Lecture 1:

Class introduction
Design in this class
Creating software interfaces to hardware

ik Vil

@

Overview/

Welcome
Welcome
* This Is a class on embedded systems. We will
be...

— Learning more about embedded systems
* Lecture, labs, and, homework.

— Gaining experience working as a group...

e ...but also working by yourself on researching and learning
material without an instructor’s guidance

— Learning (more?) about the design cycle

« Both theory in lecture and by doing a paper-to-prototype-to-
project design.

Overview/
Welcome

Who am |?

 Dr. Mark Brehob

— Prefer “Mark”, “Dr. Brehob” is okay too.

— Full-time teacher (lecturer)

« Been here for 20+ years and I've taught a wide
variety of courses (100, 101, 203, 270, 281, 370,
373, 376, 452, 470, 473)
— PhD is In the intersection of computer
architecture and theoretical computer science
as it relates to caches.

— See http://web.eecs.umich.edu/~brehob/

http://web.eecs.umich.edu/~brehob/

Staff

« Senior Engineer

— Matt Smith
 Runs 270/373/473 labs

¢ GSls:
— Guthrie Tabios
— Alan Tonkryk
— Andrew (Andy) Zaloudek

On-line resources for the class

« Web site (primary location for course materials)
— http://www.eecs.umich.edu/courses/eecs473/
— Includes all labs, handouts, old exams, etc.
— Links to Piazza and Gradescope pages at the top.

« Gradscope
— Entry code: WB3ZRW
— All assignments will be turned in there.
— All graded assignments and exams will be posted there.

* Pilazza
— https://piazza.com/umich/fall2023/eecs473
— Class forum. Please feel free to answer each others questions.
— Link to join is also on the website.

http://www.eecs.umich.edu/courses/eecs473/
https://piazza.com/umich/fall2023/eecs473

Overview/
Welcome

Today

* Class intro
— Grading, schedule, etc.

* A bit on design

— Design requirements, engineering
specifications, etc.

e Start on hardware interfaces

— I've got a lot more slides than | expect to use
« Hope to get through the breakout room stuff.
« The Arudino stuff at the end is just reference.

Class overview

Class Introduction

« Learning more about embedded systems

 You'll do 5 labs in 5 weeks
— Labs 1 and 2 are microcontroller/rapid prototyping/interfacing
— Lab 3 covers real-time operating systems (RTOS)
— Lab 4 introduces embedded Linux and writing Linux device drivers
— Lab 5 gives an introduction to PCB design

« For the first 4 weeks, lecture will be mostly about supporting lab.

— But will then focus on other issues including PCB power,
embedded wireless, and DSP as (the) example of application-
specific CPUs.

« Homework

— Give you more practice working with technical documents related
to embedded systems

— Review material learned in lecture

Class overview

We will be...

« (Gaining experience working as a group...

« This is more-or-less the other side of your
Engineering 100 experience.

— We want you to use the technical knowledge you've learned
In the last few years to make it through the whole
engineering cycle with a team design.

* Your labs will be in groups of 2

* Your projects will be in groups of 4 to 5 (mostly 5)

— Your group will make a schedule, create a budget, and
divide up the work.

Class overview

We will be...

 ...but also working by yourself on researching
and learning material without an instructor’'s
guidance

— The project will be done without lecture to guide you.

» Each group will be doing something different and your group
will be more expert than any of us on the topic (at least by
the time you are done...)

Class overview

We will be...

« Learning (more?) about the design cycle
— Both theory in lecture and by doing a paper-to-
prototype-to-project design.

— Back to Engin 100 principles but with your
engineering knowledge and 373 experience to
provide context.

