
Finish Licensing &
Embedded Linux
Lectures 6 and 7

NOTE:

• Be sure to register your RPi.

– See Piazza post @59 (pinned)

– Basically, bring your Pi to lab this week and
register it or follow directions for doing it from
home.

https://piazza.com/class/llr6xnltkdt4dz/post/59

Copyright, Copyleft, and Legal
Issues

The basic copyright options

• No license:
– Without a license, the code

is copyrighted by default.
People can read the code,
but they have no legal right
to use it. To use the code,
you must contact the
author directly and ask
permission.

• Public domain:
– If your code is in the public

domain, anyone may use
your code for any purpose
whatsoever. Nothing is in
the public domain by
default; you have to
explicitly put your work in
the public domain if you
want it there. Otherwise,
you must be dead a long
time before your work
reverts to the public
domain.

Text from https://blog.codinghorror.com/pick-a-license-any-license/, also includes a (too) terse summary of the common software licenses.

https://blog.codinghorror.com/pick-a-license-any-license/

Linux (common usage of the word)

• A POSIX-compliant and widely deployed
desktop/server operating system licensed under the
GPL
– POSIX

• Unix-like environment (shell, standard programs like awk etc.)

– Desktop OS
• Designed for users and servers
• Not designed for embedded systems

– GPL
• GNU Public License. May mean you need to make source code

available to others.
– First “copyleft” license.

• Linux is licensed under GPL-2, not GPL-3.

GPL in three slides (1/3)

• A licensee of GPL v2-licensed software can:
– copy and distribute the program's unmodified source code
– modify the program's source code and distribute the

modified source
– distribute compiled versions of the program, both

modified and unmodified

• Provided that:
– all distributed copies (modified or not) carry a copyright

notice and exclusion of warranty
– all modified copies are distributed under the GPL v2
– all compiled versions of the program are accompanied by

the relevant source code, or a viable offer to make the
relevant source code available

Background: legal issues

Largely taken from http://www.oss-watch.ac.uk/resources/gpl.xml

http://www.oss-watch.ac.uk/resources/gpl.xml

GPL in three slides (2/3)
• Some points

– If you don’t redistribute the code, you don’t need to share the source.
– You can bundle software with GPL-ed software and not have to license

the bundled software.
• “Mere aggregations” aren’t impacted.

– Loadable Kernel Modules are tricky though
• Often we need device drivers for our application (we’ll be writing them later)
• But they touch the Linux code in a non-trivial way.

– There is some debate about if a LKM is an aggregation or a modification of the original
kernel.

– In general there are proprietary drivers out there and even open source groups that help
support said drivers.

• General theme:
– Be sure you understand the law before you use software licensed

under the GPL on a proprietary project.
• Using gcc to compile or ddd to debug is fine, but when you are modifying the

code of software licensed under the GPL you might be obligated to release
your code.

• Read (or at least scan): The Cathedral and the Bazaar before the
midterm.

Background: legal issues

GPL in three slides (3/3)

• GPL v3
– Prevents using GPL on hardware that won’t run

other code (“Tivoization”)
• Though only for consumer hardware (IBM has a

business model here?)

– Addresses patents
• Can’t sue for (software?) patent on code you release.

• Lesser GPL
– Mainly for libraries/APIs.

– Makes it clear can use libraries in proprietary code
without having to release proprietary code.

Background: legal issues

OK, one more

• gcc is GPL v3
– But has a runtime exception.

– When you use GCC to compile
a program, GCC may combine
portions of certain GCC
header files and runtime
libraries with the compiled
program. The purpose of this
Exception is to allow
compilation of non-GPL
(including proprietary)
programs to use, in this way,
the header files and runtime
libraries covered by this
Exception.

• Linux is GPL v2
– Fear of limiting DRM and

private keys keeps them away
from v3.

• There is a short preamble:
– This copyright does *not*

cover user programs that use
kernel services by normal
system calls - this is merely
considered normal use of the
kernel, and does *not* fall
under the heading of "derived
work".

