
Today’s Lecture:
Crypto Crash-Course

EECS 588: Computer and Network Security
January 7, 2016

The Itinerant Professor

J. Alex Halderman (CSE Prof.)
In Madrid Brussels Hamburg Berlin San Francisco,

today, back Tues.

Benjamin VanderSloot

Benjamin VanderSloot

Goals for this Course

 Gain hands-on experience

Building secure systems

Evaluating system security

 Prepare for research

Computer security subfield

Security-related issues in other areas

 Generally, improve research and
communication skills

 Learn to be a 1337 hax0r, but an ethical one!

Building Blocks
The security mindset, thinking like an attacker, reasoning about risk, research ethics
Symmetric ciphers, hash functions, message authentication codes, pseudorandom generators
Key exchange, public-key cryptography, key management, the TLS protocol

Software Security
Exploitable bugs: buffer overflows and other common vulnerabilities – attacks and defenses
Malware: viruses, spyware, rootkits – operation and detection
Automated security testing and tools for writing secure code
Virtualization, sandboxing, and OS-level defenses

Web Security
The browser security model
Web site attacks and defenses: cross-site scripting, SQL injection, cross-site reference forgery
Internet crime: spam, phishing, botnets – technical and nontechnical responses

Network Security
Network protocols security: TCP and DNS – attacks and defenses
Policing packets: Firewalls, VPNs, intrusion detection
Denial of service attacks and defenses
Data privacy, anonymity, censorship, surveillance

Advanced Topics
Hardware security – attacks and defenses
Trusted computing and digital rights management
Electronic voting – vulnerabilities, cryptographic voting protocols

Not a
crypto
course

Getting a Seat

 Long waitlist, but odds are good.

Communication

Course Web Site
https://eecs588.org
announcements, schedule, readings

Email Us
jhalderm@umich.edu
eecs588@umich.edu
suggestions, questions, concerns

https://eecs588.org/
mailto:jhalderm@eecs.umich.edu
mailto:eecs588@umich.edu

Today’s Class

Essential Cryptography

 The Cryptographer’s View
 Hash Functions
 Message-Authentication Codes
 Generating Random Numbers
 Block Ciphers

Basic Cryptography Problems

Alice Bob

Message

Passive Eavesdropper

Man-in-the-Middle

Eve

Mallory

Ingredients for a Secure Channel

Confidentiality
Attacker can’t see the message

Symmetric Ciphers

Integrity
Attacker can’t modify the message
Message Authentication Codes (MACs)

Eve

Mallory

Ingredients for a Secure Channel

Authentication
Attacker can’t impersonate the recipient

Public-Key Cryptography

Mallory

The Cryptographer’s View

Random
Oracle

26 14

26 → 14

13 6226 1444 62

13 → 62

44 → 62

Practical Random Oracles?

Suppose domain is size 2256…

Pseudorandom Functions (PRFs)
(A function randomly chosen from a
family of PRFs is computationally
indistinguishable from a Random Oracle)

Pseudorandom Permutations
≈ Symmetric Ciphers

≈ Message Authentication Codes (MACs)

Hash Functions

 Ideal: Random
mapping from
any input to a
set of output

 Caution! Real hashes don’t match our ideal

message Hash Function digest

Ideal Hash Function

1. Easy to compute H(m) for all m

2. Infeasible to compute m from H(m)

3. Infeasible to modify m without changing
H(m)

4. Infeasible to find two messages with the
same hash

Hash Function Requirements

 First pre-image resistance
 Given h(x), cannot find x

 Second pre-image resistance
 Given m1, cannot find m2 s.t. h(m1) = h(m2)

 Collision resistance
 Given nothing, find any m1 != m2 s.t. h(m1) = h(m2)

 Birthday Attack

MD5 Hash Function

 Designed in 1992 by
Ron Rivest

 128-bit output

 128-bit internal state

 512-bit block size

 Like most hash functions,
uses block-chaining
construction

MD5 is Unsafe – Never use it!

