
Essential Cryptography Part II 

EECS588 Computer and Network Security 

January 15, 2013 



The Itinerant Professor 

Prof. J. Alex Halderman 
In China D.C. Cali D.C. today, back Thursday 



Building Blocks 

The security mindset, thinking like an attacker, reasoning about risk, research ethics 

Symmetric ciphers, hash functions, message authentication codes, pseudorandom generators 

Key exchange, public-key cryptography, key management, the SSL protocol 
 

Software Security 

Exploitable bugs: buffer overflows and other common vulnerabilities – attacks and defenses 

Malware: viruses, spyware, rootkits – operation and detection 

Automated security testing and tools for writing secure code 

Virtualization, sandboxing, and OS-level defenses 
 

Web Security 

The browser security model 

Web site attacks and defenses: cross-site scripting, SQL injection, cross-site reference forgery 

Internet crime: spam, phishing, botnets – technical and nontechnical responses 
 

Network Security 

Network protocols security: TCP and DNS – attacks and defenses 

Policing packets: Firewalls, VPNs, intrusion detection 

Denial of service attacks and defenses 

Data privacy, anonymity, censorship, surveillance 
 

Advanced Topics 

Hardware security – attacks and defenses 

Trusted computing and digital rights management 

Electronic voting – vulnerabilities, cryptographic voting protocols 

Not a 
crypto 
course 



Communication 

Course Web Site 
https://www.eecs.umich.edu/courses/eecs588/ 
announcements, schedule, readings 

Email Us 
jhalderm@umich.edu 
zakir@umich.edu 
suggestions, questions, concerns 

http://www.eecs.umich.edu/courses/eecs588/
http://www.eecs.umich.edu/courses/eecs588/
http://www.eecs.umich.edu/courses/eecs588/
mailto:jhalderm@eecs.umich.edu
mailto:jhalderm@eecs.umich.edu


Goals of Cryptography 

• Confidentiality: only the intended recipient 
should be able to decrypt the cipher text 
 

• Integrity: the recipient should be able to 
detect whether a message has been altered 
 

• Authentication: how do we verify the identity 
of the sender? 
 

• (Non-)repudiation: the sender should not be 
able to deny sending the message 

 

 



Don’t Roll Your Own!! 



Common Block Ciphers 

• Common:  

– AES (Advanced Encryption Standard)  

– RC5 

– 3DES (“triple DES”) 

– Blowfish 

 

• Broken:  

– DES (don’t use!) 



Block Ciphers (review) 

Decryption 
 
 
 
 
 
 
 
 

plaintext 

decrypt(.) 

ciphertext 

K 

Encryption 
 
 
 
 
 
 
 
 

plaintext 

encrypt(.) 

ciphertext 

K 

plaintext 

ciphertext 



ECB – Electronic Codebook Mode 

Ci := E(K, Pi)     for i = 1, …, n 

EK EK EK 

P2 P3 P4 … 

C2 C3 C4 … 

P1 

C1 

EK 



ECB – Electronic Codebook Mode 

Ci := E(K, Pi)     for i = 1, …, n 

EK EK EK 

P2 P3 P4 … 

C2 C3 C4 … 

P1 

C1 

EK 



Why not ECB? 

• The cipher text of an identical block is always 
identical… consider a bitmap image… 

 

(plaintext) (ECB mode) (CBC mode) 



   

CBC: Cipher-Block Chaining Mode 

Ci := E(K, Pi  Ci-1)     for i = 1, …, n 

 

EK EK EK 

P1 P2 P3 … 

C1 C2 C3 … 

? 



   

CBC: Cipher-Block Chaining Mode 

Ci := E(K, Pi  Ci-1)     for i = 1, …, n 

 

EK EK EK 

P1 P2 P3 … 

C1 C2 C3 … 

Random 
“Initialization 

Vector” 

IV 



   

CBC: Cipher-Block Chaining Mode 

Ci := E(K, Pi  Ci-1)     for i = 1, …, n 

 

EK EK EK 

P1 P2 P3 … 

C1 C2 C3 … 

Random 
“Initialization 

Vector” 

IV 

DO NOT REUSE INITIALIZATION VECTORS!! 



CTR: Counter Mode 

• Stream cipher construction 

• Plaintext never passes through E 

• Don’t need to pad the message 

• Allows parallelization and seeking 

• Never reuse same K+Nonce 

 Ki := E(K, Nonce || i )     for i = 1, …, n 
 Ci := Pi  Ki 

 



Symmetric Key Encryption 

Decryption 
 
 
 
 
 
 
 
 

plaintext 

decrypt(.) 

ciphertext 

K 

Encryption 
 
 
 
 
 
 
 
 

plaintext 

encrypt(.) 

ciphertext 

K 

plaintext 

ciphertext 



Public Key Cryptography 

• Symmetric key cryptographic is great… but has 
the fundamental problem that every send-
receiver pair must share a secret key…  
 

• How do we allow the sender and receiver to 
use different keys for encryption and 
decryption? 
 

• Also known as “Asymmetric Encryption” 



Diffie-Hellman Key Exchange 

• How do we share our symmetric key in front 
of an eavesdropping adversary? 
 