Another common License:
Creative Commons

• These are basically a
free configurable
license.
– Attribution (by)

• Must give author credit

– ShareAlike (sa)
• Like GPL, they must

distribute any changes.

– NonCommercial (nc)
• Only for non-commercial

– NoDerivatives (nd)
• Can’t make changes.

• Idea is, someone smart
wrote the words to do
what you probably want
to do.
– You still hold ownership,

so if they want a
different license, they
can come to you to
negotiate.

• Wikipedia is CC BY-SA

Creative Commons is generally a poor license for code but still used for that.
See https://creativecommons.org/faq/
But quite useful for documentation and databases

https://creativecommons.org/faq/

MIT license

• Permission is hereby granted, free of
charge, to any person obtaining a copy of
this software and associated
documentation files (the "Software"), to
deal in the Software without restriction,
including without limitation the rights to
use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies
of the Software, and to permit persons to
whom the Software is furnished to do so,
subject to the following conditions:

• The above copyright notice and this
permission notice shall be included in all
copies or substantial portions of the
Software.

• (And then a disclaimer of liability)

• Basically, just grants
permission.

– Can add to a closed-
source product, etc.

– More-or-less public
domain with the
disclaimer of liability
being required in any
place the code is used.

Fair use

• Fair use lets you use copyrighted works
– But in general there are guidelines for what you can use.

• Four factors are:
– the purpose and character of your use

• Transformative or not (parody falls here).

– the nature of the copyrighted work
• Published/not published, factual works.

– the amount and substantiality of the portion taken
• The amount taken and the % taken both play a role.

– the effect of the use upon the potential market
• If you reduce the market for the original work, that’s a problem.

• Fair use in code is tricky at best.
– APIs sometimes fit here (see Oracle America vs. Google Inc.)

http://fairuse.stanford.edu/overview/fair-use/four-factors/

Start on Linux

Many figures and text in this section taken from Embedded Linux Primer, second edition
We (kind of) have on-line access to the book.
Also http://freesoftwaremagazine.com/articles/drivers_linux/ is used a lot!

http://freesoftwaremagazine.com/articles/drivers_linux/

Two main tasks

• Introduce Linux and in particular embedded
Linux.
– Pretty high-level.

– Lots of material coming pretty quickly.

• How to write device drivers for Linux.
– Much more detailed

– Pretty complex coding

– Will do in lab 4.

Linux Introduction

• Background

– Kernel overview, legal issues, versioning, building,
user basics, FHS, booting

• Embedded Linux (common but not required attributes)

– Small footprint (BusyBox)

– Flash file system

– Real time support

Warning: We are going to do this section very quickly indeed. There is a lot of stuff I
want you to see. There is enough stuff in this section of this lecture for 20 hours of
discussion. We don’t have that kind of time. Just going to lightly touch on some stuff.

Linux

• The software commonly referred to as “Linux” is really
a number of things glued together
– The Linux Kernel
– GNU tools (bash, ls, emacs, etc.)
– Usually also

• A package manager (dpkg, RPM, etc.)
• A desktop environment (GNOME, KDE, etc.)

• Linux distributions (“distros”)
– Collections of the above tools (Debian, Red Hat, etc.)
– These distros are often labeled as a “Linux-based OS”

• The Kernel isn’t an OS by itself
– The distros are

https://itsfoss.com/what-is-linux-distribution/

What is a kernel? (1/2)

• The kernel’s job is to talk to the hardware and
software, and to manage the system’s
resources as best as possible.
– It talks to the hardware via the drivers that are

included in the kernel (or additionally installed
later on in the form of a “kernel module”).

• This way, when an application wants to do something
(say change the volume setting of the speakers), it can
just submit that request to the kernel, and the kernel
can use the driver it has for the speakers to actually
change the volume.

http://www.makeuseof.com/tag/linux-kernel-explanation-laymans-terms/

Background: kernel

What is a kernel? (2/2)

• The kernel is highly involved in resource
management.
– It has to make sure that there is enough memory

available for an application to run, as well as to place
an application in the right location in memory.

