
EECS 473
Advanced Embedded Systems

Lecture 5
Evaluation boards & GPL

Start on Linux (time allowing)

Outline

• FreeRTOS finish up (10 minutes)

• Off-the-shelf boards (20 minutes)

• Why they are useful

• An example

• Copyright and the Gnu Public License (20 minutes)

– What it is, and why it matters for embedded engineers

• Start on Embedded Linux

– Introduction only (if that) Details next lecture.

FreeRTOS

Finishing up

Creating a task: example

OK, I’ve created a task, now what?

• Task will run if there are no other tasks of
higher priority
– And if others the same priority will RR.

• But that begs the question: “How do we know
if a task wants to do something or not?”
– The previous example gave always wanted to run.

• Just looping for delay (which we said was bad)

• Instead should call vTaskDelay(x)
– Delays current task for X “ticks” (remember those?)

• There are a few other APIs for delaying…

Now we need an “under the hood” understanding

Task status in FreeRTOS

• Running
– Task is actually executing

• Ready
– Task is ready to execute but a task of

equal or higher priority is Running.

• Blocked
– Task is waiting for some event.

• Time: if a task calls vTaskDelay() it will
block until the delay period has expired.

• Resource: Tasks can also block waiting
for queue and semaphore events.

• Suspended
– Much like blocked, but not waiting for

anything.
– Tasks will only enter or exit the

suspended state when explicitly
commanded to do so through the
vTaskSuspend() and xTaskResume() API
calls respectively.

Mostly from http://www.freertos.org/RTOS-task-states.html

Tasks: there’s a lot more

• Can do all sorts of
things

– Change priority of a
task

– Delete a task

– Suspend a task
(mentioned above)

– Get priority of a task.

• Example on the right

– But we’ll stop here…

void vTaskPrioritySet(
xTaskHandle pxTask,

unsigned uxNewPriority
);

Set the priority of any task.

• pxTask: Handle to the task for
which the priority is being set.
Passing a NULL handle results
in the priority of the calling
task being set.

• uxNewPriority: The priority to
which the task will be set.

Outline

• Quick review of real-time systems
• Overview of RTOSes

– Goals of an RTOS
– Features you might want in an RTOS

• Learning by example: FreeRTOS
– Introduction
– Tasks
– Interrupts
– Internals (briefly)
– What’s missing?

Interrupts in FreeRTOS

• There is both a lot and a little going on here.
– The interface mainly uses whatever the native

environment uses to handle interrupts
• This can be very port dependent. In Code Composer

Studio you’d set it up as follows:
#pragma vector=PORT2_VECTOR

interrupt void prvSelectButtonInterrupt(void)

– That would cause the code to run on the PORT2
interrupt.
• Need to set that up etc. Very device specific (of

course).

More: Deferred Interrupt Processing

• The best way to handle complex events triggered
by interrupts is to not do the code in the ISR.

– Rather create a task that is blocking on a semaphore.

• When the interrupt happens, the ISR just sets the
semaphore and exits.

– Task can now be scheduled like any other. No need to worry
about nesting interrupts (and thus interrupt priority).

– FreeRTOS does support nested interrupts on some platforms
though.

– Semaphores implemented as one/zero-entry queue.

Figure from Using the FreeRTOS Real Time Kernel (a pdf book), fair use claimed.

Semaphore example in FreeRTOS

Semaphore take

xSemaphoreTake(

xSemaphoreHandle xSemaphore,

portTickType xBlockTime

)

• Macro to obtain a semaphore. The semaphore must have previously been
created.

• xSemaphore A handle to the semaphore being taken - obtained when the
semaphore was created.

• xBlockTime The time in ticks to wait for the semaphore to become available. The
macro portTICK_RATE_MS can be used to convert this to a real time. A block time
of zero can be used to poll the semaphore. There is a way to make this indefinitely.

• TRUE if the semaphore was obtained.

• There are a handful of variations.
– Non-binary version, etc.

https://www.freertos.org/a00122.html

Outline

• Quick review of real-time systems
• Overview of RTOSes

– Goals of an RTOS
– Features you might want in an RTOS

• Learning by example: FreeRTOS
– Introduction
– Tasks
– Interrupts
– Internals (briefly)
– What’s missing?

Common data structures

This figure and the next are from http://www.aosabook.org/en/freertos.html

http://www.aosabook.org/en/freertos.html

Off-the-shelf boards

Using them in 473

Designing an Embedded System

• There are a number of high-level choices for
the “processor”

– Micro-controller, SoC, desktop processor, FPGA
etc.

