
Projects
(Finish up from last time)

What’s reasonable

What’s expected when

What is a reasonable project?

• Required
– Entire embedded system with a realistic use

• Design allows for that realistic use (not an unusable
prototype)

– Doable in the semester
– Design and population of a PCB with a processor (or

maybe FPGA).
– Design and implementation of hardware interfaces

• Suggested
– Not “barebones” programming

• Use RTOS, Linux, or something else
• Barebones might make sense if software fairly trivial

– Stay away from switching power supplies

Projects in the past:
Baby Monitor

• What it does
– Watches for SIDS
– Sets alarm on board and wirelessly to base station if

problem detected.

• Main issues
– Easy to use

• Easy to place on baby correctly, easy to recharge, no complex
interface

– Resilient
• Water-resistant, can be dropped, easily cleaned.

– Cheap
• Very low-cost target.

– Testing that it works
• Need baby?

Projects in the past:
Triathlon monitor

• What it does:

– Monitor location, heart rate, and strides

– Display on watch, record to dump to PC later

• Issues

– Weight

– Waterproof

– Getting data in (GPS, heart rate, strides)

– Getting data out (to watch, stored and to PC)

Projects in the past:
Bike helmet (Hail-met)

• What it does:
– Bluetooth

• Voice, etc. Can make calls or listen to music

– Turn signals and tail light

– Basic heads-up display (signals, call info)

– Solar recharge

• Issues
– Weight

– Waterproof

– Safety

Project dates next 30 days
• Sept. 6th:

– Project ideas pdf turned in by 11pm (on Gradescope already)

• Sept 7th:
– All ideas posted, hopefully by noon.

• Sept. 8thth:
– Forming groups 6:30-8:30pm (IOE 1610)
– Each person will have a chance to speak for about 30 seconds about what

they’d like to do
– Wander around and form groups.

• Sept. 16th:
– Draft proposal due (3% of project grade)

• Sept 22nd

– Required meeting with staff to discuss proposal*
• No class that day.

– After meeting most groups can (and should) start ordering parts!

• Sept 29th

– Formal proposal due. (12% of project grade).

*You should have met with various 473 staff members well before this!

Milestones: What are they?
What’s due?

• Report to us about how things are going and
some demonstrations.

• What’s due:
– A short report (1-2 pages)

• Due a few days before the meeting

– Demonstrate to GSIs that you’ve meet your
“objectively demonstrable” deliverables.

• Needs to be done the day before the meeting at the latest.

• In general, these should take 30-60 minutes to
write unless things are in really bad shape.
– There is a docx template you are to use.

Milestone 1

(Can start ordering parts on Sept 22nd after meeting)

• Oct 13th

– Device interfaces designed and working
• Might need some refinement, but in good shape

– Prototype largely working
• Probably devboard (maybe breadboard, but avoid if possible!)

• Can talk to all devices via interfaces

• Can more-or-less do the task

– Have identified solutions to each major issue.

• Started on PCB
– Perhaps just barely, but at least have patterns done

Milestone 1 Example: Baby

• Have interface to GPS, flash (for storage), and
variable resistor (for checking breathing)
written useable.

• Not yet sure on chest cavity movement of
infant.
– Flash still a bit buggy—erasing not always working.

• Otherwise demonstrated

– GPS association working, (time is 3 minutes, but
worst case probably acceptable for application)

• Demonstrated

Milestone 1 Example: Baby

• Prototype on Arduino

– Each interface works

– When done together GPS (serial) interrupt
messing with timer interrupt for resistor
monitoring

PCB deadline

• All PCBs must be ordered by Nov 1st

– Worst case, you need to respin the PCB later but
we want them all out by this date.

• Depending on budget for PCB, should have back in 7-10
days.

– Should target earlier—hopefully most groups have
PCB out by Oct 22nd

Milestone 2

• November 15th

– PCB back and assembled, still may be debugging

– Prototype working though more testing planned

– Final plans for all “extras”

• Enclosure (if needed)

• Special documentation

• ?????

November 29th

• Everything should be done, just final testing
and debug of a largely working system.

• Start on design expo things and final report by
12/2.
– Setup, poster, etc.

