Introduction

January 12, 2016
Alex Halderman
Welcome!
Goals for the course
Topics, what interests you?
Introduction to security research
Components of your grade
Legal and ethical concerns
Who am I?

J. Alex Halderman
CSE Prof.

Web: https://jhalderm.com
Email: jhalderm@eecs
Office: 4717 Beyster
Hours: TuTh 3:30-4:30
 or by appointment
Mobile: 609-558-2312
How I spent my winter vacation
How I spent my winter vacation
Qualitätsfeuerwerk für zündende Begeisterung

Feuerwerk

ab dem 29. Dezember

www.pyro-partner.de
My Work: Internet-wide Security Intelligence

Zmap: an open-source tool that can port scan the entire IPv4 address space from just one machine in minutes.

Daily global scans track millions of vulnerable devices, new security threats.

Our notifications increased rate of Heartbleed patching by 50% worldwide.
My Work: Real-world Cryptography

Cold-Boot Attack

breaks all full-disk encryption products, inspired new subfield of crypto theory

Best Student Paper, *Usenix Security 2008*

Mining Ps and Qs

insufficient entropy compromises RSA and DSA keys in millions of devices

Best Paper Award, *Usenix Security 2012*

Imperfect Forward Security

new TLS attack threatens 8% of the web, NSA might tap 66% of VPNs using HPC

Highest-rated Submission, *ACM CCS 2015*
My Work: Encrypting the Entire Web

A free, automated, HTTPS certificate authority to help encrypt the entire web
My Work: Censorship Resistance
My Work: Internet Voting

Washington, D.C.
First open-source online voting in U.S. general election
In public test, U-M team took <48 hours to change all votes

Estonia
Over 30% of Estonian voters cast their votes online
We showed that foreign powers could hack in and steal elections

Australia
Largest-ever online election with 250,000 voters
We reported flaws that could have altered the outcome
My Work: Embedded Systems Security

Traffic Infrastructure

Voting Machines

TSA Airport Scanners

New Defenses
Goals for this Course

- Gain hands-on experience
 - Building secure systems
 - Evaluating system security
- Prepare for research
 - Computer security subfield
 - Security-related issues in other areas
- Generally, improve research, writing, and presentation skills
- Learn to be a 1337 hax0r, but an ethical one!
Getting In, Getting an A

Waitlist?

Prereqs:
EECS482 or EECS489 or grad standing

We’ll grant everybody overrides, but can’t guarantee hard work will bring success, unless you have the prerequisites.
Computer & Network Security

EECS 588 – Winter 2016

Overview | Schedule | Readings | Attack Presentations | Course Project

Professor:
J. Alex Halderman
Office hours: TuTh 3:30–4:30, 4717 Beyster, or by appointment

Credits:
4. This course counts towards meeting software quals requirements.

Prerequisites:
EECS 482 Operating Systems, EECS 489 Networking (recommended), or grad standing. Success in this course requires a mature understanding of software systems.

Lectures:
TuTh 1:30–3:30, 1690 Beyster

GSI:
Travis Finkenauer (4828 Beyster, meetings by appointment)

Forum:
We’ll use Piazza for online discussion and announcements. For administrative issues, email eecs588@umich.edu.

Resources
Security Research at Michigan
Security Reading Group
CSE CTF Club

This intensive research seminar covers foundational work and current topics in computer systems security. We will read research papers and discuss attacks and defenses against operating systems, client-side software, web applications, and IP networks. Students will be prepared for research in computer security and for security-related research in other subareas, and they will gain hands-on experience designing and evaluating secure systems.
Building Blocks
The security mindset, thinking like an attacker, reasoning about risk, research ethics
Symmetric ciphers, hash functions, message authentication codes, pseudorandom generators
Key exchange, public-key cryptography, key management, the SSL protocol

Software Security
Exploitable bugs: buffer overflows and other common vulnerabilities – attacks and defenses
Malware: viruses, spyware, rootkits – operation and detection
Automated security testing and tools for writing secure code
Virtualization, sandboxing, and OS-level defenses

Web Security
The browser security model
Web site attacks and defenses: cross-site scripting, SQL injection, cross-site reference forgery
Internet crime: spam, phishing, botnets – technical and nontechnical responses

Network Security
Network protocols security: TCP and DNS – attacks and defenses
Policing packets: Firewalls, VPNs, intrusion detection
Denial of service attacks and defenses
Data privacy, anonymity, censorship, surveillance

Advanced Topics
Hardware security – attacks and defenses
Trusted computing and digital rights management
Electronic voting – vulnerabilities, cryptographic voting protocols

Not a crypto course
Getting to Know You

- Who are you?
- What topics interest you?
- What would you like to learn in this course?
What is Computer Security?
“Computer security studies how systems behave in the presence of an adversary.”

* An *intelligence* that actively tries to cause the system to misbehave.
What’s the Difference?
Why is Security its own Area of CS?
Who does Security Research?

