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Abstract

We describe Bro, a stand-alone system for detecting net-
work intruders in real-time by passively monitoring a net-
work link over which the intruder's traffic transits. We give
an overview of the system's design, which emphasizes high-
speed (FDDI-rate) monitoring, real-time notification, clear
separation between mechanism and policy, and extensibility.
To achieve these ends, Bro is divided into an “event engine”
that reduces a kernel-filtered network traffic stream into a se-
ries of higher-level events, and a “policy script interpreter”
that interprets event handlers written in a specialized lan-
guage used to express a site's security policy. Event handlers
can update state information, synthesize new events, record
information to disk, and generate real-time notifications via
syslog. We also discuss a number of attacks that attempt
to subvert passive monitoring systems and defenses against
these, and give particulars of how Bro analyzes the six ap-
plications integrated into it so far: Finger, FTP, Portmapper,
Ident, Telnet and Rlogin. The system is publicly available in
source code form.

1 Introduction

With growing Internet connectivity comes growing oppor-
tunities for attackers to illicitly access computers over the
network. The problem of detecting such attacks is termed
network intrusion detection, a relatively new area of security
research [MHL94]. We can divide these systems into two
types, those that rely on audit information gathered by the
hosts in the network they are trying to protect, and those that
operate “stand-alone” by observing network traffic directly,
and passively, using a packet filter. There is also increasing
interest in building hybrid systems that combine these two
approaches [Ax99].�This paper appears inComputer Networks, 31(23–24), pp. 2435–2463,
14 Dec. 1999. This work was supported by the Director, Office of Energy
Research, Office of Computational and Technology Research,Mathemati-
cal, Information, and Computational Sciences Division of the United States
Department of Energy under Contract No. DE-AC03-76SF00098. An ear-
lier version of this paper appeared in the Proceedings of the7th USENIX
Security Symposium, San Antonio, TX, January 1998.

In this paper we focus on the problem of building stand-
alone systems, which we will term “monitors.” Though mon-
itors necessarily face the difficulties of more limited infor-
mation than systems with access to audit trails, monitors
also gain the major benefit that they can be added to a net-
work without requiring any changes to the hosts. For our
purposes—monitoring a collection of several thousand het-
erogeneous, diversely-administered hosts—this advantage is
immense.

Our monitoring system is called Bro (an Orwellian re-
minder that monitoring comes hand in hand with the po-
tential for privacy violations). A number of commer-
cial products exist that do what Bro does, generally with
much more sophisticated interfaces and management soft-
ware [In99, To99, Ci99],1 and larger “attack signature” li-
braries. To our knowledge, however, there are no detailed
accounts in the network security literature of how monitors
can be built. Furthermore, monitors can be susceptible to a
number of attacks aimed at subverting the monitoring; we
believe the attacks we discuss here have not been previously
described in the literature. Thus, the contribution of this pa-
per is not at heart a novel idea (though we believed it novel
when we undertook the project, in 1995), but rather a de-
tailed overview of some experiences with building such a
system.

Prior to developing Bro, we had significant operational ex-
perience with a simpler system based on off-line analysis of
tcpdump [JLM89] trace files. Out of this experience we
formulated a number of design goals and requirements:

High-speed, large volume monitoringFor our environ-
ment, we view the greatest source of threats as external
hosts connecting to our hosts over the Internet. Since
the network we want to protect has a single link con-
necting it to the remainder of the Internet (a “DMZ”),
we can economically monitor our greatest potential
source of attacks by passively watching the DMZ link.1Or at least appear, according to their product literature, to do the same

things—we do not have direct experience with any of these products.
A somewhat different sort of product, the “Network Flight Recorder,” is

described in [RLSSLW97], though it is now increasingly usedfor intrusion
detection [Ne99].
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However, the link is an FDDI ring, so to monitor it re-
quires a system that can capture traffic at speeds of up
to 100 Mbps.

No packet filter drops If an application using a packet fil-
ter cannot consume packets as quickly as they arrive on
the monitored link, then the filter will buffer the pack-
ets for later consumption. However, eventually the fil-
ter will run out of buffer, at which point itdropsany
further packets that arrive. From a security monitor-
ing perspective, drops can completely defeat the mon-
itoring, since the missing packets might contain ex-
actly the interesting traffic that identifies a network in-
truder. Given our first design requirement—high-speed
monitoring—then avoiding packet filter drops becomes
another strong requirement.

It is sometimes tempting to dismiss a problem such as
packet filter drops with an argument that it is unlikely
a traffic spike will occur at the same time as an attack
happens to be underway. This argument, however, is
completely undermined if we assume that an attacker
might, in parallel with a break-in attempt,attack the
monitor itself (see below).

Real-time notification One of our main dissatisfactions
with our initial off-line system was the lengthy delay
incurred before detecting an attack. If an attack, or
an attempted attack, is detected quickly, then it can be
much easier to trace back the attacker (for example, by
telephoning the site from which they are coming), min-
imize damage, prevent further break-ins, and initiate
full recording of all of the attacker's network activity.
Therefore, one of our requirements for Bro was that it
detect attacks in real-time. This is not to discount the
enormous utility of keeping extensive, permanent logs
of network activity for later analysis. Invariably, when
we have suffered a break-in, we turn to these logs for
retrospective damage assessment, sometimes searching
back a number of months.

Mechanism separate from policy Sound software design
often stresses constructing a clear separation between
mechanism and policy; done properly, this buys both
simplicity and flexibility. The problems faced by our
system particularly benefit from separating the two: be-
cause we have a fairly high volume of traffic to deal
with, we need to be able to easily trade-off at differ-
ent times how we filter, inspect and respond to different
types of traffic. If we hardwired these responses into the
system, then these changes would be cumbersome (and
error-prone) to make.

Extensible Because there are an enormous number of dif-
ferent network attacks, with who knows how many
waiting to be discovered, the system clearly must be
designed in order to make it easy to add to it knowledge
of new types of attacks. In addition, while our system

is a research project, it is at the same time a production
system that plays a significant role in our daily secu-
rity operations. Consequently, we need to be able to
upgrade it in small, easily debugged increments.

Avoid simple mistakes Of course, we always want to avoid
mistakes. However, here we mean that we particularly
desire that the way that a site defines its security pol-
icy be both clear and as error-free as possible. (For ex-
ample, we would not consider expressing the policy in
C code as meeting these goals.)

The monitor will be attacked We must assume that attack-
ers will (eventually) have full knowledge of the tech-
niques used by the monitor, and access to its source
code, and will use this knowledge in attempts to sub-
vert or overwhelm the monitor so that it fails to detect
the attacker's break-in activity. This assumption signifi-
cantly complicates the design of the monitor; but failing
to address it is to build a house of cards.

We do, however, allow one further assumption, namely
that the monitor will only be attacked from one end.
That is, given a network connection between hostsA
andB, we assume that at most one ofA orB has been
compromised and might try to attack the monitor, but
not both. This assumption greatly aids in dealing with
the problem of attacks on the monitor, since it means
that we can trust one of the endpoints(though we do
not know which).

In addition, we note that this second assumption costs
us virtually nothing. If, indeed, bothA andB have been
compromised, then the attacker can establish intricate
covert channels between the two. These can be immea-
surably hard to detect, depending on how devious the
channel is; that our system fails to do so only means we
give up on something extremely difficult anyway.

A final important point concerns the broader context for
our monitoring system. Our site is engaged in basic, unclas-
sified research. The consequences of a break-in are usually
limited to (potentially significant) expenditure in lost time
and re-securing the compromised machines, and perhaps a
tarnished public image depending on the subsequent actions
of the attackers. Thus, while we very much aim to minimize
break-in activity, we do not try to achieve “airtight” security.
We instead emphasize monitoring over blocking when possi-
ble. Obviously, other sites may have quite different security
priorities, which we do not claim to address.

In the remainder of this paper we discuss how the design
of Bro attempts to meet these goals and constraints. First, inx 2 we give an overview of the structure of the whole system.x 3 presents the specializedBro language used to express a
site's security policy. We turn inx 4 to the details of how the
system is currently implemented.x 5 discusses attacks on
the monitoring system.x 6 looks at the specialized analysis
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Figure 1: Structure of the Bro system

Bro does for six Internet applications: FTP, Finger, Portmap-
per, Ident, Telnet and Rlogin.x 7 gives the status of the im-
plementation and our experiences with it, including a brief
assessment of its performance.x 8 offers some thoughts on
future directions. Finally, an Appendix illustrates how the
different elements of the system come together for monitor-
ing Finger traffic.

2 Structure of the system

Bro is conceptually divided into an “event engine” that re-
duces a stream of (filtered) packets to a stream of higher-level
network events, and an interpreter for a specialized language
that is used to express a site's security policy. More gener-
ally, the system is structured in layers, as shown in Figure 1.
The lower-most layers process the greatest volume of data,
and hence must limit the work performed to a minimum. As
we go higher up through the layers, the data stream dimin-
ishes, allowing for more processing per data item. This ba-
sic design reflects the need to conserve processing as much
as possible, in order to meet the goals of monitoring high-
speed, large volume traffic flows without dropping packets.

2.1 libpcap

From the perspective of the rest of the system, just above the
network itself islibpcap [MLJ94], the packet-capture li-

brary used bytcpdump [JLM89]. Using libpcap gains
significant advantages: it isolates Bro from details of the
network link technology (Ethernet, FDDI, SLIP, etc.); it
greatly aids in porting Bro to different Unix variants (which
also makes it easier to upgrade to faster hardware as it be-
comes available); and it means that Bro can also operate
on tcpdump save files, making off-line development and
analysis easy.

Another major advantage oflibpcap is that if the host
operating system provides a sufficiently powerful kernel
packet filter, such as BPF [MJ93], thenlibpcap down-
loads the filter used to reduce the traffic into the kernel. Con-
sequently, rather than having to haul every packet up to user-
level merely so the majority can be discarded (if the filter
accepts only a small proportion of the traffic), the rejected
packets can instead be discarded in the kernel, without suf-
fering a context switch or data copying. Winnowing down
the packet stream as soon as possible greatly abets monitor-
ing at high speeds without losing packets.

The key to packet filtering is, of course, judicious selec-
tion of which packets to keep and which to discard. For the
application protocols that Bro knows about, it captures every
packet, so it can analyze how the application is being used.
In tcpdump 's filtering language, this looks like:

port finger or port ftp or tcp port 113 or
port telnet or port login or port 111

That is, the filter accepts any TCP packets with a source
or destination port of 79 (Finger), 21 (FTP), 113 (Ident),
23 (Telnet), 513 (Rlogin), and any TCP or UDP packets with
a source or destination port of 111 (Portmapper). In addition,
Bro uses:

tcp[13] & 7 != 0

to capture any TCP packets with the SYN, FIN, or RST con-
trol bits set. These packets delimit the beginning (SYN) and
end (FIN or RST) of each TCP connection. Because TCP/IP
packet headers contain considerable information about each
TCP connection, from just these control packets one can
extract connection start time, duration, participating hosts,
ports (and hence, generally, the application protocol), and the
number of bytes sent in each direction. Thus, by capturing
on the order of only 4 packets (the two initial SYN packets
exchanged, and the final two FIN packets exchanged), we
can determine a great deal about a connection even though
we filter out all of its data packets.

The final filter we use is:

ip[6:2] & 0x3fff != 0

which captures IP fragments, necessary for sound traffic
analysis, and also to protect against particular attacks on the
monitoring systemx 5.3.