 First flaws in 1996;
by 2007, researchers
demonstrated a
collision

 Chaining allows
chosen prefix attack

 Dec. 2008:
others used this to
fake SSL certificates
(cluster of 200 PS3s)

MD5 Collision

d131dd02c5e6eec4693d9a0698aff95c 2fcab58712467eab4004583eb8fb7f89
55ad340609f4b30283e488832571415a 085125e8f7cdc99fd91dbdf280373c5b
d8823e3156348f5bae6dacd436c919c6 dd53e2b487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080a80d1e c69821bcb6a8839396f9652b6ff72a70

d131dd02c5e6eec4693d9a0698aff95c 2fcab50712467eab4004583eb8fb7f89
55ad340609f4b30283e4888325f1415a 085125e8f7cdc99fd91dbd7280373c5b
d8823e3156348f5bae6dacd436c919c6 dd53e23487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080280d1e c69821bcb6a8839396f965ab6ff72a70

Both of these blocks hash to 79054025255fb1a26e4bc422aef54eb4

SHA Hash Functions

 SHA-1 – standardized by NIST in 1995
 160-bit output and internal state
 512-bit block size

 SHA-2 – extension published in 2001
 256 (or 512)-bit output and internal state
 512 (or 1024)-bit block size

 SHA-3 – chosen by NIST in 2012

 256 (512)-bit output

 Different “sponge” construction

Block chaining vs.
Sponge-construction

Tricky! Length Extension Attacks

Given hash of secret x, trivial to find
hash of x || p || m for padding p and
arbitrary m

Block chaining hashes are vulnerable!

Is SHA-1 Safe?

 Significant cryptanalysis since 2005
 Improved attacks show complexity of finding

a collision < 251(ideally security would be 280 – why?)

 Attacks only get better …
 The SHAppening

 Freestart collision found

 Use SHA-256

Message Authentication Codes

 Prevents tampering with messages.
Like a family of pseudorandom functions,
with a key to select among them

MAC

P0

tag

K

P1 PN-1
…

Construction: HMAC

Given a hash function H:

HMAC(K,m) = H((K pad1) || H(K pad2 || m))
for constants pad1 and pad2

Provides nice provable security properties

What Should You Use?

 Use HMAC-SHA256

 Use a constant key to get a length-extension
resistant hash function

Generating Random Numbers

 What’s wrong with srand() and rand()?

Generating Random Numbers

 What’s wrong with srand() and rand()?

 Why not use a secure hash?
 “Cryptographic Pseudorandom Number

Generator” (CPRNG)

 Tricky details…
 Seeding with true randomness (“entropy”)
 Forward secrecy

 Most OSes do the hard work for you*
 On Linux, use /dev/random and /dev/urandom

One-Time Pads

Provably secure encryption…

… that often fails in practice.

P4 K4P3 K3P2 K2P1 K1

One-Time Pads

K1 K2 K3 K4

Pi Ki Pi Ki

0 0 0

0 1 1

1 0 1

1 1 0

P1 P2 P3 P4

Block Ciphers

 Ideal block cipher:
Like a family of pseudorandom permutations
with a key to select among them

E

P

C

K D

P

C

K

DES—Data Encryption Standard

 US Government standard (1976)
 Designed by IBM

Tweaked by NSA

 56-bit key
 64-bit blocks
 16 rounds

 Key schedule function
generates 16 round keys:

DES Encryption

 Feistel network

 common block cipher
construction

 Each round uses the same
Feistel function F
(by itself a weak block
cipher)

 makes encryption and
decryption symmetric—just
reverse order of round keys

DES Feistel Function

 In each round:
 Expansion Permutation E

32 → 48 bits

 S-boxes (“substitution”)
replace 6-bit values

 Fixed Permutation P
rearrange the 32 bits

DES is Unsafe – Don’t Use It!

 Design has known weaknesses
 56-bit key way too short
 EFF’s “Deep Crack”

machine can brute force
in 56 hours using FPGAs
($250k in 1998,

far cheaper today)

3DES

 EK1, K2,K3
(P) = EK3

(DK2
(EK1

(P)))

 Key options:

 Option 1: independent keys (56*3 = 168 bit key)

 Option 2: K1 = K3 (56*2 = 112 bit key)

 Option 3: K1 = K2 = K3 (Backward-compatible DES)

 What happened to 2DES?