– Discussion in class about posters etc. on 12/1

– Get much of the report written before the expo.

• Testing, testing, testing

Design Expo

• December 8th

– Working and clearly presented demo

– Hopefully exciting

• Not all projects will be and that’s okay.

– Shirt and tie or equivalent required.

December 11th

• Final report due.

– This report and the associated documentation is
15% of of your project grade.

– With the proposal document done, you have a
solid starting point.

EECS 473
Advanced Embedded Systems

Lecture 3 and 4

An introduction to real time systems
and scheduling

Chunks adapted from work by
Dr. Fred Kuhns of Washington University

and Farhan Hormasji

Announcements

• HW0

– Due today at 11pm on gradescope

• I’ll have the pdf posted of everyone’s submissions on by
Wednesday.

Group formation: Thursday night

• 1500 EECS from 6:30-8:30.

– Yes, that overlaps with lab for some of you.

• Sorry about that, but it’s really the only time that
works.

• We expect to have some extra hours Wednesday
morning. And we’ll be there late on Thursday.

• Please work with your lab partner to find a time that
works.

Misc.

• Lab 1 inlab/postlab due before your lab starts.

• Lab 2 prelab due before your lab starts

– Really important in this case

Outline

• Overview of real-time systems
– Basics
– Scheduling algorithms (RM, EDF, LLF & RR)

• Overview of RTOSes
– Goals of an RTOS
– Features you might want in an RTOS

• Learning by example: FreeRTOS
– Introduction
– Tasks
– Interrupts
– Internals (briefly)
– What’s missing?

What is a Real-Time System?

• Real-time systems have been defined as:
"those systems in which the correctness of
the system depends not only on the logical
result of the computation, but also on the
time at which the results are produced";

– J. Stankovic, "Misconceptions About Real-Time
Computing," IEEE Computer, 21(10), October
1988.

What is a RTS?

Soft, Firm and Hard deadlines

• The instant at which a result is needed is called a
deadline.

– If the result has utility even after the deadline has
passed, the deadline is classified as soft, otherwise it
is firm.

– If a catastrophe could result if a firm deadline is
missed, the deadline is hard.

• Examples?

Definitions taken from a paper by Kanaka Juvva, not sure who originated them.

What is a RTS?

Why is this hard?
Three major issues

1. We want to use as cheap ($$, power) a
processor as possible.
– Don’t want to overpay

2. There are non-CPU resources to worry about.
– Say two devices both on an SPI bus.

– So often can’t treat tasks as independent

3. Validation is hard
– You’ve got deadlines you must meet.

• How do you know you will?

Let’s discuss that last one a bit more

What is a RTS?

Validating a RTS is hard

• Validation is simply the ability to be able to prove that you
will meet your constraints
– Or for a non-hard time system, prove failure is rare.

• This is a hard problem just with timing restrictions
– How do you know that you will meet all deadlines?

• A task that needs 0.05s of CPU time and has a deadline 0.1s after
release is “easy”.

• But what if three such jobs show up at the same time?

– And how do you know the worst-case for all these applications?
• Sure you can measure a billion instances of the program running, but

could something make it worse?
– Caches are a pain here.

• And all that ignores non-CPU resource constraints!

We need some formal definitions to make progress here…

What is a RTS?

Real-Time Characteristics

• Pretty much your typical embedded system
– Sensors & actuators all controlled by a processor.

– The big difference is timing constraints (deadlines).

• Those tasks can be broken into two categories1

– Periodic Tasks: Time-driven and recurring at regular
intervals.

• A car checking for a wall every 0.1 seconds;

• An air monitoring system grabbing an air sample every 10 seconds.

– Aperiodic: event-driven
• That car having to react to a wall it found

• The loss of network connectivity.

1Sporadic tasks are sometimes also discussed as a third category. They are tasks similar to aperiodic tasks but activated with some
known bounded rate. The bounded rate is characterized by a minimum interval of time between two successive activations.

What is a RTS?

Some Definitions

• Timing constraint:

– Constraint imposed on timing behavior of a job: hard, firm, or soft.

• Release Time:
– Instant of time job becomes available for execution.

