

Maple
Introductory Programming

 Guide

M. B. Monagan K. O. Geddes K. M. Heal
G. Labahn S. M. Vorkoetter J. McCarron

P. DeMarco

Maplesoft, a division of Waterloo Maple Inc. 2009.

 ii

Maplesoft, Maple, and Maplet are all trademarks of Waterloo Maple Inc.

© Maplesoft, a division of Waterloo Maple Inc. 2009. All rights reserved.

Information in this document is subject to change without notice and does not
represent a commitment on the part of the vendor. The software described in
this document is furnished under a license agreement and may be used or
copied only in accordance with the agreement. It is against the law to copy the
software on any medium except as specifically allowed in the agreement.

Windows is a registered trademark of Microsoft Corporation.
Java and all Java based marks are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
Maplesoft is independent of Sun Microsystems, Inc.
All other trademarks are the property of their respective owners.

This document was produced using a special version of Maple that reads and
updates LaTeX files.

Printed in Canada

ISBN 978-1-897310-73-1

Contents

Preface 1
Audience . 1
Worksheet Graphical Interface 1
Manual Set . 2
Conventions . 2

The Maple Programming Language 3
Using This Book . 3

Customer Feedback . 4

1 Introduction to Programming in Maple 5
In This Chapter . 5

1.1 The Maple Software . 5
1.2 Maple Statements . 6

Getting Started . 6
Maple Statements . 7
Getting Help . 7
Displaying a Text String 7
Performing an Arithmetic Operation 8
Assigning to a Name . 8
Using Maple Library Routines 9

1.3 Procedures . 9
Defining a Simple Procedure 9
Maple Library Routines, Built-In Routines, and User-

Defined Procedures 13
1.4 Interrupting Computations and Clearing the Internal Mem-

ory . 16
Interrupting a Maple Computation 16
Clearing the Maple Internal Memory 17

1.5 Troubleshooting . 17
Unexpected End of Statement 17

iii

iv • Contents

Missing Operator . 18
Invalid, Wrong Number or Type of Arguments 19
Unbalanced Parentheses 19
Assignment Versus Equality 20

1.6 Exercises . 21
1.7 Conclusion . 21

2 Maple Language Elements 23
In This Chapter . 23

2.1 Character Set . 23
2.2 Tokens . 24

Reserved Words . 24
Programming-Language Operators 25
Names . 26
Strings . 38
Natural Integers . 46

2.3 Using Special Characters 46
Token Separators . 46
Blank Spaces, New Lines, Comments, and Continuation . 46
Punctuation Marks . 48
Escape Characters . 51

2.4 Types and Operands . 51
Integers . 52
Strings . 53
Names . 53
Concatenations . 55

2.5 Troubleshooting . 55
Attempting to Assign to a Protected Name 55
Invalid Left-Hand Assignment 56
Incorrect Syntax in Parse 56
White Space Characters within a Token 56
Incorrect Use of Double and Single Quotes 57

2.6 Exercises . 58
2.7 Conclusion . 58

3 Maple Expressions and Statements 59
In This Chapter . 59

3.1 Syntax and Semantics . 59
Syntax . 59
Semantics . 60

3.2 Expressions . 61

Contents • v

Constants . 61
Operators . 70
Data Structures . 89
Functions . 92

3.3 Using Expressions . 96
Investigating the Parts of an Expression 96
Evaluating and Simplifying Expressions 100
Unevaluated Expressions 100
Substituting Subexpressions 103
Displaying Large Expressions: Labels 105
Structured Types . 106

3.4 Statements . 110
The Assignment Statement 111
Selection Statements . 114
Repetition Statements . 115
The read and save Statements 117
The break and next Statements 118
The error and return Statements 118
The use Statement . 119
The quit Statement . 119

3.5 Troubleshooting . 119
Syntax Errors . 120
Reserved Word Unexpected 120
Break or Next Not in Loop 121

3.6 Exercises . 121
3.7 Conclusion . 122

4 Basic Data Structures 123
In This Chapter . 123

4.1 Sets . 123
Manipulating a Set . 124

4.2 Lists . 126
Manipulating a List . 128

4.3 Tables . 133
An Alternate Method for Generating a Table 135
Table Evaluation Rules 135
Manipulating a Table . 136

4.4 arrays and Arrays . 141
Evaluation Rules for arrays 144
Manipulating arrays and Arrays 145

4.5 Selecting Elements from a Data Structure 152

vi • Contents

The Selection Operation [] 152
The op Command . 155
The select, remove, and selectremove Commands . . . 156

4.6 Converting Between Data Structures 158
Converting a Sequence to a Set or a List 158
Converting Other Data Structures 159

4.7 Other Maple Data Structures 159
Stacks . 159
Queues . 161

4.8 Troubleshooting . 162
Wrong Number of Parameters in Function 163
Invalid Subscript Selector 163
Requires Range or Initialization List for Building arrays . 164
Error in array Bound or Array Index out of Range 164

4.9 Exercises . 165
4.10 Conclusion . 166

5 Flow Control 167
In This Chapter . 167

5.1 Selection and Conditional Execution 167
The if Statement . 167
The ‘if‘ Operator . 171

5.2 Repetition . 172
The for Loop . 173
The while Loop . 177
Control within Loops . 178

5.3 Looping Commands . 180
The map Command . 180
The select, remove, and selectremove Commands . . . 181
The zip Command . 182
The seq, add, and mul Commands 183
Using Specialized Looping Commands 185

5.4 Troubleshooting . 187
Cannot Evaluate Boolean in if Statement 188
Value in Loop Must Be Numeric or Character 188
Variable Previously Assigned 189
Wrong Parameters in Function $ 190

5.5 Exercises . 191
5.6 Conclusion . 191

6 Maple Procedures 193

Contents • vii

In This Chapter . 193
6.1 Defining a Procedure . 193

Naming a Procedure . 194
Executing a Procedure . 194

6.2 Procedure Components 196
Formal Parameters . 196
Variables . 201
Procedure Options . 206
Procedure Description . 214
Procedure Body Statements 215

6.3 Procedure Interpretation 215
6.4 Procedure Return Values 217

Explicit Returns . 217
Error Returns . 219
Returning Values through Parameters 220
Returning Unevaluated 222

6.5 Documenting Your Procedures 225
Indicating Copyright . 225
Formatting Code for Readability 225
Adding Comments . 226
Including a Procedure Description 226
Creating Help Pages . 227

6.6 Saving and Retrieving Procedures 227
6.7 Viewing Maple Library Source Code 228

Special Evaluation Rules for Procedures 228
Displaying Maple Library Source Code 229

6.8 Alternate Methods for Defining a Procedure 231
Functional Operators: Mapping Notation 231
The unapply Command 232
Unnamed Procedures and the map Command 232
Building a List of Arguments 234

6.9 The Procedure Object . 236
The procedure Type . 236
Procedure Operands . 237

6.10 Using Data Structures to Solve Problems 239
Computing an Average . 239
Testing for Membership 241
Performing a Binary Search 242
Plotting the Roots of a Polynomial 243
Connected Graphs . 246

6.11 Troubleshooting . 251

viii • Contents

Missing Argument . 251
Incorrect Argument Type 252
Implicitly Declared Local Variable 252
Understanding Names, Functions, and Remember Tables . 253

6.12 Exercises . 255
6.13 Conclusion . 256

7 Input and Output 257
In This Chapter . 257

7.1 Screen and Keyboard I/O 257
Printing Output to the Screen 257
Interactive Input . 264

7.2 Standard Disk I/O . 269
Readable File Formats in Maple 270
Using Filenames in Maple Statements 271
Reading and Saving Data in Maple 271
Importing Data from Files 274
Exporting Data to Files 278

7.3 Troubleshooting . 280
Syntax Error in readstat 280
Extra Characters at End of Parsed String 280
Unable to Read Filename 281

7.4 Exercises . 281
7.5 Conclusion . 282

8 Debugging and Efficiency 283
In This Chapter . 283

8.1 A Tutorial Example . 284
Numbering the Procedure Statements I 285
Invoking the Debugger I 285
Controlling the Execution of a Procedure During Debug-

ging I . 287
Invoking the Debugger II 292

8.2 Maple Debugger Commands 296
Numbering the Procedure Statements II 296
Invoking the Debugger III 296
Controlling the Execution of a Procedure During Debug-

ging II . 305
Changing the State of a Procedure During Debugging . . 306
Examining the State of a Procedure During Debugging . . 309
Using Top-Level Commands at the Debugger Prompt . . 314

Contents • ix

Restrictions . 314
8.3 Detecting Errors . 315

Tracing a Procedure . 315
Using Assertions . 320
Handling Exceptions . 323
Checking Syntax . 329

8.4 Creating Efficient Programs 330
Displaying Time and Memory Statistics 330
Profiling a Procedure . 332

8.5 Managing Resources . 334
Setting a Time Limit on Computations 334
Garbage Collection . 335
Communicating with the Kernel 336

8.6 Exercises . 336
8.7 Conclusion . 337

9 Introduction to the Maplet User Interface Customization
System 339

In This Chapter . 339
9.1 Uses of Maplet Applications 339

Custom Maple Calculators 340
Interfaces to Maple Packages and Routines 341
Queries . 342
Messages . 342

9.2 The Maplets Package . 342
Elements . 343
Examples . 343
Tools . 343
Display . 343

9.3 Terminology . 343
9.4 Elements . 344

Window Body Elements 344
Layout Elements . 353
MenuBar Elements . 354
ToolBar Elements . 355
Command Elements . 356
Dialog Elements . 357
Other Elements . 361
Reference Options . 363

9.5 Example Maplet Applications 363
Linear Algebra Subpackage 364

x • Contents

Using the Example Maplet Applications 364
9.6 Tools . 366

Maplet System Global Variables 367
9.7 Running a Maplet Application 367
9.8 Writing a Maplet Application 368

Defining a Maplet Application 368
Maplet Application Programming Style Guidelines 368

9.9 After Reading This Chapter 369
9.10 Conclusion . 370

Index 371

Preface

This manual introduces the basic MapleTM programming concepts, such
as expressions, data structures, looping and decision mechanisms, proce-
dures, input and output, debugging, and Maplets.

Audience

As a Maple user, you may have only used Maple interactively, written
Maple programs, or programmed in another computer language.

You should be familiar with the following:

• Maple online help introduction

• Example worksheets

• How to use Maple interactively

• The Maple User Manual

Worksheet Graphical Interface

You can access the power of the Maple computation engine through a vari-
ety of user interfaces: the standard worksheet, the command-line1 version,
the classic worksheet (not available on Macintosh r©), and custom-built
MapletTM applications. The full Maple system is available through all of
these interfaces. In this manual, any references to the graphical Maple

1The command-line version provides optimum performance. However, the worksheet
interface is easier to use and renders typeset, editable math output and higher quality
plots.

1

2 • Preface

interface refer to the standard worksheet interface. For more information
on the various interface options, refer to the ?versions help page.

Manual Set

There are three other manuals available for Maple users, the Maple Get-
ting Started Guide, the Maple User Manual, and the Maple Advanced
Programming Guide.2

• The Maple Getting Started Guide provides extensive information
for new users on using Maple, and the resources available in the soft-
ware and on the Maplesoft Web site (http://www.maplesoft.com).

• The Maple User Manual provides an overview of the Maple software
including Document and Worksheet modes, performing computations,
creating plots and animations, creating and using Maplets, creating
mathematical documents, expressions, basic programming informa-
tion, and basic input and output information.

• The Maple Advanced Programming Guide extends the basic Maple
programming concepts to more advanced topics, such as modules,
input and output, numerical programming, graphics programming,
and compiled code.

In addition to the manuals, Maple has an online help system featuring
examples that you can copy, paste, and execute immediately.

Conventions

This manual uses the following typographical conventions.

• courier font - Maple command, package name, and option name

• bold roman font - dialog, menu, and text field

• italics - new or important concept, option name in a list, and manual
titles

2The Student Edition does not include the Maple Introductory Programming Guide
and the Maple Advanced Programming Guide. These programming guides can be pur-
chased from school and specialty bookstores or directly from Maplesoft.

Conventions • 3

• Note - additional information relevant to the section

• Important - information that must be read and followed

The Maple Programming Language
Writing a Maple program can be very simple. It can be as straightforward
as placing proc() and end proc around a group of Maple commands.
However, using the Maple programming language, you can write Maple
procedures that perform complex operations.

Writing code in Maple does not require expert programming skills.
Because Maple has a large library of routines, writing useful programs
from these powerful building blocks is easy. Unlike traditional program-
ming languages, with the Maple programming language you can perform
complicated tasks by using a single Maple library routine. In addition, you
can use the Maple programming language to automate long or repetitive
sets of instructions.

Ninety percent of the thousands of routines in the Maple language
are Maple programs. You can examine these Maple programs and modify
them to suit your needs, or extend them so that Maple can solve new types
of problems. You can learn the fundamentals of the Maple programming
language and write useful Maple programs in a few hours, rather than the
days or weeks that it often takes to learn other languages. This efficiency
is partly a result of the fact that Maple is interactive. This interaction
makes it easier to test and correct programs.

Using This Book
Examples Perform the examples shown in the manual as you read. To
strengthen your knowledge, try variations or refer to the related online
help page(s).

Troubleshooting At the end of most chapters, there is a Troubleshoot-
ing section that lists common errors encountered while performing the
examples in the chapter. See this section if you receive an error that you
do not understand.