When using a packet filter, one must also choose asnap-
shot length, which determines how much of each packet
should be captured. For example, by defaulttcpdump uses
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a snapshot length of 68 bytes, which suffices to capture link-
layer and TCP/IP headers, but generally discards most of the
data in the packet. The smaller the snapshot length, the less
data per accepted packet needs to copied up to the user-level
by the packet filter, which aids in accelerating packet pro-
cessing and avoiding loss. On the other hand, to analyze
connections at the application level, Bro requires the full data
contents of each packet. Consequently, it sets the snapshot
length to capture entire packets.

2.2 Event engine

The resulting filtered packet stream is then handed up to the
next layer, the Bro “event engine.” This layer first performs
several integrity checks to assure that the packet headers are
well-formed, including verifying the IP header checksum. If
these checks fail, then Bro generates an event indicating the
problem and discards the packet. It is also at this point that
Bro reassembles IP fragments so it can then analyze com-
plete IP datagrams.

If the checks succeed, then the event engine looks up
the connection state associated with the tuple of the two
IP addresses and the two TCP or UDP port numbers, cre-
ating new state if none already exists. It then dispatches the
packet to a handler for the corresponding connection (de-
scribed shortly). Bro maintains atcpdump trace file asso-
ciated with the traffic it sees. The connection handler indi-
cates upon return whether the engine should record the entire
packet to the trace file, just its header, or nothing at all. This
triage trades off the completeness of the traffic trace versus
its size and time spent generating the trace. Generally, Bro
records full packets if it analyzed the entire packet; just the
header if it only analyzed the packet for SYN/FIN/RST com-
putations; and skips recording the packet if it did not do any
processing on it.

We now give an overview of general processing done for
TCP and UDP packets. In both cases, the processing ends
with invoking a handler to process the data payload of the
packet. For applications known to Bro, this results in further
analysis, as discussed inx 6. For other applications, analysis
ends at this point.

TCP processing. For each TCP packet, the connec-
tion handler (a C++ virtual function) verifies that the entire
TCP header is present and validates the TCP checksum over
the packet header and payload. If successful, it then tests
whether the TCP header includes any of the SYN/FIN/RST
control flags, and if so adjusts the connection's state ac-
cordingly. Finally, it processes any data acknowledgement
present in the header, and then invokes a handler to process
the payload data, if any.

Different changes in the connection's state generate dif-
ferent events. When the initial SYN packet requesting
a connection is seen, the event engine schedules a timer
for T seconds in the future (presently, five minutes); if
the timer expires and the connection has not changed
state, then the engine generates aconnection attempt

event. If before that time, however, the other con-
nection endpoint replies with a correct SYN acknow-
ledgement packet, then the engine immediately generates
a connection established event, and cancels the
connection attempt timer. On the other hand, if the
endpoint replies with a RST packet, then the connec-
tion attempt has been rejected, and the engine generates
connection rejected . Similarly, if a connection ter-
minates via a normal FIN exchange, then the engine gen-
eratesconnection finished . It also generates several
other events reflecting more unusual ways in which connec-
tions can terminate.

UDP processing.UDP processing is similar but simpler,
since there is no connection state, except in one regard. If
hostA sends a UDP packet to hostB with a source port ofpA
and a destination port ofpB , then Bro considersA as having
initiated a “request” toB, and establishes pseudo-connection
state associated with that request. IfB subsequently sends
a UDP packet toA with a source port ofpB and destina-
tion pA, then Bro considers this packet to reflect a “reply”
to the request. The handlers (virtual functions) for the UDP
payload data can then readily distinguish between requests
and replies for the usual case when UDP traffic follows that
pattern. The default handlers for UDP requests and replies
simply generateudp request andudp reply events.

2.3 Policy script interpreter

After the event engine has finished processing a packet, it
then checks whether the processing generated any events.
(These are kept on a FIFO queue.) If so, it processes each
event until the queue is empty, as described below. It also
checks whether any timer events have expired, and if so pro-
cesses them, too (seex 4 for more on timer expiration).2

A key facet of Bro's design is the clear distinction between
the generation of events versus what to do in response to
the events. These are shown as separate boxes in Figure 1,
and this structure reflects the separation between mechanism
and policy discussed inx 1. The “policy script interpreter”
executes scripts written in the specializedBro language (de-
tailed inx 3). These scripts specify event handlers, which are
essentially identical to Bro functions except that they don' t
return a value. For each event passed to the interpreter, it re-
trieves the (semi-)compiled code for the corresponding han-
dler, binds the values of the events to the arguments of the2There is a subtle design decision involved with processing all of the
generated events before proceeding to read the next packet.We might be
tempted to defer event processing until a period of relatively light activity,
to aid the engine with keeping up during periods of heavy load. However,
doing so can lead to races: the “event control” arrow in Figure 1 reflects
the fact that the policy script can, to a limited degree, manipulate the con-
nection state maintained inside the engine. If event processing is deferred,
then such control may happen after the connection state has already been
changed due to more recently-received traffic. So, to ensurethat event pro-
cessing always reflects fresh data, and does not inadvertently lead to incon-
sistent connection state, we process events immediately, before moving on
to newly-arrived network traffic.
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handler, and interprets the code. This code in turn can exe-
cute arbitrary Bro scripting commands, including generating
new events, logging real-time notifications (using the Unix
syslogfunction), recording data to disk, or modifying inter-
nal state for access by subsequently invoked event handlers
(or by the event engine itself).

Finally, along with separating mechanism from policy,
Bro's emphasis on asynchronous events as the link between
the event engine and the policy script interpreter buys a great
deal in terms of extensibility. Adding new functionality to
Bro generally consists of adding a new protocol analyzer to
the event engine and then writing new event handlers for the
events generated by the analyzer. Neither the analyzer nor
the event handlers tend to have much overlap with existing
functionality, so for the most part we can avoid the subtle in-
teractions between loosely coupled modules that can easily
lead to maintenance headaches and buggy programs.

3 The Bro language

As discussed above, we express security policies in terms of
scripts written in the specializedBro language. In this sec-
tion we give an overview of the language's features. The aim
is to convey the flavor of the language, rather than describe
it precisely.

Our goal of “avoid simple mistakes” (x 1), while perhaps
sounding trite, in fact heavily influenced the design of the
Bro language. Because intrusion detection can form a cor-
nerstone of the security measures available to a site, we very
much want our policy scripts to behave as expected. From
our own experience, a big step towards avoiding surprises is
to use a strongly typed language that detects typing inconsis-
tencies at compile-time, and that guarantees that all variable
references at run-time will be to valid values. Furthermore,
we have come to appreciate the benefits of domain-specific
languages, that is, languages tailored for a particular task.
Having cobbled together our first monitoring system out of
tcpdump , awk, and shell scripts, we thirsted for ways to
deal directly with hostnames, IP addresses, port numbers,
and the like, rather than devising ASCII pseudo-equivalents.
By making these sorts of entities first-class values inBro , we
both increase the ease of expression offered by the language
and, due to strong typing, catch errors (such as comparing a
port to an IP address) that might otherwise slip by.

3.1 Data types and constants

Atomic types. Bro supports several types familiar to users
of traditional languages:bool for booleans,int for in-
tegers,count for non-negative integers (“unsigned” in C),
double for double-precision floating point, andstring
for a series of bytes. The first four of these (all butstring )
are termedarithmetictypes, and mixing them in expressions
promotesbool to count , count to int , and int to
double .

Bro providesT and F as bool constants for true and
false; a series of digits forcount constants; and C-style
constants fordouble andstring .

Unlike in C, however,Bro strings are represented inter-
nally as a count and a vector of bytes, rather than a NUL-
terminated series of bytes. This difference is important be-
cause NULs can easily be introduced into strings derived
from network traffic, either by the nature of the application,
inadvertently, or maliciously by an attacker attempting to
subvert the monitor. An example of the latter is sending the
following to an FTP server:

USER nice\0USER root

where “\0 ” represents a NUL. Depending on how it is writ-
ten, the FTP application receiving this text might well in-
terpret it as two separate commands, “USER nice ” fol-
lowed by “USER root ”. But if the monitoring program
uses NUL-terminated strings, then it will effectively see only
“USER nice ” and have no opportunity to detect the sub-
versive action.

Similarly, it is important that when Bro logs such strings,
or prints them as text to a file, that it expands embedded
NULs into visible escape sequences to flag their appearance.

Bro also includes a number of non-traditional types,
geared towards its specific problem domain. A value of
type time reflects an absolute time, andinterval a dif-
ference in time. Subtracting twotime values yields an
interval ; adding or subtracting aninterval to atime
yields atime ; adding twotime values is an error. There
are presently notime constants, butinterval constants
can be specified using a numeric (possibly floating-point)
value followed by a unit of time, such as “30 min ” for
thirty minutes.

Theport type corresponds to a TCP or UDP port num-
ber. TCP and UDP ports are distinct. Thus, a variable of type
port can hold either a TCP or a UDP port, but at any given
time it is holding exactly one of these.

There are two forms ofport constants. The first con-
sists of an unsigned integer followed by either “/tcp ” or
“ /udp .” So, for example, “80/tcp ” corresponds to TCP
port 80 (the HTTP protocol used by the World Wide Web).
The second form of constant is specified using a prede-
fined identifier, such as “http ”, equivalent to “80/tcp .”
Originally, we would look up otherwise-undefined identifiers
using thegetservbynamelibrary routine. However, doing
so not only runs into difficulties when a single name like
“domain ” has both TCP and UDP definitions, but, more
fundamentally, erodes portability because agetservbyname
service name known on one system might well be missing
from another system, rendering invalid anyBro scripts writ-
ten using the service name.

Values of typeport may be compared for equality or or-
dering (for example, “20/tcp < telnet ” yields true),
but otherwise cannot be operated on.

Another networking type provided byBro is addr , cor-
responding to an IP address. These are represented inter-
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nally as unsigned, 32-bit integers, but inBro scripts the only
operations that can be performed on them are comparisons
for equality or inequality (also, a built-in function provides
masking, as discussed below). Constants of typeaddr have
the familiar “dotted quad” format,A1:A2:A3:A4.

More interesting arehostnameconstants. There is no
Bro type corresponding to Internet hostnames, because
hostnames can correspond to multiple IP addresses, so one
quickly runs into ambiguities if comparing one hostname
with another. Bro does, however, support hostnames as
constants. Any series of two or more identifiers delim-
ited by dots forms a hostname constant, so, for example,
“ lbl.gov ” and “www.microsoft.com ” are both host-
name constants (the latter, as of this writing, corresponds to
6 distinct IP addresses). The value of a hostname constant
is a list of addr containing one or more elements. These
lists cannot be used inBro expressions; but they play a cen-
tral role in initializing Bro table 's andset 's, discussed
in x 3.3 below.

Aggregate types.Bro also supports a number of aggre-
gate types. Arecord is a collection of elements of arbi-
trary type. For example, the predefinedconn id type, used
to hold connection identifiers, is defined in theBro run-time
initialization file as:

type conn_id: record {
orig_h: addr;
orig_p: port;
resp_h: addr;
resp_p: port;

};

The orig h and resp h elements (or “fields”) have type
addr and hold the connection originator's and responder's
IP addresses. Similarly,orig p andresp p hold the orig-
inator and responder ports. Record fields are accessed using
the “$” operator.

