
Essential
Cryptography I

EECS 588: Computer and Network Security
January 10, 2013

The Itinerant Professor

J. Alex Halderman (CSE Prof.)

In China D.C. California today, back next Thurs

Goals for this Course

 Gain hands-on experience

 Building secure systems

 Evaluating system security

 Prepare for research

 Computer security subfield

 Security-related issues in other areas

 Generally, improve research and
communication skills

 Learn to be a 1337 hax0r, but an ethical one!

Building Blocks
The security mindset, thinking like an attacker, reasoning about risk, research ethics
Symmetric ciphers, hash functions, message authentication codes, pseudorandom generators
Key exchange, public-key cryptography, key management, the SSL protocol

Software Security
Exploitable bugs: buffer overflows and other common vulnerabilities – attacks and defenses
Malware: viruses, spyware, rootkits – operation and detection
Automated security testing and tools for writing secure code
Virtualization, sandboxing, and OS-level defenses

Web Security
The browser security model
Web site attacks and defenses: cross-site scripting, SQL injection, cross-site reference forgery
Internet crime: spam, phishing, botnets – technical and nontechnical responses

Network Security
Network protocols security: TCP and DNS – attacks and defenses
Policing packets: Firewalls, VPNs, intrusion detection
Denial of service attacks and defenses
Data privacy, anonymity, censorship, surveillance

Advanced Topics
Hardware security – attacks and defenses
Trusted computing and digital rights management
Electronic voting – vulnerabilities, cryptographic voting protocols

Not a
crypto
course

Getting a Seat

 You probably will
 Alex intends to teach 588 again next winter

Grading

 No exams, no problem sets!

Class Participation (5%)

Paper Responses (15%)

Attack Presentation (30%)

Research Project (50%)

Class Participation (5%)

 1-2 required papers for discussion in each
sessions (other readings optional)

 Come prepared to contribute!
 Full points for speaking up and contributing

substantial ideas
 Lose points for being silent, frequently

missing class, browsing the web, etc.

Paper Responses (15%)

Brief written response to each paper (~400 words)

 In the first paragraph:
 State the problem that the paper tries to solve; and
 Summarize the main contributions.

 In one or more additional paragraphs:
 Evaluate the paper's strengths and weaknesses;
 Discuss something you would have done differently if you wrote

the paper; and
 Suggest at least two interesting open problems on related

topics.

 List any areas you had trouble understanding.
We’ll try to explain them in class.

Attack Presentation (30%)

 With a partner, choose a specific attack from
recent research and implement a demonstration

 Give a 15 minute presentation:

(1) describe the attack

(2) talk about how you implemented it, give a demo

(3) discuss possible defenses

 Course schedule lists topics and dates

 Each group email top 4 choices by Friday 1/18

Research Project (50%)

In groups, investigate a new attack or defense
 Should have potential to become a marketable

product or conference paper

 (but not necessarily by the end of the term)

Components: (see website for details)

 Project proposal (5%)
 Project checkpoint (5%)
 Conference-style presentation in class (15%)
 Final conference-style report (25%)

Communication

Course Web Site
https://www.eecs.umich.edu/courses/eecs588/
announcements, schedule, readings

Email Us
jhalderm@umich.edu
zakir@umich.edu
suggestions, questions, concerns

http://www.eecs.umich.edu/courses/eecs588/
http://www.eecs.umich.edu/courses/eecs588/
http://www.eecs.umich.edu/courses/eecs588/
mailto:jhalderm@eecs.umich.edu
mailto:jhalderm@eecs.umich.edu

Law and Ethics

 Don’t be evil!
 Ethics requires you to refrain from doing harm
 Always respect privacy and property rights
 Otherwise you will fail the course

 Federal and state laws criminalize computer
intrusion and wiretapping
 e.g. Computer Fraud and Abuse Act (CFAA)
 You can be sued or go to jail

 University policies prohibit tampering with
campus systems
 You can be disciplined, even expelled

Today’s Class

Essential Cryptography, Part 1

 The Cryptographer’s View
 Hash Functions
 Message-Authentication Codes
 Generating Random Numbers
 Block Ciphers

The Cryptographer’s View

Random
Oracle

26 14

26 → 14

13 62 26 14 44 62

13 → 62

44 → 62

Practical Random Oracles?

Suppose domain is size 2256…

Pseudorandom Functions (PRFs)
 (A function randomly chosen from a

family of PRFs is computationally
indistinguishable from a Random Oracle)

Pseudorandom Permutations

≈ Symmetric Ciphers

≈ Message Authentication Codes (MACs)

Basic Cryptography Problems

Alice Bob

Message

Passive Eavesdropper

Man-in-the-Middle

Eve

Mallory

Ingredients for a Secure Channel

Confidentiality
Attacker can’t see the message

Symmetric Ciphers

Integrity

Attacker can’t modify the message
Message Authentication Codes (MACs)

Eve

Mallory

Hash Functions

 Ideal: Random
mapping from
any input to a
set of output

 Caution! Real hashes don’t match our ideal

Hash Function Requirements

 First pre-image
 Given h(x), find x

 Second pre-image

 Given m1, find m2 s.t. h(m1) = h(m2)

 Collision

 Given nothing, find any m1 != m2 s.t. h(m1) = h(m2)

 Birthday Attack

MD5 Hash Function

 Designed in 1992 by
Ron Rivest

 128-bit output

 128-bit internal state

 128-bit block size

 Like most hash functions,

uses block-chaining
construction

MD5 is Unsafe – Never use it!