Exercises Develop solutions to the problems posed in the Exercises at
the end of each chapter. This consolidates and extends your learning.

4 • Preface

Customer Feedback

Maplesoft welcomes your feedback. For suggestions and comments related
to this and other manuals, email doc@maplesoft.com.

1 Introduction to
Programming in Maple

Maple provides an interactive problem-solving environment, complete
with procedures for performing symbolic, numeric, and graphical compu-
tations. At the core of the Maple computer algebra system is a powerful
programming language, upon which the Maple libraries of mathematical
routines are built.

In This Chapter
• Components of the Maple software

• Maple statements

• Procedures and other essential elements of the Maple language

• Contrasting the Maple language with traditional programming lan-
guages, which cannot perform symbolic calculations

1.1 The Maple Software

The Maple software consists of three distinct parts.

• User Interface

• Kernel

• Library

5

6 • Chapter 1: Introduction to Programming in Maple

The user interface handles the input of mathematical expressions
and commands, the display of output, and the control of the Maple work-
sheet environment options.1

The basic Maple system, the kernel, is a relatively small collection
of compiled C code. When a Maple session is started, the entire kernel is
loaded. It contains the essential facilities required to run Maple and per-
form basic mathematical operations. The components include the Maple
programming language interpreter, arithmetic and simplification routines,
print routines, memory management facilities, and a collection of funda-
mental functions. Its small size ensures that the Maple system is compact,
portable, and efficient. In this guide, the kernel routines are referred to
as built-in routines.

The library contains the majority of the Maple routines. It includes
functionality related to calculus, linear algebra, statistics, graphics, and
many other topics. The Maple library consists of individual routines and
packages of routines. These routines are accessed and interpreted by the
Maple system as required. As a result of this modularity, the computer
consumes resources proportional to only the facilities that are used, en-
hancing the efficiency of the system. All library routines, which are im-
plemented in the high-level Maple programming language, can be viewed
and modified by users. Therefore, it is useful to learn the Maple program-
ming language so that you can modify existing Maple code to produce
customized routines.

1.2 Maple Statements

Getting Started
The Maple software runs on many different platforms. Depending on the
platform, you use its specialized worksheet interface or command-line in-
terface. In both cases, when a Maple session is started, the Maple prompt
character (>) is displayed.

>

This prompt character indicates that Maple is waiting to receive input
in the form of a Maple statement.2

1For more information about the Maple user interface and worksheets, refer to the
Maple Getting Started Guide or Maple User Manual.

2Throughout this book, the Maple notation (or one-dimensional) input format is

1.2 Maple Statements • 7

Maple Statements
There are many types of valid statements. Examples include statements
that request help on a particular topic, display a text string, perform an
arithmetic operation, use a Maple library routine, or define a procedure.3

Most Maple statements must have a trailing semicolon (;) or colon (:).
If you enter a statement with a trailing semicolon, for most statements,
the result is displayed. However, if you enter a statement with a trailing
colon, the result is computed but not displayed.

> 2 + 3;

5

> 2 + 3:

Getting Help
To view an online help page for a particular topic, enter a question mark
(?) followed by the corresponding topic name. For example, ?procedure
displays a help page that describes how to write a Maple procedure.4 This
type of Maple statement does not have a trailing colon or semicolon.

Displaying a Text String
The following statement returns a string. The text that forms the string
is enclosed in double quotes, and the result (the text string) is displayed
because the statement has a trailing semicolon. In the second example,
no result is displayed because the statement has a trailing colon.5

> "Hello World";

“Hello World”

> "Hello World":

used to enter Maple statements. For more information on starting a Maple session,
toggling between Maple notation (the default on most platforms) and standard math
notation, and managing your files, refer to the Maple Getting Started Guide and Maple
User Manual or enter ?managing at the Maple prompt.

3For more information about statements in Maple, see chapter 3.
4For more information about getting help in Maple, refer to ?help and ?HelpGuide.
5For more information about strings in Maple, see chapter 2 or refer to ?string.

8 • Chapter 1: Introduction to Programming in Maple

Performing an Arithmetic Operation
The arithmetic operators in Maple are + (addition), - (subtraction), *
(multiplication), / (division), and ^ (exponentiation). A statement can be
an arithmetic operation that contains any combination of these operators.
The standard rules of precedence apply.

> 103993/33102;

103993

33102

Maple displays the result—in this case an exact rational number—in
the worksheet or on the terminal in use, displaying the result as closely
to standard mathematical notation as possible.

You can enter statements on one line (as in the previous example) or
several lines.6 You can even put the terminating semicolon on a separate
line. It is not processed until you complete the command with a semicolon
or a colon.7

> 103993
> / 33102
> ;

103993

33102

Assigning to a Name
By naming a calculated result or complicated expression, you can refer-
ence it. To assign to a name, use the assignment operator, :=.8

> a := 103993/33102;

a :=
103993

33102

> 2 * a;

6To enter a statement on more than one line, hold the Shift key and press Enter
at the end of each line.

7For more information about commands that control printing, see Printing Out-
put to the Screen on page 257. For information about arithmetic operators, see
page 70.

8For more information about names and assignment, see chapter 2.

1.3 Procedures • 9

103993

16551

Using Maple Library Routines
Once a value is assigned to a name, for example, the value assigned pre-
viously to a, you can use the name as if it were the assigned object.
For example, you can use the Maple library routine evalf to compute a
floating-point (decimal) approximation to 103993/33102 divided by 2 by
entering the following statement.

> evalf(a/2);

1.570796326

You can use the Maple library of routines, introduced on page 6, for
many purposes. For example, you can find the derivative of an expression
by using the diff command.9

> diff(x^2 + x + 1/x, x);

2x+ 1− 1

x2

1.3 Procedures

This section formally introduces the concept of procedures in Maple. For
more information about procedures, see chapter 6.

Defining a Simple Procedure
A Maple procedure (a type of program) is a prearranged group of state-
ments processed together. The easiest way to create a Maple procedure
is to encapsulate a sequence of commands, which can be used to per-
form a computation interactively, between the proc(...) and end proc

statements.

9For more information about the Maple library routines, refer to the Maple User
Manual or the online help.

10 • Chapter 1: Introduction to Programming in Maple

Entering a Procedure Definition The following procedure generates the
string “Hello WorldÔ. Enter this procedure in a Maple session by entering
its definition on one line.

> hello := proc() "Hello World"; end proc;

hello := proc() “Hello World” end proc

For improved readability, enter the procedure onmultiple lines: hold
Shift and press Enter at the end of each line.10 Indent lines in the
procedure by using the spacebar. When you enter the last line, which
contains end proc, press Enter.

> hello := proc()
> "Hello World";
> end proc;

hello := proc() “Hello World” end proc

To run this procedure, enter its name followed by a set of parentheses
and a semicolon. Enclose any input to the procedure—in this case none—
between the parentheses and delimited (separated) by commas (,).

> hello();

“Hello World”

The next example is a procedure that uses the evalf command.

> half := proc(x)
> evalf(x/2);
> end proc;

half := proc(x) evalf(1/2 ∗ x) end proc

This procedure requires one input, x. The procedure computes the
approximation of the value of x divided by 2. A Maple procedure re-
turns the result of the last executed statement. Since evalf(x/2) is the
last calculation performed in the procedure half (in fact, it is the only
calculation), the approximation of x/2 is returned.

10For more information, see Unexpected End of Statement on page 17.

1.3 Procedures • 11

The procedure is named half by using the := notation in the same
manner that you would assign any other object to a name. Once you have
named a procedure, you can use it as a command in the current Maple
session with the same syntax used to run a Maple library routine.

> half(2/3);

0.3333333333

> half(a);

0.5000000000 a

> half(1) + half(2);

1.500000000

By enclosing the evalf(x/2) statement between proc() and end

proc, you create a procedure. In the next example, a new procedure is
created that corresponds to the following two statements.

> a := 103993/33102;

a :=
103993

33102

> evalf(a/2);

1.570796326

The procedure definition for these statements does not explicitly re-
quire input, but it does include a local variable. A local variable a in a
procedure is different from the variable a outside the procedure (if one
exists). Thus, you can use a as a variable name outside of the procedure
f without conflict.11

> f := proc() local a;
> a := 103993/33102;
> evalf(a/2);
> end proc;

11For more information about local variables, see Variables on page 201.

12 • Chapter 1: Introduction to Programming in Maple

f :=

proc() local a; a := 103993/33102 ; evalf(1/2 ∗ a) end proc

The interpretation of this procedure definition appears immediately
after the statements that define it. Examine it carefully and note the
following characteristics.

• The name of this procedure (program) is f.

• The procedure definition starts with proc(). The empty parentheses
indicate that this procedure does not require input.

• Semicolons or colons separate the individual commands of the proce-
dure.

• The local a; statement declares a as a local variable. As described
previously, a local variable has meaning only inside the procedure
definition.12

• The end proc keywords and colon or semicolon mark the end of the
procedure.

• As you enter the procedure, the commands of the procedure do not
display output. The procedure definition is displayed as output only
after you complete it with end proc and a semicolon or colon.

• The procedure definition that displays as the value of the name f is
equivalent to, but not identical to, the procedure definition you enter.
The commands of the procedure are simplified if possible.

The procedure definition syntax is very flexible. You can:

• Enter each statement on one or more lines

• Enter multiple statements on one line, provided they are separated by
colons or semicolons

• Place extra semicolons between statements

• Omit the semicolon (or colon) from the statement preceding end proc

12For more information about local variables, see Variables on page 201.

1.3 Procedures • 13

To suppress the display resulting from a complicated procedure def-
inition, use a colon instead of a semicolon at the end of the definition.

> g := proc() local a;
> a := 103993/33102;
> evalf(a/2);
> end proc:

Calling a Procedure The execution of a procedure is referred to as an
invocation or a procedure call. When you invoke a procedure, Maple
executes the statements that form the procedure body one at a time. The
result of the last computed statement within the procedure is returned as
the value of the procedure call.

For example, to execute procedure f—that is, to cause the statements
that form the procedure to execute in sequence—type its name followed
by parentheses and a semicolon. No input is required to run the procedure,
so nothing is entered between the parentheses.

> f();

1.570796326

Only the result of the last calculation performed within procedure f is
returned—the result of evalf(a/2). The assignment a:=103993/33102

is executed, but the statement result is not displayed.

Maple Library Routines, Built-In Routines, and User-Defined
Procedures
Maple routines are implemented in one of two formats—those written in
the C programming language and those written in the Maple programming
language. You can easily include complicated tasks in your user-defined
procedures by using the existing Maple routines instead of writing new
untested code.

The routines that are written in C are compiled and built into the
Maple kernel. These built-in routines are those that are generally used in
computations, and those that are fundamental to the implementation of
the other Maple routines. Since the kernel is compiled, it is usually faster
to perform computations by using these built-in routines.13

13For more information about built-in kernel routines, see page 207 or refer to
?builtin.

14 • Chapter 1: Introduction to Programming in Maple

The routines in the Maple library are written in the Maple program-
ming language. These routines exist as individual routines or as packages
of routines. They are accessed and interpreted by the Maple system as
required.

The code for the library routines and the definitions of user-defined
procedures can be viewed and modified. However, before exploring that, it
is important that you learn about evaluation rules so that you understand
the code.

Full Evaluation and Last Name Evaluation For most named objects in
Maple, such as e defined with the following command, you can obtain its
value by entering its name.

> e := 3;

e := 3

> e;

3

This is called full evaluation—each name in the expression is fully
evaluated to the last assigned expression in any chain of assignments. The
following statements further illustrate how full evaluation works.

> c := b;

c := b

> b := a;

b := a

> a := 1;

a := 1

> c;

1

1.3 Procedures • 15

This group of statements creates the chain of assignments
c ⇒ b ⇒ a ⇒ 1, and c fully evaluates to 1.

If you try this approach with a procedure, Maple displays only the
name of the procedure instead of its true value (the procedure definition).
For example, in the previous section, g is defined as a procedure. If you try
to view the body of procedure g by referring to it by name, the procedure
definition is not displayed.

> g;

g

This model of evaluation is called last name evaluation and it hides
the procedure details. The reason for this approach is that procedures
potentially contain many subobjects. To obtain the value of the name g,
use the eval command, which forces full evaluation.14

> eval(g);

proc() local a; a := 103993/33102 ; evalf(1/2 ∗ a) end proc

Viewing Procedure Definitions and Maple Library Code You can learn
about programming in Maple by studying the procedure definitions of
Maple library routines. To print the body of Maple library routines, set
the Maple interface variable verboseproc to 2, and then use the print
command.

Example Look at the procedure definition for the Maple least common
multiple routine, lcm, enter the following statements.15

> interface(verboseproc = 2):
> print(lcm);

14Last name evaluation applies to procedures, tables, and modules in Maple. For
more information, refer to ?last_name_eval.

15For more information about interface variables, see page 258 or refer to
?interface.

16 • Chapter 1: Introduction to Programming in Maple

proc(a, b)

local q, t;

optionremember , ‘Copyright (c) 1990 by the Unive\
rsity of Waterloo. All rights reserved .‘;

if nargs = 0 then 1

elif nargs = 1 then t := expand(a) ; sign(t) ∗ t
elif 2 < nargs then lcm(a, lcm(op(2..nargs, [args])))

elif type(a, integer) and type(b, integer) then ilcm(a, b)

else gcd(a, b, q) ; q ∗ b
end if

end proc

Because the built-in kernel routines are written in the C programming
language and compiled, you cannot view their definitions. If you print

the definition of a built-in procedure, the procedure body is comprised of
the option builtin statement and a positive integer that identifies the
procedure.

