EECS 588: Computer and Network Security

Introduction
January 13, 2014

Today's Class

- Welcome!
- Goals for the course
- Topics, what interests you?
- Introduction to security research
- Components of your grade
- Legal and ethical concerns

Who am !?

J. Alex Halderman

CSE Prof.

Princeton Ph.D.

Web: https://jhalderm.com

Email: jhalderm@umich.edu

Office: 4717 BBB

Hours: TuTh 3:30-4:30

or by appointment

Mobile: 609-558-2312

My Work – Electronic Voting

Alex's Work – Electronic Voting

My Work – Disk Encryption

My Work – Anticensorship

My Work - Internet Measurement

My Work – HTTPS

A CERTIFICATE AUTHORITY TO ENCRYPT THE ENTIRE WEB

Goals for this Course

- Gain hands-on experience
 Building secure systems
 Evaluating system security
- Prepare for research
 Computer security subfield
 Security-related issues in other areas
- Generally, improve research, writing, and presentation skills
- Learn to be a 1337 hax@r, but an ethical one!

Getting In, Getting an A

Waitlist?

Prereqs:

EECS482 or EECS489 or grad standing

We'll grant everybody overrides, but can't guarantee hard work will bring success, unless you have the prerequisites.

Building Blocks

The security mindset, thinking like an attacker, reasoning about risk, research ethics Symmetric ciphers, hash functions, message authentication codes, pseudorandom generators Key exchange, public-key cryptography, key management, the SSL protocol

Software Security

Exploitable bugs: buffer overflows and other common vulnerabilities – attacks and defenses Malware: viruses, spyware, rootkits – operation and detection Automated security testing and tools for writing secure code Virtualization, sandboxing, and OS-level defenses

Web Security

The browser security model

Web site attacks and defenses: cross-site scripting, SQL injection, cross-site reference forgery Internet crime: spam, phishing, botnets – technical and nontechnical responses

Network Security

Network protocols security: TCP and DNS – attacks and defenses Policing packets: Firewalls, VPNs, intrusion detection Denial of service attacks and defenses Data privacy, anonymity, censorship, surveillance

Advanced Topics

Hardware security – attacks and defenses Trusted computing and digital rights management Electronic voting – vulnerabilities, cryptographic voting protocols

Getting to Know You

- Who are you?
- What topics interest you?
- What would you like to learn in this course?

What is Computer Security?

Math?

Engineering?

Philosophy?

Natural Sciences?

What is Security Research?

"The study of how systems behave in the presence of an adversary*."

* An *intelligence* that actively tries to cause the system to misbehave.

What's the Difference?

Who does Security Research?

- Academia
- Industry
- Military
- Hobbyists
- Bad guys...

"Insecurity"?

Hierarchy

"Attack"

Assault recipe, vulnerabilities are ingredients

Level-2 Problem: "Weakness"

Factors that predispose systems to vulnerability

Level-1 Problem: "Vulnerability"

Specific errors that could be exploited in an assault.

Level-o Problem: "Assault"

Actual malicious attempt to cause harm.

High-Level Approaches

Why Study Attacks?

- Identify flaws so they can be fixed
- Pressure vendors to be more careful
- Learn about new classes of threats
 - Motivate new research on defenses
 - Determine what we need to defend against
 - Help designers build better threat models
 - Help users more accurately evaluate risk
- Identify false design assumptions
 Improve models used for proof of security

Thinking Like an Attacker

- Look for weakest links easiest to attack
 - Insider attacks, social engineering
- Think outside the box not constrained by system designer's worldview
 - Side-channel attacks (TEMPEST, power analysis)
- Identify assumptions that security depends on – are they false?
 - e.g. cold-boot attacks

Practice thinking like an attacker: For every system you interact with, think about what it means for it to be secure, and image how it could be exploited by an attacker.

Exercises

Breaking into the CSE building

Exercises

Stealing an election

Stealing my password

What are some security systems you interact with in everyday life?

Thinking Like a Defender

- Security policy
 - What properties are we trying to enforce?
- Threat model
 - What kind of attack are we trying to prevent?
 - Who are the attackers? Capabilities? Motivations?
- Risk assessment
 - What will successful attacks cost us?
 - How likely?
- Countermeasures
 - Costs vs. benefits?
 - Technical vs. nontechnical?

Challenge is to think rationally and rigorously about risks.

Controlled paranoia.

Using a credit card safely

Should you lock your door?

Spotting Security Snake-Oil?

- Kerckhoffs's principle
 Should be secure even if everything about the design is public—except for the secret keys
- Roll-Your-Own Encryption
 Just because you can't break it doesn't mean it's hard to break look for AES, SHA-2, etc.

Selfie Time!

To: eecs588@umich.edu

Subject: uniqname

3 minutes. Go!

Recall Course Goals

- Gain hands-on experience
 Building secure systems
 Evaluating system security
- Prepare for research
 Computer security subfield
 Security-related issues in other areas
- Generally, improve research and communication skills
- Learn to be a 1337 hax@r, but an ethical one!

Grading

No exams, no problem sets!

Class Participation (5%)

- ~2 required papers for discussion in each session (other readings optional but recommended)
- Come prepared to contribute!
- Full points for speaking up and contributing substantial ideas
- Lose points for being silent, frequently missing class, facebook, etc.

Paper Responses (15%)

Brief written response to each paper (~400 words)

- In the first paragraph:
 - State the problem that the paper tries to solve; and
 - Summarize the main contributions.
- In one or more additional paragraphs:
 - Evaluate the paper's strengths and weaknesses;
 - Discuss something you would have done differently if you had written the paper; and
 - Suggest interesting open problems on related topics.

Attack Presentation (30%)

- With a partner, choose a specific attack from recent research and implement a demonstration
- Give a 15 minute presentation:
 - (1) describe the attack
 - (2) talk about how you implemented it, give a demo
 - (3) discuss possible defenses
- Course schedule will list topics later today
- Each group send me ratings for each choice by 5pm
 Friday

Research Project (50%)

In groups, investigate new attack/defense/tool Aim for a publishable workshop paper.

Components (more detail on website):

- Preproposal presentation
- Project proposal
- Project checkpoint
- Workshop-style presentation in class
- Final workshop-style report

Communication

Course Web Site

http://www.eecs.umich.edu/courses/eecs588/ schedule, readings

Piazza announcements, discussion

Email Me

jhalderm@umich.edu suggestions, questions, concerns

Law and Ethics

Don't be evil!

- Ethics requires you to refrain from doing harm
- Always respect privacy and property rights
- Otherwise you will fail the course
- Federal and state laws criminalize computer intrusion and wiretapping
 - e.g. Computer Fraud and Abuse Act (CFAA)
 - You can be sued or go to jail
- University policies prohibit tampering with campus systems
 - You can be disciplined, even expelled

Your Assignments...

First paper discussion <u>Tuesday</u> (2 MD5 papers)
See course site for required reading
Remember to send written responses

Find a partner and rate the topics for your attack presentation; email topic ratings by 5pm this Friday

Start thinking about your course project; Form a group, present topic idea February 26