Class overview

Prerequisites

* You must have a background in

— Embedded design

« Memory-mapped I/O, interrupts, serial bus interfacing, etc.
(EECS 373)

— Digital logic, C and assembly programming
« Pointers, Verilog/VHDL, etc. (EECS 280, 270, 370)

— And either
A solid programming background (EECS 281)
- Or a reasonable circuits background (EECS 215)

Warning

* |f you don’t have 281 « Also, you'd ideally have some
— Lab 3 and 4 are going to be soldering experience including
rough. surface mount work. If not, we

hope to have some lessons

- If you don’t have any circuits or available in the next few

electromagnetics background weeks.
(EECS 215 or Physics 240)

— About 2 weeks of lecture are
going to be very difficult.

— Come to office hours.

 If you've never taken an
embedded systems class
before
— You're in the wrong place.

Class overview

Class structure

« We will meet for 3 hours/week as a class

Weekly labs for the first 5 weeks
— Though the last lab is a bit shorter and different.

During the first 4 weeks

— we are going to “overstaff” the labs.
« 2 of usin the lab.

— And have about 10 hours/week of lab office hours.
After week 4 we’ll spread out support more

— Open lab
— Schedulable times (“reserve a GSI”)

Class overview

Office hours

Instructor Lab folks (in lab, 2334 EECS)
 Mark Brehob Alan
— Monday 4:00-5:30pm — Wednesday 9:30-10:30pm
* 4632 Beyster — Thursday 9:30-10:30pm
— Thursday 5:00-6:00pm — Friday 1-3pm

* Inlab (2334 EECS)

— | also will be available after
lecture, generally in the hallway or
outside (turn left as you leave the ° Andy

classroom) — Monday 12-3
— Friday 12-1

* GQGuthrie
— Tuesdays 12-3pm

We are double staffing lab during September. Once lab is over, the GSls will be changing hours and
adding “flex hours”.

Work/Grades

Work/grades

« 20% Labs

5006 Homework and guest speaker
attendance

e 17% Midterm

* 18% Final exam

* 40% Final Project

Work/Grades

Labs

* There are 5 labs
— 2 Prototyping with Arduino, 1 RTOS, 1 Embedded Linux, 1 PCB

— Pre-labs are done individually and are worth ~25% of the
lab grade.

« They are due before lab starts

— In-labs and post-labs are done in groups of two.
* They have two parts: a “sign-off’ part and a “question” part.

* The post-labs are just an extension of the “question” part of the in-
lab

» They are due before the start of the next lab.
— Late labs lose 10% per school day late.

« Lab 5 is done entirely individually.
— Can be done outside of the lab.

Work/Grades

Project (1/2)

* You will work in groups of 4-5 on designing and
building an embedded system of your choosing

— Significant budget —
« ~$200/student (Infineon
» Sponsorship from Infineon! |

— There will be an emphasis on having a reliable
system in place.

— If you have an external group that wants something

made and is willing to pay for it.
* I'm open to discussion

Project (2/2)

* There will be a number of due dates (proposal,
milestones, final project)

« There will be a significant degree of formalism in your
reports and presentations.

* Your project will be presented at the CoE design expo on
Thursday November 30,

* You have significant design freedom.

— The only real restrictions are that it has to use a processor, be
doable in the time given, be technically interesting, and do
something useful or interesting.

» We expect groups will make a PCB.

— As you think of ideas, please feel free to run them past me.

Work/Grades

Exams

* A bit after the 5 labs are done, there will
be an exam. It will cover the lab/class
material up to that point.

— Midterm is planned to be on Wednesday
10/18 at 6pm

« This may change, should know a few days after
the Internet problems go away.

Work/Grades

Homework

* You will have three homework assignments.

— The first is to propose project ideas (HWO)
 Already sent out

— The other two will be used to reinforce
classroom material or to give you a chance to
drill down a bit farther on topics then we can in
class/lab.