EE CP D
K1 K2 K3

2DES: Meet-in-the-middle attack

 “2DES”: EK1, K2
(P) = EK2

(EK1
(P))

 Given P and C = EK2
(EK1

(P)), find both keys

EE CP
K2K1

DE CP !!!
K2K1

 For all K, generate EK(P) and DK(C)

 Find a match where DK2
(C) == EK1

(P)

AES—Advanced Encryption Standard

 Standardized by NIST in 2001
following open design competition
(a.k.a. Rijndael)

 128-, 192-, or 256-bit key
 128-bit blocks
 10, 12, or 14 rounds

 Not a Feistel-network construction

One round of
AES-128

How Safe is AES?

 Known attacks against 128-bit AES if reduced
to 7 rounds (instead of 10)

 128-bit AES very widely used,
though NSA requires 192- or 256-bit keys for
SECRET and TOP SECRET data

 What should you use?

 Conservative answer: Use 256-bit AES

Block Ciphers (review)

Decryption

plaintext

decrypt(.)

ciphertext

K

Encryption

plaintext

encrypt(.)

ciphertext

K

plaintext

ciphertext

ECB – Electronic Codebook Mode

Ci := E(K, Pi) for i = 1, …, n

EK EK EK

P2 P3 P4 …

C2 C3 C4 …

P1

C1

EK

ECB – Electronic Codebook Mode

Ci := E(K, Pi) for i = 1, …, n

EK EK EK

P2 P3 P4 …

C2 C3 C4 …

P1

C1

EK

Why not ECB?

 The cipher text of an identical block is always
identical… consider a bitmap image…

(plaintext) (ECB mode) (CBC mode)

CBC: Cipher-Block Chaining Mode

Ci := E(K, Pi Ci-1) for i = 1, …, n

EK EK EK

P1 P2 P3 …

C1 C2 C3 …

?

CBC: Cipher-Block Chaining Mode

Ci := E(K, Pi Ci-1) for i = 1, …, n

EK EK EK

P1 P2 P3 …

C1 C2 C3 …

Random
“Initialization

Vector”

IV

CBC: Cipher-Block Chaining Mode

Ci := E(K, Pi Ci-1) for i = 1, …, n

EK EK EK

P1 P2 P3 …

C1 C2 C3 …

Random
“Initialization

Vector”

IV

DO NOT REUSE INITIALIZATION VECTORS!!

CTR: Counter Mode

• Stream cipher construction

• Plaintext never passes through E

• Don’t need to pad the message

• Allows parallelization and seeking

• Never reuse same K+Nonce

Ki := E(K, Nonce || i) for i = 1, …, n
Ci := Pi Ki

Symmetric Key Encryption

Decryption

plaintext

decrypt(.)

ciphertext

K

Encryption

plaintext

encrypt(.)

ciphertext

K

plaintext

ciphertext

Public Key Cryptography

 Symmetric key cryptographic is great… but
has the fundamental problem that every
send-receiver pair must share a secret key…

 How do we allow the sender and receiver to
use different keys for encryption and
decryption?

 Also known as “Asymmetric Encryption”

Diffie-Hellman Key Exchange

 How do we share our symmetric key in front
of an eavesdropping adversary?

 “Key Exchange” developed by Whitfield Diffie
and Martin Hellman in 1976

 Based on Discrete Log Problem which we
believe is difficult (“the assumption”)

Diffie-Hellman Key Exchange

1. Alice generates and shares g with Bob

2. Alice and Bob each generate a secret

number, which we denote a and b

3. Alice generates ga and sends it to Bob

4. Bob generates gb and sends it to Alice

5. Alice calculates (gb)a and Bob calculates (ga)b

6. Alice and Bob have (gb)a = gab = gba = (ga)b

Some Diffie-Hellman Details

1. D-H works in any finite cyclic group. Assume
G is predetermined and we are selecting a
generator

2. We almost always just use (multiplicative
group of integers modulo p)

3. We share a primitive root (g) and an odd
prime (p) and perform all operations mod p.

Z p

*

gÎG

Attacking Diffie-Hellman (MITM)