– It tries to optimize the usage of the processor so that
it can complete tasks as quickly as possible.

• It also aims to avoid deadlocks.

– It’s a fairly complicated circus act to coordinate all of
those things, but it needs to be done and that’s what
the kernel is for.

Background: kernel

Background: kernel

Background: kernel

Linux kernel history

• 3.0 isn’t a radical change from 2.6,
instead a 2.6 upgrade was move to
3.0 for Linux’s 20th anniversary.

– “So what are the big changes? NOTHING.
Absolutely nothing. Sure, we have the usual two
thirds driver changes, and a lot of random fixes,
but the point is that 3.0 is *just* about
renumbering…”
[https://lkml.org/lkml/2011/5/29/204]

– And 4.0 is more of the same.
– http://www.itworld.com/article/2887558/linus-torvalds-bumps-linux-

kernel-to-version-4x.html

Figure from “Linux kernel version history” article on Wikipedia.

Background: Linux kernel versions

I’d like to point out (yet again) that we
don’t do feature-based releases, and
that “5.0” doesn’t mean anything more
than that the 4.x numbers started
getting big enough that I ran out of
fingers and toes.

Linus Torvalds

https://lkml.org/lkml/2011/5/29/204

What version am I working with?

• If running, use “uname” command

– “uname -a” for all information

• If looking at source

– First few lines of the top-level Makefile will tell
you.

Background: versions

How do I download and build the
kernel?

• Use git.

• Typing “make” with no target at the top-level
should build the kernel.

– Need gcc installed (no other compiler will do).

– Should generate an ELF file called “vmlinux”

• But lots of configuration stuff

Background: building

Linux user basics--shell

• You have a shell which handles user commands
– May just search for an executable file (application) in

certain locations
– Allows for moving data between those applications.

• Pipes etc.

– Is itself a programming language.
– There are many of these (bash, sh, tcsh, csh, ksh, zsh)

• Most have very similar interfaces (type application name, it
runs), but the programming language part varies quite a bit.

• Geek humor:
– sh is called the Bourne shell, written by Stephen Bourne
– bash, often treated as an upgrade to sh, is the “Bourne again

shell”

Background: user basics

Linux user basics—file systems

• Linux supports a huge variety of file systems.
– But they have some commonalities.

• Pretty much a standard directory structure with each
directory holding either other directories or files.
– Each file and directory has a set of permissions.

• One owner (a single user)

• One group (a list of users who may have special access)

• There are three permissions, read, write and execute
– Specified for owner, group, and world.

• There are also links (hard and soft)
– So rather than copying files I can point to them.

Background: user basics

FHS:
File System Hierarchy Standard

• There is a standard for laying out file systems

– Part of this is the standard top-level directories

Background: FHS

A “minimal” file system

• Busybox is covered
later

Background: FHS

Background: booting

1. Some circuit magic happens
– Get clock running, reset registers etc.

2. Bootloader starts
– Initialize devices such as I2C, serial, DRAM, cache,

etc.
– Starts the OS

3. Kernel starts
– Might set up other things needed

4. Init gets called
– Lots of stuff…

Background: booting

Note: there are some hidden slides that cover a bit more on this in the posted pptx.

Outline

• Background

– Legal issues, versioning, building, user basics, FHS,
booting

• Embedded Linux (common but not required attributes)

– Small footprint (BusyBox)

– Flash file system

– Real time support

What makes a Linux install
“embedded”?

• It’s one of those poorly defined terms, but in
general it will have one or more of the
following

– small footprint

– flash files system

– real-time extensions of some sort

Embedded Linux

Small footprint--Busybox

• A single executable that implements the
functionality of a massive number of standard
Linux utilities
– ls, gzip, ln, vi. Pretty much everything you

normally need.
• Some have limited features

– Gzip only does the basics for example.

– Pick which utilities you want it to do
• Can either drop support altogether or install real version if

needed

– Highly configurable (similar to Linux itself), easy to
cross-compile.

