
 
 
Introduction to MATLAB 
 
Introduction 
 
MATLAB is an interactive package for numerical analysis, matrix computation, control system 
design, and linear system analysis and design available on most CAEN platforms (Mac, Windows, 
Solaris, and Linux). In addition to the standard functions provided by MATLAB, there are thirteen 
toolboxes, or collections of functions and procedures, available as part of the MATLAB package. 
The toolboxes are: 
 

•  Control System: Provides several features for advanced control system design and analysis.  
•  Communications: Provides functions to model the components of a communication 

system's physical layer. 
•  Signal Processing: Contains functions to design analog and digital filters and apply these 

filters to data and analyze the results. 
•  System Identification: Provides features to build mathematical models of dynamical systems 

based on observed system data. 
•  Robust Control: Allows users to create robust multivariable feedback control system designs 

based on the concept of the singular-value Bode plot. 
•  Simulink: Allows you to model dynamic systems graphically.  
•  Neural Network: Allows you to simulate neural networks. 
•  Fuzzy Logic: Allows for manipulation of fuzzy systems and membership functions. 
•  Image Processing: Provides access to a wide variety of functions for reading, writing, and 

filtering images of various kinds in different ways. 
•  Analysis: Includes a wide variety of system analysis tools for varying matrices.  
•  Optimization: Contains basic tools for use in constrained and unconstrained minimization 

problems.  
•  Spline: Can be used to find approximate functional representations of data sets.  
•  Symbolic: Allows for symbolic (rather than purely numeric) manipulation of functions. 
•  User Interface Utilities: Includes tools for creating dialog boxes, menu utilities, and other 

user interaction for script files. 
 
Documentation 
 
Each toolbox has its own manual that is available for checkout from the Media Union Reserve Desk 
along with the MATLAB manual. In addition to manuals specific to the toolboxes listed above, the 
following manuals are also available at the Media Union Reserves Desk: 
 

•  MATLAB Building a Graphical User Interface 



•  MATLAB External Interface Guide for UNIX Workstations 
•  MATLAB Reference Guide 
•  MATLAB Release Notes 
•  MATLAB State-Space Identification Toolbox 
•  MATLAB User’s Guide for UNIX Workstations 

 
Getting Started 
 
On a PC 
 
The MATLAB program is found under the Start button. Then click Programs > Math and 
Numerical Methods > MATLAB. Printing on the PC is done by selecting Print from the File 
menu at the top of the window. Printing from the command window will print the command 
window text, while a print from the graph window will print the graph. 
 
On a UNIX/Linux Workstation 
 
To start MATLAB on any UNIX/Linux workstation, type matlab. If you receive a Permission 
Denied error, use the klog -c engin.umich.edu command to authenticate. To terminate 
MATLAB, type quit at the >> prompt. To set a specific printer type setenv PRINTER 
printername at the UNIX shell prompt before starting MATLAB and set the PRINTER variable to 
the desired printer. Once in the MATLAB program, typing print will print the most recent graph 
displayed. 
 
On a Mac 
 
You can find MATLAB in the Applications folder. After opening the program, the MATLAB 
Command window and an accompanying Graph window will appear. The Command window allows 
users to enter commands at the >> prompt and displays numerical output. The output of any 
plotting command is displayed in the Graph window. To exit MATLAB, select Quit from the File 
menu. 
 
There are two ways to obtain output from the Mac. The first way is to select Print from the File 
menu. If you are in a Command or Edit window, text is sent to the printer. If a Graph window is 
active, the graph is printed. Alternatively, you can enter the prtsc command in the Command 
window to print a graph. 
 
Online Help 
 
During any MATLAB session, online help is available for a variety of topics. To see a list of help 
topics, type help in the Command window. MATLAB is case sensitive, so all commands and 
variable names must be entered in lower case. For help on a specific topic, type help topic (e.g. 
help sum). 
 
