
1

EECS 487: Interactive Computer Graphics

Introduction to Radiosity

John F. Hughes

and

Andries van Dam

Brown University

EECS 487: Interactive Computer Graphics

Rendering a Scene

• The sceneconsists of a geometric arrangement of
surfaces

• It’ s illuminated by some luminaires (light sources)
• We observe it from some point and try to make a

synthetic “photograph”
• This is, to put it bluntly, too hard
• Raytracing makes an approximation of how light gets

from the luminaires into the camera
– assumes knowledge of reflectance on surfaces
– assumes that reflectance information can be condensed

into a simple illumination equation
– assumes (generally) that each ray of light bounces from

the surface in only one direction, specularly

• Diffuse surfaces look bad
• Subtle reflection characteristics like anisotropy

(property of reflecting light in a non-uniform way across
a surface) are lost

• Requires ambient term in the illumination function as a
gross hack to approximate diffuse global reflections

• Ignores/approximates a substantial amount of the light-
energy transfer in the scene

2

EECS 487: Interactive Computer Graphics

• Can design an alternative simulation of the real transfer
of light energy in the scene

• With any luck, this will be more accurate

• Accuracy is relative

– hall of mirrors is specular � raytracing

– museum with latex-painted walls is diffuse �
radiosity

• Neither radiosity nor raytracing solves all the problems

• Current best solutions use a hybrid technique: raytracers
that take a final “diffuse illumination” pass, or radiosity
solutions that add a “specular” pass

– both are temporary hacks

• Radiosity approximates global diffuse inter-object
reflection by tessellating the scene and considering how
each pair of surface elements (patches) send and receive
light energy, an O(n2) operation that will be best
accomplished by an iterative solution (progressive
refinement)

What Can We Do?

EECS 487: Interactive Computer Graphics

Pretty Pictures

Reality (or at least
diffuse reality)…

Minus Radiosity…

Equals “Not
very much”

http://www.graphics.cornell.edu/online/box/compare.html

3

EECS 487: Interactive Computer Graphics

1. Everything in the scene is
modeled as a “patch”

2. Each patch starts off with an
initial luminance value (all but
luminaries are probably zero)

3. We iteratively determine how
much luminance travels from
each patch to each other patch
until the entire system converges
to stable values

The Radiosity Technique:
An Overview

We can then render the scene from any angle
without recomputing these final patch
luminances

EECS 487: Interactive Computer Graphics

Overview of Radiosity
• The radiometric term radiosity means the rate at which

energy leaves a surface, which is the sum of the rates at
which the surface emits energy and reflects (or transmits)
energy received from all other surfaces. Radiosity
simulations are usually based on a thermal engineering
model of emission and reflection of radiation using finite
element approximations. They assume conservation of
energy in closed environments. First determine all light
interactions in a view-independent way, then render one
or more views.

• Consider a room with only floor and ceiling:

• Suppose the ceiling is actually a fluorescent drop-panel
ceiling which emits light…

• The floor gets some of this light and reflects it back

• The ceiling gets some of this reflected light and sends it
back… you get the idea.

floor

ceiling

4

EECS 487: Interactive Computer Graphics

• energy = light = radiosity (for our purposes)
• Ei: The initial amount of energy radiating from the

i ’ th patch
• Bi: The final amount of energy radiating from the

i ’ th patch
• Fj-i : The fraction of the energy emitted by the j’ th

patch that is gathered by the i’ th patch (the
relationship between the i ’ th and j’ th patches is
based on their distance and their angles to each other)

• Rho ρi: The fraction of the incoming energy to a
patch that is then exported in the next iteration

Some Important Symbols
(Pay Attention!)

(more radiosity pictures)

EECS 487: Interactive Computer Graphics

Let’s Arrange Those Symbols
(1/2)

• The amount of light/radiosity/energy a patch finally
emits is the initial emission plus the emission due
specifically to the other n-1 patches in the scene emitting
to the patch.