• Example given is around 2MB statically compiled!

addgroup, adduser, ar, ash, awk, basename, blkid, bunzip2, bzcat, cat, chattr, chgrp, chmod, chown,
chpasswd, chroot, chvt, clear, cmp, cp, cpio, cryptpw, cut, date, dc, dd, deallocvt, delgroup, deluser, df,
dhcprelay, diff, dirname, dmesg, du, dumpkmap, dumpleases, echo, egrep, env, expr, false, fbset, fbsplash,
fdisk, fgrep, find, free, freeramdisk, fsck, fsck.minix, fuser, getopt, getty, grep, gunzip, gzip, halt, head,
hexdump, hostname, ttpd, hwclock, id, ifconfig, ifdown, ifup, init, insmod, ip, kill, killall, klogd, last, less,
linuxrc, ln, loadfont, loadkmap, logger, login, logname, logread, osetup, ls, lsmod, makedevs, md5sum,
mdev, microcom, mkdir, mkfifo, mkfs.minix, mknod, mkswap, mktemp, modprobe, more, mount, mv, nc,
netstat, nice, nohup, nslookup, od, penvt, passwd, patch, pidof, ping, ping6, pivot_root, poweroff, printf, ps,
pwd, rdate, rdev, readahead, readlink, eadprofile, realpath, reboot, renice, reset, rm, rmdir, rmmod, route,
rtcwake, run-parts, sed, seq, setconsole, etfont,sh, showkey, sleep, sort, start-stop-daemon, strings, stty, su,
sulogin, swapoff, swapon, switch_root, sync, sysctl, syslogd, tail, tar, tee, telnet, telnetd, test, tftp, time, top,
touch, tr, traceroute, true, tty, udhcpc, udhcpd, umount, uname, uniq, unzip, uptime, usleep, vi, vlock,
watch, wc, wget, which, who, whoami, xargs, yes, zcat

Embedded Linux—small footprint

Using busybox

• Two ways to play

– Invoke from the command line as busybox
• busybox ls /

– Or create a softlink to busybox and it will run as
the name of that link.

• So if you have a softlink to busybox named “ls” it will
run as ls.

Embedded Linux—small footprint

Links done for you

• Normally speaking,
you’ll use the softlink
option.

– You can get it to put in
all the links for you with
“make install”

• Be darn careful you don’t
overwrite things locally if
you are doing this on the
host machine.

– That would be bad.

Embedded Linux—small footprint

System initialization

• Busybot can also be “init”

– But it’s a
simpler/different
version than the init
material covered
above.

– More “bash” like

#!/bin/sh

echo “Mounting proc”

mount -t proc /proc /proc

echo “Starting system loggers”

syslogd

klogd

echo “Configuring loopback
interface”

ifconfig lo 127.0.0.1

echo “Starting inetd”

xinetd

start a shell

busybox sh

Embedded Linux—small footprint

BusyBox Summary

• BusyBox is a powerful tool for embedded systems
that replaces many common Linux utilities in a
single multicall binary.

• BusyBox can significantly reduce the size of your
root file system image.

• Configuring BusyBox is straightforward, using an
interface similar to that used for Linux
configuration.

• System initialization is possible but somewhat
different with BusyBox

From Embedded Linux Primer, second edition

Embedded Linux—small footprint

Outline

• Background

– Legal issues, versioning, building, user basics, FHS,
booting

• Embedded Linux (common but not required attributes)

– Small footprint (BusyBox)

– Flash file system

– Real time support

Flash storage devices

• Significant restrictions on writing

• data can be changed from a 1 to a 0 with writes to the cell’s
address

• 0 to 1 requires an entire block be erased.

• Therefore, to modify data stored in a Flash memory, the block
in which the modified data resides must be completely
erased.

• Write times for updating data in Flash memory can be many times that

of a hard drive.

• Also very limited write cycles (100 to 1,000,000 or so)
before wear out.

• Wear leveling, conservative specifications generally make things
okay.