> print(add);

proc()option builtin; 114 end proc

1.4 Interrupting Computations and Clearing the
Internal Memory

This section introduces two important concepts: interrupting a computa-
tion and clearing the internal memory.

Interrupting a Maple Computation
To stop a computation, for example, a lengthy calculation or infinite loop,
use one of the following three methods.16

• Click the stop icon17 on the toolbar (in worksheet versions).

16Maple does not always respond immediately to an interrupt request if it is perform-
ing a complex computation. You may need to wait a few seconds before the computation
is halted.

17For more information on toolbar icons, refer to ?worksheet,reference,toolbar.

1.5 Troubleshooting • 17

• Hold the Ctrl key and press the C key (in UNIX and Windows
command-line versions).

• Hold the Command key and press the period key (.) (in Macintosh
command-line and worksheet versions).

To perform a hard interrupt, which stops the computation and exits
the Maple session, in Windows command-line Maple, hold the Ctrl key
and press the Break key.

Clearing the Maple Internal Memory
Clear the internal memory during a Maple session by entering the restart
command or clicking the restart icon18 on the toolbar of the worksheet (in
GUI versions). When you enter this command, the Maple session returns
to its startup state; all identifiers (including variables and procedures) are
reset to their initial values.19

> restart:

A Maple function that can be used to free space without resetting
your session is the garbage collection facility gc. For information on gc,
see page 335.

1.5 Troubleshooting

This section provides you with a list of common mistakes, examples, and
hints that will help you understand and avoid common errors. Use this
section to study the errors that you may encounter when entering the
examples from this chapter in a Maple session.20

Unexpected End of Statement
Most valid statements in Maple must end in either a colon or a semi-
colon. An error is returned if you press Enter on an input region that is
incomplete.

18For more information on toolbar icons, refer to ?worksheet,reference,toolbar.
19For more information about clearing the Maple internal memory and the restart

command, refer to ?restart.
20You can use the parse routine for finding errors in statements, and the Maple

debugger for finding errors in programs. For more information, see chapter 8, or refer
to ?parse and ?debugger.

18 • Chapter 1: Introduction to Programming in Maple

If you press Enter to enter a procedure definition on multiple lines,
the following error displays.

> p := proc()

Error, unexpected end of statement

To prevent this error message from displaying as you enter a proce-
dure definition, hold the Shift key and press the Enter key at the end
of each line, instead of pressing only the Enter key.

> p := proc()
> "Hello World";
> end proc;

If you neglect to enter a trailing semicolon or colon, Maple inserts a
semicolon and displays the following warning message.

> 1 + 2

Warning, inserted missing semicolon at end of statement,

1 + 2;

3

Maple also inserts a semicolon after end proc in procedure definition.

> p := proc()
> "Hello World";
> end proc

Warning, inserted missing semicolon at end of statement,

...ld"; end proc;

p := proc() "Hello World" end proc;

Missing Operator
The most common error of this type is omitting the multiplication oper-
ator.

> 2 a + b;

1.5 Troubleshooting • 19

Error, missing operator or ‘;‘

You can avoid this error by using * to indicate multiplication.

> 2*a + b;

2 a+ b

Invalid, Wrong Number or Type of Arguments
An error is returned if the argument(s) to a Maple library command are
incorrect or missing.

> evalf();

Error, invalid input: evalf expects 1 or 2 arguments,
but received 0

> solve(y=3*x+4, 5);

Error, (in solve) invalid arguments

> cos(x, y);

Error, (in cos) expecting 1 argument, got 2

If such an error occurs, check the appropriate online help page for the
correct syntax. Enter ?topic_name at the Maple prompt.

Unbalanced Parentheses
In complicated expressions or nested commands, it is easy to omit a clos-
ing parenthesis.

> [(1,0), (0,1];

Error, ‘]‘ unexpected

In a valid statement, each (, {, and [requires a matching), }, and
], respectively.

> [(1,0), (0,1)];

[1, 0, 0, 1]

20 • Chapter 1: Introduction to Programming in Maple

Assignment Versus Equality
When you enter statements in a Maple session, it is important that you
understand the difference between equality (using =) and assignment (us-
ing :=).

The equal sign = creates an equation. An equation is commonly used
to test whether two expressions (the left-hand side and the right-hand
side) are equal. The test is usually performed by using the Maple evalb

command.21

> x = 2;

x = 2

> x;

x

> evalb(x=2);

false

> x + 5;

x+ 5

The assignment operator := assigns to the left-hand side the value
of right-hand side. Once an assignment is made, the left-hand side can
be used in place of the value of the right-hand side. The left-hand side
must evaluate to a name (for example, the left-hand side cannot be a
number).22

> x := 2;

x := 2

> x;

21For more information about equations and Boolean testing, see page 84 or refer to
?evalb.

22For more information about names and assignment, see pages 26 and 111, respec-
tively.

1.6 Exercises • 21

2

> evalb(x=2);

true

> x + 5;

7

1.6 Exercises

1. Assign the integers 12321, 23432, and 34543 to the names a, b, and
c. Use these names to find the sum and difference of each pair of
numbers.

2. Write two procedures. The first requires two inputs and finds their
sum. The second requires two inputs and finds their product. Use
these procedures to add and multiply pairs of numbers. How could
you use these procedures to add and multiply three numbers?

3. Display your procedure definitions. Are they identical to the code you
entered to write them? 23

1.7 Conclusion

This chapter presented a basic overview of the Maple system and the
Maple programming language. The Maple system consists of three main
components: the kernel, which contains compiled built-in commands; the
library which contains routines written in the Maple programming lan-
guage; and, the interface, which handles the input and output of math-
ematical expressions and functions. You were introduced to the essential
elements of writing and executing Maple procedures, along with common
syntax errors related to writing procedures.

23For more information about procedure definitions, see chapter 6.

22 • Chapter 1: Introduction to Programming in Maple

To learn more about the Maple programming language, read the re-
maining chapters in this guide and, when you encounter other example
programs, try to write variations. Study the details, exceptions, and op-
tions in these chapters, as the need arises. References to related topics in
other chapters, manuals, and online help pages that provide additional
information are included where relevant.

2 Maple Language
Elements

Before programming in Maple, it is important to learn the properties and
roles of the basic elements of the Maple language.

In This Chapter
• Basic elements of the Maple language: the character set and tokens

• Maple tokens: reserved words, operators, names, strings, and natural
numbers; including the types of each and related functions

• Using special characters

• Maple data types related to the tokens

2.1 Character Set

The Maple character set consists of letters, digits, and special characters.
The letters are the 26 lower case letters

a b c d e f g h i j k l m n o p q r s t u v w x y z

and the 26 upper case letters.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

The 10 decimal digits are:

23

24 • Chapter 2: Maple Language Elements

Table 2.1 Special Characters

blank (left parenthesis
; semicolon) right parenthesis
: colon [left bracket
+ plus] right bracket
- minus { left brace
* asterisk } right brace
/ slash ‘ left single quote (back quote)
^ caret ’ right single quote (apostrophe)
! exclamation " double quote
= equal | vertical bar
< less than & ampersand
> greater than _ underscore
@ at sign % percent
$ dollar \ backslash
. period # pound sign (sharp)
, comma ? question mark

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

There are also 32 special characters, which are listed in Table 2.1. The
use of special characters is discussed in 2.3 Using Special Characters.

2.2 Tokens

The Maple language combines characters into tokens. The set of tokens
consists of reserved words (also called keywords), programming-language
operators, names, strings, and natural integers.

Reserved Words
The Maple keywords are reserved words that have special meanings.
Thus, you cannot change them or use them as variables in procedures.
The keywords are listed in Table 2.2. You can find information about a
specific keyword in the subsequent chapters of this guide or in the online
help pages.1

1For general information about reserved words in Maple, refer to ?keywords.

2.2 Tokens • 25

Table 2.2 Reserved Words

Keywords Purpose

break, next loop control
if, then, elif, else if statement
for, from, in, by, to, for and while loops
while, do
proc, local, global, option, procedures
error, return options, description
export, module, use modules
end ends structures
assuming assume facility
try, catch, finally exception handling
read, save read and save statements
quit, done, stop ending Maple
union, minus, intersect, subset set operators
and, or, not, xor Boolean operators
implies implication operator
mod modulus operator

Programming-Language Operators
There are three types of Maple language operators: nullary, unary, and
binary.2

In Maple, there are three nullary operators (operators that take no
arguments and return values from the environment of the Maple session).
They are constructed from the Maple ditto operator. The percent sign %

is the ditto operator. It is a special Maple name used to refer to previ-
ously computed non-NULL expressions. Specifically, the following nullary
operators are defined as:

% last expression

%% second-last expression

%%% third-last expression

The % operator re-evaluates the last expression computed, the %%

operator re-evaluates the second-last expression computed, and the %%%

operator re-evaluates the third-last expression computed.

2For more information about the order of precedence of programming-language op-
erators, see Table 3.4 on page 89 or refer to ?precedence.

26 • Chapter 2: Maple Language Elements

Table 2.3 Programming Binary Operators

Operator Meaning Operator Meaning

+ addition < less than
- subtraction <= less or equal
* multiplication > greater than
/ division >= greater or equal
^ exponentiation <> not equal
$ sequence operator -> arrow operator
@ composition union set union
@@ repeated composition minus set difference
&string neutral operator intersect set intersection
, expression separator :: type declaration,
|| concatenation pattern binding
. non-commutative and logical and

multiplication or logical or
.. ellipsis xor exclusive or
mod modulo implies implication
:= assignment subset subset

Note: The nullary operators do not reference the results of the lines
located above the execution groups in which they are used. They refer-
ence the results of the most recently performed computations in the
Maple session, regardless of the execution group or worksheet that con-
tains them. Also, since the ditto operators do not recall the results of past
computations, but re-evaluate the results of these computations, the use
of local variables to save and recall computed expressions is preferred in
procedures. For more information about local variables, see Variables on
page 201.3

The Maple binary and unary operators, and their meanings, are listed
in Table 2.3 and Table 2.4, respectively. For additional information about
these operators, see page 70.

Names
A name in Maple is a sequence of one or more characters that uniquely
identifies a command, file, variable, or other entity. There are two distinct
types of names: indexed names and symbols, which are non-indexed

3For more information about the ditto operators, refer to ?ditto.

2.2 Tokens • 27

Table 2.4 Programming Unary Operators

Operator Meaning

+ unary plus (prefix)
- unary minus (prefix)
! factorial (postfix)
$ sequence operator (prefix)
not logical not (prefix)
&string neutral operator (prefix)
. decimal point (prefix or postfix)
%integer label (prefix)

names. For more information about indexed names, see page 34.
The simplest instance of a name consists of a sequence of letters,

digits, and underscores. If you require a name that includes blank spaces,
use left single quotes (for more information, see page 28).

> My_Name_1;

My_Name_1

You can confirm that the previous statement is a valid name (and
symbol) by using the whattype command.

> whattype(%);

symbol

A name cannot begin with a number, and the maximum length of a
name is system dependent.

> 1myname;

on line 258, syntax error, missing operator or ‘;‘:
1myname;

^

Maple is case-sensitive, so, for example, the name Apple is different
from the name apple.

Other Maple names include:

• mathematical functions such as sin and cos

28 • Chapter 2: Maple Language Elements

• Maple commands such as expand or simplify

• type names such as integer or list

• variables that represent values, for example, x and y in the expression
x+y

• programming variables (A name becomes a programming variable
only after Maple assigns it a value. Otherwise, the name remains an
unknown.)

For example, in the first statement below, y is a name that does not
have a value. In the second statement, the variable x has the value 3.

> 2*y - 1;

2 y − 1

> x := 3; x^2 + 1;

x := 3

10

Names that begin with an underscore are reserved by Maple for inter-
nal use only, and names of the form ñame are permitted for spreadsheet
references (refer to cell references in ?spreadsheet,references).

In general, names can also be formed by using left single quotes or
concatenation. Other categories of names in Maple include indexed names,
initially-known names, environment variables, constants, and protected
names. These are discussed in the following sections.

Forming a Name By Using Left Single Quotes You can form a name in
Maple by enclosing any sequence of characters in left single quotes (also
called back quotes). To form a name that includes blank spaces, use left
single quotes.

> ‘This is a name!‘;

This is a name !

> whattype(%);

2.2 Tokens • 29

symbol

Because the name is not indexed, it is of type symbol.
With the exception of keywords and names that contain blank spaces,

any valid Maple name formed without using left single quotes is the same
as the name formed by surrounding the name with left single quotes. For
example, x and ‘x‘ refer to the same name x.

Name Concatenation Names can be formed through concatenation by
using the cat command or the superseded concatenation operator, ||.4

The cat Command You can construct a name (or string) by using the
cat command

cat(sequence)

where sequence contains any number of expressions, separated by
commas.

The cat command is commonly used to concatenate names and
strings, and the result returned has the type (name or string) of the
first argument to cat. (In the following examples, any argument that is
enclosed by double quotes is a string.)