�
≤≤

−+=
 n j i

jijiii BFEB ρ

• Thus:

• Rewrite as a vector product:

• And the whole system:

131321211111 ...)(EBFBFBF�B =+++− −−−

[] 1
3

2

1

131121111 ...)1(E
B

B

B

F�FF =

�
�
�
�

�

�

�
�
�
�

�

�

−−− −−−

�

ρρ

�
�
�
�

�

�

�
�
�
�

�

�

=
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

−−−
−−−
−−−

−−−

−−−

−−−

������

�

�

�

3

2

1

3

2

1

333323313

232222212

131121111

)1(

)1(

)1(

E

E

E

B

B

B

FFF

FFF

FFF

ρρρ
ρρρ
ρρρ

�
≤≤

−−=
nj

jijiii BFBE
1

ρ; rewrite as

5

EECS 487: Interactive Computer Graphics

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

−
�
�
�
�

�

�

�
�
�
�

�

�

−−−

−−−

−−−

����

�

�

�

����

�

�

�

����

�

�

�

333231

232221

131211

3

2

1

00

00

00

100

010

001

FFF

FFF

FFF

ρ
ρ

ρ

Decompose the first matrix as:

Can be rewritten:
• (I – D(ρ)F)B = E

– where D(ρ) is a diagonal matrix with ρi as its ith
diagonal entry.

• If we know E, ρ, and F, we can determine B
• If we let

A = I – D(ρ)F
• Then we are solving (for B) the equation

AB = E
• This is a linear system, and methods for solving

these are well-known, e.g. Gaussian elimination or
Gauss-Seidel iteration (although which method is
best depends on the nature of the matrix A)

• Typically want B, knowing E and A

Let’s Arrange Those Symbols
(2/2)

EECS 487: Interactive Computer Graphics

An[other] Intro to Radiosity(1/3)
• The radiometric term radiosity means the rate at which

energy leaves a surface, which is the sum of the rates at
which the surface emits energy and reflects (or transmits)
energy received from all other surfaces. Radiosity
simulations are usually based on a thermal engineering
model of emission and reflection of radiation using finite
element approximations. They assume conservation of
energy in closed environments. First determine all light
interactions in a view-independent way, then render one
or more views.

• Consider a room with only floor and ceiling:

• Suppose the ceiling is actually a fluorescent drop-panel
ceiling which emits light…

• The floor gets some of this light and reflects it back

• The ceiling gets some of this reflected light and sends it
back… you get the idea.

floor

ceiling

6

EECS 487: Interactive Computer Graphics

An Introduction to Radiosity(2/3)
• Both ceiling and floor are acting as area light sources

emitting and reflecting light uniformly over their areas
(all surfaces are considered such in radiosity)

• Let the ceiling emit 12 units of light per second

• Let the floor reflect 50% of what it gets; let it get 1/3 of
the light from the ceiling (based on geometry)

• And let the ceiling get 1/3 of the floor’s light (based on
geometry), and reflect 75% of what it gets

• Writing B1 for the ceiling’s total light, and B2 for the
floor’s, and E1 and E2 for the light generated internally
by each, we have:

• First, we’ ll solve this simple case, then write equations
for the more general case

11212222

22121111

3

1

2

1
0)(,0

3

1

4

3
12)(,12

BBFEBE

BBFEBE

⋅+=+==

⋅+=+==

−

−

ρ

ρ
ceiling:

floor:

EECS 487: Interactive Computer Graphics

An Introduction to Radiosity(3/3)
• Method 1, gathering energy: send out light from emitters

everywhere, accumulate it, resend from all patches… Each
iteration uses the radiosity values from the previous iteration as
estimates for the recursive form. Iterate by rows.
Bk = E + D(ρ)FBk-1 ;

B1 = E

B2 = E + D(ρ)FB1

B3 = E + D(ρ)FB2

Where Bk is your kth guess at the radiosity values B1, B2…

Results for our example:
{ 12, 0} = { B1, B2} = { E1, E2}

{ 12, 2} =

{ 12.5, 2} =

{ 12.5, 2.08373} =

{ 12.5208, 2.08373}

{ 12.5208, 2.08681}

{ 12.5217, 2.08681}

{ 12.5217, 2.08695}

• Like “hitting the cosine button” repeatedly on calculator to solve
cos(x) = x; a form of progressive refinement.