Embedded Linux—flash filesystem

Outline

• Background

– Legal issues, versioning, building, user basics, FHS,
booting

• Embedded Linux (common but not required attributes)

– Small footprint (BusyBox)

– Flash file system

– Real time support

• RT Linux patch

• Other solutions

• The patch had many contributors, and it is

currently maintained by Ingo Molnar; you can

find it at:
• www.kernel.org/pub/linux/kernel/projects/rt/

• https://ubuntu.com/blog/real-time-kernel-technical

• Since about Linux 2.6.12, soft real-time

performance in the single-digit

milliseconds on a reasonably fast x86

processor is readily achieved
• Some claim “nearly-worst-case” latency of 30us!

Real-time Kernel Patch

Embedded Linux—real time?

http://www.kernel.org/pub/linux/kernel/projects/rt/
https://ubuntu.com/blog/real-time-kernel-technical

• The real-time patch adds a fourth preemption mode

called PREEMPT_RT, or Preempt Real Time.

• Features from the real-time patch are added, including

replacing spinlocks with preemptable mutexes.

• This enables involuntary preemption everywhere within the kernel

except for areas protected by preempt_disable().

• This mode significantly smoothes out the variation in latency (jitter) and

allows a low and predictable latency for time-critical real-time
applications.

• The problem is…

• Not all devices can handle being interrupted.

• This means that with the RT patch in play you might get random

crashes.

Features

Embedded Linux—real time?

There are lots of other attempts and
discussions about a real-time Linux

• RTLinux
– Wind River had something up and running for years.

• Ended support in 2011.
• Seems fairly restrictive.

• Real Time Linux Foundation, Inc.
– Holding workshops on this for 13 years.

• http://lwn.net/Articles/397422/
– Nice overview of some of the issues

• Zephyr is an RTOS that is developed as part of the Linux
Foundation.
– Looks like a traditional RTOS.
– Much more stuff (closer to a traditional OS)

Embedded Linux—real time?

http://lwn.net/Articles/397422/

Windows for IoT

• A stripped down version of Windows with a focus on IoT
issues.
– Appears to be fairly popular.
– Latest version appears to require 4 GB of RAM and 64 GB of

storage.
• Stripped-down version may get to 256MB RAM? It’s a bit unclear

what you can really get to, but 4 GB is the official number.

• Multiple versions all supported by Visual Studio.
– Reasonable choice for things that are plugged in.
– Remember, the best engineering solution isn’t always the best

solution
• What I mean is that the “best” solutions require a lot of engineering

time and therefore $$$$.
• Might be best to use this (programmers familiar with the

environment, lots of stuff done for you) to reduce total cost even if
the parts are more expensive.

EECS 473
Advanced Embedded Systems

Linux device drivers and

loadable kernel modules

Linux Device Drivers

• Overview

– What is a device driver?

• Linux devices

– User space vs. Kernel space

• Modules and talking to the kernel

– Background

– Example

– Some thinky stuff

A fair bit of this presentation, including some figures, comes from
http://www.freesoftwaremagazine.com/articles/drivers_linux#
Other sources noted at the end of the presentation.

http://www.freesoftwaremagazine.com/articles/drivers_linux

Linux Device Drivers

• Overview

– What is a device driver?

• Linux devices

– User space vs. Kernel space

• Modules and talking to the kernel

– Background

– Example

– Some thinky stuff

Device driver
(Thanks Wikipedia!)

• A device driver is a computer program
allowing higher-level computer programs to
interact with a hardware device.
– A driver typically communicates with the device

through the computer bus or communications
subsystem to which the hardware connects.

– When a calling program invokes a routine in the
driver, the driver issues commands to the device.

– Drivers are hardware-dependent and operating-
system-specific.

Overview

Devices in Linux (1/2)

• There are special files called
“device files” in Linux.
– A user can interact with it

much like a normal file.

– But they generally provide
access to a physical device.

– They are generally found in
/dev and /sys

• /dev/fb is the frame buffer

• /dev/ttyS0 is one of the serial
ports

• Not all devices files
correspond to physical
devices.
– Pseudo-devices.