For specifying security policies, a particularly usefulBro
type is table . Bro tables have two components, a set of
indicesand ayield type. The indices may be of any atomic
(non-aggregate) type, and/or anyrecord types that, when
(recursively) expanded into all of their elements, are com-
prised of only atomic types. (Thus,Bro tables provide a
form of associative array.) So, for example,

table[port] of string

can be indexed by aport value, yielding astring , and:

table[conn_id] of ftp_session_info

is indexed by aconn id record—or, equivalently, by an
addr , a port , anotheraddr , and anotherport —and
yields anftp session info record as a result.

Closely related totable types areset types. These are
simply table types that do not yield a value. Their purpose
is to maintain collections of tuples, expressed in terms of the
set's indices. The examples inx 3.3 clarify how this is useful.

Another aggregate type supported isfile . Support for
files is presently crude: a script can open files for writing or

appending, and can pass the resultingfile variable to the
print command to specify where it should write, but that
is all. Also, these files are simple ASCII. In the future, we
plan to extend files to support reading, ASCII parsing, and
binary (typed) reading and writing.

Finally, above we alluded to thelist type, which holds
zero or more instances of a value. Currently, this type is not
directly available to theBro script writer, other than implic-
itly when usinghostnameconstants. Since its present use is
primarily internal to the script interpreter (when initializing
variables, perx 3.3), we do not describe it further.

Regular expressions. The last built-in Bro type is
pattern . Patterns are Unix-style regular expressions; in
particular, the syntax used by theflexutility [Pa96]. Pattern
constants are enclosed by/ delimiters. For example:

/sync|lp|uucp|operator|ezsetup|4dgifts/

is a pattern that matches a number of common default Unix
accounts.

Presently, only two operations are allowed on pattern val-
ues: assignment, and testing to see whether the pattern value
matches a given string (discussed below).

3.2 Operators

Bro provides a number of C-like operators (+, - , * , / , %,
! , &&, || , ?: , relationals like<=) with which we assume
the reader is familiar, and will not detail here. Assignment
is done using=, table and set indexing with[] , and func-
tion invocation and event generation with() . Numeric vari-
ables can be incremented and decremented using++ and
-- . Record fields are accessed using$, to avoid ambiguity
with hostnameconstants. Assignment of aggregate values
is shallow—the newly-assigned variable refers to the same
aggregate value as the right-hand side of the assignment ex-
pression. This choice was made to facilitate performance;
we have not yet been bitten by the semantics (which differ
from C). We may in the future add acopy operator to con-
struct “deep” copies.

From the perspective of C, the only novel operators are
in and !in . These infix operators yieldbool values de-
pending on whether or not a given index is in a giventable
or set . For example, ifsensitive services is aset
indexed by a singleport , then

23/tcp in sensitive_services

returns true if the set has an element corresponding to an in-
dex of TCP port 23, false if it does not have such an element.
Similarly, if RPCokay is aset (or table ) indexed by a
source address, a destination address, and an RPC service
number (acount ), then

[src_addr, dst_addr, serv] in RPC_okay

yields true if the given ordered triple is present as an in-
dex intoRPCokay . The !in operator simply returns the
boolean negation of thein operator.
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Presently, indexing a table or set with a value that does not
correspond to one of its elements leads to a run-time error,
so such operations need to be preceded byin tests. We find
this not entirely satisfying, and plan to add a mechanism for
optionally specifying the action to take in such cases on a
per-table basis.

Another use of thein and !in operators is for regular-
expression pattern matching. For example,

filename in /rootkit-1\.[5-8]/

yields true if the value of the expressionfilename (which
must have typestring ) matches any ofrootkit-1.5 ,
rootkit-1.6 , rootkit-1.7 , or rootkit-1.8 .

Finally, Bro includes a number of predefined functions
to perform operations not directly available in the lan-
guage. Some of the more interesting:fmt providessprintf-
style formatting for use in printing or manipulating strings;
edit returns a copy of a string that has been edited using
the given editing characters (currently it only knows about
single-character deletions);mask addr takes anaddr
and returns anotheraddr corresponding to its topn bits;
open and close manipulatefile s; network time
returns the timestamp of the most recently received
packet;getenv provides access to environment variables;
skip further processing marks a connection as not
requiring any further analysis;set record packets in-
structs the event engine whether or not to record any of
a connection's future packets (though SYN/FIN/RST are
always recorded);set contents file specifies a file
to which Bro records the connection's reassembled byte
stream; system executes a string as a Unix shell com-
mand; andparse ftp port takes an FTP “PORT” com-
mand and returns arecord with the correspondingaddr
andport .

3.3 Variables

Bro supports two levels of scoping: local to a function or
event handler, and global to the entireBro script. Expe-
rience has already shown that we would benefit by adding
a third, intermediate level of scoping, perhaps as part of
a “module” or “object” facility, or even as simple as C's
static scoping. Local variables are declared using the
keywordlocal , and the declarations must come inside the
body of a function or event handler. There is no requirement
to declare variables at the beginning of the function. The
scope of the variable ranges from the point of declaration to
the end of the body. Global variables are declared using the
keywordglobal and the declarations must come outside
of any function bodies. For either type of declaration, the
keyword can be replaced instead byconst , which indicates
that the variable's value is constant and cannot be changed.

Syntactically, a variable declaration looks like:

{class} {identifier} [':' {type}] ['=' {init}]

That is, a class (local or global scope, or theconst
qualifier), the name of the variable, an optional type, and an
optional initialization value. One of the latter two must be
specified. If both are, then naturally the type of the initial-
ization much agree with the specified type. If only a type is
given, then the variable is marked as not having a value yet;
attempting to access its value before first setting it results in
a run-time error.

If only an initializer is specified, then Bro infers the vari-
able's type from the form of the initializer. This proves quite
convenient, as does the ease with which complex tables and
sets can be initialized. For example,

const IRC = { 6666/tcp, 6667/tcp, 6668/tcp };

infers a type ofset[port] for IRC, while:

const ftp_serv = { ftp.lbl.gov, www.lbl.gov };

infers a type ofset[addr] for ftp serv , and initial-
izes it to consist of the IP addresses forftp.lbl.gov
and www.lbl.gov , which, as noted above, may encom-
pass more than two addresses. Bro infers compound indices
by use of[] notation:

const allowed_services = {
[ftp.lbl.gov, ftp], [ftp.lbl.gov, smtp],
[ftp.lbl.gov, ident], [ftp.lbl.gov, 20/tcp],
[www.lbl.gov, ftp], [www.lbl.gov, smtp],
[www.lbl.gov, ident], [www.lbl.gov, 20/tcp],
[nntp.lbl.gov, nntp]

};

results inallowed services having typeset[addr,
port] . Here again, thehostnameconstants may result in
more than one IP address. Any time Bro encounters alist
of values in an initialization, it replicates the correspond-
ing index. Furthermore, one can explicitly introduce lists in
initializers by enclosing a series of values (with compatible
types) in[] 's, so the above could be written:

const allowed_services: set[addr, port] = {
[ftp.lbl.gov, [ftp, smtp, ident, 20/tcp]],
[www.lbl.gov, [ftp, smtp, ident, 20/tcp]],
[nntp.lbl.gov, nntp]

};

The only cost of such an initialization is that Bro's algorithm
for inferring the variable's type from its initializer currently
gets confused by these embedded lists, so the type now needs
to be explicitly supplied, as shown.

In addition, any previously-defined global variable can be
used in the initialization of a subsequent global variable. If
the variable used in this fashion is aset , then its indices are
expanded as if enclosed in their own list. So the above could
be further simplified to:

const allowed_services: set[addr, port] = {
[ftp_serv, [ftp, smtp, ident, 20/tcp]],
[nntp.lbl.gov, nntp]

};
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Initializing table values looks very similar, with the differ-
ence that atable initializer includes ayield value, too. For
example:

global port_names = {
[7/tcp] = "echo",
[9/tcp] = "discard",
[11/tcp] = "systat",
...

};

which infers a type oftable[port] of string .
We find that these forms of initialization shorthand are

much more than syntactic sugar. Because they allow us
to define large tables in a succinct fashion, by referring to
previously-defined objects and by concisely capturing forms
of replication in the table, we can specify intricate policy re-
lationships in a fashion that's both easy to write and easy
to verify. Certainly, we would prefer the final definition of
allowed services above to any of its predecessors, in
terms of knowing exactly what the set consists of.

Along with clarity and conciseness, another important
advantage ofBro 's emphasis on tables and sets is speed.
Consider the common problem of attempting to determine
whether access is allowed to serviceS of hostH. Rather than
using (conceptually):

if ( H == ftp.lbl.gov || H == www.lbl.gov )
if ( S == ftp || S == smtp || ... )

else if ( H == nntp.lbl.gov )
if ( S == nntp )

...

we can simply use:

if ( [S, H] in allowed_services )
... it's okay ...

The in operation translates into a single hash table lookup,
avoiding the cascadedif 's and clearly showing the intent of
the test.

3.4 Statements

Bro currently supports only a modest group of statements,
which we have so far found sufficient. Along with C-style
if andreturn and expression evaluation, other statements
are: print a list of expressions to afile (stdoutby de-
fault); log a list of expressions;add an element to aset ;
delete an element from aset or a table ; andevent ,
which generates a new event.

In particular, the language does not support looping using
a for -style construct. We are wary of loops in event han-
dlers because they can lead to arbitrarily large processing
delays, which in turn could lead to packet filter drops. We
wanted to see whether we could still adequately express se-
curity policies inBro without resorting to loops; if so, then
we have some confidence that every event is handled quickly.
So far, this experiment has been successful. Looping is still
possible via recursion (either functions calling themselves,

or event handlers generating their own events), but we have
not found a need to resort to it.

Like in C, we can group sets of statements intoblocksby
enclosing them withinfg's. Function definitions look like:

function endpoint_id(h: addr, p: port): string
{
if ( p in port_names )

return fmt("%s/%s", h, port_names[p]);
else

return fmt("%s/%d", h, p);
}

Event handler definitions look the same except that
function is replaced byevent and they cannot specify a
return type. See Appendix A for an example.

Functions are invoked the usual way, as expressions spec-
ified by the function's name followed by its arguments en-
closed within parentheses. Events are generated in a similar
fashion, except using the keywordevent before the han-
dler's name and argument list. Since events do not return
values (they can' t, since they are processed asynchronously),
event generation is a statement inBro and not an expression.

Bro also allows “global” statements that are not part of a
function or event handler definition. These are executed after
parsing the full script, and can of course invoke functions
or generate events. The event engine also generates events
during different phases of its operation:bro init when it
is about to begin operation,bro done when it is about to
terminate, andbro signal when it receives a Unix signal.

One difference between defining functions and defining
event handlers is thatBro allows multiple, different defini-
tions for a given event handler. Whenever an event is gen-
erated, each instance of a handler is invoked in turn (in the
order they appear in the script). So, for example, different
(conceptual) modules can each definebro init handlers
to take care of their initialization. We find this considerably
simplifies the task of creating modular sets of event handlers,
but we anticipate requiring greater control in the future over
the exact order in whichBro invokes multiple handlers.

4 Implementation issues

We implemented the Bro event engine and script interpreter
in C++, currently about 27,000 lines. In this section we
discuss some of the significant implementation decisions
and tradeoffs. We defer tox 5 discussion of how Bro de-
fends against attacks on the monitoring system, and post-
pone application-specific issues untilx 6, as that discussion
benefits from notions developed inx 5.