}{
�
	

⋅⋅

�
�

 ++=++ −− 12

3

1

2

1
0 ,012 , 1212221211 BFEBFE ρρ

�
	

⋅⋅

�
�

 +⋅⋅+ 12

3

1

2

1
0 ,2

3

1

4

3
12

�
	

⋅⋅

�
�

 +⋅⋅+ 5.12

3

1

2

1
0,2

3

1

4

3
12

7

EECS 487: Interactive Computer Graphics

General Radiosity Equation(1/3)
• The radiosity equation for normalized unit areas of

Lambertian diffuse patches is:

• Ai is the area of the i ’ th patch

• Bi is total radiosity in watts/m2 (i.e. energy/unit-time /
unit-area) radiating from patch i

– Note that we are now calculating Bi (and Ei) per unit area

• Ei is light emitted in watts/m2

• �

i is fraction of incident energy reflected by patch i
(related to diffuse reflection coefficient kd in simple
lighting model)

• (Bj Aj) is total energy radiated by patch j with area Aj
(i.e., radiosity x area)

�
≤≤

−⋅
+=

nj i

ijjj
iii A

FAB
EB

1

)(
ρ

EECS 487: Interactive Computer Graphics

General Radiosity Equation(2/3)

• From the previous slide:

• Fj-i is fraction of energy leaving (“exported by”) patch j
arriving at patch i. It is the dimensionless form factor
that takes into account shape and relative orientation of
each patch and occlusion by other patches. It is a
function of (r,

�

i, and

�

j).
– Geometrically, Fj-i is the relative area of receiver patch i

subtends in sender patch j’ s “view” , a hemisphere centered
over patch j

– Note: generally patches may be concave and have self-
reflection, where Fi-i ≠ 0

• for all i (conservation of energy)

• is total amount of energy leaving patch j
arriving at patch i

• is total amount of energy leaving patch j
arriving at unit area of patch i

� = − =
n

i ijF
1

1

ijjj FAB −⋅)(

iijjj AFAB −⋅)(

�
≤≤

−⋅
+=

nj i

ijjj
iii A

FAB
EB

1

)(
ρ

8

EECS 487: Interactive Computer Graphics

General Radiosity Equation(3/3)
• Reciprocity relationship between Fi-j and Fj-i, proven

later:

– which means form factors scaled for unit area of receiver
patch are equal

• Therefore,

– which is easier to deal with, i f less intuitive
– in terms of the matrix of form factors, F, this says that the radiosity

of receiver patch i is the energy emitted by that patch plus the
attenuated sum of each sender j’ s radiosity times the form factor
from i to j; in other words, for each receiver row i iterate across all
the sender columns j to gather the energy.

• Note: we should calculate this for all wavelengths ---
approximate with BiR, BiG, BiB

jijjii
i

ij

j

ji AFFA
A

F

A

F
⋅=⋅= −−

−− or

�

�

≤≤
−

≤≤

−

−−

−

−

�
�

�

�

�
�

�

�
⋅+=

⋅
+=

=

=

nj
iji

j

i
jjiii

nj i

ijjj
iii

ji
j

i
ij

ji

ij

j

i

AF
A
A

ABEB

A

FAB
EB

F
A

A
F

F

F

A

A

1

1

)(

)(

ρ

ρ

�
≤≤

−+=
nj

jijiii FBEB
1

ρ

EECS 487: Interactive Computer Graphics

Computing Form Factors(1/7)

• Form factor from differential sending area dAi to differential
receiving area dAj is:

– for ray of length r between patches, at angles θi, θj to the
normals of the areas. Hij is 1 if dAj is visible from dAi and 0
otherwise.

• We will motivate this equation…

• Also see form factor applet:

jij
ji

djdi dAH
r

dF
2

coscos

⋅
=− π

θθ

Applet: http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/lighting_and_shading.html

9

EECS 487: Interactive Computer Graphics

Computing Form Factors(2/7)
• When the two patches directly face each other, maximum

energy is transmitted from Ai to Aj

- their normal vectors are parallel, cosθj = 1, cosθi =1
since θi = θj = 0°

• Rotate Aj so that it is perpendicular to Ai. Now cosθi is
still 1, but cosθj = 0 since θj = 90°

• In between the two extrema, we calculate the energy
fraction by multiplying by cosθj. Tilting Ai means
multiplying by cosθi

• Same as Lambertian diffuse reflection

EECS 487: Interactive Computer Graphics

Computing Form Factors(3/7)
• From where does the r2 term arise? The inverse-

square law of light propagation:

• Consider a patch A1, at a distance R= 1 from light
source L. If P photons hit area A1, their density is
P/A1. These same P photons pass through A2.
Since A2 is twice as far from L, by similar triangles,
it has four times the area of A1. Therefore each
similar patch on A2 receives 1/4 of the photons

10

EECS 487: Interactive Computer Graphics

Computing Form Factors(4/7)
• The π in the formula is a normalizing factor

• If we integrate the form factor across the surface of a unit
hemisphere, we need to achieve unity (all the light goes
somewhere). By what constant k do we scale the
integration to normalize this value? r = 1, θj = 0

π

φθθθ
θ

θ
ππ

1

][sincos
cos

1

1cos
2

0

2

0

=

==

=

� �
��

��

k

dd
dA

k

dAk

iii

A i

A i

EECS 487: Interactive Computer Graphics

Computing Form Factors(5/7)

• Now consider a differential patch dAi radiating to finite
patch Aj

• Fdi-j can be computed by projecting those parts of Aj
visible from dAi onto the unit hemisphere centered about
dAi. The form factor is effectively the ratio of curved
patch area to the total surface area of the hemisphere.

• Total surface area encompasses all energy emitted by dAi

11

EECS 487: Interactive Computer Graphics

Computing Form Factors(6/7)

• This is an approximation! It only holds if dAj is far from
dAi, so the angles θi and θj do not vary significantly
across their respective patches

• To determine Fdi-j, the form factor from differential area
dAi to finite area Aj, we integrate over area of patch j:

• Hij again dictates visibility: Hij = 0 implies occlusion
– not trivial to resolve analytically for finite areas

jij

A

ji
jdi dAH

r
F

j

� ⋅
=− 2

coscos

π
θθ

EECS 487: Interactive Computer Graphics

Computing Form Factors(7/7)
• Let’s complete the integration for taking dAi to Ai to

determine Fi-j

• Take area average over patch i to give form factor from
Ai to Aj:

• If center point on patch is typical of all points, can
approximate Fi-j by Fdi-j for a dAi, at patch i’ s center.
Remember, both are percentages

• Again this breaks if patches are in close proximity,
causing large variations among θi and θj

• An aside: we are now in a position to prove the
reciprocity relationship. Cross multiplying in the
equation for the form factor above gives us:

– the double integrals are equal since it doesn’t matter which is the
inner and which is the outer integral

• Using transitivity gives us the reciprocity relationship:

i

A

jij

A

ji

i
ji dAdAH

rA
F

i j

� � ⋅
=− 2

coscos1

π
θθ

i

A

jij

A

ji
iji dAdAH

r
AF

i j

� � ⋅
=− 2

coscos

π
θθ

j

A

iji

A

ji
jij dAdAH

r
AF

j i

� � ⋅
=− 2

coscos

π
θθ

jijiji AFAF −− =

12

EECS 487: Interactive Computer Graphics

Approximating Form Factors(1/2)

• Rather than projecting Aj onto a hemisphere, Cohen and
Greenberg proposed projecting onto the upper half of a
cube centered about dAi, with its top face parallel to the
surface. Each face of the hemicube is divided into equal
sized square cells. All patches Aj are clipped against
view volume frusta defined by the center of the cube and
each of its upper five faces. Think of each face of the
cube as a film plane which records what a patch, dAi ,
“sees” in each of the five directions. In other words,
think of the film as pixels and scan convert the clipped,
projected polygonal patch, including z buffering onto
each face.

EECS 487: Interactive Computer Graphics

Approximating Form Factors(2/2)

• Identity of closest intersecting patch is recorded at each
cell (the survivor of the z buffer algorithm). Each
hemicube cell p is associated with a precomputed delta
form factor value,

where θp is the angle between p’ s surface normal and vector of
length r between dAi and p, and where ∆A is area of cell

• Can approximate Fdi-j for any patch j by summing ∆Fp
associated with each cell p in Aj’ s hemicube projection

• Provides visibility determination through z buffer (albeit
approximate)

A
r

F pi
p ∆

⋅
=∆

2

coscos

π
θθ

13

EECS 487: Interactive Computer Graphics

Faster Progressive Refinement:
Shooting

• Method 2, dual to gathering: Instead of for each
receiver i gathering energy sequentially from all
senders j, shoot it in order from the brightest to the
least bright patch (i.e., starting with the most
significant light sources first)