• Provide various functions to
the programmer

• /dev/null
– Accepts and discards all

input; produces no output.

• /dev/zero
– Produces a continuous

stream of NULL (zero value)
bytes.

• etc.

crw-rw---- 1 root dialout 4, 64 Jun 20 13:01 ttyS0

Overview

Devices in Linux (2/2)

• Pretty clearly you need a way to connect the
device file to the actual device
– Or pseudo device for that matter

• We want to be able to “fake” this by writing
functions that handle the file I/O.
– So we need to associate functions with all the things

we can do with a file.
• Open, close.

• Read, write.

• Today we’ll talk about all that…

Overview

Kernel vs. User space

• User Space
– End-user programs. They use

the kernel to interface to the
hardware.

• Kernel Space
– Provides a standard (and

hopefully multi-user secure)
method of using and sharing
the hardware.

• Private function member
might be a good analogy.

– A lot of things are different
here.

• Many calls to the kernel can’t
be made from the kernel.

– E.g. malloc.

Overview

Linux Device Drivers…

• Overview

– What is a device driver?

• Linux devices

– User space vs. Kernel space

• Modules and talking to the kernel

– Background

– Example

– Some thinky stuff

Kernel and Kernel Modules

• Often, if you want to add something to the
kernel you need to rebuild the kernel and
reboot.

– A “loadable kernel module” (LKM) is an object file
that extends the base kernel.

– Exist in most OSes

• Including Windows, FreeBSD, Mac OS X, etc.

– Modules get added and removed as needed

• To save memory, add functionality, etc.

Modules

Linux Kernel Modules

• In general must be licensed under a free license.

– Doing otherwise will taint the whole kernel.

• A tainted kernel sees little support.

• Might be a copyright problem if you redistribute.

• The Linux kernel changes pretty rapidly, including
APIs etc.

– This can make it a real chore to keep LKMs up to date.

– Also makes a tutorial a bit of a pain.

• Though honestly it seems fairly stable over the last 5 years.

Modules

Creating a module

• All modules need to define functions that are to be run
when:
– The module is loaded into the kernel
– The module is removed from the kernel

• We just write C code (see next slide)
• We need to compile it as a kernel module.

– We invoke the kernel’s makefile.
– sudo make –C /lib/modules/xxx/build M=$PWD modules

• This makes (as root) using the makefile in the path specified.
• I think it makes all C files in the directory you started in
• Creates .ko (rather than .o) file
• Xxx is some kernel version/directory

Modules

Simple module

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

MODULE_LICENSE("Dual BSD/GPL");

static int hello_init(void) {

printk("<1> Hello World!\n");

return 0;

}

static void hello_exit(void) {

printk("<1> Bye world!\n");

}

module_init(hello_init);

module_exit(hello_exit);

• MODULE_LICENSE

– Required.
– Short list of allowed

licenses.

• Printk()
– Kernel print.

• Prints message to console
and to log.

• <1> indicates high priority
message, so it gets logged.

• Module_init()
– Tells system what module to

call when we first load the
module.

• Module_exit()
– Same but called when

module released.

Modules

Modules:
Listing, loading and removing

• From the command line:

– lsmod

• List modules.

– insmod

• Insert module into kernel
– Adds to list of available modules

• Causes function specified by module_init() to be called.

– rmmod

• Removes module from kernel

Modules

lsmod

Module Size Used by

memory 10888 0

hello 9600 0

binfmt_misc 18572 1

bridge 63776 0

stp 11140 1 bridge

bnep 22912 2

video 29844 0

Modules

insmod

• Very (very) simple
– insmod xxxxx.ko

• Says to insert the module into the kernel

Modules

Other (better) way to load a module

• Modprobe is a smarter version of insmod.

– Actually it’s a smarter version of insmod, lsmod
and rmmod…

• It can use short names/aliases for modules

• It will first install any dependent modules

• We’ll use insmod for the most part

– But be aware of modprobe

Modules

So?

• When insmod, log file
gets a “Hello World!”