• Deadline:
– Instant of time a job's execution is required to be completed.

• Response time:
– Length of time from release time to the instant the job completes.

What is a RTS?

Example Using the Definitions:
Periodic jobs

• Consider a processor
where you have two
different tasks.
– We’ll call them 1 and 2.
– It is commonly the case

that the period of a task is
the same as the time you
have to complete the task.

• So if 1 needs to run every
7 seconds, you just need to
finish a given instance of 1
before the next one is to
start.

• Consider the following:

• Assuming all tasks are first
released at time 0:
– What is the deadline of the

first instance of 1?
– What is the release time of

the second instance of 1?
– What is the deadline of the

second instance of 1?

Properties for Scheduling tasks

• Priority
– If two tasks are both waiting to run at the same time, one will be selected.

That one is said to have the higher priority.

• Fixed/Dynamic priority tasks
– In priority-driven scheduling, assigning the priorities can be done statically

(always the same) or they can be done dynamically (changing while the
system is running)

• Preemptive/Non-preemptive tasks
– Execution of a non-preemptive task is to be completed without interruption

once it is started
– Otherwise a task can be preempted if another task of higher priority

becomes ready

What is a RTS?

Preemption
What it is and how it helps

What is a RTS?

All tasks are released at time 0.
Mohammadi, Arezou, and Selim G. Akl. "Scheduling Algorithms

for Real-Time Systems." (2005)

Now add preemption:

Task 1’s second instance misses its deadline!

Scheduling algorithms

• A scheduling algorithm is a scheme that
selects what job to run next.

– Can be preemptive or non-preemptive.

– Dynamic or static priorities

– Etc.

Two scheduling algorithms

• Rate monotonic
(RM)

– Static priority scheme

– Simple to implement

– Nice properties

• Earliest deadline first
(EDF)

– Dynamic priority scheme

– Harder to implement

– Very nice properties

RM and EDF assumptions

• No task has any non-preemptable section and
the cost of preemption is negligible.

• Only processing requirements are significant;
memory, I/O, and other resource
requirements are negligible.

• All tasks are independent; there are no
precedence constraints.

Terms and definitions

• Execution time of a task - time it takes for a task to run to
completion

• Period of a task - how often a task is being called to
execute; can generally assume tasks are periodic although
this may not be the case in real-world systems

• CPU utilization - the percentage of time that the processor
is being used to execute a specific scheduled task

– where ei is the execution time of task i, and Pi is its period

• Total CPU utilization - the summation of the utilization of
all tasks to be scheduled

RM Scheduling

• It is a static-priority preemptive scheme
involving periodic tasks only.

– Well, it mumbles about non-periodic tasks, but…

• Basic idea:
– Priority goes to the task with the lowest period.

Mohammadi, Arezou, and Selim G. Akl. "Scheduling Algorithms for Real-Time Systems." (2005)

RM scheduling

How well does RMS work?

• Surprisingly well actually.
– Let n be the number of tasks.
– If the total utilization is less than n(21/n-1), the tasks are

schedulable.
• That’s pretty cool.

– At n=2 that’s ~83.3%
– At n=∞ that’s about 69.3%

– This means that our (extremely) simple algorithm will work
if the total CPU utilization is less than 2/3!

• Still, don’t forget our assumptions (periodic being the big one)

• Also note, this is a sufficient, but not necessary
condition
– Tasks may still be schedulable even if this value is

exceeded.
• But not if utilization is over 100% of course…

Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment
http://igm.univ-mlv.fr/~masson/pdfANDps/liulayland73.pdf

RM scheduling

http://igm.univ-mlv.fr/~masson/pdfANDps/liulayland73.pdf

What if the sufficiency bound is not met?

• Critical instant analysis

– The worst case for RMS is that all tasks happen to
start at the exact same time.

• If RM can schedule the first instance of each such task,
the tasks are schedulable.