– But beyond that we’ve got to figure out what
exactly we need.

Off-the-shelf boards

How do we pick a platform?

• The very first question should almost always be
“can I use an off-the-shelf solution?”
– In this case, I mean a pre-built board.

• Unless you have significant quantities, you are
almost always better off with an existing board.
– No engineering cost (to you)
– (Hopefully) no testing or debugging phase

• Well, some testing during evaluation…

• But we’ll find we can almost never use a pre-built
board.
– Why not?

Off-the-shelf boards

• There are many “generic” boards that exist mainly to give
developers the chance to evaluate and prototype devices.
– The Actel board in 373 is an example.

• If you are doing embedded development you really want to
be able to use a dev. board to prototype where possible.
– Nice to be able to get software up and running

• Not to mention nice to learn you can’t do what you thought you could
do!

– Also nice because the schematics are often available to you.
• Things like power supply design are done and tested!

• Huge variety of these…

Development board, evaluation board etc.
Off-the-shelf boards

Personal Example:

• I was “specing” a board a few years ago. It needed
to be:

– Be able to mostly do the 270 labs
• Switches, buttons, LEDs, FPGA with decent free software.

– 7-segment displays would be really nice.

• 2000+ gates, 100+ flip-flops

– Ideally twice that or more

– Cheap in quantity--$20 target price at 5,000 units.
• No external wiring or power supply other than a USB cable.

• First check is what’s out there…

Off-the-shelf boards

Market check

• Best I could find:
– Digilent C-Mod

• $22 in quantities of 1, has solid FPGA.
• Basically no I/O, requires expensive

programming cable.

– Polmaddie2
• Has traffic-light LEDs!, plenty of FPGA,

only USB cable
• $80 in quantities of 100, not enough

I/O.

• Asked around and found
– MachXO2-1200ZE

• Plenty of potential I/O (lots of
headers), USB-only, $26 in quantities
of 1 from Digikey (lots of potential for
lower price), has LEDs.

• No actual switches, 108 LUTs, price
may be too much?

Off-the-shelf boards

Even that board isn’t ideal

• But encouraging that I might be able to design
one (or have one designed) that fits the
specification.

– Spend an extra dollar on the FPGA and probably
get one more than large enough.

– Switches/7-segment displays remarkably
expensive.

• Probably $3 in parts for what I want?

Off-the-shelf boards

So…

• There may be a board out there that does what
you need.
– Even if price/form factor/power isn’t acceptable, still

really useful for development!
– Always look.

• You’d rather develop on an existing board.
– You’d also like to have it as a starting point.
– And if quantities needed are low and the off-the-shelf

boards have the needed size and power
characteristics, you might just use the off-the-shelf
board.

Off-the-shelf boards

But…

• All that said, you really want to start your
design using a prebuilt board even if it isn’t
your final solution.
– You can do testing, develop code, and generally

get things working.

– You may also get a PCB design as a starting point
• These folks are generally using the board to sell chips.

They are often happy to have you copy their PCB work.

• But read licenses and understand any restrictions they
place on you.

How do you price out a custom board?

• Good question.

– Historically it’s been a tricky to do.

• Honestly finding reasonable prices for parts is a pain
– Digikey is not what you want to be looking at for any kind of

large-ish run. Just costs too much.

• PCB costs are a lot easier to figure out
– Solid PCB costs

• And manufacturing costs are really tricky.
– Generally require a human to give you a quote and pricing

seems fairly random.

PCB quotes

• PCBs can be quite cheap.

– When I started this class, costs were often close to
$150 for 3 to 5 boards.

– Now can be close to $20.

• And even free in some cases

• Talk to GSIs about vendors.

Manufacturing quotes

• Turns out there are companies that give
automatic quotes
– Including PCB, parts and assembly.

– https://circuithub.com was the first (AFAIK).

• Sample board
– An Arduino (with some extras, 16 vs 7 day ship)

• 1 board: $255 $653

• 10 boards: $50/each $86

• 100 boards: $21/each $28

• 1000 boards: $13/each N/A

https://circuithub.com/

Newer pricing

• PCBs of “about” Arduino complexity

– 10: $440+ parts

– 100: $365+parts (huh?)

– 1000: $766+parts

Copyright, Copyleft, and Legal
Issues

The basic copyright options

• No license:
– Without a license, the code

is copyrighted by default.
People can read the code,
but they have no legal right
to use it. To use the code,
you must contact the
author directly and ask
permission.