– accumulate at the receivers
– iteratively shoot from patch that has the largest amount

of “unshot” radiosity (e.g., for a single light source, the
patch which has the largest form factor with that source
will be the next patch to shoot)

• As shown next, computing the form factor can be done
by using a single hemicube for each shooter that can be
computed and discarded for each receiver

– solves the O(n2) processing and storage problem for each
iteration of gathering

– shooting converges faster than gathering

• Note that in gathering, must process consecutive rows
and all rows must be processed for each iteration

– all form factors must be calculated before the first
iteration of Gauss-Seidel occurs

• In shooting, iterate by column in order of patch with
the most “unshot” radiosity

– can form an estimate even with only first column shot
– can add decreasing ambient term (goes to 0) as a hack

EECS 487: Interactive Computer Graphics

Details on Shooting(1/2)
• Each row of matrix used in “gathering” (I – D(ρ)F) represents

estimate of patch i’s radiosity Bi based on estimates of other
patch radiosities

– each term in summation gathers light from patch j for all j:

– therefore,

• For shooting, shoot from patch i to each patch j in turn; again

– for each receiver j, keep adding radiosity from successive
sources i in order of decreasing radiosity

• So given an estimate of Bi we can estimate its impact on all
receiving patches j, at the cost of computing Fj-i for each
receiver patch j, i.e., via n hemicubes. But that is still too
much work.

() jFBBB ji
t
ji

t
j

t
i allfor , todue 11

−
−− = ρ

� = −
−=

n

j ji
t
ji

t
i FBB 1

1 ρ

() jFBBB ij
t
ij

t
i

t
j allfor , todue 11

−
−− = ρ

14

EECS 487: Interactive Computer Graphics

Details on Shooting(2/2)
• Using reciprocity again,

– which requires only the hemicube over patch i! Thus only a single
hemicube and its n form factors need be computed each pass!

• Note that for a given shooter i, we loop through all
receiving patches j. Given our notation for the form
factor matrix, holding i constant and looping through all j
corresponds to traversing a column.

• See shooting vs. gathering applet:

()
j

i
ji

t
ij

t
i

t
j A

A
FBBB −

−− = 11 todue ρ

Applet: http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/lighting_and_shading.html

EECS 487: Interactive Computer Graphics

Radiosity Pseudocode

• Algorithm for fast progressive refinement through shooting:

U0 = e;

B0 = e;

t = 1;

do {

i = index_of(MAX(ut-1));

precalculate hemicubei;

for (j = 1; j < n; ++) {

bj
t = ui

t-1 Fi-j Ai/Aj + bj
t-1;

uj
t = ui

t-1 Fi-j Ai/Aj + uj
t-1;

}

ui
t = ui

t-1 Fj-j;

++t;

} while Bt-Bt-1 > tolerance;

15

EECS 487: Interactive Computer Graphics

Benefits of Radiosity

• Color bleeding: a red wall next to a white one casts a
reddish glow on the white wall near the corner.

• Soft shadows – an “area” light source casts a soft shadow
from a polygon.

• No ambient term hack, so when you want to look at your
object in low light, you don’ t have to adjust parameters
of the objects – just the intensities of the lights!

• View independent: it assigns a brightness to every
surface and you can just draw those suckers! (using a
standard VSD algorithm and, say, Gouraud shading to
obviate the faceted look – derive vertex radiosities by
averaging patch radiosities.

• Used in other areas of engineering where energy
radiation is computed.

EECS 487: Interactive Computer Graphics

Limitations of Radiosity

• Assumption that radiation is uniform in all directions

• Assumption that radiosity is piecewise constant
– usual renderings make this assumption, but then interpolate cheaply

to fake a nice-looking answer

– this introduces quantifiable errors

• Computation of the form factors Fi-j can be tough
– especially with intervening surfaces, etc.

• Assumption that reflectivity is independent of directions
to source and destination

• Assumption that intermediate medium is non-
participatory (although there are additional equations and
algorithms for calculating surface-to-volume form
factors which can then be used in volume rendering a
scene)

• Assumption that no surface is transparent or translucent

• Independence from wavelength – no fluorescence or
phosphorescence

• Independence from phase – no diffraction

• Enormity of matrices! For large scenes, 10K x 10K
matrices are not uncommon (shooting reduces need to
have it all memory resident)

16

EECS 487: Interactive Computer Graphics

More Comments

• Even with these limitations, it produces lovely pictures

• For n surface patches, we have to build an n x n matrix
and solve Ax = b, which takes O(n2), this gets rather
expensive for large scenes

• Could we do it in O(n) instead?