Use of C++. Our use of C++ was motivated by our suc-
cessful experience with using it for implementing another
event-oriented script interpreter, the Glish “software bus”
[PS93]. For Bro, this has been a clear success. Class hierar-
chies map well to protocol layers, which then simplifies ex-
tending the event engine and script interpreter. We have not
perceived any performance problems related to the choice of
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C++; the choice of interpreting versus compiling (see below)
is clearly a more dominant effect.

Single-threaded design.Since event handling lies at the
heart of the system, it is natural to consider a multi-threaded
design, with one thread per active event handler. We have so
far resisted this approach, because of concerns that it could
lead to subtle race conditions inBro scripts.

An important consequence of a single-threaded design is
that the system must be careful before initiating any activ-
ity that may potentially block waiting for a resource, lead-
ing to packet filter drops as the engine fails to consume in-
coming traffic. A particular concern is performing Domain
Name System (DNS) lookups, which can take many seconds
to complete or time out. Currently, Bro only performs such
lookups when parsing its input file, but we want in the fu-
ture to be able to make address and hostname translations on
the fly, both to generate clearer messages, and to detect cer-
tain types of attacks. Consequently, Bro includes customized
non-blocking DNS routines that perform DNS lookups asyn-
chronously.

We may yet adopt a multi-threaded design. A more likely
possibility is evolving Bro towards a distributed design,
in which loosely-coupled, multiple Bro's on separate hosts
monitor the same network link. Each Bro would watch a dif-
ferent type of traffic (e.g., HTTP or NFS) and communicate
only at a high level, to convey current threat information.3 A
further extension of this notion is a more general distributed
design, in which multiple Bro's watch multiple links, parti-
tioning the monitoring workload; and also interacting with
host-based agents. Others have recently also begun pursuing
distributed architectures [Ci99, In99].

Managing timers. Bro uses numerous timers internally
for operations such as timing out a connection establishment
attempt. It sometimes has thousands of timers pending at
a given moment. Consequently, it is important that timers
be very lightweight: quick to set and to expire. Our ini-
tial implementation used a single priority heap, which we
found attractive since insert and delete operations both re-
quire onlyO(log(N)) time if the heap containsN elements.
However, we found that when the heap grows quite large—
such as during a hostile port scan that creates hundreds of
new connections each second—then this overhead becomes
significant. Consequently, we perceived a need to redesign
timers to bring the overhead closer toO(1). To achieve this,
Bro now uses “calendar queues” instead [Br88].

A related issue with managing timers concerns exactly
when to expire timers. Bro derives its notion of time from the
timestamps provided bylibpcap with each packet it de-
livers. Whenever this clock advances to a time later than the
first element on the timer queue, Bro begins removing timers
from the queue and processing their expiration, continuing
until the queue is empty or its first element has a timestamp3Some systems, such as DIDS and CSM, orchestrate multiple monitors
watching multiple network links, in order to track users as they move from
machine to machine [MHL94, WFP96]. These differ from what weenvision
for Bro in that they require each host in the network to run a monitor.

later than the current time. This approach is flawed, how-
ever, because in some situations—such as port scans—the
event engine may find it needs to expire hundreds of timers
that have suddenly become due, because the clock has ad-
vanced by a large amount due to a lull in incoming traffic.
We avoid incurring a large processing spike in this situation
by placing an upper limitk on the number of timers expired
for any single advance of the clock. Doing so trades off timer
exactness for spreading out load. Since we do not perceive a
requirement for precise timers, this is an acceptable compro-
mise.

Implementing regular expressions. Bro uses a custom
regular-expression matching library, rather than reusing an
existing one, for two reasons. First, we were unable to lo-
cate a high performance regular expression library with a
redistribution license we found acceptable. In addition, in-
trusion detection pattern-matching differs from more typical
text matching in two ways.

First, we want the ability to match text piecemeal, so we
can feed the matcher new chunks of text as they arrive, with-
out having to construct a copy of the entire string to match.
Second, we anticipate matching sets of patterns and want-
ing to know which subset were matched by a given set of
text, and for performance reasons we want to do the match
with a single finite automaton rather than trying each pattern
sequentially.

Since we had experience writing a high performance reg-
ular expression compiler [Pa96], and one that already sup-
ported the second of the above requirements, we decided to
take that compiler and reimplement it in C++ to fit into Bro.
Doing so was actually considerably easier than anticipated,
and the only remaining piece for supporting the above re-
quirements now is the corresponding Bro interpreter modifi-
cations.

One final facet of implementing regular expressions con-
cerns caching: we employ a large number of patterns in
our analysis (particularly for scanning interactive sessions,
as discussed inx 6.5). These can take a large amount of
CPU time (minutes) to compile, which is problematic when
we want to start up the monitor quickly. Consequently, Bro
maintains a cache of previously-compiled regular expres-
sions, and if called upon to compile one that is already in
the cache, simply loads the compiled version, taking very
little time.

Interpreting vs. compiling. Presently, Bro interprets the
policy script: that is, it parses the script into a tree of C++
objects that reflect an abstract syntax tree (AST), and then
executes portions of the tree as needed by invoking a vir-
tual evaluation method at the root of a given subtree. This
method in turn recursively invokes evaluation methods on its
children.

Such a design has the virtues of simplicity and ease of
debugging, but comes at the cost of considerable overhead.
From its inception, we intendedBro to readily admit com-
pilation to a low-level virtual machine. Execution profiles
of the current implementation indicate that the interpretive
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overhead is indeed significant, so we anticipate developing a
compiler and optimizer. (The current interpreter does some
simple constant folding and peephole optimization when
building the AST, but no more.)

Using an interpreter also inadvertently introduced an im-
plementation problem. By structuring the interpreter such
that it recursively invokes virtual evaluation methods on the
AST, we wind up intricately tying theBro evaluation stack
with the C++ run-time stack. Consequently, we cannot eas-
ily bundle up aBro function's execution state into a closure
to execute at some later point in time. Yet we would like to
have this functionality, soBro scripts have timers available
to them; the semantics of these timers are to execute a block
of statements when a timer expires, including access to the
local variables of the function or event handler scheduling
the timer. Therefore, adding timers toBro will require at a
minimum implementing an execution stack forBro scripts
separate from that of the interpreter.

Checkpointing. We run Bro continuously to monitor our
DMZ network. However, we need to periodically checkpoint
its operation, both to reclaim memory tied up in remember-
ing state for long-dormant connections (because we don' t yet
have timers in the scripting language; see above), and to col-
lect a snapshot for archiving and off-line analysis (discussed
below).

Checkpointing is currently a three-stage process. First, we
run a new instance of Bro that parses the policy script and
resolves all of the DNS names in it. Because we have non-
blocking DNS routines, Bro can perform a large number of
lookups in parallel, as well as timing out lookup attempts
whenever it chooses. For each lookup, it compares the re-
sults with any it may have previously cached and generates
corresponding events (mapping valid, mapping unverified if
it had to time out the lookup, or mapping changed). It then
updates the DNS cache file and exits.

In the second stage, we run another instance of Bro, this
time specifying that it should only consult the DNS cache
and not perform lookups. Because it works directly out of the
cache, it starts very quickly. After waiting a short interval,
we then send a signal to the long-running Bro telling it to
terminate. When it exits, the checkpointing is complete.

We find the checkpointing deficient in two ways. First,
it would be simpler to coordinate a checkpoint if a new in-
stance of Bro could directly signal an old instance to an-
nounce that it is ready to take over monitoring. Second, and
more important, currently no state survives the checkpoint-
ing. In particular, if the older Bro has identified some sus-
pect activity and is watching it particularly closely (say, by
recording all of its packets), this information is lost when the
new Bro takes over. Clearly, we need to fix this.

Off-line analysis. As mentioned above, one reason for
checkpointing the system is to facilitate off-line analysis.
The first step of this analysis is to copy thelibpcap save
file and any files generated by the policy script to an anal-
ysis machine. Our policy script generates six such files: a
summary of all connection activity, including starting time,

duration, size in each direction, protocol, IP addresses, con-
nection state, and any additional information (such as user-
name, when identified); a summary of the network interface
and packet filter statistics; a list of all generated log mes-
sages; summaries of Finger and FTP commands; and a list
of all unusual networking events.

Regarding this last, the event engine identifies more than
70 different types of unusual behavior, such as incorrect con-
nection initiations and terminations, checksum errors, packet
length mismatches, and protocol violations. For each, it gen-
erates aconn weird or net weird event, identifying the
behavior with a predefined string. Our policy script uses a
table[string] of count to map these strings to one
of “ignore,” “file,” “log always,” “log once per connection,”
and “log once per originating source address,” meaning ig-
nore the behavior entirely, record it to the anomaly file, log
it (real-time notification) and record it to the file, and log it
but only the first time it occurs for the given connection or
the given source address. Some anomalies prove surprisingly
common, and on a typical day the anomaly file contains sev-
eral thousand entries, even though our script suppresses du-
plicate messages. (Seex 7.3 below for further discussion of
anomalies.)

All of the copied files thus form an archival record of the
day's traffic. We keep these files indefinitely. They can prove
invaluable when we discover a break-in that first occurred
weeks or months in the past. In addition, once we have iden-
tified an attacking site, we can run it through the archive to
find any other hosts it may have attacked that the monitoring
failed to detect (for example, the attacker has obtained a list
of passwords using a password-sniffer).

Finally, the off-line analysis generates a traffic summary
highlighting the busiest hosts and giving the volume (number
of connections and bytes transferred) due to different appli-
cations. As of this writing, on a typical day our site engages
in about 1,200,000 connections transferring 40 GB of data.
The great majority (75–80%) of the connections are HTTP;
the highest byte volume comes from HTTP, FTP data, and
sometimes the NFS network file system.

5 Attacks on the monitor

In this section we discuss the difficult problem of defending
the monitor against attacks upon itself. We defer discussion
of Bro's application-specific processing until after this sec-
tion, because elements of that processing reflect attempts to
defeat the types of attacks we describe here.

As discussed inx 1, we assume that such attackers have
full access to the monitor's algorithms and source code; but
also that they have control over only one of the two connec-
tion endpoints. In addition, we assume that the cracker does
nothave access to theBro policy script, which each site will
have customized, and should keep well protected.

While previous work has addressed the general problem of
testing intrusion detection systems [PZCMO96], this work
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has focused on correctness of the system in terms of whether
it does indeed recognize the attacks claimed. To our knowl-
edge, the first discussion in the literature specifically aimed
at the problem of attackers subverting a network intrusion de-
tection system was the concurrent publication of the earlier
version of this paper [Pa98] and that of Ptacek and Newsham
[PN98].

The second of these is the more thorough, being com-
pletely devoted to the topic. The authors consider three types
of attacks, “insertion,” in which the attacker attempts to mis-
lead the monitor into accepting traffic that the destination
end-system rejects; “evasion,” in which the monitor fails to
accept traffic that the end-system does in fact accept; and
denial-of-service, in which the attacker attempts to exploit
a monitor's proactive mechanisms (such as terminating con-
nections belonging to an apparent attack) in order to disrupt
legitimate uses of the network.

For our purposes, however, we use a different attack tax-
onomy, because we focus on designing monitors to resist
these attacks. We classify network monitor attacks into three
categories:overload, crash, andsubterfuge. The remainder
of this section defines each category and briefly discusses the
degree to which Bro meets that class of threat.

5.1 Overload attacks

We term an attack as anoverloadif the goal of the attack is
to overburden the monitor to the point where it fails to keep
up with the data stream it must process. The attack has two
phases, the first in which the attacker drives the monitor to
the point of overload, and the second in which the attacker
attempts a network intrusion. The monitor would ordinarily
detect this second phase, but fails to do so—or at least fails
to do so with some non-negligible probability—because it is
no longer tracking all of the data necessary to detect every
current threat.