• Public domain:
– If your code is in the public

domain, anyone may use
your code for any purpose
whatsoever. Nothing is in
the public domain by
default; you have to
explicitly put your work in
the public domain if you
want it there. Otherwise,
you must be dead a long
time before your work
reverts to the public
domain.

Text from https://blog.codinghorror.com/pick-a-license-any-license/, also includes a (too) terse summary of the common software licenses.

https://blog.codinghorror.com/pick-a-license-any-license/

Linux?

• A POSIX-compliant and widely deployed
desktop/server operating system licensed under the
GPL
– POSIX

• Unix-like environment (shell, standard programs like awk etc.)

– Desktop OS
• Designed for users and servers
• Not designed for embedded systems

– GPL
• GNU Public License. May mean you need to make source code

available to others.
– First “copyleft” license.

• Linux is licensed under GPL-2, not GPL-3.

GPL in three slides (1/3)

• A licensee of GPL v2-licensed software can:
– copy and distribute the program's unmodified source code
– modify the program's source code and distribute the

modified source
– distribute compiled versions of the program, both

modified and unmodified

• Provided that:
– all distributed copies (modified or not) carry a copyright

notice and exclusion of warranty
– all modified copies are distributed under the GPL v2
– all compiled versions of the program are accompanied by

the relevant source code, or a viable offer to make the
relevant source code available

Background: legal issues

Largely taken from http://www.oss-watch.ac.uk/resources/gpl.xml

http://www.oss-watch.ac.uk/resources/gpl.xml

GPL in three slides (2/3)
• Some points

– If you don’t redistribute the code, you don’t need to share the source.
– You can bundle software with GPL-ed software and not have to license

the bundled software.
• “Mere aggregations” aren’t impacted.

– Loadable Kernel Modules are tricky though
• Often we need device drivers for our application (we’ll be writing them later)
• But they touch the Linux code in a non-trivial way.

– There is some debate about if a LKM is an aggregation or a modification of the original
kernel.

– In general there are proprietary drivers out there and even open source groups that help
support said drivers.

• General theme:
– Be sure you understand the law before you use software licensed

under the GPL on a proprietary project.
• Using gcc to compile or ddd to debug is fine, but when you are modifying the

code of software licensed under the GPL you might be obligated to release
your code.

• Read (or at least scan): The Right to Read before the midterm.
– https://www.gnu.org/philosophy/right-to-read.en.html

Background: legal issues

https://www.gnu.org/philosophy/right-to-read.en.html
https://www.gnu.org/philosophy/right-to-read.en.html

GPL in three slides (3/3)

• GPL v3
– Prevents using GPL on hardware that won’t run

other code (“Tivoization”)
• Though only for consumer hardware (IBM has a

business model here?)

– Addresses patents
• Can’t sue for (software?) patent on code you release.

• Lesser GPL
– Mainly for libraries/APIs.

– Makes it clear can use libraries in proprietary code
without having to release proprietary code.

Background: legal issues

OK, one more

• gcc is GPL v3
– But has a runtime exception.

– When you use GCC to compile
a program, GCC may combine
portions of certain GCC
header files and runtime
libraries with the compiled
program. The purpose of this
Exception is to allow
compilation of non-GPL
(including proprietary)
programs to use, in this way,
the header files and runtime
libraries covered by this
Exception.

• Linux is GPL v2
– Fear of limiting DRM and

private keys keeps them away
from v3.

• There is a short preamble:
– This copyright does *not*

cover user programs that use
kernel services by normal
system calls - this is merely
considered normal use of the
kernel, and does *not* fall
under the heading of "derived
work".

Another common License:
Creative Commons

• These are basically a
free configurable
license.
– Attribution (by)

• Must give author credit

– ShareAlike (sa)
• Like GPL, they must

distribute any changes.

– NonCommercial (nc)
• Only for non-commercial

– NoDerivatives (nd)
• Can’t make changes.

• Idea is, someone smart
wrote the words to do
what you probably want
to do.
– You still hold ownership,

so if they want a
different license, they
can come to you to
negotiate.

• Wikipedia is CC BY-SA

Creative Commons is generally a poor license for code but still used for that.
See https://creativecommons.org/faq/
But quite useful for documentation and databases

https://creativecommons.org/faq/

MIT license

• Permission is hereby granted, free of
charge, to any person obtaining a copy of
this software and associated
documentation files (the "Software"), to
deal in the Software without restriction,
including without limitation the rights to
use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies
of the Software, and to permit persons to
whom the Software is furnished to do so,
subject to the following conditions:

• The above copyright notice and this
permission notice shall be included in all
copies or substantial portions of the
Software.