> cat(a, b);

ab

> cat(a, "b");

ab

> cat("a", b);

“ab”

> cat(a, 2);

a2

4You can also use the cat command to form strings. For more information, see
page 41 or refer to ?cat.

30 • Chapter 2: Maple Language Elements

> cat("a", 2);

“a2”

If the result from the cat command evaluates to a name, then it is
a global name—a name that can be recognized anywhere in the Maple
session. To illustrate, consider the following procedures.5

> globalassign := proc()
> local a;
> a := 5;
> assign(cat(’a’), 2);
> end proc:

> a;

a

> globalassign();
> a;

2

In procedure globalassign, the assignment statement6 assigns 2

to the global name a. If the statement assign(cat(’a’), 2) were
assign(’a’, 2), the local variable a would be assigned 2, but the
global variable a would be unchanged.7

The Concatenation Operator || You can also concatenate names by
using the concatenation operator || in one of the following formats.

name || name

name || naturalInteger

name || string

name || (expression)

5For more information about procedure syntax, see chapter 6.
6For more information about the assignment statement, see page 111.
7For more information about local and global variables, see Variables on page 201.

2.2 Tokens • 31

The concatenation operator is a binary operator that requires a name
(or a string) as its left operand. Since a name can appear on the left-
hand side of any concatenation operator, you can perform a succession of
concatenations.

> i := 5;

i := 5

> i || 7;

i7

> p || "in";

pin

> a || (2*i);

a10

> a || i || b;

a5b

Maple never fully evaluates the left-most object, but evaluates it to a
name. For example, study the result of i||7 and a||i||b in the previous
examples. The i is evaluated to 5 only if it is not the left-most object in
the concatenation.

In general, Maple evaluates expressions from left to right. However,
Maple evaluates concatenations from right to left. Maple evaluates the
right-most operand, then concatenates to the left operand.

Example 1 If the right operand evaluates to an integer, string, or name,
then the result of the concatenation is a string or name (depending on
the type of the left -most operand).

> n := 4: p || (2*n+1);

p9

32 • Chapter 2: Maple Language Elements

Example 2 If the right operand evaluates to another type of object, for
example, a general expression, the result of the operation is an unevalu-
ated concatenated object.

> p || (2*m+1);

p||(2m+ 1)

Example 3 If the right-hand expression is a sequence or a range and
the operands of the range are integers or character strings, then Maple
returns a sequence of names.

> x || (a, b, 4, 67);

xa, xb, x4 , x67

Example 4 If more than one range appears, the extended sequence of
names is constructed.

> x || (1..2) || (1..3);

x11 , x12 , x13 , x21 , x22 , x23

The use of the concatenation operator to form sequences has been
superseded by the seq function. For more information, see page 183 or
refer to ?seq.

Differences Between cat and || Although you can use both cat and
|| to concatenate, there are subtle differences in the way each performs.
The concatenation operator does not evaluate its first argument, whereas
cat does.8

> a := 2;

a := 2

> a || 4;

a4

8In this example, the result from cat(a,4) is the name 24 not the integer 24.

2.2 Tokens • 33

> cat(a, 4);

24

Also, the result of the statement that uses the concatenation operator
is evaluated; this is not the case for the cat command.

> a4 := 5;

a4 := 5

> a || 4;

5

> cat(a, 4);

a4

Note: In general, it is recommended that you use cat.

Special Characters in Names To make the left single quote character
appear in a name, enter a backslash character (\) followed by a left single
quote (‘) where you want the left single quote character to appear. The
backslash is the escape character in Maple. For more information, see
Escape Characters on page 51 or refer to ?backslash.

> ‘a\‘b‘;

a‘b

Similarly, to cause a backslash to appear as one of the characters in a
name, enter two consecutive backslashes, \. You must escape the backslash
because the backslash also acts as a line continuation character. For more
information, see page 47.

> ‘a\\b‘;

a\b

34 • Chapter 2: Maple Language Elements

The special backslash character is only one character, as is demon-
strated by using the length command.

> length(%);

3

Indexed Names Another form of a name in Maple is the indexed name
(or subscripted name), which has the following syntax.

name [sequence]

Since an indexed name is itself a valid name, you can add a succession
of subscripts.

> A[1,2];

A1, 2

> A[i,3*j-1];

Ai, 3 j−1

> b[1][1], data[Cu,gold][1];

b11, dataCu, gold 1

You can assign a value to an indexed name.

> f[Cu] := 1.512;

fCu := 1.512

> a[1]^2; a[1] := 3; a[1]^2;

a1
2

a1 := 3

9

2.2 Tokens • 35

Table 2.5 Initially Known Names

Name Meaning Name Meaning

Catalan Catalan’s lasterror stores most
constant recent error

constants initially-known libname pathname of
symbolic constants Maple library(ies)

Digits number of digits in NULL empty expression
floating-point sequence
computations

FAIL cannot determine Order truncation order
value for series

false Boolean evaluation Pi mathematical constant
gamma Euler’s constant printlevel control display

of information
I complex number true Boolean evaluation
infinity mathematical infinity undefined undefined

Note: The use of an indexed name such as A[1,2] does not automati-
cally imply that A is an array, as in some languages. The statement

> a := A[1,2] + A[2,1] - A[1,1]*A[2,2];

a := A1, 2 +A2, 1 −A1, 1A2, 2

forms a formula in four indexed names. However, if A does evaluate
to an array, Array, or table, A[1,2] refers to element (1,2) of the array
or table.9

Initially Known Names Maple ships with a collection of names that are
initially known to the Maple system. These are names of global or envi-
ronment variables and names of constants related to functions. Table 2.5
lists some of the initially known Maple names.10

Environment Variables Enviroment variables influence the execution of
operations in a software program. You can display a sequence of all active
environment variables by entering the following command.11

9For more information about arrays, Arrays, and tables, see chapter 4 or refer to
?array, Array, and ?table.

10For general information about initially known names, refer to ?ininames.
11For more information about assigned names, see pages 111–114 or refer to ?anames.

36 • Chapter 2: Maple Language Elements

> anames(‘environment‘);

Testzero, UseHardwareFloats , Rounding , %, _ans , %%%,

Digits , index/newtable , mod , %%, Order , printlevel ,

Normalizer , NumericEventHandlers

You can use environment variables in assignment statements. How-
ever, if an environment variable is assigned a value in a procedure body,
its pre-procedure value is restored upon exit from the procedure. Also, the
value of the environment variable is available to all subprocedures called
from that procedure, unless locally superseded.12,13,14

> Digits;

10

> evalf(2/13);

0.1538461538

> envtest := proc()
> Digits := 3;
> evalf(2/13);
> end proc:

> envtest();

0.154

> Digits;

10

> evalf(2/13);

12For more information about environment variables, refer to ?envvar. For more
information about procedures, see chapter 6 or refer to ?procedures.

13The evalf command is used to evaluate its argument to a floating-point (decimal)
number. For more information, refer to ?evalf.

14For more information on variable scoping, see Variables on page 201 or refer to
chapter 1 of the Maple Advanced Programming Guide.

2.2 Tokens • 37

0.1538461538

Constants You can display a sequence of all the currently active sym-
bolic constants in Maple by using the global variable constants.

> constants;

false , γ, ∞, true , Catalan, FAIL, π

Maple also has numeric constants: integers, fractions, floating-point
numbers, and complex numbers. For more information, see pages 63–68.15

Protected Names A protected name has a predefined meaning. You
cannot directly assign a value to it. For example, the names of built-
in functions such as sin (the sine function), utility operations such as
degree (computes the degree of a polynomial), commands such as diff

(differentiation), and type names such as integer and list, are protected
names. If you attempt to assign to any of these names, an error is returned.

> list := [1,2];

Error, attempting to assign to ‘list‘ which is protected

The Maple system protects these names from re-assignment. However,
even though it is not recommended, it is possible to make assignments
to these names by first unprotecting them as illustrated by the following
statements.16

> unprotect(sin);
> sin := "a sin indeed";

sin := “a sin indeed”

As a result, components of Maple that rely on the sine function do
not work properly.

15For general information about constants in Maple, refer to ?constants.
16You can usually undo assignments made to Maple system names by entering a

restart command, or by ending the session. However, in general, it is dangerous to
reassign Maple system names; using the unprotect command to modify Maple system
names is not recommended.

38 • Chapter 2: Maple Language Elements

> plot(1, 0..2*Pi, coords=polar);

Plotting error, empty plot

To check whether a name is protected, use the type command.17

> type(diff, protected);

true

To display all the protected names, use the following command.18

select(type, unames(),anames(anything), protected);

To prevent a user from assigning a value to a name, use the protect

command when writing programs.

> mysqr := x -> x^2;

mysqr := x → x2

> type(mysqr, protected);

false

> protect(mysqr);
> mysqr := 9;

Error, attempting to assign to ‘mysqr‘ which is
protected

Strings
A string is a sequence of characters that evaluates to itself. To create a
string, enclose any sequence of characters in double quotes.

> "This is a string";

“This is a string”

17You can perform type checking for many types of objects in Maple. For more
information, see 2.4 Types and Operands or refer to ?type.

18For more information on the select function, see page 156.

2.2 Tokens • 39

You cannot assign to a string.

> "hello" := 5;

Error, invalid left hand side of assignment

Do not confuse the double quote character, which delimits a string,
with the left single quote character (‘), which forms a name (symbol),
or right single quote (’), which delays evaluation. For more information
on left and right single quotes, see pages 28 and 100, respectively.

In the following sections, strings and string operations are described.
For information on the StringTools package, refer to ?StringTools.

Length of a String There is no practical limit on the length of a Maple
string (the maximum string length is system dependent). On most Maple
implementations, this means that a string can contain more than half a
million characters.

Use the length command to determine the length of a string.

> length("What is the length of this string?");

34

All characters between, but excluding, the double quotes are counted.
Each blank space is counted as one character.

The Empty String The empty string (or null string) is represented by
two double quotation marks with no enclosed characters (not even a blank
space).

> "";

“”

> length(%);

0

> whattype(%%);

string

40 • Chapter 2: Maple Language Elements

The null string is not the same as the global variable NULL, which is
an empty expression sequence. The output for the null string consists of
zero printed characters.

Substrings You can extract a substring of a string by using the substring
command, or by using subscripts.

The substring command returns the string consisting of the charac-
ters specified by range.

substring(exprString, range);

If range is a nonzero integer m, then the mth character of exprString
is returned as a one-character string. If range is specified as m..n, where
m and n are nonzero integers, then the substring starting from the mth
character and ending with the nth character of exprString is returned.
Negative values in range indicate character positions counted from the
right end of the string.

> S := "abcdef";

S := “abcdef”

> substring(S, 5);

“e”

> substring(S, 3..7);

“cdef”

> substring(S, -3..-1);

“def”

Alternatively, you can access a substring by using a string with a
subscripted integer range (also called a selection operation).19

19It is more efficient to use the selection operation than the substring command to
access a substring of a string. Therefore, whenever possible, use a selection operation
instead of the substring command for accessing substrings from procedures. For more
information about selection, see page 114.

2.2 Tokens • 41

> S := "This is a string";

S := “This is a string”

> S[6];

“i”

> S[6..9];

“is a”

> S[-6..-1];

“string”

String Concatenation Like names, strings can also be formed through
concatenation by using the cat command or the superseded concatenation
operator, ||.20

The cat Command You can construct a string by using the cat com-
mand, where sequence contains any number of expressions, separated by
commas.

cat(sequence)

The cat command is commonly used to concatenate strings with
names and integers, and the result returned has the type (name or string)
of the first argument to cat.

> cat("a", b);

“ab”

> cat("a", 2);

“a2”

20For more information on the differences between cat and ||, see pages 29–32 or
refer to ?cat.

42 • Chapter 2: Maple Language Elements

> i := 5;

i := 5

> cat("The value of i is ", i, ".");

“The value of i is 5.”

The Concatenation Operator || You can also concatenate strings by
using the concatenation operator || in one of the following formats.

string || name

string || naturalInteger

string || string

string || (expression)

The concatenation operator is a binary operator that requires a string
(or a name) as its left operand. Since a string can appear on the left-
hand side of any concatenation operator, Maple accepts a succession of
concatenations.

> "The "|| "value of i is " || i;

“The value of i is 5”

In general, Maple evaluates expressions from left to right. However,
Maple evaluates concatenations from right to left. Maple evaluates the
right-most operand, then concatenates to the left operand. If the right
operand evaluates to an integer, string, or name, the result of the con-
catenation is a string (or name, depending on the type of the left-most
operand). If the right operand is evaluated to another type of object, for
example, a general expression, the result of the operation is an unevalu-
ated concatenated object.

> n := 4: "p" || (2*n+1);

“p9”

> "p" || (2*m+1);

“p”||(2m+ 1)

2.2 Tokens • 43

If the right-hand expression is a sequence or a range, and the operands
of the range are integers or character strings, Maple returns a sequence
of strings.

> "var" || (a, b, 4, 67);

“vara”, “varb”, “var4”, “var67”

If more than one range appears, an extended sequence of strings is
constructed.

> "x" || (1..2) || (1..3);

“x11”, “x12”, “x13”, “x21”, “x22”, “x23”

The use of the concatenation operator to form sequences has been
superseded by the seq function. For more information, see page 183 or
refer to ?seq.

For examples that illustrate the differences between cat and ||, see
page 32.