• When rmmod, that
message prints to log
(and console…)

• It’s not the name, it’s
the module_init().

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

MODULE_LICENSE("Dual BSD/GPL");

static int hello_init(void) {

printk("<1> Hello World!\n");

return 0;

}

static void hello_exit(void) {

printk("<1> Bye world!\n");

}

module_init(hello_init);

module_exit(hello_exit);

Modules

Modules?

• There are a number of different reasons one
might have a module

– But the main one is to create a device driver

– It’s not realistic for Linux to have a device driver
for all possible hardware in memory all at once.

• Would be too much code, requiring too much memory.

– So we have devices as modules

• Loaded as needed.

Modules

What is a “device”?

• As mentioned in the overview, Linux devices are
accessed from user space in exactly the same way
files are accessed.
– They are generally found in /dev and /sys

• To link normal files with a kernel module, each
device has a “major number”
– Each device also has a “minor number” which can be used

by the device to distinguish what job it is doing.

% ls -l /dev/fd0 /dev/fd0u1680

brwxrwxrwx 1 root floppy 2, 0 Jul 5 2000 /dev/fd0

brw-rw---- 1 root floppy 2, 44 Jul 5 2000 /dev/fd0u1680

Two floppy devices. They are actually both the same bit of hardware using the same driver
(major number is 2), but one is 1.68MB the other 1.44.

Modules: device review

Creating a device

• mknod /dev/memory c 60 0

– Creates a character device named /dev/memory

– Major number 60

– Minor number 0

• Minor numbers are passed to the driver to
distinguish different hardware with the same
driver.
– Or, potentially, the same hardware with different

parameters (as the floppy example)

Modules: devices

Linux Device Drivers

• Overview

– What is a device driver?

• Linux devices

– User space vs. Kernel space

• Modules and talking to the kernel

– Background

– Example

– Some thinky stuff

A complete pseudo-device

• We are going to create a pseudo-device that is
just a single byte of memory.
– Whatever the last thing you wrote to it, is what will be

read.

• For example
– echo -n abcdef >/dev/memory

– Followed by cat /dev/memory
• Prints an “f”.

• Silly, but not unreasonable.
– It’s also printing some stuff to the log.

• Not a great idea in a real device, but handy here.

Almost entirely from http://www.freesoftwaremagazine.com/articles/drivers_linux#

Modules: single character memory example

http://www.freesoftwaremagazine.com/articles/drivers_linux

includes

/* Necessary includes for device drivers */
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h> /* kmalloc() */
#include <linux/fs.h> /* everything... */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/proc_fs.h>
#include <linux/fcntl.h> /* O_ACCMODE */
#include <asm/system.h> /* cli(), *_flags */
#include <asm/uaccess.h> /* copy_from/to_user */

Modules: single character memory example

License and function prototypes

MODULE_LICENSE("Dual BSD/GPL");

int memory_open (struct inode *inode, struct file *filp);

int memory_release (struct inode *inode, struct file *filp);

ssize_t memory_read (struct file *filp, char *buf, size_t count,

loff_t *f_pos);

ssize_t memory_write (struct file *filp, char *buf,

size_t count , loff_t *f_pos);

void memory_exit (void);

int memory_init (void);

Modules: single character memory example

Setting up the standard interface

struct file_operations

memory_fops = {

read: memory_read,

write: memory_write,

open: memory_open,

release: memory_release

};

struct file_operations

memory_fops = {

.read = memory_read,

.write = memory_write,

.open = memory_open,

.release = memory_release

};

• This is a weird bit of C
syntax.

– Initializes struct elements.
• So “read” member is now

“memory_read”

– Technically unsupported
these days?

• gcc supports it though

– dot notation is in the C99
standard.

• But some kernel code still
uses colon.

