
EECS 473
Lecture 2

More on interfacing

Project overview
(Maybe) Start on Real time and RM scheduling

Today

• Review and expand on hardware interfacing

– Some questions using different devices. Compare
to Arduino.

– Discuss top and bottom of interface diagram.

• Projects

– What’s doable, when things are expected.

• Introduction to real-time systems

– I doubt we’ll get to this today, but maybe a bit.

Hardware
Interfacing

What should the interface be
for a servo?

• What I wanted you to do was to discuss:

– What basic functions you want.

– What the interface to those functions should be
like.

– Try to get a formal description of as much as you
can.

– You will have about 5 minutes.

– Do it yourself—no web searches.

Interfaces: example

Discuss ideas

• Use OO (struct/class)
for interface.

– SetAngle

– SetAngle (with speed)

– Initialize servo (what
info?)

– GetAngle

Things change…

• Might get a new servo

– So period and duty cycle might be different

• Might get a new processor

– So timer configuration might change.

• Might need additional functionality

– Perhaps want to include stepper motors

Interfaces: example

…but in 373 we didn’t…

• Most of you didn’t create any meaningful
interfaces in 373*
– Exposed the low-level details to the programmer

• After all you were the programmer and interface design
takes time.
– Plus you often don’t yet know what you’re going to need.

– This makes it easy to do boneheaded things.
• Wrong MMIO address, lots of replicated code, etc.

– It also makes it hard to write good code.
• You are worrying about too many things at once.
• Keep worrying about things like bounds checking when

interface should do that.

*Though some did. Often the more successful groups had well-defined and reasonably well-documented interfaces.

Interfaces: why?

Stepping back
• Can think of an

interface as a single
way to talk to a class of
hardware devices.
– Each application uses

the interface.
– Each target “just”

needs to support the
interface.

– What is the alternative?

• Now that we have a
sense of what an
interface is, let us look
at what makes a good
one.

Interface

Various applications

Different hardware
platforms/targets

Interfaces: why?

Creating interfaces to hardware
• A good hardware interface has three main goals:

– It is easy to understand and use (useable)

– It is efficient

– It is portable to other hardware platforms.

• Those three things are often at odds.
– And sometimes one matters a lot more than the

others.
• If the plan is to only use one hardware platform, portability

matters little (though it matters a bit, as often plans change!)
– Examples?

• If the plan is that you are the only one who will use it, easy is
less important.
– That plan changes more than any IME

– And easy is still powerful even if you are the only user.

Interfaces: why?

What makes an interface easy to
understand and use?

Interfaces

What does an interface have
to do with efficiency?

• On the silly side:
– One could imagine our servo interface having only a

“turn 1 degree” function (direction specified)
• Covers all functionality

• But big turns require a lot of code to run.

• On the less silly side
– If we use angles (in degrees) as the basis for the

interface, that is going to require some math in the
interface itself to convert to a register value.
• Perhaps the programmer could skip a lot of that.

– Other places we might see inefficiency for our servo?

Interfaces: efficiency

Look at Open Systems Interconnect
(OSI)

This degree of layering is considered
largely necessary, but it clearly
creates a lot of overhead
(inefficiencies)

Figures from Embedded Systems Architecture
by Tammy Noergaard

Interfaces: efficiency

So what makes hardware-interface
design difficult?

• Mainly the three competing requirements of
usability, efficiency and portability.

– As discussed, they often fight with each other.

• But there are a few other things…

Interfaces

Not a trivial task

• Trying to be able to work
with all applications,
targets, and platforms is
hard.
– Lots of coding effort
– Can hurt efficiency and/or

usability.

• Examples:
– Some servos may need to

be “linearized”.
• That is their angle isn’t

exactly proportional to the
pulse width

– Some servos do continuous
rotation
• Pulse width determines

speed and direction, not
angle.

– Servos can (often?)
“freewheel”
• Apply no pulse, it provides

no resistance to turning.

Interfaces: Servo example

Arduino interface for servos

• attach() Attaches a servo motor to an i/o pin

• read() Gets the servo motor position

• write() Sets the servo motor position angle

• attached() Returns if there is a servo attached

• detach() Detaches a servo motor from an i/o pin

• writeMicroseconds()
Sets the servo pulse width in microseconds

• readMicroseconds()
Gets the last written servo pulse width in microseconds*

*Documentation doesn’t mention this, but it exists?!