• (And then a disclaimer of liability)

• Basically, just grants
permission.

– Can add to a closed-
source product, etc.

– More-or-less public
domain with the
disclaimer of liability
being required in any
place the code is used.

Fair use

• Fair use lets you use copyrighted works
– But in general there are guidelines for what you can use.

• Four factors are:
– the purpose and character of your use

• Transformative or not (parody falls here)

– the nature of the copyrighted work
• Published/not published, factual works.

– the amount and substantiality of the portion taken
• The amount taken and the % taken both play a role.

– the effect of the use upon the potential market
• If you reduce the market for the original work, that’s a problem.

• Fair use in code is tricky at best.
– APIs sometimes fit here (see Oracle America vs. Google Inc.)

http://fairuse.stanford.edu/overview/fair-use/four-factors/

Start on Linux

Just some context
We’ll get to the stuff you need for lab 4 next time.

What is a kernel? (1/2)

• The kernel’s job is to talk to the hardware and
software, and to manage the system’s
resources as best as possible.
– It talks to the hardware via the drivers that are

included in the kernel (or additionally installed
later on in the form of a “kernel module”).
• This way, when an application wants to do something

(say change the volume setting of the speakers), it can
just submit that request to the kernel, and the kernel
can use the driver it has for the speakers to actually
change the volume.

This part taken from http://www.makeuseof.com/tag/linux-kernel-explanation-laymans-terms/

Background

What is a kernel? (2/2)

• The kernel is highly involved in resource management.
– It has to make sure that there is enough memory available

for an application to run, as well as to place an application
in the right location in memory.

– It tries to optimize the usage of the processor so that it can
complete tasks as quickly as possible. It also aims to avoid
deadlocks, which are problems that completely halt the
system when one application needs a resource that
another application is using.

– It’s a fairly complicated circus act to coordinate all of those
things, but it needs to be done and that’s what the kernel
is for.

Background

Linux Kernel history

• 3.0 isn’t a radical change from 2.6,
instead a 2.6 upgrade was move to
3.0 for Linux’s 20th anniversary.
– “So what are the big changes? NOTHING.

Absolutely nothing. Sure, we have the usual two
thirds driver changes, and a lot of random fixes,
but the point is that 3.0 is *just* about
renumbering…”
[https://lkml.org/lkml/2011/5/29/204]

– And 4.0 is more of the same.
– http://www.itworld.com/article/2887558/linus-torvalds-bumps-linux-

kernel-to-version-4x.html

Figure from “Linux kernel version history” article on Wikipedia.

Background: versions

I’d like to point out (yet again) that we
don’t do feature-based releases, and
that “5.0” doesn’t mean anything more
than that the 4.x numbers started
getting big enough that I ran out of
fingers and toes.

Linus Torvalds

https://lkml.org/lkml/2011/5/29/204

What version am I working with?

• If running, use “uname” command

– “uname -a” for all information

• If looking at source

– First few lines of the top-level Makefile will tell
you.

Background: versions

How do I download and build the
kernel?

• Use git.

• Typing “make” with no target at the top-level
should build the kernel.

– Need gcc installed (no other compiler will do).

– Should generate an ELF file called “vmlinux”

• But lots of configuration stuff

Background: building

Kernel configuration
• There is a file, “.config” which drives the build.

– It determines the functionality (including cross-
compling?) of the kernel.
• Things like USB support, etc.

– It is setup in any number of ways.
• The default is to ask a huge number of questions.
• There are editors and defaults you can use instead.

– make defconfig should just do all defaults for example.

• make help should give a solid overview of options

• The .config file scheme has some problems.
– It is easy to miss, as files that start with a “.” (dot) are

hidden files in Linux ("ls -a" will show them)
– It is easy to blow away.

• make distclean will delete it for example…

Background: building

Linux user basics--shell

• You have a shell which handles user commands
– May just search for an executable file (application) in

certain locations
– Allows for moving data between those applications.

• Pipes etc.

– Is itself a programming language.
– There are many of these (bash, sh, tcsh, csh, ksh, zsh)

• Most have very similar interfaces (type application name, it
runs), but the programming language part varies quite a bit.

• Geek humor:
– sh is called the Bourne shell, written by Stephen Bourne
– bash, often treated as an upgrade to sh, is the “Bourne again

shell”

Background: user basics

Linux user basics—file systems

• Linux supports a huge variety of file systems.
– But they have some commonalities.