Modules: single character memory example

file_operations struct

struct file_operations {

ssize_t(*read) (struct file *, char __user *, size_t, loff_t *);

ssize_t(*write) (struct file *, const char __user *, size_t, loff_t *);

int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);

int (*open) (struct inode *, struct file *);

int (*release) (struct inode *, struct file *);

int (*fsync) (struct file *, struct dentry *, int datasync);

int (*aio_fsync) (struct kiocb *, int datasync);

int (*fasync) (int, struct file *, int);

int (*lock) (struct file *, int, struct file_lock *);

ssize_t(*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);

ssize_t(*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);

ssize_t(*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void __user *);

ssize_t(*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);

unsigned long (*get_unmapped_area) (struct file *, unsigned long,

unsigned long,unsigned long,unsigned long);

};

Modules: single character memory example

file_operations:
A few members

struct file_operations {

ssize_t(*read) (struct file *, char __user *,

size_t, loff_t *);

ssize_t(*write) (struct file *, const char __user *,

size_t, loff_t *);

int (*ioctl) (struct inode *, struct file *,

unsigned int, unsigned long);

int (*open) (struct inode *, struct file *);

int (*release) (struct inode *, struct file *);

};

Modules: single character memory example

Set up init and exit
Some globals

module_init(memory_init);

module_exit(memory_exit);

int memory_major = 60;

char *memory_buffer;

Modules: single character memory example

memory_init

int memory_init(void) {
int result;
result = register_chrdev(memory_major, "memory", &memory_fops);
if (result < 0) {

printk("<1>memory: cannot obtain major number %d\n",

memory_major);
return result;

}

/* Allocating memory for the buffer */
memory_buffer = kmalloc (1, GFP_KERNEL);
if (!memory_buffer) {

result = -ENOMEM;
goto fail;

}

memset(memory_buffer, 0, 1); // initialize 1 byte with 0s.
printk("<1> Inserting memory module\n");
return 0;

fail:
memory_exit();
return result;
}

Kmalloc does what you’d expect. The flag provides rules about where and how
To get the memory. See makelinux.com/ldd3/chp-8-sect-1

60, via global
Device name, need not be
the same as in /dev

Name of file_operations
structure.

Modules: single character memory example

memory_exit

void memory_exit(void) {

unregister_chrdev(memory_major, "memory");

if (memory_buffer) {

kfree(memory_buffer);

}

Modules: single character memory example

Open and release (close)

int memory_open (struct inode *inode,

struct file *filp) {

printk("<1> Minor: %d\n",

MINOR(inode->i_rdev));

return 0;

}

int memory_release (struct inode *inode,

struct file *filp) {

return 0;

}

Modules: single character memory example

ssize_t memory_read(struct file *filp, char *buf,

size_t count, loff_t *f_pos) {

/* Transfering data to user space */

copy_to_user (buf,memory_buffer,1);

/* Changing reading position as best suits */

if (*f_pos == 0) {

*f_pos+=1;

return 1;

} else {

return 0;

}

}

copy_to_user copies to a location in userspace (the first argument) from kernel space
(the second argument), a specific number of bytes. Recall virtual memory…

f_pos is the file position.
What do you think happens
if you don’t change *f_pos?

Modules: single character memory example

memory_write

ssize_t memory_write(struct file *filp,

char *buf, size_t count, loff_t *f_pos)

{

char *tmp;

tmp=buf+count-1;

copy_from_user(memory_buffer,tmp,1);

return 1;

}

Modules: single character memory example

How do you set it up?

• Make the module
make -C /lib/modules/2.6.28-16-

generic/build M=$PWD modules

• Insert the module
insmod memory.ko

• Create the device
mknod /dev/memory c 60 0

• Make the device read/write
chmod 666 /dev/memory

Modules: single character memory example

What did all that do?

• We created a device that is just a single byte
of memory.

– Whatever the last thing you wrote to it, is what
will be read.

• For example

– $ echo -n abcdef >/dev/memory

– Followed by $ cat /dev/memory

• Prints an “f”.

Modules: single character memory example

See also

• https://www.apriorit.com/dev-blog/195-
simple-driver-for-linux-os looks well done.

– For 5.0

– I’ve not double-checked it all

https://www.apriorit.com/dev-blog/195-simple-driver-for-linux-os