• With RM scheduling we can always jump to
doing the critical instant analysis

Mohammadi, Arezou, and Selim G. Akl. "Scheduling Algorithms for Real-Time Systems." (2005)

RM scheduling

Example #1

https://www.eecs.umich.edu/courses/eecs461/lecture/SWArchitecture.pdf

RM scheduling

https://www.eecs.umich.edu/courses/eecs461/lecture/SWArchitecture.pdf

Example #2

Task
Execution

Time
Period Priority

T1 1 3 High

T2 1.5 4 Low

RM scheduling

Example #3

Task
Execution

Time
Period Priority

T1 1 3 High

T2 2.1 4 Low

RM scheduling

Example #4

Task
Execution

Time
Period Priority

T1 1 2 High

T2 2 5 Low

RM scheduling

Easy?

• Fixed priorities are pretty easy.

– Scheduler easy to write.

– Don’t have to worry about updating priorities

• Extra effort (Engineering and CPU)

• Could lead to thrashing

RM scheduling

EDF Scheduling
• Also called the deadline-monotonic scheduling algorithm

– a priority-driven algorithm in which higher priority is assigned to
the request that has earlier deadline and a higher priority
request always preempts a lower priority one.

• Uses dynamic priority assignment in the sense that the
priority of a request is assigned as the request arrives
– May have to update other tasks’ priorities (why?)

• We make all the assumptions we made for the RM
algorithm, except that the tasks do not have to be periodic

• Same runtime complexity as RM scheduling if sorted lists
are used

• EDF is an optimal uniprocessor scheduling algorithm

Mohammadi, Arezou, and Selim G. Akl. "Scheduling Algorithms for Real-Time Systems." (2005)

EDF scheduling

EDF issues

• Dynamic priorities
– When do you need to recompute priorities?
– How much time will you need to take?

• O(?)

• When it fails
– Which tasks will be dropped is hard to predict.

• “This is a considerable disadvantage to a real-time systems designer.”

• Representing wide variety of time scales can be tricky.
– Need to track how long until deadline, but some tasks may have

deadline on the order of milliseconds, others hours or days.

• Shared resources are tricky.
– Like priority inheritance problem for RM scheduling (covered

shortly)

EDF scheduling

Wonderfully understated quote in green from Wikipedia.

LLF (Least Laxity First) Scheduling

• The laxity of a process is defined as the deadline minus remaining
computation time
– In other words, the laxity of a job is the maximal amount of time that

the job can wait and still meet its deadline

• The algorithm gives the highest priority to the active job with the
smallest laxity

• While a process is executing, it can be preempted by another
whose laxity has decreased to below that of the running process
– A problem arises with this scheme when two processes have similar

laxities. One process will run for a short while and then get preempted
by the other and vice versa, thus causing many context switches occur
in the lifetime of the processes. (Thrashing)

• The least laxity first algorithm is an optimal scheduling algorithm for
systems with periodic real-time tasks
– Also useful with aperiodic tasks

Other schemes

round robin (no priorities)
Task Execution Time Period

T1 5 min 1 hr

T2 0.6 sec 1 sec

Other schemes

Optimal?

• An optimal real-time scheduling algorithm is
one which may fail to meet a deadline only if
no other scheduling algorithm could meet all
of the deadlines.

Finally…

Of course, this ignores a lot

• We’ve only worried about the CPU as a
resource.

– What if one task is waiting on another to free a
resource?

Finally…

Waiting for a Serial Port

• Say I’ve got two tasks that can write to a serial
port (using printf()* let’s say).
– They are writing messages to a terminal.
– If one is in the middle of a message, I can’t preempt it

with another that can/will write to the serial port.
• My message will be jumbled as one message hits the middle

of the other.

• This can happen with all kinds of resources
including other ports (e.g. I2C, USB) and timers
– Common to have a shared data structure where if one

task is writing, no task can use it.
• Why might someone else not be able to read?

*The standard version of printf is not “reentrant”. This is a good thing to know (and understand)

How do we know to wait?
• We use a variable.

– Any task that is going to use the locked resource (say serial port)
checks that variable first.

– If that variable is a “0” we wait until it’s a “1”.
– Once it’s a “1”, we set it to “0” and then proceed to use the serial port.
– Once we’re done with the serial port, we set it back to a “1”.

• The standard terminology for this is:
– The variable is called a “binary semaphore”
– Setting it to “0” is called locking. If it is a “0” we say the semaphore is

locked.
– Setting it to “1” is called unlocking.