Mallory

Chooses
random x < p

Chooses
random y < p

Chooses
random v < p

Chooses
random w < p

gx

gv

gy

gw

k := (gw)x k’ := (gv)yk := (gw)x

k’ := (gv)y

Summary of Goals

Confidentiality

Integrity

Authentication

RSA Public Key Encryption

RSA Encryption

p, q large random primes

n := pq modulus

t := (p-1)(q-1) ensures xt = 1 (mod n)

e := [small prime value] public exponent

d := e-1 mod t private exponent

Public key: (n, e)

Private key: (p, q, t, d)

RSA Encryption

1. Public Key: (n, e)

2. Private Key: (p, q, t, d)

3. Encryption: c := me mod n

4. Decryption: m := cd mod n

5. (me)d = med = mkt+1 = (mt)km = 1km = m (mod n)

Encryption with RSA

1. Public Key Encryption is much slower than
symmetric key encryption

2. Publish public key to the world, keep private
key secret

3. Negotiate a symmetric key over public key
encryption and utilize the symmetric key for
encrypting any actual data going forward

Other Public Key Algorithms

 Other public key algorithms do exist

 ElGamal (digital signature scheme based on
DL)

 DSA (Digital Signature Algorithm)
 Elliptic Curve DSA (ECDSA)

 ECDSA is quickly gaining popularity

Establishing Trust

 How do Alice and Bob share public keys?

 Web of Trust (e.g. PGP)

 Trust on First Use (TOFU) (e.g. SSH)

 Public Key Infrastructure (PKI) (e.g. SSL)

What is PKI?

 Organizations we trust (often known as
“Certificate Authorities”) generate
certificates to tie a public key to an
organization

 We trust that we’re talking to the correct
organization if we can verify their public key
with a trusted authority

SSL/TLS Certificates

Subject: C=US/O=Google Inc/CN=www.google.com
Issuer: C=US/O=Google Inc/CN=Google Internet Authority
Serial Number: 01:b1:04:17:be:22:48:b4:8e:1e:8b:a0:73:c9:ac:83
Expiration Period: Jul 12 2010 - Jul 19 2012
Public Key Algorithm: rsaEncryption
Public Key: 43:1d:53:2e:09:ef:dc:50:54:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d
7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:39:23:46

Signature Algorithm: sha1WithRSAEncryption

Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d
7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:1e:5d:b5

Signatures on Certificates

 Utilize both public key cryptography and
cryptographic hash functions

 Oftentimes see a signature algorithm such as
sha1WithRSAEncryption

 EncryptPrivateKey(SHA-1(certificate))

Certificate Chains

Subject: C=US/…/O=Google Inc/CN=*.google.com
Issuer: C=US/…/CN=Google Internet Authority
Public Key:
Signature: bf:dd:e8:46:b5:a8:5d:28:04:38:4f:ea:5d:49:ca

Subject: C=US/…/CN=Google Internet Authority
Issuer: C=US/…/OU=Equifax Secure Certificate Authority
Public Key:
Signature: be:b1:82:19:b9:7c:5d:28:04:e9:1e:5d:39:cd

Subject: C=US/…/OU=Equifax Secure Certificate Authority
Issuer: C=US/…/OU=Equifax Secure Certificate Authority
Public Key:
Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:38:c9:d1

Mozilla Firefox Browser

I authorize and trust
this certificate; here

is my signature

I authorize and trust
this certificate; here

is my signature

Trust everything
signed by this

“root” certificate

Certificate Authority Clusterfuck

Some Practical Advice

 HMAC: HMAC-SHA256

 Block Cipher: AES-256

 Randomness: OS Cryptographic Pseudo
Random Number Generator (CPRNG)

 Public Key Encryption: RSA or ECDSA

 Implementation: OpenSSL

Related Research Problems

 Cryptanalysis: Ongoing work to break crypto
functions… rapid progress on hash collisions

 Cryptographic function design: We badly need
better hash functions… NIST competition
now to replace SHA

 Attacks: Only beginning to understand
implications of MD5 breaks – likely enables
many major attacks

Don’t Roll Your Own!!

SECRIT: Security Reading Group

 We read a recent security paper and discuss it
over lunch each week

 Tuesdays from 12:30 to 1:30 PM

 (one read paper) == (one free lunch)

 https://wiki.eecs.umich.edu/secrit/

http://wiki.eecs.umich.edu/secrit/

Tuesday: Alex’s Introduction