Special Characters in Strings To make the double quote character ap-
pear in a string, enter a backslash character (\) followed by a double quote
(") where you want the double quote character to appear. You must do
this since Maple does not know which double quote ends the string, and
the backslash acts as the escape character in Maple. For more information,
see page 51 or refer to ?backslash.

> "a\"b";

“a“b ′′

Similarly, to cause a backslash to appear as one of the characters in
a string, enter two consecutive backslashes, \. You must escape the back-
slash in this manner since the backslash also acts as a line continuation
character in Maple. For more information, see page 47.

> "a\\b";

“a\b”

44 • Chapter 2: Maple Language Elements

The special backslash character mentioned above counts as only one
character, as is demonstrated by using the length command.

> length(%);

3

A reserved word enclosed in double quotes is a valid Maple string,
distinct from its usage as a token.

> "while";

“while”

Parsing Strings The parse command accepts any Maple string and
parses the string as if it had been entered or read from a file.

parse(exprString, option);

The string must consist of exactly one Maple expression. The expres-
sion is parsed, and returned unevaluated.

> parse("a+b");

a+ b

> parse("a+b;");

a+ b

If the string is syntactically incorrect, the parse command returns an
error of the form "incorrect syntax in parse: ... (number)". The
number indicates the offset in characters, counted from the beginning of
the string, at which the syntax error was detected.

> parse("a++b");

Error, incorrect syntax in parse: ‘+‘ unexpected (4)

Partial statements or expressions cannot be parsed. Multiple state-
ments or expressions cannot be parsed, unless they comprise one larger
statement (such as a loop, or a procedure definition).

2.2 Tokens • 45

If the option statement is specified, the string must consist of exactly
one Maple statement. In this case, the statement is parsed and evaluated,
and then the result is returned.21

> parse("sin(Pi)");

sin(π)

> parse("sin(Pi)", statement);

0

Searching a String To perform case-sensitive and case-insensitive string
searching, use the SearchText and searchtext commands, respectively.

SearchText(pattern, exprString, range);

searchtext(pattern, exprString, range);

The SearchText command searches for exact matches of pattern

in exprString. The searchtext command performs the same search,
but it is case-insensitive. If pattern is found, Maple returns an integer
indicating the position of the first character in pattern in exprString.
If the pattern is not found in exprString, 0 is returned.

> SearchText("my s", "This is my string.");

9

> searchtext("My S", "This is my string.");

9

The optional range restricts the search to the specified range. It is
equivalent to performing a search on a substring, and it is useful when
the pattern occurs more than once in the string.

> SearchText("is", "This is my string.", 4..-1);

3

21For more information about the parse command, see page 268 or refer to ?parse.

46 • Chapter 2: Maple Language Elements

Converting Expressions to Strings To convert an expression to a string,
use the convert command.22

> convert(a, string);

“a”

> convert(a+b-c*d/e, string);

“a+b-c*d/e”

Natural Integers
A natural integer is a sequence of one or more decimal digits.23

> 00003141592653589793238462643;

3141592653589793238462643

2.3 Using Special Characters

Token Separators
You can separate tokens by using white space characters or punctuation
marks. The separator indicates the end of one token and the beginning of
the next.

Blank Spaces, New Lines, Comments, and Continuation
The white space characters are space, tab, return, and line-feed. This
guide uses the terminology new line to refer to a return or line-feed since
the Maple system does not distinguish between these characters. The
terminology blank refers to a space or tab.

The white space characters separate tokens, but are not themselves
tokens. White space characters cannot normally occur within a token.

> a: = b;

22Maple has the facility to convert a variety of objects. For more information about
expressions, see 3.2 Expressions and 3.3 Using Expressions. For more information
about conversions in Maple, refer to ?convert.

23For more information about integers in Maple, see page 62 or refer to ?integer.

2.3 Using Special Characters • 47

on line 26, syntax error, ‘=‘ unexpected:
a: = b;
^

However, you can use white space characters between tokens.

> a * x + x*y;

a x+ x y

The only situation in which white space is part of a token is in a name
or string formed by enclosing a sequence of characters in left single quotes
or double quotes, respectively. For more information, see pages 28 and 38.

Except in a string, all characters that follow a pound sign “#” on a
line are part of a comment.24

> a := 1 + x + x^2; #This is a comment

a := 1 + x+ x2

Since white space and new line characters are functionally identical,
you can continue statements from line to line, as described in chapter 1.

> a:= 1 + x +

> x^2;

a := 1 + x+ x2

To continue numbers and strings over multiple lines, use the back-
slash (\) as a line continuation character. The behavior of line continua-
tion is as follows.

If the special character backslash \ immediately precedes a new
line character, the Maple parser ignores both the backslash and the
new line. If a backslash occurs in the middle of a line, Maple usually
ignores it. 25

24For information about comments in Maple procedures, see 6.5 Documenting
Your Procedures.

25For more information about the backslash and exceptions to this rule, refer to
?backslash.

48 • Chapter 2: Maple Language Elements

Table 2.6 Maple Punctuation Marks

; semicolon (left parenthesis
: colon) right parenthesis
‘ left single quote [left bracket
’ right single quote] right bracket
| vertical bar { left brace
< left angle bracket } right brace
> right angle bracket , comma

You can use this rule to break up a long sequence of digits into groups
of smaller sequences, to enhance readability.

> "The input should be either a list of \

> variables or a set of variables";

“The input should be either a list of variables or a se \
t of variables”

> G:= 0.57721566490153286060\

> 6512090082402\43104215933593992;

G := 0.577215664901532860606512090082402431\
04215933593992

Punctuation Marks
The punctuation marks that act as token separators are listed in Table 2.6.

; and : Use the semicolon and the colon to separate statements. The
distinction between these marks is that, during an interactive session,
a colon prevents the result of the statement from printing.

> f:=x->x^2;

f := x → x2

2.3 Using Special Characters • 49

> p:=plot(f(x), x=0..10):

’’ Enclosing an expression, or part of an expression, in a right single
quotes (also called apostrophes) delays evaluation of the expression
(subexpression) by one level. For more information, see page 100.

> ’’sin’’(Pi);

’sin’(π)

> %;

sin(π)

> %;

0

‘‘ To form names, enclose an expression in left single quotes.

> limit(f(x), x=0, ‘right‘);

0

() The left and right parentheses group terms in an expression and group
parameters in a function call.

> (a+b)*c; cos(Pi);

(a+ b) c

−1

> proc(x, y, z)
> x+y+z;
> end proc:

50 • Chapter 2: Maple Language Elements

[] Use the left and right square brackets to form indexed (subscripted)
names and to select components from aggregate objects such as ar-
rays, tables, and lists. For more information on data structures, see
chapter 4.

> a[1]; L:=[2,3,5,7]; L[3];

a1

L := [2, 3, 5, 7]

5

[] and {} Use the left and right square brackets to form lists, and the
left and right braces to form sets. For more information on sets and
lists, see chapter 4.

> L:=[2,3,5,2]; S:={2,3,5,2};

L := [2, 3, 5, 2]

S := {2, 3, 5}

<> and | The left and right angle brackets in conjunction with the ver-
tical bar are used to construct Matrices and Vectors. For more infor-
mation, refer to ?Matrix and ?MVshortcut.

> <<1,2,3> | <4,5,6>>;

1 4
2 5
3 6

, Use the comma to form a sequence, and to separate the arguments of
a function call or the elements of a list or set.

> sin(Pi), 0, limit(cos(xi)/xi, xi=infinity);

0, 0, 0

2.4 Types and Operands • 51

Escape Characters
An escape character indicates that the following character must be han-
dled in a special manner. The escape characters in Maple are ?, !, #, and
\.

? The question mark character, if it appears as the first nonblank char-
acter on a line, invokes the Maple help facility. The words following
? on the same line determine the arguments to the help procedure.
Use either “,” or “/” to separate the words in the argument. For more
information, refer to ?help.

! The exclamation mark character, if it appears as the first nonblank
character on a line, passes the remainder of the line as a command
to the host operating system. This facility is not available on all plat-
forms. For more information, refer to ?system and ?escape.

The pound sign character indicates that the characters that follow it on
the line are a comment. For more information, see 6.5 Documenting
Your Procedures or refer to ?comment.

\ The backslash character is used for continuation of lines and grouping
characters in a token. For more information, see page 47 or refer to
?backslash.

2.4 Types and Operands

In most programming languages, data is divided into different classes of
information—called data types. Types are important in Maple since they
are used to decide whether an expression is a valid input in procedure calls
and Maple commands. By definition, a type in Maple is any expression
that is recognized by the type command. The type command has the
following syntax.

type(expression, typeName);

If expression is of type typeName, the type command returns true.
Otherwise, false is returned.

To determine the operands and the number of operands in an expres-
sion, use the op and nops commands, respectively. These commands have
the following basic syntax.

52 • Chapter 2: Maple Language Elements

Table 2.7 Integer Subtypes

Subtype Meaning

negint negative integer
posint positive integer
nonnegint non-negative integer
nonposint non-positive integer
even even integer
odd odd integer

op(i, expression);

nops(expression);

If the optional first argument i to the op command is a positive inte-
ger, the ith operand of expression is returned.

The following sections introduce some elementary data types, for ex-
ample, integers, strings, and names, but the Maple software contains many
others.26

Integers
The type of an integer is integer. The type command also understands
the subtypes of integers listed in Table 2.7.

An integer has only one operand, itself.

> x := 23;

x := 23

> type(x, prime);

true

> op(x);

23

> op(0, x);

26For more information about data types and operands in Maple, see chapter 3 or
refer to ?type and ?op.

2.4 Types and Operands • 53

Integer

Strings
The type of a string is string. A string also has only one operand, itself.

> s := "Is this a string?";

s := “Is this a string?”

> type(s, string);

true

> nops(s);

1

> op(s);

“Is this a string?”

Names
The type of a name is name. However, the type command also understands
the type names symbol and indexed. The type name is defined as symbol
or indexed.

> x := ‘my name‘;

x := my name

> type(x, name);

true

> type(x, symbol);

true

54 • Chapter 2: Maple Language Elements

The type of an indexed name is indexed. The zeroth operand of an
indexed name is the base name. The remaining operands are the indices
(subscripts).

> x := A[1][2,3];

x := A12, 3

> type(x, name);

true

> type(x, indexed);

true

> nops(x);

2

> op(x);

2, 3

> op(0,x);

A1

> y:=%;

y := A1

> type(y, indexed);

true

> nops(y), op(0,y), op(y);

1, A, 1

2.5 Troubleshooting • 55

Concatenations
The type of an unevaluated concatenation is “||”. This type has two
operands, the left-hand side expression and the right-hand side expression.

> c := p || (2*m + 1);

c := p||(2m+ 1)

> type(c, ‘||‘);

true

> op(0, c);

||

> nops(c);

2

> op(c);

p, 2m+ 1

2.5 Troubleshooting

This section provides you with a list of common mistakes, examples, and
hints that will help you understand and avoid common errors. Use this
section to study the errors that you may encounter when entering the
examples from this chapter in a Maple session.

Attempting to Assign to a Protected Name
An error occurs if you attempt to assign a value to a protected name.27

> int := 10;

Error, attempting to assign to ‘int‘ which is protected

27For more information about protected names, see page 37 or refer to ?protect.

56 • Chapter 2: Maple Language Elements

Invalid Left-Hand Assignment
An error occurs if you attempt to assign a value to a string.28

> "my string" := 10;

Error, invalid left hand side of assignment

Use only valid names on the left-hand side of an assignment statement.

Incorrect Syntax in Parse
The parse command accepts a string as its argument. An error message
is returned if the string is syntactically incorrect.29

> parse("a^2--b");

Error, incorrect syntax in parse: ‘-‘ unexpected (6)

The error message indicates the character number (counted from the
left double quote) where error was detected. In this case, the 6th character
(the second minus sign) caused the error.

White Space Characters within a Token
An error message is normally returned if a white space character occurs
in a token.

> evalb(2 < = 3);

on line 71, syntax error, ‘=‘ unexpected:
evalb(2 < = 3);

^

The binary operator <= is a token in Maple. Therefore, it cannot
contain a space.

> evalb(2 <= 3);

true

28For more information about strings, see page 38 or refer to ?string.
29For more information about parsing, see page 44 or refer to ?parse.

2.5 Troubleshooting • 57

Incorrect Use of Double and Single Quotes
In Maple, double quotes form a string, left single quotes form a name, and
right single quotes delay evaluation of an expression. Confusing a string
with a name, or a name with delayed evaluation causes errors. Study the
following examples to see the different uses of these quotes.30

To form a string, enclose the expression in double quotes.

> "2 + 3";

“2 + 3”

> whattype(%);

string

To form a name, enclose the expression in left single quotes.

> ‘2 + 3‘;

2 + 3

> whattype(%);

symbol

To delay the evaluation of an expression, enclose it in right single
quotes. To evaluate the expression, omit these quotes.

> x := 2: y := 3: f := ’x + y’;

f := x+ y

> f := x + y;

f := 5

30For more information about using quotes, see Punctuation Marks on page 48 or
refer to ?quotes.

58 • Chapter 2: Maple Language Elements

2.6 Exercises

1. Using the %, %%, and %%% operators, find the:

a) Sum of 5434 and 6342.

b) Product of 92 and 310.

c) Quotient of the result from a) divided by the result from b).

d) Quotient of the result from b) divided by the result from a).