• Anyone wanting to use the serial port is supposed to check the
semaphore, and then lock it and unlock it in the same way.
– The code that needs to be locked is often called a “critical section”.

Let’s do this in C

• Write code that uses

– a global variable “sem_serial” as the lock.

– Calls “printf()” to use the serial port

Proposed answer

while(!sem_serial); // wait until it’s available

//using 1 as available and

//0 as not. Notice the ;

sem_serial=0;

printf(thingy);

sem_serial=1;

Problems with the code we wrote
(1/2)

• Now we generally need to be a bit more tricky than
this.
– Imagine task “A” checks the semaphore and then, before

setting the lock, gets preempted by another task “B” that
locks the semaphore then A gets scheduled again.

• “A” will have passed the check and will proceed to use the serial
port. So we need a way to prevent this from happening.

– Most processors have ways of dealing with that issue at
the assembly level (test-and-set for example)

• Libraries that handle multiple tasks almost always include function
calls that use those assembly-level instructions correctly.

Problems with the code we wrote
(2/2)

• The other issue is that our
while loop is busy
waiting.
– Say that task A is the high

priority task. Task A and B
both use the serial bus.

• B is running and locks the
bus

• A preempts B.
• A will now wait in the loop

until B finishes
– But A is higher priority, so

B can’t run until A
finishes. And A can’t run
until B finishes.

» DEADLOCK!

• Solution is that rather
than a loop, we call a
function and ask to lock
the semaphore.
– If we don’t get the lock we

give up control of the
processor until the lock is
available.

– Tricky to write
• Another reason to use

libraries here rather than
rolling your own!

Obligatory deadlock joke

• Interviewer:

– "Explain deadlock and we'll hire you."

• Me:

– "Hire me and I'll explain it to you."

But wait, there’s more!

• We want some kind of semaphore_take() and
semaphore_give() functions that handle the
issues described
– Uses atomic operations like test-and-set to handle

race conditions.

– The take function should cause the current task to
give up the CPU

– The give function should check to see if anyone is
waiting on the semaphore.

• But that’s still not enough.

Priority Inversion

• In a preemptive priority-based real-time system, sometimes
tasks may need to access resources that cannot be shared.
– The method of ensuring exclusive access is to guard the critical

sections with binary semaphores.

– When a task seeks to enter a critical section, it checks if the
corresponding semaphore is locked.

– If it is not, the task locks the semaphore and enters the critical section.

– When a task exits the critical section, it unlocks the corresponding
semaphore.

• This could cause a high priority task to be waiting on a lower
priority one.
– Even worse, a medium priority task might be running and cause the

high priority task to not meet its deadline!

Some taken from Mohammadi, Arezou, and Selim G. Akl. "Scheduling Algorithms for Real-Time Systems." (2005)

Example: Priority Inversion

• Low priority task “C” locks resource “Z”.

• High priority task “A” preempts “A” then
requests resource “Z”
– Deadlock, but solvable by having “A” sleep until

resource is unlocked.

• But if medium priority task “B” were to run, it
would preempt C, thus effectively making C
and A run with a lower priority than B.
– Thus priority inversion.

Solving it: Priority Inheritance

• When a high priority task sleeps because it is
waiting on a lower priority task, have it boost the
priority of the blocking task to its own priority.
– In general a mutex is a semaphore that is used for

mutual exclusion.

• There are other solutions
– For example, if there are only 2 priorities this can’t

happen

– Windows has a rather interesting solution called
“random boosting”

Finally…

Net effect

• Handling locks and preemption and all that is
hard.

– It’s also fairly generic

• That is, you’re solving the same problem each time.

– So what you want is to just do it once.

• Or better yet, borrow code from someone else who is
really good at this stuff.

– This is part of what an RTOS will generally provide.

Outline

• Overview of real-time systems
– Basics
– Scheduling algorithms (RM, EDF, LLF & RR)

• Overview of RTOSes
– Goals of an RTOS
– Features you might want in an RTOS

• Learning by example: FreeRTOS
– Introduction
– Tasks
– Interrupts
– Internals (briefly)
– What’s missing?