- Academia
- Industry
- Military
- Hobbyists
- Bad guys...
Hierarchies

Level-0 Problem: “Assault”
Actual malicious attempt to cause harm.

Level-1 Problem: “Vulnerability”
Specific errors that could be exploited in an assault.

Level-2 Problem: “Weakness”
Factors that predispose systems to vulnerability.

“**Attack**”
Assault recipe, vulnerabilities are ingredients.
High-Level Approaches

Attacks

Defenses
Why Study Attacks?

Identify vulnerabilities so they can be fixed. Create incentives for vendors to be careful. Learn about new classes of threats.

- Determine what we need to defend against.
- Help designers build stronger systems.
- Help users more accurately evaluate risk.
Thinking Like an Attacker

- Look for weakest links – easiest to attack.
- Identify assumptions that security depends on. Are they false?
- Think outside the box: Not constrained by system designer’s worldview.

Practice thinking like an attacker:
For every system you interact with, think about what it means for it to be secure, and image how it could be exploited by an attacker.
Exercises

- Breaking into the CSE building?
Exercises

- Stealing my password
Exercises

- What are some security systems that you interact with in everyday life?
Thinking as a Defender

- **Security policy**
 - What are we trying to protect?
 - What properties are we trying to enforce?

- **Threat model**
 - Who are the attackers? Capabilities? Motivations?
 - What kind of attack are we trying to prevent?

- **Risk assessment**
 - What are the weaknesses of the system?
 - What will successful attacks cost us?
 - How likely?

- **Countermeasures**
 - Costs vs. benefits?
 - Technical vs. nontechnical?

Challenge is to think rationally and rigorously about risk. *Rational paranoia.*
Exercises

- Should you lock your door?
 - Assets?
 - Adversaries?
 - Risk assessment?
 - Countermeasures?
 - Costs/benefits?
Exercises

- Using a credit card safely?
Secure Design

- Common mistake:
 Trying to convince yourself that the system is secure

- Better approach:
 Identify the weaknesses of your design and focus on correcting them

- Secure design is a *process*
 Must be practiced continuously; can’t be retrofitted
Where to Focus Defenses

- **Trusted components**
 Parts that must function correctly for the system to be secure.

- **Attack surface**
 Parts of the system exposed to the attacker

- Complexity vs. security?
To: eecs588@umich.edu
Subject: <your_uniqname>

> What name should we call you?
> What’s your year and major?
> What would you like to learn in 588?

3 minutes. Go!
Recall Goals for this Course

- Gain hands-on experience
 - Building secure systems
 - Evaluating system security
- Prepare for research
 - Computer security subfield
 - Security-related issues in other areas
- Generally, improve research and communication skills
- Learn to be a 1337 hax0r, but an ethical one!
Grading

No exams, no problem sets!

- Class Participation (5%)
- Paper Responses (15%)
- Attack Presentation (30%)
- Research Project (50%)
Class Participation (5%)

- ~2 required papers for discussion in each session
 (other readings optional but recommended)
- Come prepared to contribute!
- Full points for speaking up and contributing substantial ideas
- Lose points for being silent, missing class, Facebook, etc.
Brief written response to each paper (~400 words)

- In the first paragraph:
 State the problem that the paper tries to solve; and
 Summarize the main contributions.

- In one or more additional paragraphs:
 Evaluate the paper's strengths and weaknesses;
 Discuss something you would have done differently if you had written the paper; and
 Suggest interesting open problems on related topics.
With a partner, choose a specific attack from recent research and implement a demonstration

Give a 15 minute presentation:

(1) describe the attack
(2) talk about how you implemented it, give a demo
(3) discuss possible defenses

Course schedule will list topics later today

Each group send me ratings for each choice by 5pm Friday
Research Project (50%)

In groups, investigate new attack/defense/tool

Aim for a publishable workshop paper.

Components (more detail on website):

- Preproposal presentation
- Project proposal
- Project checkpoint
- Workshop-style presentation in class
- Final workshop-style report
Communication

Course Web Site
https://eecs588.org
schedule, reading list, reading response submission

Piazza
announcements, discussion, find a partner or group

Email Us
eecs588@umich.edu
administrativa, suggestions, questions, concerns
Don’t be evil!
- Ethics requires you to refrain from doing harm
- Always respect privacy and property rights
- Otherwise you will fail the course

Federal/state laws criminalize computer intrusion, wiretapping
- e.g. Computer Fraud and Abuse Act (CFAA)
- You can be sued or go to jail

University policies prohibit tampering with campus systems
- You can be disciplined, even expelled
Your Assignments...

First paper discussion **Thursday** (2 MD5 papers)
See course site for required reading (*under construction*)
submit written responses via eecs588.org by start of class!

Find a partner and rate the topics for attack presentation;
updated topic list available tomorrow;
email topic ratings by 5pm on Friday

Start thinking about your course project;
Form a group, present topic idea February 18 in class