2. Estimate π to 10,000 digits.

3. Concatenate the three strings "int", "(x^2,", and "x)". Parse the
resulting string. Evaluate the parsed string.

4. The Fibonacci numbers are a sequence of numbers. The first two num-
bers in the sequence are zero (0) and one (1). For n greater than two,
the nth number in the sequence is the sum of the two preceding num-
bers. Assign values to indexed names representing the first, second,
and general Fibonacci numbers.

5. Determine a random integer between 40 and 100 using the com-
mand rand(40..100). Concatenate this number with the string, "The
student’s grade is ". Extract the student’s grade from the result-
ing string.

6. Assign the expressions x^2 and x*x to the names a and b. Find
the three operands of a and b. Compare the results with those re-
turned by using the dismantle function, that is, dismantle(a) and
dismantle(b). The dismantle function displays the internal data
structure used.

2.7 Conclusion

This chapter introduced the Maple language elements. In particular, to-
kens are the smallest meaningful elements in Maple. Tokens are used to
form Maple expressions and statements. The next chapter shows how to
use the information presented in this chapter to build expressions, and
discusses how to form Maple statements.

3 Maple Expressions and
Statements

You construct Maple statements, most importantly expressions, from to-
kens, which were discussed in chapter 2.

In This Chapter
• Syntax and semantics of the Maple language

• Expressions, the most important type of statement, including the use
of expressions and the action of commands on expressions

• Other important types of statements

3.1 Syntax and Semantics

Syntax and semantics define a language. Syntax, or grammar, refers to the
rules that are used to combine basic elements into statements. Semantics
refers to the extra information or meaning that syntax cannot capture; it
determines the actions Maple performs when you enter a command.

Syntax
Syntax defines valid forms of input, for example, expressions, statements,
and procedures. It dictates, for example:

• Whether parentheses are required in the expression x^(y^z)

• How to enter a string that is longer than one line

• How to enter the floating-point number 2.3× 10−3

59

60 • Chapter 3: Maple Expressions and Statements

If the input is not syntactically correct, a syntax error is reported.
Consider the following examples.

Adjacent minus signs are not valid.

> --1

on line 29, syntax error, ‘-‘ unexpected:
--1
^

You can enter floating-point numbers using many formats.

> 2.3e-3, 2.3E-03, +0.0023;

0.0023, 0.0023, 0.0023

However, you must place at least one digit between the decimal point
and the exponent suffix.

> 2.e-3;

on line 42, syntax error, missing operator or ‘;‘:
2.e-3;

^

A correct way to enter this expression is 2.0e-3.

Semantics
The semantics of a language specifies how expressions, statements, and
programs execute—that is, the actions Maple performs with them. It
controls:

• Whether x/2*z or x/2/z is equal to x/(2*z) or (x/2)*z

• The behavior when sin(x)/x is computed with x=0

• The return of 1, instead of an error, for sin(0)/ sin(0)

• The value of i after executing the following loop

> for i from 1 to 5 do print(i^2) end do;

3.2 Expressions • 61

These are important concepts to understand before writing Maple
programs.

A common mistake is to think that x/2*z is equal to x/(2*z). Fol-
lowing the operator precedence rules (see Table 3.4 on page 89), this is
not true.

> x/2*z, x/(2*z);

1

2
x z,

1

2

x

z

The remainder of this chapter focuses on the Maple programming
language syntax.

3.2 Expressions

Expressions are the fundamental entities in the Maple language and the
most important type of Maple statement. The types of expressions are
the following:

• constants

• operator-based expressions

• data structures

• function calls

Procedures and modules1 are also valid expressions because you can use
them wherever an expression is accepted. This is an important feature of
the Maple language. Procedures are described separately in chapter 6.

Expressions are now presented in detail, beginning with the numeric
constants. The presentation shows how to input the expression, gives ex-
amples of how and where to use the expression, and illustrates the action
of the type, nops, op, and subsop commands on the expression.

Constants
The Maple language contains both symbolic and numeric constants.

1For information on modules, refer to chapter 2 of theMaple Advanced Programming
Guide or ?module.

62 • Chapter 3: Maple Expressions and Statements

Maple has a general concept of symbolic constants. The global vari-
able constants is assigned the expression sequence containing the names
of the initially known constants. For more information, see page 35.

Maple also has numeric constants. The numeric constants in Maple
are integers, rational numbers (fractions), floating-point numbers (dec-
imals), and the special values, infinity and undefined. The complex
numeric constants are the complex integers (Gaussian integers), complex
rationals, and complex floating-point numbers. The full set of real and
complex numeric constants is exactly what is recognized by type(...,

complex(extended_numeric)).
Generally, a Maple expression is of type constant if it is:

• Of type complex(extended_numeric)

• One of the initially known constants

• An unevaluated function with all arguments of type constant

• A sum, product, or power with all operands of type constant.

For example, the following expressions are of type constant: 2, sin(1),
f(2,3), exp(gamma), 4+Pi, 3+I, 2*gamma/Pi^(1/2).

> type(2, constant);

true

> type(sin(1), constant);

true

> type(2*gamma/Pi^(1/2), constant);

true

Integers In Maple, an integer is an optionally signed, arbitrary-length
sequence of one or more decimal digits. However, the integer 0 (zero) does
not have a sign.2,3

2The integer zero (0) does not have a sign. However, the floating-point zeros, +0.0
and -0.0, are signed. For more information, see page 65.

3The evalb command evaluates a Boolean expression. For more information, see
page 86 or refer to ?evalb.

3.2 Expressions • 63

> evalb(0 = +0); evalb(0 = -0); evalb(+0 = -0);

true

true

true

In Maple, the maximum length of an integer is system dependent and
can be obtained by entering kernelopts(maxdigits). The number of
digits is approximately:

> kernelopts(maxdigits);

268435448

A natural integer is any sequence of one or more decimal digits.
A signed integer is indicated by either +natural or -natural, where

natural is any natural integer.
Hence, an integer is either a natural integer or a signed integer.
The type of an integer is integer.

> type(-36, integer);

true

To form arithmetic expressions involving integers in Maple, use the
Maple arithmetic operators (see page 70 or refer to ?arithop). In contrast
with pocket calculators, when arithmetic expressions containing only inte-
ger operands are entered, Maple performs exact arithmetic—the integers
are not converted to decimal numbers.4

Rational Numbers (Fractions) A rational number (fraction) is the quo-
tient of two integers, where the denominator is always nonzero.

integer/natural

As with integers, Maple does exact arithmetic with fractions. Maple
simplifies fractions so that the denominator is positive, and reduces the
fraction to lowest terms by dividing the greatest common divisor from the
numerator and denominator.

4For more information about integers in Maple, refer to ?integer.

64 • Chapter 3: Maple Expressions and Statements

> -30/12;

−5

2

If the denominator is 1 after simplifying the fraction, Maple converts
the fraction to an integer.

> 25/5;

5

> whattype(%);

integer

The type of a fraction is fraction. The type command also accepts
the composite type name rational, which is the union of integer and
fraction–that is, rational numbers.

> x := 4/6;

x :=
2

3

> type(x, fraction);

true

> type(x, rational);

true

A fraction has two operands, the numerator and denominator. It is
recommended that you use the numer and denom commands to extract
the numerator and denominator of a fraction.

> op(1,x), op(2,x);

2, 3

> numer(x), denom(x);

3.2 Expressions • 65

2, 3

Floating-point Numbers (Decimals) An unsigned float has one of the
following six forms:

natural.natural

natural.

.natural

natural exponent

natural.natural exponent

.natural exponent

where natural is a natural integer, and exponent is the suffix con-
taining the letter “e” or “E” followed by a signed integer with no spaces
between.

A floating-point number is an unsigned float or a signed float
(+unsigned float or -unsigned float indicates a signed float).

> 1.2, -2., +.2;

1.2, −2., 0.2

> 2e2, 1.2E+2, -.2e-2;

200., 120., −0.002

Note that

> 1.e2;

on line 229, syntax error, missing operator or ‘;‘:
1.e2;

^

is not valid, and that spaces are significant.

> .2e -1 <> .2e-1;

−0.8 6= 0.02

The type of a floating-point number is float. The type command
also accepts the composite types numeric (which is the union of integer,

66 • Chapter 3: Maple Expressions and Statements

fraction, and float–that is, the real numbers), and extended_numeric

(which is the union of integer, fraction, float, infinity, and undefined).5

A floating-point number has two parts, themantissa (or significand)
m and the exponent e, which represent the number m×10e. The decimal
point is placed after the right-most digit of m. To access the parts of
a floating-point number, use the SFloatMantissa and SFloatExponent

commmands.

> x := 231.3;

x := 231.3

> SFloatMantissa(x);

2313

> SFloatExponent(x);

−1

You can also use the Float command to construct floating-point num-
bers.

Float(m, e);

This constructs the floating-point number m × 10e. Again, m is the
mantissa, e is the exponent, and the decimal point is located to the right
of m.

> Float(1.2, -3);

0.0012

The mantissa m is a Maple integer. Hence, it is subject to the same
restrictions in terms of number of digits as any Maple integer. Since Maple
integers are machine dependent, the maximum number of digits in any
integer, and therefore in m, is always at least 268, 435, 448.6

5For information about the full suite of numeric types and subtypes, refer to
?numeric_type.

6For more information, see page 62 or refer to ?maxdigits.

3.2 Expressions • 67

The exponent e is subject to a smaller restriction, which is again
machine dependent, but is always at least 2, 147, 483, 646. You can obtain
the exact values of these limits by using the Maple_floats command. For
more information, refer to ?Maple_floats.

You can also enter a floating-point number m×10e by simply forming
the expression m * 10^e.

> 1.2 * 10^(-3);

0.001200000000

Arithmetic with Floating-point Numbers For arithmetic operations
and the standard mathematical functions, if one of the operands (or
arguments) is a floating-point number or evaluates to a floating-point
number, then floating-point arithmetic is used automatically. The global
name Digits, which has the value 10 as its default, determines the num-
ber of digits (in the mantissa) that Maple uses for floating-point calcula-
tions.7

> x := 2.3: y := 3.7:
> 1 - x/y;

0.3783783784

In general, you can use the evalf command to force the evaluation
of a non-floating-point expression to a floating-point expression, where
possible.

> x := ln(2);

x := ln(2)

> evalf(x);

0.6931471806

An optional index to the evalf command specifies the precision of
the evaluation.8

7For more information, refer to ?Digits.
8For more information about evaluation using floating-point arithmetic, refer to

?evalf.

68 • Chapter 3: Maple Expressions and Statements

> evalf[15](x);

0.693147180559945

Complex Numerical Constants By default, I denotes the complex unit√
−1 in Maple. Therefore, the following are equivalent.

> sqrt(-1), I, (-1)^(1/2);

I, I, I

You can enter a complex number a + bi as the sum a + b*I or by
using the Complex command as Complex(a, b).

> 2 + 3*I;

2 + 3 I

> Complex(2, 3);

2 + 3 I

Maple uses a special representation for complex numeric constants,
such as 1.3 + 4.2*I. To select the real and imaginary parts, use the Re

and Im commands.9

> z := 2+3*I;

z := 2 + 3 I

> Re(z), Im(z);

2, 3

The type of a complex number is complex(numeric). This means
that the real and imaginary parts are of type numeric—that is, integers,
fractions, or floating-point numbers. Other possible type names are listed
in Table 3.1.

9In an expression such as x + y*I, where x and y are symbols, Maple does not
assume that x is the real part and y is the imaginary part.

3.2 Expressions • 69

Table 3.1 Types of Complex Numbers

Complex Type Name Meaning

complex(integer) both a and b are integers, possibly 0
complex(rational) both a and b are rationals
complex(float) both a and b are floating-point constants
complex(numeric) any of the above

Arithmetic with complex numbers is done automatically.

> x := (1 + I); y := 2.0 - I;

x := 1 + I

y := 2.0− 1. I

> x + y;

3.0 + 0. I

Maple can evaluate elementary functions and many special functions
over the complex numbers. Maple evaluates the result automatically if a
and b are numeric constants and one of a or b is a decimal number.

> exp(2+3*I), exp(2+3.0*I);

e(2+3 I), −7.315110095 + 1.042743656 I

If the arguments are not complex floating-point constants, you can
expand the expression in some cases into the form a+bi, where a and b

are real, by using the evalc command.
For example, the result of the following statement is not in the form

a+bi because a is not of type numeric.

> 1/(a - I);

1

a− I

> evalc(%);

70 • Chapter 3: Maple Expressions and Statements

a

a2 + 1
+

I

a2 + 1

Note: The evalc command assumes that the symbol a is real.

To use another letter, say j, to represent the imaginary unit, use the
interface command as follows.

> interface(imaginaryunit = j);

j

> solve({z^2 = -1}, {z});

{z = j}, {z = −j}

The following command reinstates I as the imaginary unit.

> interface(imaginaryunit = I);

I

> solve({z^2 = -1}, {z});

{z = I}, {z = −I}

Operators

A Maple operator is a symbol indicating that a mathematical operation
is to be performed. This section discusses the Maple operators, and how
to create expressions involving them.

The Arithmetic Operators The six Maple arithmetic operators are
listed in Table 3.2. They can all be used as binary operators. However,
you can also use the operators + and - as prefix operators representing
unary plus and unary minus, respectively.

The types and operands of the arithmetic operations follow.