 First flaws in 1996;
by 2007, researchers
demonstrated a
collision

 Chaining allows
chosen prefix attack

 Dec. 2008:
others used this to
fake SSL certificates
(cluster of 200 PS3s)

MD5 Collision

d131dd02c5e6eec4693d9a0698aff95c 2fcab58712467eab4004583eb8fb7f89
55ad340609f4b30283e488832571415a 085125e8f7cdc99fd91dbdf280373c5b
d8823e3156348f5bae6dacd436c919c6 dd53e2b487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080a80d1e c69821bcb6a8839396f9652b6ff72a70

d131dd02c5e6eec4693d9a0698aff95c 2fcab50712467eab4004583eb8fb7f89
55ad340609f4b30283e4888325f1415a 085125e8f7cdc99fd91dbd7280373c5b
d8823e3156348f5bae6dacd436c919c6 dd53e23487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080280d1e c69821bcb6a8839396f965ab6ff72a70

Both of these blocks hash to 79054025255fb1a26e4bc422aef54eb4

SHA Hash Functions

 SHA-1 – standardized by NIST in 1995
 160-bit output and internal state
 512-bit block size

 SHA-2 – extension published in 2001
 256 (or 512)-bit output and internal state
 512 (or 1024)-bit block size

 SHA-3 – chosen by NIST in 2012

 256 (512)-bit output

 Different “sponge” construction

Block chaining vs.
 Sponge-construction

Tricky! Length Extension Attacks

Given hash of secret x, trivial to find
hash of x || p || m for padding p and
arbitrary m

MD5 and SHA family all vulnerable!

Is SHA-1 Safe?

 Significant cryptanalysis since 2005
 Improved attacks show complexity of finding

a collision < 251(ideally security would be 280 – why?)

 Attacks only get better …

 Use SHA-256

Message Authentication Codes

 Prevents tampering with messages.
Like a family of pseudorandom functions,
with a key to select among them

MAC

P0

tag

K

P1 PN-1 …

MAC Security Properties

 Attacker given a MAC oracle: (unknown K)

MAC(K,

)

 Must discover a new MAC output:
 MAC(K,

);

MAC

P0

tag

K

P1 PN-1 …

Construction: HMAC

Given a hash function H:

HMAC(K,m) = H((K pad1) || H(K pad2 || m))
for constants pad1 and pad2

Provides nice provable security properties

What Should You Use?

 Use HMAC-SHA256

 Use a constant key to get a Length-extension
resistant hash function

Generating Random Numbers

 What’s wrong with srand() and rand()?

Generating Random Numbers

 What’s wrong with srand() and rand()?

 Why not use a secure hash?
 “Cryptographic Pseudorandom Number

Generator” (CPRNG)

 Tricky details…
 Seeding with true randomness (“entropy”)
 Forward secrecy

 Most OSes do the hard work for you*
 On Linux, use /dev/random and /dev/urandom

One-Time Pads

Provably secure encryption…

 … that often fails in practice.

P4 K4 P3 K3 P2 K2 P1 K1

One-Time Pads

K1 K2 K3 K4

Pi Ki Pi Ki

0 0 0

0 1 1

1 0 1

1 1 0

P1 P2 P3 P4

Block Ciphers

 Ideal block cipher:
 Like a family of pseudorandom permutations
 with a key to select among them

E

P

C

K D

P

C

K

DES—Data Encryption Standard

 US Government standard
(1976)

 Designed by IBM
Tweaked by NSA

 56-bit key
 64-bit blocks
 16 rounds

 Key schedule function

generates 16 round keys:

DES Encryption

 Feistel network

 common block cipher
construction

 makes encryption and
decryption symmetric—just
reverse order of round keys

 Each round uses the same
Feistel function F
(by itself a weak block
cipher)

DES Feistel Function

 In each round:
 Expansion Permutation E

32 → 48 bits

 S-boxes (“substitution”)
replace 6-bit values

 Fixed Permutation P
rearrange the 32 bits

DES is Unsafe – Don’t Use It!

 Design has known weaknesses
 56-bit key way too short
 EFF’s “Deep Crack”

machine can brute force
in 56 hours using FPGAs

 ($250k in 1998,
 far cheaper today)

3DES

 EK1, K2,K3
(P) = EK3

(DK2
(EK1

(P)))

 Key options:

 Option 1: independent keys (56*3 = 168 bit key)

 Option 2: K1 = K3 (56*2 = 112 bit key)

 Option 3: K1 = K2 = K3 (Backward-compatible DES)

 What happened to 2DES?

E E C P D
K1 K2 K3

2DES: Meet-in-the-middle attack

 “2DES”: EK1, K2
(P) = EK2

(EK1
(P))

 Given P and C = EK2
(EK1

(P)), find both keys

E E

D E C P

C P

!!!

K2 K1

K2 K1

 For all K, generate EK(P) and DK(C)

 Find a match where DK2
(C) == EK1

(P)

AES—Advanced Encryption Standard

 Standardized by NIST in 2001
following open design competition

 (a.k.a. Rijndael)

 128-, 192-, or 256-bit key
 128-bit blocks
 10, 12, or 14 rounds

 Not a Feistel-network construction

One round of
AES-128

How Safe is AES?

 Known attacks against 128-bit AES if reduced
to 7 rounds (instead of 10)

 128-bit AES very widely used,
though NSA requires 192- or 256-bit keys for
SECRET and TOP SECRET data

 What should you use?

 Conservative answer: Use 256-bit AES

Reading for Tuesday

 Crypto notes (on course website)
 No written response required

Tuesday’s Class

Essential Crypto II:

Cipher Modes
Secure Channels
Key Exchange
Public-Key Crypto
Establishing Trust