It is this last consideration, that the attack might still
be detected because the monitor was not sufficiently over-
whelmed, that complicates the use of overload attacks; so, in
turn, this provides a defensive strategy, namely to leave some
doubt as to the exact power and typical load of the monitor.

Another defensive strategy is for the monitor toshed load
when it becomes unduly stressed (see [CT94] for a discus-
sion of shedding load in a different context). For example,
the monitor might decide to cease to capture HTTP packets,
as these form a high proportion of the traffic. Of course, if
the attacker knows the form of load-shedding used by the
monitor, then they can exploit its consequent blindness and
launch a now-undetected attack.

For Bro in particular, to develop an overload attack one
might begin by inspecting Figure 1 to see how to increase the
data flow. One step is to send packets that match the packet
filter; another, packet streams that in turn generate events;
and a third, events that lead to logging or recording to disk.

The first of these is particularly easy, because the
libpcap filter used by Bro is fixed. One defense against

it is to use a hardware platform with sufficient processing
power to keep up with a high volume of filtered traffic, and
it was this consideration that lead to our elaborating the goal
of “no packet filter drops” inx 1. The second level of attack,
causing the engine to generate a large volume of events, is a
bit more difficult to achieve because Bro events are designed
to be lightweight. It is only the events for which the pol-
icy specifies quite a bit of work that provide much leverage
for an attack at this level, and we donot assume that the
attacker has access to the policy scripts. This same consid-
eration makes an attack at the final level—elevating the log-
ging or recording rate—difficult, because the attacker does
not necessarily know which events lead to logging.

Finally, to help defend against overload attacks, the
event engine periodically generates anet stats update
event. The value of this event gives the number of pack-
ets received, the number dropped by the packet filter due to
insufficient buffer, and the number reported dropped by the
network interface because the kernel failed to consume them
quickly enough. Thus,Bro scripts at least have some ba-
sic information available to them to determine whether the
monitor is becoming overloaded.

5.2 Crash attacks

Crash attacks aim to knock the monitor completely out of
action by causing it to either fault or run out of resources. As
with an overload attack, the crash attack has two phases, the
first during which the attacker crashes the monitor, and the
second during which they then proceed with an intrusion.

Crash attacks can be much more subtle than overload at-
tacks, though. By careful source code analysis, it may be
possible to find a series of packets, or even just one, that,
when received by the monitor, causes it to fault due to a cod-
ing error. The effect can be immediate and violent.

We can perhaps defend against this form of crash attack
by careful coding and testing. Another type of crash attack,
harder to defend against, is one that causes the monitor to ex-
haust its available resources: dynamic memory or disk space.
Even if the monitor has no memory leaks, it still needs to
maintain state for any active traffic. Therefore, one attack is
to create traffic that consumes a large amount of state. When
Bro supports timers for policy scripts, this attack will be-
come more difficult, because it will be harder to predict the
necessary level of bogus traffic. Attacks on disk space are
likewise difficult, unless one knows the available disk ca-
pacity. In addition, the monitor might continue to run even
with no disk space available, sacrificing an archival record
but still producing real-time notifications, so a disk space at-
tack might fail to mask a follow-on attack.

Bro provides two features to aid with defending against
crash attacks. First, the event engine maintains a “watch-
dog” timer that expires everyT seconds. (This timer is not
a Bro internal timer, but rather a Unix “alarm.”) Upon expi-
ration, the watchdog handler checks to see whether the event
engine has failed to finish processing the packet (and sub-
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sequent events) it was working onT seconds before. If so,
then the watchdog presumes that the engine is in some sort of
processing jam (perhaps due to a coding error, perhaps due
to excessive time spent managing overburdened resources),
and terminates the monitor process (first logging this fact, of
course, and generating a core image for later analysis).

This feature might not seem particularly useful, except for
the fact that it is coupled with a second feature: the script
that runs Bro also detects if it ever unduly exits, and, if so,
logs this fact and executes a copy oftcpdump that records
the same traffic that the monitor would have captured. Thus,
crash attacks are (1) logged, and (2) do not allow a subse-
quent intrusion attempt to go unrecorded, only to evade real-
time detection. However, there is a window of opportunity
between the time when the Bro monitor crashes and when
tcpdump runs. If an attacker can predict exactly when this
window occurs, then they can still evade detection. But de-
termining the window is difficult without knowledge of the
exact configuration of the monitoring system. One way of
closing this window is to employ a second, “shadow” moni-
toring machine that simply records to disk the same traffic as
the Bro monitor inspects.

5.3 Subterfuge attacks

In a subterfugeattack, an attacker attempts to mislead the
monitor as to the meaning of the traffic it analyzes. These
attacks are particularly difficult to defend against, because
(1) unlike overload and crash attacks, if successful they do
not leave any traces that they have occurred, and (2) the at-
tacks can be quite subtle. Access to the monitor's source
code particularly aids with devising subterfuge attacks.

We briefly discussed an example of a subterfuge attack
in x 3.1, in which the attacker sends text with an embedded
NUL in the hope that the monitor will miss the text after the
NUL. Another form of subterfuge attack is using fragmented
IP datagrams in an attempt to elude monitors that fail to re-
assemble IP fragments (an attack well-known to the firewall
community, and one we have increasingly detected in our on-
going operation of Bro). The key principle is to find a traffic
pattern interpreted by the monitor in a different fashion than
by the receiving endpoint, and then to leverage this into an
insertion or evasion attack, as discussed above.

To thwart subterfuge attacks, as we developed Bro we at-
tempted at each stage to analyze the explicit and implicit as-
sumptions made by the system, and how, by violating them,
an attack might successfully elude detection. This can be
a difficult process, though, and we make no claims to have
found them all! In the remainder of this section, we focus on
subterfuge attacks on the integrity of the byte stream moni-
tored for a TCP connection. Then, inx 6.5, we look at sub-
terfuge attacks aimed at hiding keywords in interactive text.

To analyze a TCP connection at the application level re-
quires extracting the payload data from each TCP packet and
reassembling it into its proper sequence. We now consider a
spectrum of approaches to this problem, ranging from sim-

plest and easiest to defeat, to increasingly resilient.
Scanning the data in individual packets without remem-

bering any connection state, while easiest, obviously suffers
from major problems: any time the text of interest happens
to straddle the boundary between the end of one packet and
the beginning of the next, the text will go unobserved. Such
a split can happen simply by accident, and certainly by ma-
licious intent.

Some systems address this problem by remembering
previously-seen text up to a certain degree (perhaps from the
beginning of the current line). This approach fails as soon
as a sequence “hole” appears: that is, any time a packet is
missing—due to loss or out-of-order delivery—then the re-
sulting discontinuity in the data stream again can mask the
presence of key text that is only partially present.

The next step is to fully reassemble the TCP data stream,
based on the sequence numbers associated with each packet.
Doing so requires maintaining a list of contiguous data
blocks received so far, and fitting the data from new pack-
ets into the blocks, merging now-adjacent blocks when pos-
sible. At any given moment, one can then scan the text from
the beginning of the connection to the highest in-sequence
byte received.

Unless we are careful, even keeping track of non-
contiguous data blocks does not suffice to prevent a TCP
subterfuge attack. The key observation is that an attacker
can manipulate the packets their TCP sends so that the mon-
itor sees a particular packet, but the endpoint does not. One
way of doing so is to transmit the packet with an invalid
TCP checksum. (This particular attack can be dealt with by
checksumming every packet, and discarding those that fail;
a monitor needs to do this anyway so that it correctly tracks
the endpoint's state in the presence of honest data corrup-
tion errors, which are not particularly rare [Pa97a].) Another
way is to launch the packet with an IP “Time To Live” (TTL)
field sufficient to carry the packet past the monitoring point,
but insufficient to carry it all the way to the endpoint. (If
the site has a complex topology, it may be difficult for the
monitor to detect this attack.) A third way becomes possible
if the final path to the attacked endpoint happens to have a
smaller Maximum Transmission Unit (MTU) than the Inter-
net path from the attacker's host to the monitoring point. The
attacker then sends a packet with a size exceeding this MTU
and with the IP “Don' t Fragment” header bit set. This packet
will then transit past the monitoring point, but be discarded
by the router at the point where the MTU narrows.

By manipulating packets in this fashion, an attacker can
send innocuous text for the benefit of the monitor, such
as “USER nice ”, and then retransmit (using the same se-
quence numbers) attack text (“USER root ”), this time al-
lowing the packets to traverse all the way to the endpoint.
If the monitor simply discards retransmitted data without in-
specting it, then it will mistakenly believe that the endpoint
received the innocuous text, and fail to detect the attack.

Figure 2 illustrates this attack. Here, the attacker sends
the text “USER” with an initial TTL of 20 hops, covering se-
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Figure 2: A TTL-based evasion attack on an intrusion detec-
tion system

quence numbers 6 through 9 in the TCP data stream. It is
18 hops to the victim and 10 hops to the monitor, so both
see this text and accept it. The attacker next transmits the
text “nice ” covering the next consecutive span of the se-
quence space, 10 through 13, but with an initial TTL of
only 12, which suffices for the packet to travel past the mon-
itor, but not all the way to the victim. Hence, the moni-
tor sees this text but the victim does not. The attacker the
sends the text “root ” with the same sequence numbers as
“nice ”, but this time with enough TTL to reach the victim.
The victim will thus only see the text “USER” followed by
“ root ”, while the monitor will see two versions of the text
for sequence numbers 10 through 13, and will have to decide
which to assume was also received by the victim (if, indeed,
it even detects that the data stream includes an inconsistency,
which requires extra work on the monitor's part). While in
this case by inspecting the TTLs itmaybe able to determine
which of the two versions the victim will have seen, there are
many other ways (window checks, the MTU attack above,
checksums, acknowledgement sequence number checks) of
subtly affecting header fields such that the victim will re-
ject one or the other of the two versions. Fundamentally, the
monitor cannot confidently know which of the two versions
to accept.

A partial defense against this attack is that when we ob-
serve a retransmitted packet (one with data that wholly or
partially overlaps previously-seen data), we compare it with
any data it overlaps, and sound an alarm (or, for Bro, gener-
ate an event) if they disagree. A properly-functioning TCP
will always retransmit the same data as originally sent, so
any disagreement is either due to a broken TCP, undetected
data corruption (i.e., corruption the checksum fails to catch),
or an attack.

We have argued that the monitor must retain a record of
previously transmitted data, both in-sequence and out-of-
sequence. The question now arises as to how long the mon-
itor must keep this data around. If it keeps it for the lifetime
of the connection, then it may require prodigious amounts of

memory any time it happens upon a particularly large con-
nection; these are not infrequent [Pa94]. We instead would
like to discard data blocks as soon as possible, to reclaim
the associated memory. Clearly, we cannot safely discard
blocks above a sequencing hole, as we then lose the opportu-
nity to scan the text that crosses from the sequence hole into
the block. But we would like to determine when it is safe to
discard in-sequence data.