• The type of a sum or difference is ‘+‘.

• The type of a product or quotient is ‘*‘.

3.2 Expressions • 71

Table 3.2 The Arithmetic Operators

Operator Meaning

+ addition
- subtraction
* multiplication
. non-commutative multiplication
/ division
^ exponentiation

• The type of a power is ‘^‘.

• The operands of the sum x− y are the terms x and −y.

• The operands of the product xy2/z are the factors x, y2, and z−1.

• The operands of the power xa are the base x and the exponent a.

> whattype(x-y);

+

> whattype(x^y);

^

Arithmetic Maple always computes the result to the five arithmetic op-
erations x + y, −y, x × y, x/y, and xn, if n is an integer, and x and y
are numbers. For example, you cannot prevent Maple from simplifying 2

+ 3 to 5 in output.10 If the operands are floating-point numbers, Maple
performs the arithmetic computation in the floating-point environment.

> 2 + 3, 6/4, 1.2/7, (2 + I)/(2 - 2*I);

5,
3

2
, 0.1714285714,

1

4
+

3

4
I

> 3^(1.2), I^(1.0 - I);

10For information on displaying output that appears unsimplified, refer to the exam-
ples in section 1.3 of the Maple Advanced Programming Guide.

72 • Chapter 3: Maple Expressions and Statements

3.737192819, 0.+ 4.810477381 I

For numerical constants, Maple reduces fractional powers of integers
and fractions as follows.

• For integers n, m and fraction b,

(n/m)b → (nb)/(mb).

• For integers n, q, r, d and fraction b = q + r/d with 0 < r < d,

nb = nq+r/d → nq × nr/d.

For example,

> 2^(3/2), (-2)^(7/3);

2
√
2, 4 (−2)(1/3)

Automatic Simplifications Maple automatically performs the following
simplifications for any symbol x or arbitrary expression.

> x - x, x + x, x + 0, x*x, x/x, x*1, x^0, x^1;

0, 2x, x, x2, 1, x, 1, x

Note the following exceptions.

> infinity - infinity;

undefined

> infinity/infinity;

undefined

> 0/0;

Error, numeric exception: division by zero

3.2 Expressions • 73

To perform additional simplifications, use the simplify command.11

In Maple, addition and multiplication are associative and commu-
tative. Therefore, the following simplifications are performed where a, b,
and c denote numerical constants, and x, y, and z denote general symbolic
expressions.

ax+ bx → (a+ b)x

xa × xb → xa+b

a(x+ y) → ax+ ay

The first two simplifications mean that Maple adds like terms in
polynomials automatically. The third simplification means that Maple
distributes numerical constants (integers, fractions, and floating-point
numbers) over sums, but does not do the same for non-numerical con-
stants.

> 2*x + 3*x, x*y*x^2, 2*(x + y), z*(x + y);

5x, x3 y, 2x+ 2 y, z (x+ y)

To force Maple to display an expression in expanded form, use the
expand command.12

The simplifications that are most confusing to Maple users relate to
simplifying powers xy for non-integer exponents y.

Simplification of Repeated Exponentiation In general, Maple does not
perform the simplification (xy)z → x(yz) automatically because it does
not always provide an accurate answer. For example, letting y = 2 and
z = 1/2, the simplification would imply that

√
x2 = x, which is not

necessarily true. Maple performs the transformation only if it is provably
correct for all complex x with the possible exception of a finite number of
values, such as 0 and ∞. Maple simplifies (xa)b → xab if b is an integer,
−1 < a ≤ 1, or x is a positive real constant.

> (x^(3/5))^(1/2), (x^(5/3))^(1/2);

x(3/10),
√

x(5/3)

11For more information, refer to ?simplify.
12For more information, refer to ?expand.

74 • Chapter 3: Maple Expressions and Statements

> (2^(5/3))^(1/2), (x^(-1))^(1/2);

2(5/6),

√

1

x

Similarly, Maple does not simplify abcb → (ac)b automatically. This
simplification may introduce more unique roots.

> 2^(1/2)+3^(1/2)+2^(1/2)*3^(1/2);

√
2 +

√
3 +

√
2
√
3

Simplifying
√
2
√
3 to

√
6 in the previous expression would create a

third unique square root. Calculating with roots is, in general, difficult
and expensive. Therefore, new roots are avoided.

Use the combine command to combine roots.13

The Non-commutative Multiplication Operator . The . (dot) operator
performs (non-commutative) multiplication on its arguments. It is left
associative.

A . B;

If A and B are numbers (including complex and extended numerics such
as infinity and undefined), then A . B = A*B. If one of A and B is a
Matrix or a Vector, and the other is a Matrix, Vector, or constant, their
product is computed by using the LinearAlgebra[Multiply] command.
Arguments that are not of type Matrix, Vector, or constant are ignored,
and A . B remains unevaluated. There is also a dot product operator in
the VectorCalculus package.14

> 7 . 6;

42

> M:=<<1,0,2>|<0,1,2>|<0,0,2>>;

13For more information, refer to ?combine.
14For more information about Matrix, Vector, and the LinearAlgebra package in

Maple, refer to ?LAOverview. For more information about the non-commutative multi-
plication operator, refer to ?dot. For more information about the VectorCalculus dot
product operator, refer to ?VectorCalculus[DotProduct].

3.2 Expressions • 75

M :=

1 0 0
0 1 0
2 2 2

> V:=<10,0,0>;

V :=

10
0
0

> M . V;

10
0
20

> lambda . M . V;

λ .

10
0
20

In Maple, . (dot) can be interpreted as a decimal point (for example,
2.3), as part of a range operator (for example, x..y), or as the (non-
commutative) multiplication operator. To distinguish between these three
circumstances, Maple uses the following rule.

Any dot with spaces before and/or after it that is not part of a
number is interpreted as the non-commutative multiplication
operator.

For example, 2.3 is a number, 2 . 3 and 2 .3 return 6, and 2. 3

returns an error.15

> 2.3, 2 . 3, 2 .3;

2.3, 6, 6

15For more information about floating-point numbers, see page 65 or refer to ?Float.
For more information about the range operator, see page 77 or refer to ?range.

76 • Chapter 3: Maple Expressions and Statements

> 2. 3;

on line 739, syntax error, unexpected number:
2. 3;

^

The Composition Operators @ and @@ The composition operators are
@ and @@.

The @ operator represents function composition. For example, f@g
denotes f ◦ g.

> (f@g)(x);

f(g(x))

> (sin@cos)(Pi/2);

0

The @@ operator represents repeated functional composition. For ex-
ample, f@@n denotes f (n).

> (f@@2)(x);

(f (2))(x)

> expand(%);

f(f(x))

> (D@@n)(f);

(D(n))(f)

There is no single notational rule used by mathematicians. Usually
fn(x) denotes composition. For example, Dn denotes the differential op-
erator composed n times. Also, sin−1(x) denotes the inverse of the sin

function, that is, composition to the power −1. However, some mathe-
maticians use fn(x) to denote ordinary powering, for example, sin2(x)
is the square of the sine of x. In Maple fn(x) always denotes repeated
composition and f(x)n always denotes powering.

3.2 Expressions • 77

> sin(x)^2, (sin@@2)(x), sin(x)^(-1), (sin@@(-1))(x);

sin(x)2, (sin(2))(x),
1

sin(x)
, arcsin(x)

> sin(Pi)^2, (sin@@2)(Pi);

0, 0

The Ditto Operators %, %%, and %%% The sequence of expressions as-
signed to the three ditto nullary operators is the last three non-NULL
results generated in the Maple session independent of where they are lo-
cated in the session.16,17

The Range Operator .. A range expression is represented by using the
binary operator .. (two consecutive periods) between two expressions.

expression1 .. expression2

It is important to note that this only represents a range, that is, it
is a notational tool. For example, the range 1..3 is not equivalent to the
expression sequence 1, 2, 3. However, the seq command can be used to
yield the expression sequence.18

> 1..3;

1..3

> seq(i, i = 1..3);

1, 2, 3

A range has type ‘..‘ or range.

> r:=3..7;

r := 3..7

16For more information about the ditto operator and nullary operators, see page 25
or refer to ?ditto.

17The ditto operators are technically not operators.
18For more information about the seq command, see page 183 or refer to ?seq.

78 • Chapter 3: Maple Expressions and Statements

> type(r, ‘..‘);

true

A range has two operands, the left-hand limit and the right-hand
limit. You can access these limits by using the op command or the lhs

and rhs commands.

> op(1,r), op(2,r);

3, 7

> lhs(r), rhs(r);

3, 7

You can also use the range construct in conjunction with the op

command to extract a sequence of operands from an expression.

> a := [u, v, w, x, y, z];

a := [u, v, w, x, y, z]

> op(2..5,a);

v, w, x, y

The Factorial Operator ! Maple uses the unary operator ! as a postfix
operator that denotes the factorial function of its operand n.

n!

The expression n! is shorthand for the command factorial(n).

> 0!, 5!;

1, 120

For floating-point n, generalized factorial function values n! are cal-
culated by using GAMMA(n+1).

3.2 Expressions • 79

> 2.5!;

3.323350970

> (-2)!;

Error, numeric exception: division by zero

The type of an unevaluated factorial is !. Note that in Maple, n!!
does not denote the double factorial function.19 It denotes repeated fac-
torial, n!! = (n!)!.

> 3!!;

720

The mod Operator The mod operator evaluates an expression modulo
m, for a nonzero integer m.

e mod m;

The operator syntax e mod m is equivalent to the ‘mod‘(e,m) com-
mand.20

> 5 mod 2;

1

Maple has two representations for an integer modulo m: modp and
mods. You can assign the environment variable ‘mod‘ to either modp or
mods.

modp In the positive representation, e mod m is an integer between 0
and m − 1, inclusive. The following assignment explicitly selects the
positive representation.

19For information on the Maple doublefactorial command, refer to
?doublefactorial.

20Use left single quotes around mod when it is not used as an operator because it is
a reserved word. For more information about reserved words, see page 24 or refer to
?keyword.

80 • Chapter 3: Maple Expressions and Statements

> ‘mod‘ := modp;

mod := modp

> 9 mod 5;

4

This is the default representation.

mods In the symmetric representation, e mod m is an integer between
-floor((abs(m)-1)/2) and floor(abs(m)/2). The following assign-
ment selects the symmetric representation.21

> ‘mod‘ := mods;

mod := mods

> 9 mod 5;

−1

Alternatively, you can invoke the modp and mods commands directly.

> modp(9,5), mods(9,5);

4, −1

The mod operator accepts the inert operator &^ for powering. That
is, i&^j mod m calculates ij mod m. Instead of separately computing the
integer ij , which may be too large to compute, and then reducing modulo
m, Maple computes the power by using binary powering with remainders.

> 2^(2^100) mod 5;

Error, numeric exception: overflow

21For more information on the floor function, refer to ?floor.

3.2 Expressions • 81

> 2 &^ (2^100) mod 5;

1

The first operand of the mod operator can be a general expression.
Maple evaluates the expression over the ring of integers modulo m. For
polynomials, it reduces rational coefficients modulo m. The mod operator
accepts many functions for polynomial and matrix arithmetic over finite
rings and fields, for example, Factor for polynomial factorization and
Nullspace for matrix null spaces.22

> 1/2 mod 5;

3

> 9*x^2 + x/2 + 13 mod 5;

4x2 + 3x+ 3

> Factor(4*x^2 + 3*x + 3) mod 5;

4 (x+ 3) (x+ 4)

The mod command can also compute over a Galois field GF (pk), that
is, the finite field with pk elements.23

The Neutral Operators &name Maple has a neutral operator (or user-
defined) facility. You can form a neutral operator symbol by using the
ampersand character “&” followed by one or more characters. There are
two varieties of &-names: alphanumeric and non-alphanumeric.

alphanumeric The & character followed by any Maple name not requir-
ing left single quotes, for example, &wedge.

non-alphanumeric The & character followed by one or more non-
alphanumeric characters, for example, &+ or &++.

22Do not confuse the commands factor and Factor or int and Int. The former
evaluate immediately; the latter are inert commands which Maple does not evaluate
until you make the call to mod. For more information on inert functions, refer to ?inert.

23For more information and a list of commands that mod accepts, refer to ?mod.

82 • Chapter 3: Maple Expressions and Statements

The following characters cannot appear in an &-name

& | () [] { } ; : ’ ‘ # \ %

plus the new line and blank characters.
You can use neutral operators as unary prefix operators, binary infix

operators, or function calls. In any of these cases, they generate function
calls with the name of the function being that of the neutral operator.
(In the standard pretty-printing (output format) mode, these function
calls are printed in binary operator format when exactly two operands
exist, and in unary operator format when exactly one operand exists.
However, the internal representation is an unevaluated function.) Consider
the following example.

> a &~ b &~ c;

(a&~ b)&~ c

> op(%);

a&~ b, c

> op(0,%%);

&~

Maple imposes no semantics on the neutral operators. The user can
define the operator to have a meaning by assigning the name to a Maple
procedure. You can define manipulations on expressions containing such
operators by using the interface to user-defined procedures for standard
library commands, including simplify, diff, combine, series, evalf,
and many others. For more information on neutral operators, refer to
Neutral Operators in section 1.5 of the Maple Advanced Program-
ming Guide.