Interfaces: Servo example

http://wiring.org.co/reference/libraries/Servo/Servo_attach_.html
http://wiring.org.co/reference/libraries/Servo/Servo_read_.html
http://wiring.org.co/reference/libraries/Servo/Servo_write_.html
http://wiring.org.co/reference/libraries/Servo/Servo_attached_.html
http://wiring.org.co/reference/libraries/Servo/Servo_detach_.html
http://wiring.org.co/reference/libraries/Servo/Servo_writeMicroseconds_.html
http://wiring.org.co/reference/libraries/Servo/Servo_readMicroseconds_.html

detach()

Description

Detach the Servo variable from its pin. If all Servo
variables are detached, then pins 9 and 10 can be
used for PWM output with analogWrite().

Syntax
– servo.detach()

Parameters

• servo: a variable of type Servo

Interfaces: Servo example

So?

• Examples: (same as last page)

– Some servos may need to be
“linearized”.
• That is their angle isn’t exactly

proportional to the pulse width

– Some servos do continuous
rotation
• Pulse width determines speed

and direction, not angle

– Servos can (often?)
“freewheel”
• Apply no pulse, it provides no

resistance to turning.
– Sometimes useful to an

application.

– Some servos provide angle they
are actually at.

• How can supporting those
things cause us difficulties?
– Too many functions?
– Too much computation?

• And that doesn’t even account
for having to support different
processors and timers.
– Yes, some processors have

multiple types of timers.
• Pretty common actually.

Interfaces: Servo example

attach()

servo.attach(pin)

servo.attach(pin, min, max)

Parameters
servo A variable of type Servo

pin pin number servo attached to

min min value in microseconds

defaults to 544

max max value in microseconds

defaults to 2400

Example:

#include "Servo.h"

Servo myservo;

void setup() {

// attaches a servo

// connected to pin 2

myservo.attach(2);

}

void loop() {

// position the servo angle

// at 90 degrees

myservo.write(90);

}

Interfaces: Servo example

Interfaces: Servo example

Best I can find— integer division is about 15 microseconds on an Arduino.

Interfaces: Servo example

Code to keep it portable
Initializing the ISR

static void initISR(timer16_Sequence_t timer)

{

#if defined (_useTimer1)

if(timer == _timer1) {

TCCR1A = 0; // normal counting mode

TCCR1B = _BV(CS11); // set prescaler of 8

TCNT1 = 0; // clear the timer count

#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)

TIFR |= _BV(OCF1A); // clear any pending interrupts;

TIMSK |= _BV(OCIE1A) ; // enable the output compare interrupt

#else

// here if not ATmega8 or ATmega128

TIFR1 |= _BV(OCF1A); // clear any pending interrupts;

TIMSK1 |= _BV(OCIE1A) ; // enable the output compare interrupt

#endif

#if defined(WIRING)

timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);

#endif

}

#endif

#if defined (_useTimer3)

if(timer == _timer3) {

TCCR3A = 0; // normal counting mode

TCCR3B = _BV(CS31); // set prescaler of 8

TCNT3 = 0; // clear the timer count

#if defined(__AVR_ATmega128__)

TIFR |= _BV(OCF3A); // clear any pending interrupts;

ETIMSK |= _BV(OCIE3A); // enable the output compare

// interrupt

#else

TIFR3 = _BV(OCF3A); // clear any pending interrupts;

TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt

#endif

#if defined(WIRING)

timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service);

// for Wiring platform only

#endif

}

#endif

#if defined (_useTimer4)

if(timer == _timer4) {

TCCR4A = 0; // normal counting mode

TCCR4B = _BV(CS41); // set prescaler of 8

TCNT4 = 0; // clear the timer count

TIFR4 = _BV(OCF4A); // clear any pending interrupts;

TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt

}

#endif

#if defined (_useTimer5)

if(timer == _timer5) {

TCCR5A = 0; // normal counting mode

TCCR5B = _BV(CS51); // set prescaler of 8

TCNT5 = 0; // clear the timer count

TIFR5 = _BV(OCF5A); // clear any pending interrupts;

TIMSK5 = _BV(OCIE5A) ; // enable the output compare interrupt

}

#endif

}

Entire library is 337 lines (including comments)

Interfaces: Servo example

Conclusions?

• Hardware interfacing isn’t trivial
– Having to deal with multiple platforms can at the least

make the code more complex.

• Efficiency issues exist
– Uses a significant amount of CPU time if specify things

in degrees.
• Might not matter—if CPU is otherwise fairly idle who cares?

– Efficiency issue hidden from application writer.
• That’s a common problem and happens here.

