees) as the basis for the 

interface, that is going to require some math in the 
interface itself to convert to a register value.

• Perhaps the programmer could skip a lot of that.

– Other places we might see inefficiency for our servo?

Interfaces: efficiency



Look at Open Systems Interconnect
(OSI)

This degree of layering is considered 
largely necessary, but it clearly 
creates a lot of overhead 
(inefficiencies) 

Figures from Embedded Systems Architecture 

by Tammy Noergaard

Interfaces: efficiency



So what makes hardware-interface 
design difficult?

• Mainly the three competing requirements of 
usability, efficiency and portability.

– As discussed, they often fight with each other.

• But there are a few other things…

Interfaces



Software in parallel with 
hardware (1/2)

• When developing an embedded system, it is 
often necessary to select hardware and start on 
software in parallel.
– Not just because of time constraints.  Hardware side 

needs a solid understanding of software’s needs 
before picking a processor

• Memory and CPU requirements etc.

• Certain peripherals might greatly reduce CPU needs 
– e.g. Don’t need to bit-bang for a servo if you have PWM support.  

But if CPU otherwise idle, bit-banging might be okay.

• Might want/need more than one processor
– More on that later…

Interfaces



Software in parallel with 
hardware (2/2)

• Developing software, or even specifying 
interfaces, while selecting hardware is tricky.
– Often some of the functionality will be impacted by 

hardware/component choices.
• Can buttons detect level of pressure?  Do we have multi-

touch support?  Does our processor have enough SPI busses 
that we can support a second ADC?

• But it’s common to do software design before  
hardware is selected.
– Scheduling pressure

– HR issues (software people are otherwise idle)

– Hardware people need answers from software folks

Interfaces



Terminology

• There is a lot of terminology wrapped around 
hardware interfacing.  
– Terms like: HAL (hardware abstraction layer), 

Middleware, and Device Driver are all related to 
hardware interfacing.

• And it’s not unusual to see different people use those 
terms differently.

– We’ll try to take a look at that terminology later 
on.

• I’ll generally use “device driver” or “system software 
layer”

Interfaces



Summary

• It’s a good idea to have at least 
one layer between applications 
and hardware.
– Hardware interface

• Hardware interfaces have three 
main goals
– Efficiency
– Usability
– Portability

• And those three things are often 
at odds.

Interfaces



Hardware/software co-design

• While a bit outside of the scope of this class, this is a good 
time to discuss hardware/software co-design
– This phrase generically means “designing software and 

hardware a the same time”
– But often used to describe automatic methods or tools to do 

the partitioning. 
• Might end up with an ISA/architecture for a CPU and application-

specific code to run on it for example
– HP has been doing this for printers for a while apparently

• Might end up with three processors and code “done for you” once the 
problem is specified.

– There is a lot of literature dating back decades on the topic.

Interfaces: Bonus topic



Introduction to Arduino

Stolen from Chris Meyer

(CC-SA)

http://www.danielandrade.net/



Arduino

ARRRR, like a pirate /

/ DWEE, just say "do we“ fast /

/ NO, as in no. 

”ARRR-DWEE-NO”

http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1191602549%3Bstart=all



What is Arduino?
• Open Source Hardware Development 

Platform

• USB Programmable Microcontroller (MCU)

$30 

Investment!



Shields?

• Shields break-out/wire-up 

additional components to MCU

Prototyping

Audio / MP3

Ethernet

GPS

Servo/Stepper/

DC Motors



More Shields!
LCD

WIFI

Zigbee

MIDI

LED 

Display



So What?

• Previously, MCU’s 

were very difficult to 

learn to use

• Required learning 

libraries, specialized 

protocols, timings, 

code minimization, 

1,000+ page 

documentation



Arduino makes it Easy!

@Arduino.cc



Question

If hardware interface design involves tradeoffs 

between three things, where in the triangle would 

you suspect Arduino was targeted?

Efficiency

PortabilityUsability