Here we can make use of our assumption that the attacker
controls only one of the connection endpoints. Suppose the
stream of interest flows from hostA to hostB. If the at-
tacker controlsB, then they are unable to manipulate the
data packets in a subterfuge attack, so we can safely discard
the data once it is in-sequence and we have had an opportu-
nity to analyze it. On the other hand, if they controlA, then,
from our assumption, any traffic we see fromB reflects the
correct functioning of its TCP (this assumes that we use anti-
spoofing filters so that the attacker cannot forge bogus traffic
purportedly coming fromB). In particular, we can trust that
if we see an acknowledgement fromB for sequence numbern, then indeedB has received all data in sequence up ton.
At this point,B's TCP will deliver, or has already delivered,
this data to the application running onB. In particular,B's
TCP cannot accept any retransmitted data below sequencen, as it has already indicated it has no more interest in such
data. Therefore, when the monitor sees an acknowledgement
for n, it can safely release any memory associated with data
up to sequencen.

While this defense works for detecting this general class of
insertion attacks, it suffers from false positives, as discussed
in x 7.3 below.

Finally, we note a general defense against certain types
of subterfuge attacks, which we term “bifurcating analysis.”
The idea is that when the monitor cannot determine how an
endpoint will interpret some network traffic (such as whether
it will acceptUSER nice or USER root ), it forms mul-
tiple threads of analysis, examining each of the possibilities.
We note one example of doing so inx 6.5 below in our dis-
cussion of analyzing Telnet and Rlogin traffic.

6 Application-specific processing

We finish our overview of Bro with a discussion of the addi-
tional processing it does for the six applications it currently
knows about: Finger, FTP, Portmapper, Ident, Telnet and
Rlogin. Admittedly these are just a small portion of the dif-
ferent Internet applications used in attacks, and Bro's effec-
tiveness will benefit greatly as more are added. Fortunately,
we have in general found that the system meets our goal
of extensibility (x 1), and adding new applications to Bro
is—other than the sometimes major headache of robustly
interpreting the application protocol itself—quite straight-
forward, a matter of deriving a C++ class to analyze each
connection's traffic, and devising a set of events correspond-
ing to significant elements of the application.
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6.1 Finger

The first of the applications is the Finger “User Informa-
tion” service [Zi91]. Structurally, Finger is very simple: the
connection originator sends a single line, terminated by a
carriage-return line-feed, specifying the user for which they
request information. An optional flag requests “full” (ver-
bose) output. The responder returns whatever information
it deems appropriate in multiple lines of text, after which it
closes the connection.

Bro generates afinger request event whenever it
monitors a complete Finger request. A handler for this event
looks like:

event finger_request(c: connection,
user: string, full: bool)

Our site's policy for Finger requests includes testing for pos-
sible buffer-overflow attacks and checking the user against a
list of sensitive user ID's, such as privileged accounts. See
Appendix A for a discussion of how the Finger analysis is
integrated into Bro.

Bro generates an analogousfinger reply event:

event finger_reply(c: connection,
reply_line: string)

for each line of the reply from the Finger server.
A final note: if the event engine finds that the policy script

does not define afinger request or finger reply
handler, then it does not bother creating Finger-specific ana-
lyzers for new Finger connections. In general, the event en-
gine tries to determine as early as possible whether the user
has defined a particular handler, and, if not, avoids undertak-
ing the work associated with generating the corresponding
event.

6.2 FTP

The File Transfer Protocol [PR85] is much more complex
than the Finger protocol; it also, however, is highly struc-
tured and easy to parse, so interpreting an FTP dialog is
straight-forward.

For FTP requests, Bro parses each line sent by the con-
nection originator into a command (first word) and an argu-
ment (the remainder), splitting the two at the first instance
of whitespace it finds, and converting the command to up-
percase (to circumvent problems such as a policy script test-
ing for “store file” commands asSTORor stor , and an at-
tacker instead sendingstOR , which the remote FTP server
will happily accept). It then generates anftp request
event with these and the corresponding connection as argu-
ments.

FTP replies begin with a status code (a number), followed
by any accompanying text. Replies also can indicate whether
they continue to another line. Accordingly, for each line of
reply the event engine generates anftp reply with the
code, the text, a flag indicating continuation, and the corre-
sponding connection as arguments.

As far as the event engine is concerned, that's it—100
lines of straight-forward C++. What is interesting about FTP
is that all the remaining work can be done inBro (about
400 lines for our site). Theftp request handler keeps
track of distinct FTP sessions, pulls out usernames to test
against a list of sensitive ID's (and to annotate the connec-
tion's general summary), and, for any FTP request that ma-
nipulates a file, checks for access to sensitive files. Some
of these checks depend on context; for example, a guest (or
“anonymous”) user should not attempt to manipulate user-
configuration files, while for other users doing so is fine.

One subtlety in the FTP analysis is being careful to main-
tain a notion of “current requests awaiting replies,” rather
than just “the most recently seen request.” Doing so cir-
cumvents an attack in which the attacker pipelines multiple
requests—rather than issuing a single request at a time and
awaiting its response—and confuses the monitor as to which
replies go with which requests.

A final analysis step forftp request events is to parse
anyPORTrequest to extract the hostname and TCP port as-
sociated with an upcoming transfer. (The FTP protocol uses
multiple TCP connections, one for the control information
such as user requests, and others, dynamically created, for
each data transfer.) This is an important step, because it
enables the script to tell which subsequent connections be-
long to this FTP session and which do not. A site's policy
might allow FTP access to particular servers, but any other
access to those servers merits an alarm; but without parsing
thePORTrequest, it can be impossible to distinguish a legit-
imate FTP data transfer connection from an illicit, non-FTP
connection. Consequently, the script keeps track of pend-
ing data transfer connections, and when it encounters them,
marks them asftp-data applications, even if they do not
use the well-known port associated with such transfers (the
standard does not require them to do so).

We also note that, in addition to correctly identifying FTP-
related traffic, parsingPORTrequests makes it possible to
detect “FTP bounce” attacks. In these attacks, a malicious
FTP client instructs an FTP server to open a data transfer
connection not back to it, but to a third, victim site. The
client can thus manipulate the server into uploading data to
an arbitrary service on the victim site, or to effectively port-
scan the victim site (which the client does by using multiple
bogusPORTrequests and observing the completion status
of subsequent data-transfer requests). Our script flagsPORT
requests that attempt any redirection of the data transfer con-
nection. Interestingly, we added this check mostly because it
was easy to do so; months later, we monitored the first of sev-
eral subsequent FTP bounce attacks. This form of serendip-
itous discovery of an unanticipated type of attack argues for
employing a general principle of “sanity checking” the mon-
itored traffic as much as possible. For a difficulty with this
principle, however, seex 7.3.

For ftp reply events, most of the work is simply for-
matting a succinct one-line summary of the request and its
result for recording in the FTP activity log. In addition, an
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FTPPASVrequest has a structure similar to aPORTrequest,
except that the FTP server instead of the client determines the
specifics of the subsequent data transfer connection. Conse-
quently our script subjectsPASVreplies to the same anal-
ysis asPORTrequests. Finally, there is nothing to prevent
a differentremote host from connecting to the data transfer
port offered by a server via aPASVreply. It may be hard to
see why this might actually occur, but putting in a test for it
is simple (unfortunately, there are some false alarms due to
multi-homed clients; we use heuristics to reduce these); and,
indeed, several months after adding it, it triggered, due to
an attacker using 3-way FTP as (evidently) a way to disguise
their trail, another serendipitous result of the sanity-checking
principle.

6.3 Portmapper

Many services based on Remote Procedure Call (RPC; de-
fined in [Sr95a]) do not listen for requests on a “well-known”
port, but rather pick an arbitrary port when initialized. They
then register this port with a Portmapper service running on
the same machine. Only the Portmapper needs to run on
a well-known port; when clients want access to the service,
they first contact the Portmapper, and it tells them which port
they should then contact in order to reach the service. This
second port may be for TCP or UDP access (depending on
which of these the client requests from the Portmapper).

Thus, by monitoring Portmapper traffic, we can detect any
attempted access to a number of sensitive RPC services, such
as NFS and YP, except in cases where the attacker learns the
port for those services some other way (e.g., port-scanning).

The Portmapper service is itself built on top of RPC,
which in turn uses the XDR External Data Representation
Standard [Sr95b]. Furthermore, one can use RPC on top of
either TCP or UDP, and typically the Portmapper listens on
both a well-known TCP port and a well-known UDP port
(both are port 111). Consequently, adding Portmapper anal-
ysis to Bro required adding a generic RPC analyzer, TCP-
and UDP-specific analyzers to unwrap the different ways in
which RPCs are embedded in TCP and UDP packets, an
XDR analyzer, and a Portmapper-specific analyzer.

This last generates six pairs of events, one for each re-
quest and reply for the six actions the Portmapper supports:
a null call; add a binding between a service and a port; re-
move a binding; look up a binding; dump the entire table of
bindings; and both look up a service and call it directly with-
out requiring a second connection. (This last is a monitoring
headache because it means any RPC service can potentially
be accessed directly through a Portmapper connection.)

Our policy script for Portmapper traffic again is fairly
large, more than 300 lines. Most of this concerns what
Portmapper requests we allow between which pairs of hosts,
particularly for NFS access.

6.4 Ident

The Identification Protocol (“ident”) is used to query hosts
for the user identity associated with an active connection
[S-J93]. The request is of the form “remote-port: local-
port”. If host A sends such a request to the ident server on
hostB, then the request is asking for the identification of the
user on hostB who has a connection from hostB's remote-
port to hostA's local-port. The reply identifies the operating
system, perhaps a language encoding, and a username (or a
“cookie” that does not directly reveal the username but can
be used subsequently by an administrator of hostB to iden-
tify the user).

Bro generates three events,ident request , which
identifies the remote-port and local-port in a request,
ident reply , which includes the username and the op-
erating system, andident error , for when the remote
server declares that the ident request was invalid. Our site's
policy scripts check the username against a list of sensitive
user ID's (such as “rewt ”, a name commonly used for back-
door “root” accounts), and annotates the corresponding con-
nection record with the username.

6.5 Telnet and Rlogin

The final applications currently built into Bro are Telnet
and Rlogin, services for remote interactive access [PR83a,
Ka91]. There are several significant difficulties with moni-
toring interactive traffic. The first is that, unlike FTP, Telnet
and Rlogin traffic is virtually unstructured. There are no nice
“USER xyz” directives that make it trivial to identify the
account associated with the activity; instead, one must em-
ploy a series of heuristics. (The Rlogin protocol includes a
mechanism for specifying an initial username, but does not
include a mechanism for indicating that the username was re-
jected, so the situation is virtually identical to that for Telnet
in which the initial name is presumably the first text typed by
the user.) This problem makes interactive traffic particularly
susceptible to subterfuge attacks, since if the heuristics have
holes, an attacker can slip through them undetected.

There are two parts to the analysis: determining user-
names in a robust fashion, and scanning interactive sessions
for strings reflecting questionable activity. We discuss each
in turn. Because of the close similarities between analyz-
ing Telnet and Rlogin sessions, Bro combines them into a
generic “Login” analyzer, which is the term we use for both
in the remainder of the section.

Recognizing the authentication dialog. The first facet
of analyzing Login activity is to accurately track the initial
authentication dialog and extract from it the usernames as-
sociated with both login failures and successes. Initially we
attempted to build a state machine that would track the vari-
ous authentication steps: waiting for the username, scanning
the login prompt (this comes after the username, since the
processing is line-oriented, and the full, newline-terminated
prompt line does not appear until after the username has
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been entered), waiting for the password, scanning the pass-
word prompt, and then looking for an indication that the
password was rejected (in which case the process repeats)
or accepted. This approach, though, founders on the great
variety of authentication dialogs used by different operating
systems, some of which sometimes do not prompt for pass-
words, or re-prompt for passwords rather than login names
after a password failure, or utilize two steps of password
authentication, or extract usernames from environment vari-
ables, and so on. We instead use a simpler approach, based
on associating particular strings (such as “Password:”) with
particular information, and not attempting to track the au-
thentication states explicitly. It works well, although not per-
fectly, and its workings are certainly easier to follow.