• OSI model really gets at just how complex things
can get.

Interfaces: Servo example

Terminology

• There is a lot of terminology wrapped around
hardware interfacing.
– Terms like: HAL (hardware abstraction layer),

Middleware, and Device Driver are all related to
hardware interfacing.
• And it’s not unusual to see different people use those

terms differently.

– We’ll try to take a look at that terminology later
on.
• I’ll generally use “device driver” or “system software

layer”

Interfaces: wrap-up

Hardware interfacing
summary

• Hardware Interfaces:
– Create a standard “driver” interface where

you can abstract the interface to a device
from the tasks the processor needs to
perform.

– Ideally covers most use cases (applications)

– Ideally a single interface covers a wide variety
of parts/targets and platforms.

• Advantages:
– Ideally application software can be written

independent of platform & target.

– Application programmer can think at the
application level and not the device/MMIO
level.
• Abstraction is good and makes for code that is

easier to write, debug and maintain.

Interfaces: wrap-up

Interfaces: wrap-up

Projects

What’s reasonable

What’s expected when

What is a reasonable project?

• Required
– Entire embedded system with a realistic use

• Design allows for that realistic use (not an unusable
prototype)

– Doable in the semester
– Design and population of a PCB with a processor (or

maybe FPGA).
– Design and implementation of hardware interfaces

• Suggested
– Not “barebones” programming

• Use RTOS, Linux, or something else
• Barebones might make sense if software fairly trivial

– Stay away from switching power supplies

Projects in the past:
Baby Monitor

• What it does
– Watches for SIDS
– Sets alarm on board and wirelessly to base station if

problem detected.

• Main issues
– Easy to use

• Easy to place on baby correctly, easy to recharge, no complex
interface

– Resilient
• Water-resistant, can be dropped, easily cleaned.

– Cheap
• Very low-cost target.

– Testing that it works
• Need baby?

Projects in the past:
Triathlon monitor

• What it does:

– Monitor location, heart rate, and strides

– Display on watch, record to dump to PC later

• Issues

– Weight

– Waterproof

– Getting data in (GPS, heart rate, strides)

– Getting data out (to watch, stored and to PC)

Projects in the past:
Bike helmet (Hail-met)

• What it does:
– Bluetooth

• Voice, etc. Can make calls or listen to music

– Turn signals and tail light

– Basic heads-up display (signals, call info)

– Solar recharge

• Issues
– Weight

– Waterproof

– Safety

Project dates next 30 days
• Sept. 5th:

– Project ideas pdf turned in by 11pm (on Gradescope shortly)

• Sept 6th:
– All ideas posted, probably not until late in the day.

• Sept. 7thth:
– Forming groups 6:30-8:30pm (Room TBA)
– Each person will have a chance to speak for about 30 seconds about what

they’d like to do
– Wander around and form groups.

• Sept. 15th:
– Draft proposal due (3% of project grade)

• Sept 21nd

– Required meeting with staff to discuss proposal*
• No class that day.

– After meeting most groups can (and should) start ordering parts!

• Sept 28th

– Formal proposal due. (12% of project grade).

*You should have met with various 473 staff members well before this!

Milestones: What are they?
What’s due?

• Report to us about how things are going and
some demonstrations.

• What’s due:
– A short report (1-2 pages)

• Due a few days before the meeting

– Demonstrate to GSIs that you’ve meet your
“objectively demonstrable” deliverables.
• Needs to be done the day before the meeting at the latest.

• In general, these should take 30-60 minutes to
write unless things are in really bad shape.
– There is a docx template you are to use.

Milestone 1

(Can start ordering parts on Sept 21nd after meeting)

• Oct 12th

– Device interfaces designed and working
• Might need some refinement, but in good shape

– Prototype largely working
• Probably devboard (maybe breadboard, but avoid if possible!)

• Can talk to all devices via interfaces

• Can more-or-less do the task

– Have identified solutions to each major issue.

• Started on PCB
– Perhaps just barely, but at least have patterns done

Milestone 1 Example: Baby

• Have interface to GPS, flash (for storage), and
variable resistor (for checking breathing)
written useable.

• Not yet sure on chest cavity movement of
infant.
– Flash still a bit buggy—erasing not always working.

• Otherwise demonstrated

– GPS association working, (time is 3 minutes, but
worst case probably acceptable for application)
• Demonstrated

Milestone 1 Example: Baby

• Prototype on Arduino

– Each interface works

– When done together GPS (serial) interrupt
messing with timer interrupt for resistor
monitoring

PCB deadline

• All PCBs must be ordered by Oct 31st

– Worst case, you need to respin the PCB later but
we want them all out by this date.