• Pretty much a standard directory structure with each
directory holding either other directories or files.
– Each file and directory has a set of permissions.

• One owner (a single user)

• One group (a list of users who may have special access)

• There are three permissions, read, write and execute
– Specified for owner, group, and world.

• There are also links (hard and soft)
– So rather than copying files I can point to them.

Background: user basics

FHS:
File System Hierarchy Standard

• There is a standard for laying out file systems

– Part of this is the standard top-level directories

Background: FHS

A “minimal” file system

Background: FHS

What makes a Linux install
“embedded”?

• It’s one of those poorly defined terms, but in
general it will have one or more of the
following

– small footprint

– flash files system

– real-time extensions of some sort

Embedded Linux

Small footprint--Busybox

• A single executable that implements the
functionality of a massive number of standard
Linux utilities
– ls, gzip, ln, vi. Pretty much everything you

normally need.
• Some have limited features

– Gzip only does the basics for example.

– Pick which utilities you want it to do
• Can either drop support altogether or install real version if

needed

– Highly configurable (similar to Linux itself), easy to
cross-compile.

• Example given is around 2MB statically compiled!

addgroup, adduser, ar, ash, awk, basename, blkid, bunzip2, bzcat, cat, chattr, chgrp, chmod, chown,
chpasswd, chroot, chvt, clear, cmp, cp, cpio, cryptpw, cut, date, dc, dd, deallocvt, delgroup, deluser, df,
dhcprelay, diff, dirname, dmesg, du, dumpkmap, dumpleases, echo, egrep, env, expr, false, fbset, fbsplash,
fdisk, fgrep, find, free, freeramdisk, fsck, fsck.minix, fuser, getopt, getty, grep, gunzip, gzip, halt, head,
hexdump, hostname, ttpd, hwclock, id, ifconfig, ifdown, ifup, init, insmod, ip, kill, killall, klogd, last, less,
linuxrc, ln, loadfont, loadkmap, logger, login, logname, logread, osetup, ls, lsmod, makedevs, md5sum,
mdev, microcom, mkdir, mkfifo, mkfs.minix, mknod, mkswap, mktemp, modprobe, more, mount, mv, nc,
netstat, nice, nohup, nslookup, od, penvt, passwd, patch, pidof, ping, ping6, pivot_root, poweroff, printf, ps,
pwd, rdate, rdev, readahead, readlink, eadprofile, realpath, reboot, renice, reset, rm, rmdir, rmmod, route,
rtcwake, run-parts, sed, seq, setconsole, etfont,sh, showkey, sleep, sort, start-stop-daemon, strings, stty, su,
sulogin, swapoff, swapon, switch_root, sync, sysctl, syslogd, tail, tar, tee, telnet, telnetd, test, tftp, time, top,
touch, tr, traceroute, true, tty, udhcpc, udhcpd, umount, uname, uniq, unzip, uptime, usleep, vi, vlock,
watch, wc, wget, which, who, whoami, xargs, yes, zcat

Embedded Linux—small footprint

Using busybox

• Two ways to play

– Invoke from the command line as busybox
• busybox ls /

– Or create a softlink to busybox and it will run as
the name of that link.

• So if you have a softlink to busybox named “ls” it will
run as ls.

Embedded Linux—small footprint

Links done for you

• Normally speaking,
you’ll use the softlink
option.

– You can get it to put in
all the links for you with
“make install”
• Be darn careful you don’t

overwrite things locally if
you are doing this on the
host machine.

– That would be bad.

Embedded Linux—small footprint

System initialization

• Busybot can also be “init”

– But it’s a
simpler/different
version than the init
material covered
above.

– More “bash” like

#!/bin/sh

echo “Mounting proc”

mount -t proc /proc /proc

echo “Starting system loggers”

syslogd

klogd

echo “Configuring loopback
interface”

ifconfig lo 127.0.0.1

echo “Starting inetd”

xinetd

start a shell

busybox sh

Embedded Linux—small footprint

BusyBox Summary

• BusyBox is a powerful tool for embedded systems
that replaces many common Linux utilities in a
single multicall binary.

• BusyBox can significantly reduce the size of your
root file system image.

• Configuring BusyBox is straightforward, using an
interface similar to that used for Linux
configuration.

• System initialization is possible but somewhat
different with BusyBox

From Embedded Linux Primer, second edition

Embedded Linux—small footprint