Goals of an RTOS?

• Well, to manage to meet RT deadlines (duh).
– While that’s all we need we’d like a lot more.

• After all, we can meet RT deadlines fairly well on the bare
metal (no OS)

– But doing this is time consuming and difficult to get right as the
system gets large.

• We’d like something that supports us
– Deadlines met
– Locks work
– Interrupts just work
– Tasks stay out of each others way
– Device drivers already written (and tested!) for us
– Portable—runs on a huge variety of systems
– Oh, and nearly no overhead so we can use a small device!

» That is a small memory and CPU footprint.

Detailed features we’d like (1/2)

Deadlines met

• Ability to specify scheduling
algorithm

• Interrupts are fast
– So tasks with tight deadlines

get service as fast as possible

• Basically—rarely disable
interrupts and when doing
so only for a short time.

Interrupts just work

• Don’t need to worry about
saving/restoring registers
– Which C just generally does

for us anyways.

• Interrupt prioritization easy
to set.

Detailed features we’d like (2/2)

Locks work

• High-priority waiting on
locks give up the CPU until
lower-priority tasks finish
their critical section

• Priority inheritance is done
for us.

Device drivers
• Clean interfaces to I2C, USB,

SPI, timers, and whatever else
our processor supports
already written for us.
– Hopefully well tested and well

documented.

• In my experience, this is often
the least likely thing to be
100% there.
– Mainly because much of the

other stuff is easy to port.
– This is very processor specific.

Detailed features we’d like:
Tasks stay out of each others way

• This is actually remarkably
hard
– Clearly we need to worry about

CPU utilization issues
• That is what our scheduling

algorithm discussion was to
address

– But we also need to worry
about memory problems.

• One task running awry shouldn’t
take the rest of the system
down.

– So we want to prevent tasks
from harming each other

• This can be key. If we want
mission critical systems sharing
the CPU with less important
things we have to do this.

• Alternative it to have separate
processors.

– $$$$

• The standard way to do this is
with page protection.
– If a process tries to access

memory that isn’t its own, it
fails.

• Probably a fault.
• This also makes debugging a LOT

easier.

• This generally requires a lot of
overhead.
– Need some sense of process

number/switching
– Need some kind of MMU in

hardware
• Most microcontrollers lack this…
• So we hit some kind of minimum

size.

Further reading on page protection (short) http://homepage.cs.uiowa.edu/~jones/security/notes/06.shtml

http://homepage.cs.uiowa.edu/~jones/security/notes/06.shtml

Aside: What is an MMU?

• Memory Management
Unit

– Tracks what parts of
memory a process can
access.

• Actually a bit more
complex as it manages
this by mapping virtual
addresses to physical
ones.

• Keeps processes out of
each other’s memory.

Figure from Wikipedia

Portable

• RTOS runs on many platforms.

– This is potentially incomputable with the previous
slide.

– It’s actually darn hard to do even without
peripherals

• For example I have spent 10 hours debugging a RTOS
that had a pointer problem that only comes up if the
pointer type is larger than the int type (20 bit pointers,
16 bit ints, yea!)

• Things like timers change and we certainly need timers.

Outline

• Quick review of real-time systems
• Overview of RTOSes

– Goals of an RTOS
– Features you might want in an RTOS

• Learning by example: FreeRTOS
– Introduction
– Tasks
– Interrupts
– Internals (briefly)
– What’s missing?

Learning by example: FreeRTOS

• Introduction taken from Amr Ali Abdel-Naby

– Nice blog:

• http://www.embedded-tips.blogspot.com

http://www.embedded-tips.blogspot.com/

FreeRTOS Features

• Source code
• Portable
• ROM-able
• Scalable
• Preemptive and co-operative scheduling
• Multitasking
• Services
• Interrupt management
• Advanced features

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

Source Code

• High quality

• Neat

• Consistent

• Organized

• Commented

Portable

• Highly portable C

• 24+ architectures supported

• Assembly is kept minimum.

• Ports are freely available in
source code.

• Other contributions do exist.