• “Key Exchange” developed by Whitfield Diffie 
and Martin Hellman in 1976 
 

• Based on Discrete Log Problem which we 
believe is difficult (“the assumption”) 



Diffie-Hellman Key Exchange 

1. Alice generates and shares g with Bob 

2. Alice and Bob each generate a secret 

number, which we denote a and b  

3. Alice generates ga and sends it to Bob 

4. Bob generates gb and sends it to Alice 

5. Alice calculates (gb)a  and Bob calculates (ga)b 

6. Alice and Bob have (gb)a  = gab = gba = (ga)b 



D-H for People Who Know Math 

1. D-H works in any finite cyclic group. Assume 
G is predetermined and we are selecting a 
generator 
 

2. We almost always just use         (multiplicative 
group of integers modulo p) 
 

3. We share a primitive root (g) and an odd 
prime (p) and perform all operations mod p. 

Z p

*

gÎG





Attacking Diffie-Hellman (MITM) 

Mallory 

Chooses  
random x < p 

Chooses 
 random y < p 

Chooses  
random v < p 

Chooses  
random w < p 

gx 

gv 

gy 

gw 

k := (gw)x k’ := (gv)y k := (gw)x 

k’ := (gv)y 

 



Summary of Goals 

Confidentiality 

 
Integrity 

 
Authentication 



RSA Public Key Encryption 



RSA Encryption 

 p, q  large random primes 

 n := pq  modulus 

 t  := (p-1)(q-1)  ensures xt = 1  (mod n) 

 e := [small odd value]   public exponent 

 d := e-1 mod t  private exponent 

 

 Public key: (n, e) 

 Private key:  (p, q, t, d) 

 



RSA Encryption 

1. Public Key: (n, e) 
 

2. Private Key:  (p, q, t, d) 

 

3. Encryption:  c := me mod n 
 

4. Decryption: m := cd mod n 

 

5. (me)d = med = mkt+1 = (mt)km = 1km = m     (mod n) 

 



Encryption with RSA 

1. Public Key Encryption is much slower than 
symmetric key encryption  
 

2. Publish public key to the world, keep private 
key secret 
 

3. Negotiate a symmetric key over public key 
encryption and utilize the symmetric key for 
encrypting any actual data going forward 

 



RSA for Encryption 

• Publish: (n, e), Store secretly: d 

• Encryption of m 

 Choose random k same size as n 

 c := ke mod n 

 Send c, encrypt m with AES using k 

• Decryption 

    k := cd mod n; decrypt m with AES using k 

 



RSA for Signatures 

• Publish: (n, e), Store secretly: d 

• Signing m 

 Seed a CPRNG with m and calculate 
pseudorandom string s same size as n 

 σ := sd mod n 

• Verifying a signature on m 

 Recalculate s from m 

 Check s = σe mod n 



Establishing Trust 

• How do Alice and Bob share public keys? 

 

• Web of Trust (e.g. PGP) 
 

• Trust on First Use (TOFU) (e.g. SSH) 
 

• Public Key Infrastructure (PKI) (e.g. SSL) 



What is PKI? 

• Organizations we trust (often known as 
“Certificate Authorities”) generate certificates 
to tie a public key to an organization 

 

• We trust that we’re talking to the correct 
organization if we can verify their public key 
with a trusted authority  



SSL/TLS Certificates 

Subject: C=US/O=Google Inc/CN=www.google.com 
Issuer: C=US/O=Google Inc/CN=Google Internet Authority 
Serial Number: 01:b1:04:17:be:22:48:b4:8e:1e:8b:a0:73:c9:ac:83 
Expiration Period: Jul 12 2010 - Jul 19 2012 
Public Key Algorithm: rsaEncryption 
Public Key: 43:1d:53:2e:09:ef:dc:50:54:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d 
7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4 
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:39:23:46 

Signature Algorithm:  sha1WithRSAEncryption  

Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d 
7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4 
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:1e:5d:b5 



Certificate Chains 

Subject: C=US/…/O=Google Inc/CN=*.google.com 
Issuer: C=US/…/CN=Google Internet Authority 
Public Key: 
Signature: bf:dd:e8:46:b5:a8:5d:28:04:38:4f:ea:5d:49:ca 

Subject: C=US/…/CN=Google Internet Authority 
Issuer: C=US/…/OU=Equifax Secure Certificate Authority 
Public Key: 
Signature: be:b1:82:19:b9:7c:5d:28:04:e9:1e:5d:39:cd  

Subject: C=US/…/OU=Equifax Secure Certificate Authority 
Issuer: C=US/…/OU=Equifax Secure Certificate Authority 
Public Key:  
Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:38:c9:d1 

Mozilla Firefox Browser 

I authorize and trust 
this certificate; here 

is my signature 

I authorize and trust 
this certificate; here 

is my signature 

Trust everything 
signed by this 

 “root” certificate 



Certificate Authority Clusterfuck 



Some Practical Advice 

• HMAC: HMAC-SHA256 
 

• Block Cipher: AES-256 
 

• Randomness: OS Cryptographic Pseudo 
Random Number Generator (CPRNG) 
 

• Public Key Encryption: RSA 
 

• Implementation: OpenSSL 



Related Research Problems 

• Cryptanalysis: Ongoing work to break crypto 
functions… rapid progress on hash collisions  

• Cryptographic function design: We badly need 
better hash functions… NIST competition now 
to replace SHA 

• Attacks: Only beginning to understand 
implications of MD5 breaks – likely enables 
many major attacks 

 



Don’t Roll Your Own!! 



Questions? 

 



SECRIT: Security Reading Group 

• We read a recent security paper and discuss it 
over lunch each week 
 

• Tuesdays from 12:30 to 1:30 PM 
 

• (one read paper) == (one free lunch) 
 

• https://wiki.eecs.umich.edu/secrit/ 

http://wiki.eecs.umich.edu/secrit/
http://wiki.eecs.umich.edu/secrit/


Thursday: Alex’s Introduction 