• Depending on budget for PCB, should have back in 7-10
days.

– Should target earlier—hopefully most groups have
PCB out by Oct 21st

Milestone 2

• November 7th

– PCB back and assembled, still may be debugging
last issue or two

– Final plans for all “extras”

• Enclosure (if needed)

• Special documentation

• ?????

November 20th

• Everything should be done, just final testing and
debug of a largely working system.

• Start on design expo things and final report by
11/26.
– Setup, poster, etc.

– Discussion in class about posters etc. on 11/21

– Ideally get much of the report written before the
expo.

• Testing, testing, testing

Design Expo

• December November 30th

– Working and clearly presented demo

– Hopefully exciting

• Not all projects will be and that’s okay.

– Shirt and tie or equivalent required.

December 3rd

• Final report due.

– This report and the associated documentation is
15% of of your project grade.

– With the proposal document done, you have a
solid starting point.

EECS 473
Advanced Embedded Systems

An introduction to real time systems
and scheduling

Chunks adapted from work by
Dr. Fred Kuhns of Washington University

and Farhan Hormasji

What is a Real-Time System?

• Real-time systems have been defined as:
"those systems in which the correctness of
the system depends not only on the logical
result of the computation, but also on the
time at which the results are produced";

– J. Stankovic, "Misconceptions About Real-Time
Computing," IEEE Computer, 21(10), October
1988.

What is a RTS?

Soft, Firm and Hard deadlines

• The instant at which a result is needed is called a
deadline.

– If the result has utility even after the deadline has
passed, the deadline is classified as soft, otherwise it
is firm.

– If a catastrophe could result if a firm deadline is
missed, the deadline is hard.

• Examples?

Definitions taken from a paper by Kanaka Juvva, not sure who originated them.

What is a RTS?

Why is this hard?
Three major issues

1. We want to use as cheap ($$, power) a
processor as possible.
– Don’t want to overpay

2. There are non-CPU resources to worry about.
– Say two devices both on an SPI bus.

– So often can’t treat tasks as independent

3. Validation is hard
– You’ve got deadlines you must meet.

• How do you know you will?

Let’s discuss that last one a bit more

What is a RTS?

Validating a RTS is hard

• Validation is simply the ability to be able to prove that you
will meet your constraints
– Or for a non-hard time system, prove failure is rare.

• This is a hard problem just with timing restrictions
– How do you know that you will meet all deadlines?

• A task that needs 0.05s of CPU time and has a deadline 0.1s after
release is “easy”.

• But what if three such jobs show up at the same time?

– And how do you know the worst-case for all these applications?
• Sure you can measure a billion instances of the program running, but

could something make it worse?
– Caches are a pain here.

• And all that ignores non-CPU resource constraints!

We need some formal definitions to make progress here…

What is a RTS?

Real-Time Characteristics

• Pretty much your typical embedded system
– Sensors & actuators all controlled by a processor.

– The big difference is timing constraints (deadlines).

• Those tasks can be broken into two categories1

– Periodic Tasks: Time-driven and recurring at regular
intervals.
• A car checking for a wall every 0.1 seconds;

• An air monitoring system grabbing an air sample every 10 seconds.

– Aperiodic: event-driven
• That car having to react to a wall it found

• The loss of network connectivity.

1Sporadic tasks are sometimes also discussed as a third category. They are tasks similar to aperiodic tasks but activated with some
known bounded rate. The bounded rate is characterized by a minimum interval of time between two successive activations.

What is a RTS?

Some Definitions

• Timing constraint:
– Constraint imposed on timing behavior of a job: hard, firm,

or soft.

• Release Time:
– Instant of time job becomes available for execution.

• Deadline:
– Instant of time a job's execution is required to be

completed.

• Response time:
– Length of time from release time to instant job completes.

What is a RTS?

Example Using the Definitions:
Periodic jobs

• Consider a processor
where you have two
different tasks.
– We’ll call them 1 and 2.
– It is commonly the case

that the period of a task is
the same as the time you
have to complete the task.
• So if 1 needs to run every

5 seconds, you just need to
finish a given instance of 1
before the next one is to
start.

• Consider the following:

• Assuming all tasks are first
released at time 0:
– What is the deadline of the

first instance of 1?
– What is the release time of

the second instance of 1?
– What is the deadline of the

second instance of 1?