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

Amr Ali Abdel-Naby@2010

Scalable

• Only use the services you only need.
o FreeRTOSConfig.h

• Minimum footprint = 4 KB

• Version in lab on Pi is ~24 KB
including the application and data for
the OS and application.
• Pretty darn small for what you get.
• ~6000 lines of code (including a lot of

comments, maybe half that without?)

Preemptive and Cooperative
Scheduling

• Preemptive scheduling:
o Fully preemptive
o Always runs the highest priority task that is ready

to run
o Comparable with other preemptive kernels
o Used in conjunction with tasks

• Cooperative scheduling:
o Context switch occurs if:

▪ A task/co-routine blocks
▪ Or a task/co-routine yields the CPU

o Used in conjunction with tasks/co-routines

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

Multitasking

• No software restriction on:
o # of tasks that can be created

o # of priorities that can be used

o Priority assignment
▪ More than one task can be assigned the same priority.
▪ RR with time slice = 1 RTOS tick

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

Services

• Queues

• Semaphores
o Binary and counting

• Mutexes
o With priority inheritance
o Support recursion

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

Interrupts

• An interrupt can suspend a task execution.

• Interrupt mechanism is port dependent.

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

Advanced Features

• Execution tracing

• Run time statistics collection

• Memory management

• Memory protection support

• Stack overflow protection

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

Device support in related products

• Connect Suite from High Integrity
Systems
o TCP/IP stack
o USB stack

▪ Host and device

o File systems
▪ DOS compatible FAT

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

Licensing

• Modified GPL
o Only FreeRTOS is GPL.
o Independent modules that communicate with

FreeRTOS through APIs can be anything else.
o FreeRTOS can’t be used in any comparisons

without the authors’ permission.

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

A bit more

• System runs on “ticks”

– Every tick the kernel runs and figures out what to
do next.

• Interrupts have a different mechanism

– Basically hardware timer is set to generate regular
interrupts and calls the scheduler.

• This means the OS eats one of the timers—you can’t
easily share.

OK, onto tasks!

Outline

• Quick review of real-time systems
• Overview of RTOSes

– Goals of an RTOS
– Features you might want in an RTOS

• Learning by example: FreeRTOS
– Introduction
– Tasks
– Interrupts
– Internals (briefly)
– What’s missing?

Tasks

• Each task is a function that must not return
– So it’s in an infinite loop (just like you’d expect in an

embedded system really, think Arduino).

• You inform the scheduler of
– The task’s resource needs (stack space, priority)
– Any arguments the tasks needs

• All tasks here must be of void return type and
take a single void* as an argument.
– You cast the pointer as needed to get the argument.

• I’d have preferred var_args, but this makes the common case
(one argument) easier (and faster which probably doesn’t
matter).

Code examples mostly from Using the FreeRTOS Real Time Kernel (a pdf book), fair use claimed.

Example trivial task with busy wait
(bad)

Task creation

portBASE_TYPE xTaskCreate(

pdTASK_CODE pvTaskCode,

const char * const pcName,

unsigned short usStackDepth,

void *pvParameters,

unsigned portBASE_TYPE uxPriority,

xTaskHandle *pvCreatedTask

);

Create a new task and add it to the list of tasks that
are ready to run. xTaskCreate() can only be used to
create a task that has unrestricted access to the
entire microcontroller memory map. Systems that
include MPU support can alternatively create an
MPU constrained task using xTaskCreateRestricted().

• pvTaskCode: Pointer to the task entry function.
Tasks must be implemented to never return (i.e.
continuous loop).

• pcName: A descriptive name for the task. This is
mainly used to facilitate debugging. Max length
defined by tskMAX_TASK_NAME_LEN – default
is 16.

• usStackDepth: The size of the task stack
specified as the number of variables the stack
can hold - not the number of bytes. For
example, if the stack is 16 bits wide and
usStackDepth is defined as 100, 200 bytes will
be allocated for stack storage.

• pvParameters: Pointer that will be used as the
parameter for the taskbeing created.

• uxPriority: The priority at which the task should
run. Systems that include MPU support can
optionally create tasks in a privileged (system)
mode by setting bit portPRIVILEGE_BIT of the
priority parameter. For example, to create a
privileged task at priority 2 the uxPriority
parameter should be set to (2 |
portPRIVILEGE_BIT).