Schedule
EECS 473--Advanced Embedded Systems. Fall 2023

aps
due at start of lab

Date Day Topic period HW/Project
8/29/2023| Tuesday |Class introduction, Designing interfaces, Arduino Lab1 prelab
8/31/2023| Thursday Designing interfaces, Project overview
9/5/2023| Tuesday |[Scheduling and real-time systems, RTOS Lab1, Lab2 prelab JHWO |
9/7/2023| Thursday |RTOS, off-the-shelf boards Group Formation 6:30pm-8:30pm «
9/12/2023] Tuesday |RTOS: Learning by example: FreeRTOS Lab2, Lab3 prelab]
9/14/2023| Thursday |Embedded Linux Draft Proposal, due Friday
9/19/2023| Tuesday |Embedded Linux Lab3, Lab 4 prelab
9/21/2023 'Lhursday No class: Project proposal meetlngs) Proposal meetings
9/26/2023| Tuesday PCBS start on power integrity Lab 4, Lab 5 prelab
9/28/2023] Thursday |Power mtegrlty Formal Proposal
10/3/2023| Tuesday |Batteries Lab 5
10/5/2023| Thursday |Linear regulators
10/10/2023| Tuesday |[Introduction to digital signal process(ors/ing) HW1, due Wednesday
10/12/2023] Thursday |Exam review (lectures 1-11) Milestone 1 report

i3
Ié

A (Very Brief) Introduction to
Design

Thinking about how to think about
building things.

(yes, it’s that abstract, but also critical)

RVilk

Brief design overview

What Is the design process?

* Unlike the material in 95% of your
engineering classes, this question is a
matter of opinion.

— There are tons of books on the topic, and they
all use different words and emphasize
different things.

— That said, they (almost) all have similar ideas.

Brief design overview

The stages of design

* Where design ends Is debated.

— Pretty much everyone agrees that identifying
a problem to be solved is the first step.

 Though some have some pretty significant steps to
be taken here (requirements gathering, user
surveys, marketing analysis etc.)

— But is the last step:

« Handing off the design to be manufactured?

« Dealing with manufacturing issues?

« Supporting users of the design?

 Dealing with end-of-life issues?

Brief design overview

Design stages in this class (1/4)
* |dentifying the purpose*

—ldentifying a problem
* Design requirements

—What characteristics does the device
need?
 This should be things like “light-weight” or

“easy to use” rather than “less than 8oz" or
“IPhone-like interface”

*There is often a research step between this step and developing the design
requirements. What are current solutions/workarounds? What do people
really want? What is doable in this space?

Brief design overview

Design stages in this class (2/4)

* Engineering specification
— The design requirements turned Iinto
measurable outcomes.

e “8 0z or less”

 “New users can start measurement in less
than 10 seconds on the average”

* “48-hour battery life in the worst case”

Brief design overview

Design stages in this class (3/4)

* Work out possible solutions
— ldentify a few ways to solve this problem

* Pick a solution
— Find the one you like best.

* Prototyping

— Building a prototyped device
« Likely not the right form-factor etc.

* Probably on a breadboard, but mechanical issues also need
to be addressed.

— Let’'s you see what’s doable.
» Also gives you a testbed to develop your solution

Brief design overview

Design stages in this class (4/4)

* Implement your design

— For us this involves ordering and assembling
a PCB and getting your software up and
running.
* Test and debug
— Get everything working

— Test to see If engineering requirements are
met.

Brief design overview

Design and this class

* This class is about getting a useful design
done.

— Following the steps of the design process
helps a lot more than you might think.

« Though we have such a time crunch that they will
have to overlap a bit.

=

o 3> 9] arw 3 Py :

Creating good interfaces to
hardware

e

Application Software Layer
(Optional)

System Software Layer

(Optional)

Hardware Layer
(Required)

Figure 1-1
Embedded Systems Model.
Figure from Embedded Systems Architecture

.V- L by Tammy Noergaard

Interfaces

What is a hardware interface?

A hardware interface is a set of functions,
macros, or other programming constructs
which allows the programmer to not worry
about how exactly the hardware works.

— It creates a level of abstraction so the programmer

only needs to think about a subset of the
problem.

— This is creates a nice boundary where high-level
code can be handed off.

e Also extremely useful even when you are the only
programmer!