Properties for Scheduling tasks

• Priority
– If two tasks are both waiting to run at the same time, one will be selected.

That one is said to have the higher priority.

• Fixed/Dynamic priority tasks
– In priority driven scheduling, assigning the priorities can be done statically or

dynamically while the system is running

• Preemptive/Non-preemptive tasks
– Execution of a non-preemptive task is to be completed without interruption

once it is started
– Otherwise a task can be preempted if another task of higher priority becomes

ready

• Multiprocessor/Single processor systems
– In multiprocessor real-time systems, the scheduling algorithms should prevent

simultaneous access to shared resources and devices.

What is a RTS?

Preemption
What it is and how it helps

Mohammadi, Arezou, and Selim G. Akl. "Scheduling Algorithms
for Real-Time Systems." (2005)

What is a RTS?

Assume all tasks are released at time 0.

Scheduling algorithms

• A scheduling algorithm is a scheme that
selects what job to run next.

– Can be preemptive or non-preemptive.

– Dynamic or static priorities

– Etc.

Two scheduling schemes

• Rate monotonic
(RM)

– Static priority scheme

– Simple to implement

– Nice properties

• Earliest deadline first
(EDF)

– Dynamic priority scheme

– Harder to implement

– Very nice properties

RM and EDF assumptions

• No task has any non-preemptable section and
the cost of preemption is negligible.

• Only processing requirements are significant;
memory, I/O, and other resource
requirements are negligible.

• All tasks are independent; there are no
precedence constraints.

Terms and definitions

• Execution time of a task - time it takes for a task to run to
completion

• Period of a task - how often a task is being called to
execute; can generally assume tasks are periodic although
this may not be the case in real-world systems

• CPU utilization - the percentage of time that the processor
is being used to execute a specific scheduled task

– where ei is the execution time of task i, and Pi is its period

• Total CPU utilization - the summation of the utilization of
all tasks to be scheduled

RM Scheduling

• It is a static-priority preemptive scheme
involving periodic tasks only.

– Well, it mumbles about non-periodic tasks, but…

• Basic idea:
– Priority goes to the task with the lowest period.

Mohammadi, Arezou, and Selim G. Akl. "Scheduling Algorithms for Real-Time Systems." (2005)

RM scheduling

How well does RMS work?

• Surprisingly well actually.
– Let n be the number of tasks.
– If the total utilization is less than n(21/n-1), the tasks are

schedulable.
• That’s pretty cool.

– At n=2 that’s ~83.3%
– At n=∞ that’s about 69.3%

– This means that our (extremely) simple algorithm will work
if the total CPU utilization is less than 2/3!
• Still, don’t forget our assumptions (periodic being the big one)

• Also note, this is a sufficient, but not necessary
condition
– Tasks may still be schedulable even if this value is

exceeded.
• But not if utilization is over 100% of course…

http://cn.el.yuntech.edu.tw/course/95/real_time_os/present%20paper/Scheduling%20Algorithms%20for%20Multiprogramming%20in%20a%20Hard-.pdf

RM scheduling

http://cn.el.yuntech.edu.tw/course/95/real_time_os/present%20paper/Scheduling%20Algorithms%20for%20Multiprogramming%20in%20a%20Hard-.pdf

What if the sufficiency bound is not met?

• Critical instant analysis

– The worst case for RMS is that all tasks happen to
start at the exact same time.

• If RM can schedule the first instance of each such task,
the tasks are schedulable.

• With RM scheduling we can always jump to
doing the critical instant analysis

Mohammadi, Arezou, and Selim G. Akl. "Scheduling Algorithms for Real-Time Systems." (2005)

RM scheduling

Example #1

http://www.idsc.ethz.ch/Courses/embedded_control_systems/Exercises/SWArchitecture08.pdf

RM scheduling

http://www.idsc.ethz.ch/Courses/embedded_control_systems/Exercises/SWArchitecture08.pdf

Example #2

Task
Execution

Time
Period Priority

T1 1 3 High

T2 1.5 4 Low

RM scheduling

Example #3

Task
Execution

Time
Period Priority

T1 1 3 High

T2 2.1 4 Low

RM scheduling

Example #4

Task
Execution

Time
Period Priority

T1 1 2 High

T2 2 5 Low

RM scheduling

Easy?

• Fixed priorities are pretty easy.

– Scheduler easy to write.

– Could, in theory, use interrupt priorities from a
timer to do this

• But that’s probably dumb (why?)

RM scheduling