• pvCreatedTask: Used to pass back a handle by
which the created task can be referenced.

• pdPASS: If the task was successfully created and
added to a ready list, otherwise an error code
defined in the file errors.h

From the task.h file in FreeRTOS

Creating a task: example

OK, I’ve created a task, now what?

• Task will run if there are no other tasks of
higher priority
– And if others the same priority will RR.

• But that begs the question: “How do we know
if a task wants to do something or not?”
– The previous example gave always wanted to run.

• Just looping for delay (which we said was bad)

• Instead should call vTaskDelay(x)
– Delays current task for X “ticks” (remember those?)

• There are a few other APIs for delaying…

Now we need an “under the hood” understanding

Task status in FreeRTOS

• Running
– Task is actually executing

• Ready
– Task is ready to execute but a task of

equal or higher priority is Running.

• Blocked
– Task is waiting for some event.

• Time: if a task calls vTaskDelay() it will
block until the delay period has expired.

• Resource: Tasks can also block waiting
for queue and semaphore events.

• Suspended
– Much like blocked, but not waiting for

anything.
– Tasks will only enter or exit the

suspended state when explicitly
commanded to do so through the
vTaskSuspend() and xTaskResume() API
calls respectively.

Mostly from http://www.freertos.org/RTOS-task-states.html

Tasks: there’s a lot more

• Can do all sorts of
things

– Change priority of a
task

– Delete a task

– Suspend a task
(mentioned above)

– Get priority of a task.

• Example on the right

– But we’ll stop here…

void vTaskPrioritySet(
xTaskHandle pxTask,

unsigned uxNewPriority
);

Set the priority of any task.

• pxTask: Handle to the task for
which the priority is being set.
Passing a NULL handle results
in the priority of the calling
task being set.

• uxNewPriority: The priority to
which the task will be set.

Outline

• Quick review of real-time systems
• Overview of RTOSes

– Goals of an RTOS
– Features you might want in an RTOS

• Learning by example: FreeRTOS
– Introduction
– Tasks
– Interrupts
– Internals (briefly)
– What’s missing?

Interrupts in FreeRTOS

• There is both a lot and a little going on here.
– The interface mainly uses whatever the native

environment uses to handle interrupts
• This can be very port dependent. In Code Composer

Studio you’d set it up as follows:
#pragma vector=PORT2_VECTOR

interrupt void prvSelectButtonInterrupt(void)

– That would cause the code to run on the PORT2
interrupt.

• Need to set that up etc. Very device specific (of
course).

More: Deferred Interrupt Processing

• The best way to handle complex events triggered
by interrupts is to not do the code in the ISR.

– Rather create a task that is blocking on a semaphore.

• When the interrupt happens, the ISR just sets the
semaphore and exits.

– Task can now be scheduled like any other. No need to worry
about nesting interrupts (and thus interrupt priority).

– FreeRTOS does support nested interrupts on some platforms
though.

– Semaphores implemented as one/zero-entry queue.

Figure from Using the FreeRTOS Real Time Kernel (a pdf book), fair use claimed.

Semaphore example in FreeRTOS

Semaphore take

xSemaphoreTake(

xSemaphoreHandle xSemaphore,

portTickType xBlockTime

)

• Macro to obtain a semaphore. The semaphore must have previously been
created.

• xSemaphore A handle to the semaphore being taken - obtained when the
semaphore was created.

• xBlockTime The time in ticks to wait for the semaphore to become
available. The macro portTICK_RATE_MS can be used to convert this to a
real time. A block time of zero can be used to poll the semaphore.

• TRUE if the semaphore was obtained.

• There are a handful of variations.
– Faster but more locking version, non-binary version, etc.

Outline

• Quick review of real-time systems
• Overview of RTOSes

– Goals of an RTOS
– Features you might want in an RTOS

• Learning by example: FreeRTOS
– Introduction
– Tasks
– Interrupts
– Internals (briefly)
– What’s missing?

Common data structures

This figure and the next are from http://www.aosabook.org/en/freertos.html

http://www.aosabook.org/en/freertos.html