Interfaces: example

Servos

* Pulse Width Modulation (PWM)
 We Provide:

+5VDC
PWM Signal

12ms

0-180 Degree
Range of Motion

159-25 ms

Interfaces: example

Talking directly to the servo

* |n fact we probably aren’t talking to the servo.

— Instead there is (hopefully) a timer that supports
PWM.

* We can specify a period by writing a register
— or more likely a series of registers (prescalar, clock select, etc.)

* We can specify the duty cycle in a similar way

— Generally a single register where the duty cycle is in terms of
clock ticks

* We probably need to configure the timer to do PWM

Interfaces: example

What should the interface be
for a servo?

 What | want you to do is to discuss:
— What basic functions you want.

— What the interface to those functions should be
like.

— Try to get a formal description of as much as you
can.

— You will have about 5 minutes.
— Do it yourself—no web searches.

Discuss ideas

Interfaces: example

Things change...

* Might get a new servo
— So period and duty cycle might be different

* Might get a new processor

— So timer configuration might change.

 Might need additional functionality
— Perhaps want to include stepper motors

Interfaces: why?

..butin 373 we didn't...

 Most of you didn’t create any meaningful
interfaces in 373*

— Exposed the low-level details to the programmer

» After all you were the programmer and interface design
takes time.

— Plus you often don’t yet know what you’re going to need.
— This makes it easy to do boneheaded things.
 Wrong MMIO address, lots of replicated code, etc.

— It also makes it hard to write good code.
* You are worrying about too many things at once.

» Keep worrying about things like bounds checking when
interface should do that.

*Though some did. Often the more successful groups had well-defined and reasonably well-documented interfaces.

Interfaces: why?

Stepping back

Can think of an
interface as a single
way to talk to a class of
hardware devices.

— Each application uses
the interface.

— Each target “just”
needs to support the
interface.

— What is the alternative?

Now that we have a
sense of what an
interface is, let us look
at what makes a good
one.

Various applications

v J y N

Different hardware
platforms/targets

Interfaces: why?

Creating interfaces to hardware

* A good hardware interface has three main goals:
— It is easy to understand and use (useable)
— |t is efficient
— |t is portable to other hardware platforms.

* Those three things are often at odds.

— And sometimes one matters a lot more than the
others.

* If the planis to only use one hardware platform, portability
matters little (though it matters a bit, as often plans change!)

— Examples?
* If the plan is that you are the only one who will use it, easy is
less important.
— That plan changes more than any IME
— And easy is still powerful even if you are the only user.

Interfaces

What makes an interface easy to
understand and use?

Interfaces: efficiency

What does an interface have
to do with efficiency?

* On thesilly side:
— One could imagine our servo interface having only a
“turn 1 degree” function (direction specified)

* Covers all functionality
e But big turns require a lot of code to run.

* On the less silly side

— If we use angles (in degrees) as the basis for the
interface, that is going to require some math in the
interface itself to convert to a register value.

* Perhaps the programmer could skip a lot of that.
— Other places we might see inefficiency for our servo?

Interfaces: efficiency

Look at Open Systems Interconnect

Layer 7 - APPLICATION
[application protocols used in other applications, as well as send-user
applications in themselves |

Application
Layer
Layer 6 - PRESENTATION
[software that handles the translation of data from one format io
another for applications to process, such as data encryption and
decryption, compression and decompression, and data conversions|

Layer 5 - SESSION
[software that extablishes, manages, and terminates the connections
between applications on different devices |

Layer 4 - TRANSPORT
[source to destination {end-to-end) packet delivery management
saftware, including error recovery and flow control |

System Software

Layer
Layer 3 - NETWORK

{swiiching and routing node-to-node packet delivery sefiware]

Layer 2 - DATA-LINK

[softwa,

Media Access Control (MAC)

[device driver yaftware accessing networking hardware directly to
ansmil and receive dala

Layer | - PHYSICAL

[networking hardware | Hardware Layer

Application

Header 1

Data Presentation

S ——-

Session

Transport

Network

Header 5 Data Link

Physical

Figure 2-24
Header diagram.