• The answer, for lots of nice scenes, is “Yes”

Tangent: This is a lot like Google
• The Google search engine uses an system much like

radiosity to rank its pages
– Site rankings are determined not only by the number of

links from various sources, but by the number of l inks
coming into those sources (and so on)

– After multiple iterations through the link network, site
rankings stabilize

– Site importance is l ike luminance, and every site is initially
considered an “ emitter”

EECS 487: Interactive Computer Graphics

Making Radiosity Fast

• One approach is importance driven radiosity: if I turn on
a bright light in the graphics lab with the door open, it’ ll
lighten my office a little…

• …but not much

• By taking each light source and asking “what’s
illuminated by this, really?” we can follow a “shooting”
strategy in which unshot radiosity is weighted by its
importance, i.e., how likely it is to affect the scene from
my point of view

• No longer a view-independent solution…but much faster

17

EECS 487: Interactive Computer Graphics

Combining Radiosity with
Raytracing

• Radiosity is perfect for diffuse reflection; rotten for
specular

• Raytracing is perfect for specular; rotten for diffuse

So we compromise:

• Perform radiosity, and then raytrace your scene
afterwards, treating every point in the scene as a “light
source” emitting its radiosity; blend in the results

• Raytrace first, and then take all specularly reflected
lights as “new lights” and do a final radiosity pass over
the world and blend results

• Of course, we left out a few details, but you should be
able to implement the combined algorithm from this
slide

EECS 487: Interactive Computer Graphics

What is MLT? (1/4)

• MetropolisLight Transport is a type of Monte Carlo
algorithm

• Monte Carlo describes a group of rendering algorithms
which randomly sample every path which a light ray can
take in the world

– based on ray casting

– classical ray tracing is a very simple, specialized type of
Monte Carlo algorithm

– point sampling of the complete rendering equation

– in general, capable of much more complicated effects than
radiosity and classical ray tracing combined

18

EECS 487: Interactive Computer Graphics

What is MLT? (2/4)

• Kajiya’s Rendering Equation as reformulated over the set
of all points in the scene (M):

• More complete model of light transport

• Basically describes how much light energy leaves a
surface at a given point (x’) in a particular direction (to
x”) in terms of how much light is incident on the surface
from all other points in the world.

– is the amount of light traveling along the ray
from point y to point z. is the amount of light emitted
by the surface

– is the Bidirectional Reflectance
Distribution Function (BRDF) of the surface. Describes
how much of the light incident on the surface at y from the
direction of x leaves the surface in the direction of z

– is a Geometry term which involves occlusion
and the angle between the surfaces

• How do we evaluate this function?
– very difficult to solve complicated integral equations

analytically

)'''()'''(xxLxxL e →=→

� ↔→→→+
M

s xdAxxGxxxfxxL)()'()'''()'(

)(zyL →

),(λzyxfs →→

)(zyG ↔

eL

EECS 487: Interactive Computer Graphics

What is MLT? (3/4)

• There are many ways to integrate a function

• Simplest method is to take samples of the function
uniformly spaced across its domain

– basic high school calculus integration

– this is what distributed ray tracing does

– might have to take many samples if function is very
complicated in some area

• A smarter method: importance sampling
– if we already know something about a function, we can

utilize this knowledge

– sample more in areas which contribute more to final value
of the integral

• Metropolis sampling is a variety of importance sampling
(Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller,
1953)

– chooses samples in such a way that they are eventually
distributed proportionally to the value of the function being
integrated

19

EECS 487: Interactive Computer Graphics

What is MLT? (4/4)

• Metropolis Light Transport algorithm (Veach, 1995)
reformulated the integral rendering equation as a pure
integration problem over the space of all light paths

• Conceptually:

– where P is the space of all possible light paths

• This allows us to apply Metropolis sampling to the
complete rendering problem

– often much faster than previous Monte Carlo methods

– handles scenes commonly considered to be difficult

�
P

Final Image = contribution of a single path

