Today’s Class

- Welcome!
- Goals for the course
- Topics, what interests you?
- Introduction to security research
- Components of your grade
- Legal and ethical concerns
Who am I?

J. Alex Halderman
CSE Prof.
Princeton Ph.D.

Web: https://jhalderm.com
Email: jhalderm@umich.edu
Office: 4717 BBB
Hours: TuTh 3:30-4:30
or by appointment
Mobile: 609-558-2312
My Work – DRM
My Work – Electronic Voting
Alex’s Work – Electronic Voting
My Work – Disk Encryption
My Work – Anticensorship

Blocked.com

Telex Client Software

HTTPS Connection
Dest: NotBlocked.com

Steganographic Tag
marks connection
Goals for this Course

- Gain hands-on experience
 - Building secure systems
 - Evaluating system security
- Prepare for research
 - Computer security subfield
 - Security-related issues in other areas
- Generally, improve research, writing, and presentation skills
- Learn to be a 1337 hax0r, but an ethical one!
Getting In, Getting an A

Waitlist?

Prereqs:
EECS482 or EECS489 or grad standing

Will grant everybody overrides, but can’t guarantee hard work will bring success, unless you have the prerequisites.
Building Blocks
The security mindset, thinking like an attacker, reasoning about risk, research ethics
Symmetric ciphers, hash functions, message authentication codes, pseudorandom generators
Key exchange, public-key cryptography, key management, the SSL protocol

Software Security
Exploitable bugs: buffer overflows and other common vulnerabilities – attacks and defenses
Malware: viruses, spyware, rootkits – operation and detection
Automated security testing and tools for writing secure code
Virtualization, sandboxing, and OS-level defenses

Web Security
The browser security model
Web site attacks and defenses: cross-site scripting, SQL injection, cross-site reference forgery
Internet crime: spam, phishing, botnets – technical and nontechnical responses

Network Security
Network protocols security: TCP and DNS – attacks and defenses
Policing packets: Firewalls, VPNs, intrusion detection
Denial of service attacks and defenses
Data privacy, anonymity, censorship, surveillance

Advanced Topics
Hardware security – attacks and defenses
Trusted computing and digital rights management
Electronic voting – vulnerabilities, cryptographic voting protocols

Not a crypto course
Getting to Know You

- Who are you?
- What topics interest you?
- What would you like to learn in this course?
What is Computer Security?
What is Security Research?

“The study of how systems behave in the presence of an adversary*.”

* An intelligence that actively tries to cause the system to misbehave.
What’s the Difference?
Why is Security its own Area of CS?
Who does Security Research?

- Academia
- Industry
- Military
- Hobbyists
- Bad guys...
"Insecurity"?

Hierarchy

"Attack"
Assault recipe, vulnerabilities are ingredients

Level-2 Problem: "Weakness"
Factors that predispose systems to vulnerability

Level-1 Problem: "Vulnerability"
Specific errors that could be exploited in an assault.

Level-0 Problem: "Assault"
Actual malicious attempt to cause harm.
High-Level Approaches

Attacks

Defenses
Why Study Attacks?

- Identify flaws so they can be fixed
- Pressure vendors to be more careful
- Learn about new classes of threats
 - Motivate new research on defenses
 - Determine what we need to defend against
 - Help designers build better threat models
 - Help users more accurately evaluate risk
- Identify false design assumptions
- Improve models used for proof of security
Thinking Like an Attacker

- Look for weakest links – easiest to attack
 - Insider attacks, social engineering

- Think outside the box – not constrained by system designer’s worldview
 - Side-channel attacks (TEMPEST, power analysis)

- Identify assumptions that security depends on – are they false?
 - e.g. cold-boot attacks

Practice thinking like an attacker: For every system you interact with, think about what it means for it to be secure, and imagine how it could be exploited by an attacker.
Exercises

- Breaking into the CSE building
Exercises

- Stealing an election
Exercises

- Stealing my password
What are some security systems you interact with in everyday life?
Thinking Like a Defender

- **Security policy**
 - What properties are we trying to enforce?
- **Threat model**
 - What kind of attack are we trying to prevent?
 - Who are the attackers? Capabilities? Motivations?
- **Risk assessment**
 - What will successful attacks cost us?
 - How likely?
- **Countermeasures**
 - Costs vs. benefits?
 - Technical vs. nontechnical?

Challenge is to think rationally and rigorously about risks. *Controlled paranoia.*
Exercises

- Using a credit card safely
Exercises

- Should you lock your door?
Spotting Security Snake-Oil?

- Kerckhoffs’s principle
 Should be secure even if everything about the design is public—except for the secret keys

- Roll-Your-Own Encryption
 Just because you can’t break it doesn’t mean it’s hard to break – look for AES, SHA-2, etc.
I Need Your Mug Shots!

To: eecs588@umich.edu
Subject: uniqname

3 minutes. Go!
Recall Course Goals

- Gain hands-on experience
 - Building secure systems
 - Evaluating system security
- Prepare for research
 - Computer security subfield
 - Security-related issues in other areas
- Generally, improve research and communication skills
- Learn to be a 1337 hax0r, but an ethical one!
Grading

- Class Participation (5%)
- Paper Responses (15%)
- Attack Presentation (30%)
- Research Project (50%)

No exams, no problem sets!
Class Participation (5%)

- ~2 required papers for discussion in each session (other readings optional but recommended)
- Come prepared to contribute!
- Full points for speaking up and contributing substantial ideas
- Lose points for being silent, frequently missing class, facebook, etc.
Paper Responses (15%)

Brief written response to each paper (~400 words)

- In the first paragraph:
 - State the problem that the paper tries to solve; and
 - Summarize the main contributions.

- In one or more additional paragraphs:
 - Evaluate the paper's strengths and weaknesses;
 - Discuss something you would have done differently if you had written the paper; and
 - Suggest interesting open problems on related topics.
With a partner, choose a specific attack from recent research and implement a demonstration

Give a 15 minute presentation:
(1) describe the attack
(2) talk about how you implemented it, give a demo
(3) discuss possible defenses

Course schedule will list topics later today

Each group send me ratings for each choice by 5pm Friday
Research Project (50%)

In groups, investigate new attack/defense/tool

Aim for a publishable workshop paper.

Components (more detail on website):

- Preproposal presentation
- Project proposal
- Project checkpoint
- Workshop-style presentation in class
- Final workshop-style report
Communication

Course Web Site
http://www.eecs.umich.edu/courses/eecs588/
schedule, readings

Piazza
announcements, discussion

Email Me
jhalderm@umich.edu
suggestions, questions, concerns
Don’t be evil!
- Ethics requires you to refrain from doing harm
- Always respect privacy and property rights
- Otherwise **you will fail the course**

Federal and state laws criminalize computer intrusion and wiretapping
- e.g. Computer Fraud and Abuse Act (CFAA)
- You can be sued or go to jail

University policies prohibit tampering with campus systems
- You can be disciplined, even expelled
Your Assignments...

First paper discussion (two MD5 papers)
See course site for required reading
Remember to send written responses

Find a partner and pick topics for your attack presentation – updated list tonight;
email topics by 5pm Friday

Start thinking about your course project;
Form a group, preproposal due mid-February