This degree of layering is considered
largely necessary, but it clearly
creates a lot of overhead
(inefficiencies)

Figures from Embedded Systems Architecture
by Tammy Noergaard

Interfaces

So what makes hardware-interface
design difficult?
* Mainly the three competing requirements of

usability, efficiency and portability.
— As discussed, they often fight with each other.

* But there are a few other things... efficiency

Usability Portability

Interfaces

Software in parallel with
hardware (1/2)

* When developing an embedded system, it is
often necessary to select hardware and start on
software in parallel.

— Not just because of time constraints. Hardware side
needs a solid understanding of software’s needs
before picking a processor

* Memory and CPU requirements etc.

* Certain peripherals might greatly reduce CPU needs

— e.g. Don’t need to bit-bang for a servo if you have PWM support.
But if CPU otherwise idle, bit-banging might be okay.

* Might want/need more than one processor
— More on that later...

Interfaces

Software in parallel with
hardware (2/2)

* Developing software, or even specifying
interfaces, while selecting hardware is tricky.

— Often some of the functionality will be impacted by
hardware/component choices.

* Can buttons detect level of pressure? Do we have multi-
touch support? Does our processor have enough SPI busses
that we can support a second ADC?

* Butit’'s common to do software design before
hardware is selected.
— Scheduling pressure
— HR issues (software people are otherwise idle)
— Hardware people need answers from software folks

Interfaces

Terminology

* Thereis a lot of terminology wrapped around
hardware interfacing.

— Terms like: HAL (hardware abstraction layer),
Middleware, and Device Driver are all related to
hardware interfacing.

* And it’s not unusual to see different people use those
terms differently.
— We'll try to take a look at that terminology later
on.

* I'll generally use “device driver” or “system software
layer”

Interfaces

Summary

* |t's a good idea to have at least
one layer between applications
and hardware.

— Hardware interface
 Hardware interfaces have three

main goals

— Efficiency

— Usability

— Portability

* And those three things are often
at odds.

,-o-'-""''_;

Application Software Layer
(Optional)

System Software Layer

(Optional)

Hardware Layer
(Required)

Figure 1-1
Embedded Systems Model.

Efficiency

Usability Portability

Interfaces: Bonus topic

Hardware/software co-design

 While a bit outside of the scope of this class, this is a good
time to discuss hardware/software co-design

— This phrase generically means “designing software and
hardware a the same time”

— But often used to describe automatic methods or tools to do
the partitioning.
* Might end up with an ISA/architecture for a CPU and application-
specific code to run on it for example

— HP has been doing this for printers for a while apparently

* Might end up with three processors and code “done for you” once the
problem is specified.

— There is a lot of literature dating back decades on the topic.

ARDUINO

Introduction to Arduino

Stolen from Chris Meyer
(CC-SA)

Arduino

ARRRR, like a pirate /

/| DWEE, just say "do we" fast /
/ NO, as In no.

"ARRR-DWEE-_NOG”

What Is Arduino?

* Open Source Hardware Development
Platform

 USB Proarammable Microcontroller (MCU)

$30
Investment!

MADE IN @ A\ L R BRGE L
CODOD NV TONHD
ITALY on en) L{‘I’(.”) __ﬁ_pu"_/ "..
710-0 ot
HRRn i g

19¢

1

RX217¢
ix118
S0A 20i
SCL 21

TX2 164
100Xt

TX3 144
CRX3 154

.
(
o
o
X
C:
i~
>
-
vz
H
8

B
i
ga

9.9 oo

ICSP

cune

Arduino MEGA

wuwu,arduino.cc

DN D
0 M v et vt el v

“““““ »

Shields?

* Shields break-out/wire-up [-
additional components to MCU 7!/

"s Servo/Stepper/
DC Motors

A

Audio / MP3

7

More Shields!

P
JOU WEBRNEXRW MRMRS o
N v

FIWCYRIZY AN
FARDCUNO O 204

So Wh

Previously, MCU'’s
were very difficult to
learn to use

Required learning
libraries, specialized
protocols, timings,
code minimization,
1,000+ page
documentation

at?