The Login analyzer generateslogin success upon
determining that a user has successfully authenticated,
login failure when a user's attempt to authenticate
fails,authentication skipped if it recognizes the au-
thentication dialog as one specified by the policy script as
not requiring further analysis, andlogin confused if the
analyzer becomes confused regarding the authentication dia-
log. (This last could, for example, trigger full-packet record-
ing of the subsequent session, for later manual analysis.)

Type-ahead.A basic difficulty that complicates the anal-
ysis is type-ahead. We cannot rely on the most-recently en-
tered string as corresponding to the current prompt line. In-
stead, we keep track of user input lines separately, and con-
sume them as we observe different prompts. For example,
if the analyzer scans “Password:”, then it associates with the
prompt the first unread line in the user type-ahead buffer, and
consumes that line. The hazard of this approach is if the lo-
gin server ever flushes the type-ahead buffer (due to part of
its authentication dialog, or upon an explicit signal from the
user), then if the monitor misses this fact it will become out
of sync. This opens the monitor to a subterfuge attack, in
which an attacker passes off an innocuous string as a user-
name, and the policy script in turn fails to recognize that the
attacker in fact has authenticated as a privileged user. One fix
to this problem—reflecting a strategy we adopt for the more
general “keystroke editing” problem discussed below—is to
testboth usernames and passwords against any list of sen-
sitive usernames, an example of the “bifurcation” approach
discussed inx 5.3 above.

Unless we are careful, type-ahead also opens the door
to another subterfuge attack. For example, an attacker can
type-ahead the string “Password:”, which, when echoed
by the login server, would be interpreted by the ana-
lyzer as corresponding to a password prompt, when in fact
the dialog is in a different state. The analyzer defends
against these attacks by checking each typed-ahead string
against the different dialog strings it knows about, generating
possible login ploy upon a match.

Keystroke editing. Usernames can also become disguised
due to use of keystroke editing. For example, we would like
to recognize that “rb< DEL>oot ” does indeed correspond
to a username ofroot , assuming that<DEL> is the single-

character deletion operator. We find this assumption, how-
ever, problematic, since some systems use<DEL> and oth-
ers use<BS>. We address this problem by applying both
forms of editing to usernames, yielding possibly three dif-
ferent strings, each of which the script then assesses in turn.
So, for example, the string “rob< DEL><BS><BS>ot ” is
tested both directly, as “ro< BS><BS>ot ”, and as “root ”.
This is another example of using bifurcation to address anal-
ysis ambiguities.

Editing is not limited to deleting individual characters,
however. Some systems support deleting entire words or
lines; others allow access to previously-typed lines using an
escape sequence. Word and line deletion do not allow an at-
tacker to hide their username, if tests for sensitive usernames
check for any embedded occurrence of the username within
the input text. “History” access to previous text is more
problematic; presently, the analyzer recognizes one operat-
ing system that supports this (VMS) and, for it only, expands
the escape sequence into the text of the previous line.

Telnet options. The Telnet protocol supports a rich,
complex mechanism for exchanging options between the
client and server [PR83b] (there are more than 50 RFCs
discussing different Telnet options). Unhappily, we cannot
ignore the possible presence of these options in our anal-
ysis, because an attacker can embed one in the middle of
text they transmit in order to disguise their intent—for ex-
ample, “ro< option>ot ”. The Telnet server will dutifully
strip out the option before passing along the remaining text
to the authentication system. We must do the same. On the
other hand, parsing options also yields some benefits: we
can detect connections that successfully negotiate to encrypt
the data session, and skip subsequent analysis (rather than
generatinglogin confused events), as well as analyzing
options used for authentication (for example, Kerberos) and
to transmit the user's environment variables (some systems
use$USERas the default username during subsequent au-
thentication).

Scanning the session contents.The last form of Login
analysis, and in our experience far and away the most pow-
erful for detecting break-ins, is looking at the contents of the
lines sent by the user (login input line events) and by
the remote server (login output line ).

For input lines, some of the patterns we search for are
the string “eggdrop ” (an Internet Relay Chat tool that
many attackers install upon a break-in), “loadmodule ”
and “/bin/eject ” (used in buffer overflow attacks), and
access to hidden directories with names like “... ”. For
output lines, we look for “ls ” output showing setuid-root
versions of command-line interpreters likecsh, and strings
like “Jumping to address ” and “Log started
at ” which correspond to popular buffer-overflow and pass-
word sniffer tools, respectively.
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6.6 Scan detection

We finish with a discussion of detecting port and address
scanning. While not, strictly speaking, a form of application-
specific processing, we have deferred discussion until now
so we can refer to the previously-developed concepts of Bro
language mechanisms and attacks on the monitor.

Scan detection is all done at the policy script level, so sites
may of course tailor the detection however they wish. How-
ever, the basic approach we use is to maintain pairs of ta-
bles. For detecting address scanning, the first of the pair of
tables,distinct peers , is a table[addr, addr]
of bool . We index it using the source and destination
address of each newly-attempted connection. If the pair of
addresses is not in the table, then we add them to the ta-
ble, and incrementnum distinct peers , a correspond-
ing table[addr] of count . This second table keeps
track for each source address the number of distinct desti-
nation addresses to which it has attempted to connect. As
that number crosses different thresholds, the script generates
a series of real-time notifications indicating that an address
scan is underway. It can of course take additional action,
too, such as invoking viasystem() a script that removes
the attacking site's connectivity to the local site (x 8).

We detect port scanning in a similar fashion, us-
ing distinct ports , a table[addr, port] of
bool indexed by source address and destination port num-
ber, and a companion tablenum distinct ports , and
again generate notifications as the distinct port count for a
given address crosses different thresholds.

Note that this approach does not have any restrictions on
the order in which addresses or ports are scanned, nor any
particular requirements for how quickly they are scanned. By
removing these sorts of restrictions, we can detect not only
simple brute-force scans, but also some forms of “stealth”
scanning, in which the scan is done slowly across a random-
ized list of addresses.

There are two problems with the approach, however. First,
while the above steps do indeed detect scanning activities,
they also generate false hits, because some services naturally
result in a single source contacting multiple destination ad-
dresses (for example, a single client surfing multiple Web
servers), or contacting multiple ports on the same remote
host (an FTP server running on a non-standard port, so Bro
does not know to track its PORT/PASV directives in order
to associate connections on ephemeral ports with the FTP
session). We can generally deal with this problem, however,
by introducing some additional policy elements in our script,
such as a list of services which we should ignore when up-
dating the tables to reflect newly attempted connections.

The second difficulty concerns consumption of memory.
Depending on a site's traffic patterns, the scan-detection
tables can grow quite large. They can especially grow
large if an attacker deliberately targets them as a way to
attempt to compromise the monitor via an overload at-
tack. One solution for addressing this problem would be

to introduce the notion of associating timers with table el-
ements. With such a mechanism, we could, for example,
over time remove elements fromdistinct peers and
num distinct peers . Doing so, however, trades off
recovering resources (and thus impairing an attacker's abil-
ity to launch an overload attack) with failing to detect slow
stealth scans.

Seex 7.1 below for a brief discussion of our experiences
with scan-detection.

7 Status and Experiences

Bro has operated continuously since April 1996 as an inte-
gral part of our site's security system. It initially included
only general TCP/IP analysis; as time permitted, we added
the additional modules discussed inx 6, and we plan to add
many more. In this section we sketch its current status and
our experiences with operating it.

7.1 Implementation status

Presently, the implementation is about 27,000 lines of C++
and another 3,200 lines ofBro (about 2,700 lines of which
are “boilerplate” not specific to our site). It runs under
Digital Unix, FreeBSD, Linux, and Solaris operating sys-
tems. We use theautoconf auto-configuration tool as our
main mechanism for abetting portability.

Bro is publicly available in source-code form (see
http://www-nrg.ee.lbl.gov/bro-info.htmlfor release informa-
tion), though the current release is of “alpha” quality and
includes only very limited documentation.

We hope that it will both benefit the community and in
turn benefit from community efforts to enhance it. We have
set up a mailing list for discussion—see the above Web page
for subscription information.

In our on-going operations, Bro generates about 85 MB
of connection summaries each day, and around 40 real-time
notifications, though this figure varies greatly. While most
of the notifications are innocuous (and if we were not also
developers of the system, we would suppress these), we not
infrequently also detect break-in attempts, and we average
4–5 address and port scans each day. Operation of the system
has resulted so far in 4,000 email messages, 150 incident
reports filed with CIAC and CERT, a number of accounts
deactivated by other sites, and a couple incidents involving
law enforcement.

7.2 Performance

The system generally operates without incurring any packet
drops. The FDDI ring it runs on is fairly heavily utilized:
a January, 1999 trace of a 14:30-15:30 busy hour reflects a
traffic level of 11,900 packets/sec (34 Mbps) sustained for
the full hour, with peaks of 18,000 packets/sec. However, the
packet filter discards a great deal of this, both due to filtering
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primarily on SYN, FIN, or RST control bits, and because
only about 20% of the traffic belongs to networks that we
routinely monitor (the link is shared with a large neighbor
institution).

To test the system under stress, we ran it for a 40 minute
period without the “interesting networks” filter, resulting in
a much higher fraction of traffic accepted by the packet fil-
ter. During this period, the filter accepted an average of 730
packets/sec, with peaks over 1,200 packets/sec, and with-
out dropping any packets. The monitor system uses stripped
disks and large BPF packet buffers [RLSSLW97] to improve
performance.

7.3 Crud seen on a DMZ

An important and sobering aspect of our operational expe-
rience with Bro was the realization of how frequently, when
monitoring a large volume of network traffic, legitimate (i.e.,
non-attacking) traffic exhibits abnormal behavior. We have
observed all of the following:� “Storms” of 10,000 FIN or RST packets, in which due

to a protocol implementation error two hosts exchange
FIN or RST packets extremely rapidly.� Storms due to foggy days.4� “Private” Internet addresses [Re96] leaking out into the
public Internet. These addresses are inherently un-
routable, and should never be used by a public Internet
connection.� SYN packets with the “Urgent” bit set. For SYN pack-
ets, setting “urgent” does not make any sense, since the
connection is not yet established and hence cannot pos-
sibly have urgent data to send. Such packets are prob-
lematic, however, because some firewalls and monitors
that are not carefully coded look for the beginning of
connections to be indicated by the TCP “flags” field be-
ing equal to the SYN flag, rather than simply having the
SYN flag set. When the Urgent bit is set, the field is no
longerequalto the SYN flag.� TCPs that when retransmitting data can send different
data for the same sequence numbers as they sent the
first time.� TCPs that sometimes acknowledge receipt of data never
sent.� IP fragments in which the initial fragment is very small
and the final fragment is large. Such fragments can be
used to attempt to circumvent firewalls and monitors
that do not do fragment reassembly.4One of the routers on our DMZ has a microwave link to a peer on the

other side of San Francisco Bay. On foggy days, this link sometimes “flaps,”
leading to routing loops on the DMZ in which sets of packets enter routing
loops and cross the DMZ 10's or 100's of times, until their TTLs expire.