On the Mac and PC, you also can get help from the menu bar. Select About MATLAB from the 
Apple menu and choose the desired category. Click on the Help button. Scroll to the desired topic, 
select it with the mouse, and click on the Help button. After you are finished reading the Help entry, 
click on Topics to move back up to the list of Help items. Then you can choose another item and 



click on the Help button again or you can click on Topics to return you to the list of Help 
Categories. Clicking the close box in the upper left corner closes the Help window. Mathworks also 
offers help on the web at: 
 

http://www.mathworks.com/products/matlab/ 
 
Session Transcripts and Permanent Variables 
 
The diary command can be used to create a transcript of a MATLAB session. Once a diary 
command is issued, all subsequent commands and output are written to the transcript file. To create 
a transcript file called session1, for example, type diary session1. 
 
The who command displays the names of all currently defined variables. MATLAB also has several 
permanent variables defined for frequently used numbers that appear in the display of currently 
defined variables. To display the value of a variable, just type the variable name. For example, type 
pi to display the value of pi.  
 
The format command can be used to change the way variables are printed. Short format, the 
default, displays four decimal places while long format displays fourteen. Type format long to 
change the display format. 
 
Close the transcript file using the diary off command at the end of the session. 
 
Defining and Clearing Variables 
 
The basic data element in MATLAB is the matrix. User defined variables are assigned values by 
entering a single value (scalar), a one-dimensional table (vector), or a two-dimensional table (matrix). 
Variables are defined by typing the name of the variable followed by an equal sign and the value of 
the variable. Brackets enclose the values of a vector or matrix and semicolons separate rows of 
matrices. Some examples are given here: 
 
 a = 1      (lets a equal a scalar) 
 b = [ 1 2 3 ]       (lets b equal a vector) 
 c = [ 1 2 3 ; 4 5 6 ; 7 8 9 ]  (lets c equal a matrix) 
 
Notice that the value of the variable is displayed after each variable is assigned. To suppress the 
output from any command, follow the command with a semicolon. To assign a new value to a 
variable, type the name followed by an equal sign and the new value. 
 
 a      (displays the value of a) 
 a = 2;     (changes a but does not display the value) 
 
Sometimes the stack may become cluttered with old variables and temporary results. The clear 
command clears all user-defined variables. It can be used to clear all variables or it may be followed 
by the name of a variable, in which case it clears only the specified variable. For example: 
 
 who      (lists the currently defined variables) 
 clear a     (clears a) 
 clear      (clears all user defined variables) 
 



Matrix Entry Shortcuts 
 
MATLAB provides several commands to create commonly used matrices. 
 
 a = eye(3)      (creates a 3x3 identity matrix) 
 b = ones(3)     (creates a 3x3 matrix of ones) 
 c = diag( [ 1 2 3 ] )    (creates a matrix whose diagonal is 1 2 3) 
 
Matrices with regularly increasing or decreasing values can be created as follows: 
 
 d = [ 1:5 ]     (creates a vector with entries 1 2 3 4 5) 
 e = [ 1:3 ; 1:3 ; 1:3 ]     (creates a 3x3 matrix) 
 f = [ 1:0.1:2 ]     (creates a vector with entries from 1 to 2 incremented by 0.1) 
 
Displaying Data 
 
When it is convenient to examine a specific element, row, or column of a matrix rather than the 
entire matrix, a single element of a matrix can be addressed by typing the name of the matrix 
followed by the row and column indices of the element in parentheses. To address an entire column 
or row, a colon can be substituted for either index. In this case, the colon can be thought of as a 
wildcard character. For example: 
 
 clear      (clears all user defined variables) 
 a = [ 1 2 3 ; 4 5 6 ; 7 8 9 ]     (defines the matrix a) 
 a(1,1)       (displays the element in the first row, first column of a) 
 a(:,1)      (displays first column of a)  
 
A partition of a matrix is addressed by inputting a vector rather than a scalar as either index. 
 
 a( [ 1 2 ] , [ 1 2 ] )    (displays the first two rows and columns of a) 
 a( [ 2 3 ] , : )     (displays the second and third rows of a) 
 
Matrix Arithmetic and Functions 
 
The conjugate transpose of a matrix can be found by placing an apostrophe after the name of the 
matrix. (If the matrix is purely real, then this will be the same as the transpose. Otherwise, a period 
will need to precede the apostrophe in the command.) If the matrix a is not already defined from the 
last section, it will have to be defined. 
 