Voo
V5SS
PTB1I/KBIIPSTxC1/ADPS
PTBO/KBITP4/R«D1/ADP4
PTAZKEITP2/SDA1/ADP2
PTASKBIMRPA/SCLI/ADP2
PTCO/TPM2CHOD
PTC1/TPM2CH1
PTBAKBIIPTIMOSIM/ADPT
PTB4TPMZCHINMISO1
PTB2KBI1PBISPSCK1/ADPE
PT85/TPM1CH1/551
PTD1/KB2P1/MOSI2
PTD2/XBR2P2IMISO2
PTDO/KBR2POISPSCK2
PTD3/KBIZP3/SS2
PTC2TPM3CH2
PTC3TPM3CH3
PTC4/TPMACH4/RSTO
PTCSTPMACHS/ACMPO
(nic for 32 LQFP) PTF2/ADP12
(nic for 32 LQFP) PTF3/ADP13
{nic for 32 LQFP) PTF4/ADP14
(nic for 32 LQFP) PTFS/ADP15
{nic for 32 LQFP) PTFE/ADP16
(nic for 32 LQFP) PTFT/ADP17
{nc for 32 LQFP) PTG2/ADP18
{n'c for 32 LQFP) PTG3/ADP19

DN W -

15
17
19
21
23
25
27
29
31

35
37
39
41

45
47
49
51
33
35

PTASIRQ! TPMICLK /RESET
PTAS/IRQTPM1CLK/RESET
PTALACMP1O/BKGDMS
PTE7TPM2CLK (nlc for 32 LQFP)
VREFH
VREFL
PTANKBIPOTAMICHO/ADPO/ACNF 1=
PTAVKBINP U/ TPM2CHO/ADP1/ACNP 1-
PTFO/ADP 10 (nic for 32 LQFP)
PTF1/ADP11 {nic for 32 LQFP)
PTABTPMICH2/ADPS
PTATTPM2ZCH2/ADPO
="HP SCL2 (n'c for 32 LOFP)
PTH7/SDA2 (nic for 32 LQFP)
PTL4/XBI2P4 (nic for 22 LOFP)
PTCS/KBI2PS (nfc for 32 LOFP)
PTDE/KBI2PE (nic for 22 LOFP)
PTD7/XBI2P7 (nfc for 32 LQFP)
PTCT/TxD2/ACMPZ-
PTCE/RxD2ZACMP2+
PTBTISCL1/EXTAL
PTEG/SDAT1XTAL
PTGD (nic for 32 LGFP)
PTG1 {nic for 32 LGFP)
PTHO (n/c for 32 LGFP)
PTH1 (n/c for 32 LGFP)
PTES (nic for 32 LQFP)
NC

Arduino makes it Easy!

Language Reference

See the extended reference for more advanced features of the Arduino languages and the libraries page for interfacing with
particular types of hardware.

Arduino programs can be divided in three main parts: structure, values (variables and constants), and functions. The Arduino
language is based on C/C++.

Structure

s @AI' dllill() C

Control Structures

s int digitalRead(pin)

o if
. i else Analog I/0
* for * int analogRead(pin)
* switch case e analogWrite(pin, value) - PWM
* while
s do... while Advanced I/0
s break
i e chiftOut(dataPin, clockPin, bitOrder, value)
s continue ed | — |
e retum ¢ unsigned long pulseln(pin, value)

Time
Further Syntax

¢ unsigned long millis()

* ; (semicolon) s unsigned long micros()
o {3 (curly braces) s delay(ms)
e // (single line comment) ¢ delayMicroseconds(us)

o /* %/ (multi-line comment)

Arithmetic Operators .
e min(x, y)

* max(x, y)

e = (assignment)
e abs(x)

e + (addition)

Question

If hardware interface design involves tradeoffs
between three things, where in the triangle would
you suspect Arduino was targeted?

Efficiency

Usability Portability