� Fragments with the “Don' t Fragment” bit set. While
allowed by the IP standard, it is difficult to envision a
situation in which such fragments can be legitimately
constructed, yet we do indeed see them on clearly in-
nocuous traffic.� Overlapping fragments, in which the end of the first
fragment is common with the beginning of the second.
Such fragments are also used for “teardrop” denial-of-
service attacks.� Overlapping fragments for which the two fragments
disagree on the contents of the overlapped region.

We recount these pathologies not simply because it is some-
what fascinating to see what a broad range of behavior we
can observe in real network traffic; but also for the impor-
tant reason thatmany of these pathologies look very sim-
ilar to genuine attacks. Thus, the diversity of legitimate
network traffic, including the implementation errors some-
times reflected within it, leads to a very real problem for in-
trusion detection, namely discerning in some circumstances
between a true attack versus an innocuous implementation
error. For example, it can be extremely difficult to discern
between the “USER nice ” / “ USER root ” subterfuge at-
tack discussed inx 5.3, and a broken TCP implementation
that sometimes retransmits different text than it originally
sent. More generally, we cannot rely on “clearly” broken
protocol behavior as definitely indicating an attack—it very
well may simply reflect the operation of an incorrect imple-
mentation of that protocol.

We finish our discussion by noting a situation that does not
reflect a protocol implementation error, but rather a common
real-world problem, one that greatly complicates monitoring.

If ever a site's network topology includes multiple paths
from the site to the remainder of the Internet, then the moni-
tor may observe only one direction of a connection, because
the traffic for the other direction transits an alternate route.
We term this situation “split routing.” (In the Internet at
large, asymmetric routing is quite common, and so there are
numerous monitoring points that suffer from split routing
[Pa97b]. Individual sites, however, often have full control
over whether they have multiple Internet connections. Some
pursue multiple connections in order to provide redundancy
in their connectivity to protect against occasional outages.)

Split routing can, of course, lead to the monitor missing
attacks entirely because it never sees the traffic correspond-
ing to the attack. Even if a site runs multiple monitors, one
per Internet link, a subtle problem remains: the split routing
can defeat precautions taken by the monitor because it can no
longer assume that it sees traffic from at least one trustworthy
endpoint for each connection. So, for example, the monitor
loses the ability to determine when it can safely discard in-
sequence data. Consequently, unless the multiple monitors
communicate with one another concerning connection state,
an attacker who discovers a split-route can exploit it to elude
the monitor.
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Fortunately, split routing is at least easy to detect, be-
cause the monitor observes a connection transmitting uni-
directional traffic without having first completed the initial
three-way SYN handshake. Whenever Bro detects split rout-
ing, it generates an event announcing the problem.

8 Future directions

In addition to developing more application analysis modules,
we see a number of avenues for future work. As dis-
cussed above, compilingBro scripts and, especially, de-
vising mechanisms to distribute monitoring across multi-
ple hosts offer the promise of increasing monitoring per-
formance. We are also very interested in extending BPF to
better support monitoring, such as adding lookup tables and
variable-length snapshots.

Another interesting direction is adding “teeth” to the mon-
itoring in the form of actively terminating misbehaving con-
nections by sending RST packets to their endpoints, or com-
municating with intermediary routers, as some commercially
available monitors already do. We have implemented both
of these for Bro and are now experimenting with their effec-
tiveness. The ability to ask a router to drop traffic involving
a particular address has already proven extremely useful, as
it greatly limits the information that attackers can gather by
scanning our site; once Bro recognizes a scan, it instructs
the border router to drop any further traffic involving the
given site. Some open issues with this form of reaction are
the impact on router performance as the number of such fil-
ters increases, and attackers forging traffic from remote sites
to mislead Bro into dropping them, as a form of denial-of-
service attack.

More generally, however, we have found our fairly in-
depth consideration of the problem of attacks on monitors
(x 5) sobering. Some forms of subterfuge attacks are ex-
tremely difficult to defend against, and we believe it is
inevitable that attackers will devise and share toolkits for
launching such attacks. This in turn suggests three important
areas for research into intrusion detection:(i) further explor-
ing the notion of “bifurcating analysis” discussed inx 5.3;
(ii) studying the notion of traffic “normalizers” that remove
ambiguities from traffic streams (one such normalizer is an
“in-the-loop” monitor, one that must approve the forwarding
of any packet it receives); and(iii) integrating into the system
monitor “sensors” that run on the end hosts. Such sensors
can analyze network traffic at a sufficiently high layer in their
host's network stack where ambiguities about how the traffic
will be interpreted have already been resolved. Our near-
term research is focussing on the second of these, exploring
the issues associated with building traffic normalizers.
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A Example: tracking Finger traffic

In this appendix we give an overview of how the different
elements of Bro come together for monitoring Finger traffic.
For the event engine, we have a C++ classFingerConn ,
derived from the general-purposeTCP Connection class.
When Bro encounters a new connection with service port 79,
it instantiates a correspondingFingerConn object, instead
of a TCP Connection object as it would for an unrecog-
nized port.

FingerConn redefines the virtual function
BuildEndpoints , which is invoked when a connection
object is first created:

void FingerConn::BuildEndpoints()
{
resp = new TCP_EndpointLine(this, 1, 0, 1);
orig = new TCP_EndpointLine(this, 0, 0, 1);
}

Here, resp , corresponding to the responder (Finger
server) side of the connection, is initialized to an ordinary
TCP Endpoint object, because Bro does not (presently)
look inside Finger replies. Butorig , the Finger client side,
andresp , the responder (Finger server) side of the connec-
tion are both initialized toTCP EndpointLine objects,
which means Bro will track the contents of each side of the
connection, and, furthermore, deliver the contents in a line-
oriented fashion toFingerConn 's virtualNewLine func-
tion:

int FingerConn::NewLine(TCP_Endpoint* /* s */,
double /* t */, char* line)

{
line = skip_whitespace(line);

// Check for /W.
int is_long = (line[0] == '/' &&

toupper(line[1]) == 'W');
if ( is_long )
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line = skip_whitespace(line+2);

val_list* vl = new val_list;
vl->append(BuildConnVal());
vl->append(new StringVal(line));
vl->append(new Val(is_long, TYPE_BOOL));

mgr.QueueEvent(finger_request, vl);
return 0;
}

(For brevity, we show NewLine only for the
finger request case.) NewLine skips whites-
pace in the request, scans it for the “/W” indicator (which
requests verbose Finger output), and moves past it if present.
It then creates aval list object, which holds a list of
generic BroVal objects. The first of these is assigned
to a generic connection-identifier value (see below); the
second, to a Brostring containing the Finger request,
and the third to abool indicating whether the request
was verbose or not. The penultimate line queues a new
finger request event with the corresponding list of
values as arguments; finally,return 0 indicates that the
FingerConn is all done with the memory associated with
line (since new StringVal(line) made a copy of
it), so that memory can be reclaimed by the caller.

The connection identifier discussed above is defined in
Bro as a “connection ” record:

type endpoint: record {
size: count; state: count;

};
type connection: record {

id: conn_id;
orig: endpoint; resp: endpoint;
start_time: time;
duration: interval;
service: string;

# if empty, service not yet determined
addl: string;
hot: count;

# how hot; 0 = don't know or not hot
};

Theid field is aconn id record, discussed inx 3.1.orig
and resp correspond to the connection originator and re-
sponder, each a Broendpoint record consisting ofsize
(the number of bytes transferred by that endpoint so far) and
state , the endpoint's TCP state (e.g., SYN sent, estab-
lished, closed). This latter would be better expressed using
an enumerated type (rather than acount ), which we may
add to Bro in the future.

The start time field reflects when the connection's
first packet was seen, andduration how long the connec-
tion has existed.service corresponds to the name of the
service, or an empty string if it has not been identified. By
convention,addl holds additional information associated
with the connection; better than astring here would be
some sort of union or generic type, if Bro supported such. Fi-
nally, by convention the policy script incrementshot when-
ever it finds something potentially suspicious about the con-
nection.

Here is the corresponding policy script:

global hot_names = { "root", "lp", "uucp" };
global finger_log =

open(getenv("BRO_ID") == "" ?
"finger.log" :
fmt("finger.%s", getenv("BRO_ID")));

event finger_request(c:connection,
request: string,
full: bool)

{
if ( byte_len(request) > 80 ) {

request = fmt("%s...",
sub_bytes(request, 1, 80));

++c$hot;
}
if ( request in hot_names )

++c$hot;

local req = request == "" ?
"ANY" : fmt("\"%s\"", request);

if ( c$addl != "" )
# This is an additional request.
req = fmt("(%s)", req);

if ( full )
req = fmt("%s (/W)", req);

local msg = fmt("%s > %s %s",
c$id$orig_h,
c$id$resp_h,
req);

if ( c$hot > 0 )
log fmt("finger: %s", msg);

print finger_log,
fmt("%.6f %s", c$start_time, msg);

c$addl = c$addl == "" ?
req : fmt("*%s, %s", c$addl, req);

}

The globalhot names is a Broset of string . In the
next line,finger log is initialized to a Brofile , either
named “finger.log”, or, if theBROID environment variable
is set, to a name derived from it using the built-infmt func-
tion.

The finger request event handler follows. It takes
three arguments, corresponding to the values added to the
val list above. It first checks whether the request is ex-
cessively long, and, if so, truncates it and increments thehot
field of the connection's information record. (The Bro built-
in functions used here are named in terms of “bytes” rather
than “string” because they make no assumptions about NUL-
termination of their arguments; in particular,byte len re-
turns the length of its argument including a final NUL byte,
if present.)

Next, the script checks whether the request corresponds
to any of the entries in thehot names set. If so, it again
marks the connection as “hot.”

We then initialize the local variablereq to a quoted ver-
sion of the request; or, if the request was empty (which in the
Finger protocol indicates a request type of “ANY”), then it
is changed to “ANY”.

The event handler stores the Finger request in the connec-
tion record'saddl field (see below), so the next line checks

20



to see whether this field already contains a request. If so,
then we are seeing multiple requests for a single Finger con-
nection. This is not allowed by the Finger protocol, but that
doesn' t mean we won' t see them! In particular, we might
imagine a subterfuge attack in which an attacker queries an
innocuous name in their first request, and a sensitive name
in their second, and depending on how the finger server is
written, it may well respond to both.5 This script will still
catch such use, since it fully processes each request; but it
needs to be careful to keep the global state corresponding to
the connection (in theaddl field) complete. To do so, it
marks additional requests by enclosing them in parentheses,
and also prepends an asterisk to the entireaddl field for
each additional request, so that in later visual inspection of
the Finger logs these requests immediately stand out.

Themsg local variable holds the basic description of the
Finger request. Thefmt function knows to format the IP
addressesc$id$orig h and c$id$resp h as “dotted
quads.”

Next, if the connection has been marked as “hot” (either
just previously, or perhaps by a completely different event
handler), then the script generates a real-time notification. In
any case, it also records the request to thefinger log file.
Finally, it updates theaddl field to reflect the request (and
to flag multiple requests, as discussed above).

Entries in the log file look like:

880988813.752829 171.64.15.68 >
128.3.253.104 "feng"

880991121.364126 131.243.168.28 >
130.132.143.23 "anlin"

880997120.932007 192.84.144.6 >
128.3.32.16 ALL

881000846.603872 128.3.9.45 >
146.165.7.14 ALL (/W)

881001601.958411 152.66.83.11 >
128.3.13.76 "davfor"

(though without the lines split after the “>”).
The real-time notifications look quite similar, with the

keyword “finger: ” added to avoid ambiguity with other
types of real-time notification.
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