 a        (displays the matrix a) 
 a’       (displays the conjugate transpose of a)  
 a.’      (displays the transpose of a)  
 
Matrices can be added to each other, subtracted from one another, and multiplied with other 
matrices or vectors, as long as they have the proper dimensions: 
 
 i = eye(3)      (defines the identity matrix i) 
 a + a’      (displays a + a conjugate transpose) 
 a * i       (displays a * i) 
 



Division of matrices by vectors or other matrices is not defined. That is, it is impossible to divide by 
a matrix or vector. Instead, the program multiplies by the inverse of a matrix. In MATLAB there are 
two types of division denoted by / and \. These two operations do not represent true division, but 
rather shortcuts for multiplication by the inverse of a matrix. 
 
If A is a square matrix, then A \ B is equivalent to INV(A)*B and gives the solution to the set of 
linear equations A*X = B. Similarly, B / A is equivalent to B*INV(A) and gives the solution to X*A 
= B. For example: 
 
 a = [ 2 1 ; 1 2 ];     (defines a) 
 b = [ 1 -3 ; 3 9 ];     (defines b) 
 a\b        (equivalent to inv(a)*b) 
 b/a        (equivalent to b*inv(a)) 
 
MATLAB is able to calculate simple functions of matrices very easily. Some examples are given 
below: 
 
 det(a)      (calculates the determinant of a) 
 inv(a)       (calculates the inverse of a) 
 rank(a)     (calculates the rank of a) 
 
Conditional and Looping Commands 
 
for Loops 
 
The for command can be used to execute a command or a sequence of commands for a specified 
number of iterations. The format of the for command is similar to the format of the BASIC for 
statement or the FORTRAN do statement. The for command can be entered on one or several lines 
to allow several statements to be executed within the loop. The following example creates an array 
containing the squares of the numbers one through ten. 
 
 for i = 1:10,      (initializes loop) 
 a(i) = i^2;         (assigns values for the array a) 
 end;                (ends loop) 
 a                      (displays a) 
 
Notice that the method used for specifying the range for i is the same as the shortcut discussed 
earlier for creating matrices. The beginning and ending values for i are separated by a colon.  
 
while Loops 
 
The while statement allows conditional looping. The command has the same general form as the for 
command except that the variable and range are replaced by a relational operator and two operands. 
 
 i = 0;        (initializes i) 
 while i < 10,     (begins loop) 
 i = i + 1;        (increments i) 
 a(i) = i^2;   (assigns values for the array a) 
 end;     (ends loop) 



 a    (displays a) 
 
This has the same effect as the first example of the for statement. The valid relational operators are 
== (equal), >, <, <=, >=, and ~= (not equal). The two operands must be scalars or expressions 
that result in scalars. 
 
if, else, and elseif Statements 
 
The if command provides for the conditional execution of a statement. The following example 
creates an identity matrix and illustrates nested for statements as well as the if statement. 
 
 for i = 1:3,  (initializes i) 
 for j = 1:3,   (initializes j) 
 if i == j a(i,j)=1;     (put ones on diagonal) 
 else a(i,j)=0;   (and zeros everywhere else) 
 end;    (ends if statement) 
 end;    (ends j loop) 
 end;    (ends i loop) 
 
When MATLAB is first invoked, the variables i and j are pre-assigned to be the imaginary square 
root of -1. However, once i or j is assigned to another value (e.g. as a loop counter), it will retain this 
value throughout the MATLAB session. Thus, if work with complex numbers inside MATLAB is 
desired, loop counters other than i or j should be used. To reset i to its default value, you can either 
type clear i or i=sqrt(-1). Alternatively, any references to the imaginary number i in scripts can be 
modified to refer to sqrt(-1) to be absolutely safe. 
 
Exiting MATLAB 
 
Remember to type diary off if you created a transcript session. You then will have a complete 
transcript of your MATLAB session. To leave MATLAB, type exit or quit at the >> prompt or 
select File -> Quit on a PC or Mac. 