The Relational Operators <, >, <=, >=, and <> You can form new types
of expressions from ordinary algebraic expressions by using the relational
operators <, >, <=, >=, and <>. The semantics of these operators depend
on whether they occur in an algebraic context or in a Boolean context.

In an algebraic context, the relational operators are simply placehold-
ers for forming equations or inequalities. Maple fully supports addition of
equations or inequalities, and multiplication of an equation or inequality

3.2 Expressions • 83

by an algebraic expression. To add or subtract two equations, for example,
Maple applies the addition or subtraction to each side of the equations,
yielding a new equation. In the case of multiplying an equation by an ex-
pression, Maple distributes the multiplication to each side of the equation.
You can perform similar operations with inequalities.

> e := x + 3*y = z;

e := x+ 3 y = z

> 2*e;

2x+ 6 y = 2 z

The type of an equation is = or equation. Use the op(0,...) or
whattype command to return the principal type.

> op(0,e);

=

> whattype(e);

=

An equation has two operands, the left-hand side and the right-hand
side. In addition to using the op command to select the operands of an
equation, you can use the lhs and rhs commands.

> lhs(e);

x+ 3 y

The type command also accepts the types <>, <, and <=. Maple auto-
matically converts inequalities involving > or >= to < and <=, respectively.
All the relational types have two operands.

> e := a > b;

e := b < a

84 • Chapter 3: Maple Expressions and Statements

> op(e);

b, a

In a Boolean context, Maple evaluates expressions to the value true

or the value false. A Boolean context includes the condition in an if

statement and the condition in the while clause of a loop.24

In the case of the operators <, <=, >, and >=, the difference of the
operands, in general, evaluates to a numeric constant that Maple com-
pares with zero.

> if 2<3 then "less" else "not less" end if;

“less”

You can also use the relational operators to compare strings.

> if "f" <= "m" then "first half" else "second half" end if;

“first half”

In the case of the relations = and <>, the operands can be arbitrary
expressions (algebraic or non-algebraic). This equality test for expressions
tests object equality of the Maple representations of the expressions, which
is not the same as mathematical equivalence.

To evaluate a relation in a Boolean context, use the evalb command.

> evalb(x + y = y + x);

true

> evalb(x^2 - y^2 = (x - y)*(x + y));

false

For the latter example, apply the expand command to show that the
equation is true.

24For more information about if statements and while clauses, see chapter 5, or
refer to ?if and ?while.

3.2 Expressions • 85

> evalb(x^2 - y^2 = expand((x - y)*(x + y)));

true

You can also use the is command, instead of evalb, to evaluate re-
lations in a Boolean context.

> is(x^2 - y^2 = (x - y)*(x + y));

true

> is(3<Pi);

true

The Logical Operators and, or, xor, implies, and not Generally, you
can form an expression by using the logical operators and, or, xor,
implies, and not. The first four are binary operators and the last is
a unary (prefix) operator. An expression containing one or more logical
operators is automatically evaluated in a Boolean context.

> 2>3 or not 5>1;

false

> 3 < evalf(Pi) xor evalf(exp(1)) < evalf(Pi);

false

The precedence of the logical operators and, or, and not is analogous
to that of multiplication, addition, and exponentiation, respectively. Here
no parentheses are necessary.25

> (a and b) or ((not c) and d);

a and b or not c and d

The xor operator is of lower precedence than or. The implies oper-
ator has the lowest precedence of the logical operators.

25For more information about precedence of Maple operators, see Table 3.4 on page 89
or refer to ?precedence.

86 • Chapter 3: Maple Expressions and Statements

The type names for the logical operators and, or, xor, implies, and
not are and, or, xor, implies, and not, respectively. The first four have
two operands, the last has one operand.

> b := x and y or z;

b := x and y or z

> whattype(b);

or

> op(b);

x and y, z

In expressions with operators of the same precedence, the evaluation of
Boolean expressions that involve the logical operators and and or proceeds
from left to right, and terminates once Maple can determine the truth of
the whole expression. Consider the evaluation of the following.

a and b and c

If the result of evaluating a is false, the result of the entire Boolean
expression is false, regardless of the value of b and c. Therefore, Maple
stops evaluating the expression. These evaluation rules are commonly
known as McCarthy evaluation rules and they are quite crucial for pro-
gramming. Consider the following statement.

if x <> 0 and f(x)/x > 1 then ... end if;

If Maple always evaluated both operands of the and clause, when x

is 0, evaluation would result in a division by zero error. The advantage
of the above code is that Maple attempts to check the second condition
only when x 6= 0.

Boolean Expressions In general, a Boolean context requires a Boolean
expression. Therefore, you must use the Boolean constants true, false,
and FAIL, the relational operators, and the logical operators to form
Boolean expressions. The type command accepts all these for the name
boolean.

3.2 Expressions • 87

Table 3.3 Truth Tables

and false true FAIL

false false false false
true false true FAIL
FAIL false FAIL FAIL

or false true FAIL

false false true FAIL
true true true true
FAIL FAIL true FAIL

not false true FAIL

true false FAIL

The evaluation of Boolean expressions in Maple uses three-valued
logic. In addition to the special names true and false, Maple also un-
derstands the special name FAIL. Maple sometimes uses the value FAIL

when it is unable to completely solve a problem. You can interpret it as
the value “unknown.”

> is(sin(1),positive);

true

> is(a1,positive);

false

In the context of the Boolean clause in an if statement or a while

statement, Maple determines the branching of the program by treating
the value FAIL as if it were the value false. With three-valued logic,
you do not need to test for FAIL separately when using the is command.
Otherwise, you would need to write

if is(a - 1, positive) = true then ...

The three-valued logic allows you to write

if is(a - 1, positive) then ...

The evaluation of a Boolean expression yields true, false, or FAIL

according to Table 3.3.
It is important to note that three-valued logic leads to asymmetry in

the use of if statements and while statements. For example, the following
two statements are not equivalent.

88 • Chapter 3: Maple Expressions and Statements

if condition then statseq1 else statseq2 end if;

if not condition then statseq2 else statseq1 end if;

If condition has the value FAIL, statseq2 is executed in the first
structure and statseq1 is executed in the second structure.

The Set Operators union, minus, intersect, and subset The union,
intersect, minus, and subset commands are used for the set union,
intersection, difference, and subset operations. The union and intersect

commands are infix n-ary operators. The minus and subset commands
are binary infix operators.

> A:={1,2,3}; B:={2,3,4};

A := {1, 2, 3}

B := {2, 3, 4}

> A union B;

{1, 2, 3, 4}

> A intersect B;

{2, 3}

> A minus B;

{1}

> A subset B;

false

Associated with each set operator, there is a type of the same name.
For more information, refer to ?type.

The assuming Operator The assuming operator performs a single com-
putation under assumptions on the name(s) in the expression. For more in-
formation about the assuming command, refer to chapter 3 of the Maple
User Manual or ?assuming.

3.2 Expressions • 89

Table 3.4 Operator Precedence Order

Operator Associativity

% non-associative
&-operators left associative
! left associative
^, @@ non-associative
., *, /, @, intersect left associative
+, -, union left associative
mod non-associative
subset non-associative
.. non-associative
<, <=, >, >=, =, <>, in non-associative
$ non-associative
not right associative
and left associative
or left associative
xor left associative
implies non-associative
assuming non-associative

Precedence Rules The order of precedence of all the operators in this
section is shown in Table 3.4, from highest to lowest binding strengths.26

Data Structures
The Maple system includes many data structures. The more common
ones are mentioned here in the context of expressions. For a thorough
discussion on sequences, sets, lists, tables, arrays, Arrays, and others, see
chapter 4.

Sequences, Sets, and Lists A sequence is a group of expressions sepa-
rated by commas.

expression1, expression2, expression3

Example The parameter s forms the sequence containing the expressions
5, 6, and 7.

> s := 5, 6, 7;

26For more information about precedence in Maple, refer to ?precedence.

90 • Chapter 3: Maple Expressions and Statements

s := 5, 6, 7

> whattype(%);

exprseq

You can also use the seq operator to form sequences.

> seq(i, i=5..7);

5, 6, 7

Sequences occur in many Maple expressions. In particular, a sequence
is the basic element for forming sets, lists, and function calls.

A set is an unordered sequence of unique expressions. A set is formed
by enclosing a sequence in braces ({}).

> myset := {s};

myset := {5, 6, 7}

> whattype(%);

set

A list is an ordered sequence of expressions. The expressions in the
list need not be unique. A list is formed by enclosing a sequence in square
brackets ([]).

> mylist := [s];

mylist := [5, 6, 7]

> whattype(%);

list

3.2 Expressions • 91

Tables, arrays, and Arrays The table data structure in Maple is a spe-
cial object for representing data in tables. You can create a table either
explicitly by using the table command or implicitly by assignment to an
indexed name. The following statements are equivalent.

> T := table([(Na,11) = 23]);

T := table([(Na, 11) = 23])

> T[Na,11] := 23;

TNa, 11 := 23

They both create a table object with one component. The purpose of
a table is to allow fast access to data.

> T[Na,11];

23

The array data structure in Maple is a specialization of the table
data structure. An array is a table with specified dimensions, where each
dimension is an integer range. To create an array, use the array command.

> a := array(1..2,1..2);

a := array(1..2, 1..2, [])

An Array is a table-like data structure with fixed dimensions and
integer indices.27 To create an Array, use the Array command.

> A := Array([[1,2],[3,4]]);

A :=

[

1 2
3 4

]

For more information about tables, arrays, and Arrays, see chapter 4.

27For information on the differences between arrays and Arrays, see 4.4 arrays and
Arrays.

92 • Chapter 3: Maple Expressions and Statements

Functions
A function expression represents a function call, or in other words, an
application of a function or procedure to arguments. Such an expression
is said to be of type function. A typical example of an expression of type
function is the expression f(x), which represents the application of the
expression f to the argument sequence x. The entire expression f(x) is of
type function (that is, a function call or function application), while
the expression f is typically not itself of type function (but it is often
of type procedure).

A function call in Maple takes the following form.

f(sequence)

Often f is a procedure, or a name that evaluates to a procedure.

> sin(x);

sin(x)

> min(2,3,1);

1

> g();

g()

> a[1](x);

a1(x)

Maple executes a function call as follows. First, f is evaluated (typ-
ically yielding a procedure). Next, Maple evaluates the operands of
sequence (the arguments) in an unspecified order. If any of the argu-
ments evaluates to a sequence, Maple flattens the sequence of evaluated
arguments into one sequence. If f evaluates to a procedure, Maple invokes
this procedure on the argument sequence.28

28In the example below, the arrow (->) notation is used. For more information about
creating procedures using the arrow notation, see page 207.

3.2 Expressions • 93

> x := 1:
> f(x);

f(1)

> s := 2,3;

s := 2, 3

> f(s,x);

f(2, 3, 1)

> f := g;

f := g

> f(s,x);

g(2, 3, 1)

> g := (a,b,c) -> a+b+c;

g := (a, b, c) → a+ b+ c

> f(s,x);

6

As mentioned previously, a function object’s type is function. The
operands are the arguments. The zeroth operand is the name of the func-
tion.

> m := min(x,y,x,z);

m := min(1, y, z)

> op(0,m);

94 • Chapter 3: Maple Expressions and Statements

min

> op(m);

1, y, z

> type(m,function);

true

> f := n!;

f := n!

> type(f, function);

true

> op(0, f);

factorial

> op(f);

n

In general, the function name f can be one of the following.

• name

• procedure definition

• integer

• float

• parenthesized algebraic expression

• function

• module selection, for example, module_name:-f(sequence)

3.2 Expressions • 95

If f is a procedure definition, you can write, for example,

> proc(t) t*(1-t) end proc (t^2);

t2 (1− t2)

instead of the following two statements.

> h := proc(t) t*(t-1) end proc;

h := proc(t) t ∗ (t− 1) end proc

> h(t^2);

t2 (t2 − 1)

If f is an integer or a float, Maple treats f as a constant operator.
That is, f(x) returns f.

> 2(x);

2

The following rules define the meaning of a parenthesized algebraic
expression.

> (f + g)(x), (f - g)(x), (-f)(x), (f@g)(x);

f(x) + g(x), f(x)− g(x), −f(x), f(g(x))

Recall that the @ sign denotes functional composition, that is, f@g
denotes f ◦ g. These rules together with the previous rule mean the fol-
lowing.

> (f@g + f^2*g +1)(x);

f(g(x)) + f(x)2 g(x) + 1

Recall that @@ denotes functional exponentiation, that is, f@@n denotes
f (n) which means f composed with itself n times.

> (f@@3)(x);

96 • Chapter 3: Maple Expressions and Statements

(f (3))(x)

> expand(%);

f(f(f(x)))

Finally, f can be a function, as in the following statements.29

> cos(0);

1

> f(g)(0);

f(g)(0)

> D(cos)(0);

0

3.3 Using Expressions

Investigating the Parts of an Expression
When programming with expressions, it is important to be able to:

• Determine whether an expression has a given type30

• Determine the number of operands in an expression

• Select operands from an expression

• Replace operands in an expression

The commands have been introduced previously, but they are now
formally presented in Table 3.5.

Consider the following formula.

29For more information about how to define a function by using functional operators,
see page 231 or refer to ?unapply.

30An expression can have multiple types.

3.3 Using Expressions • 97

Table 3.5 Type and Operand Commands

Command Description

type(f, t) tests if f is of type t

nops(f) returns the number of operands of f
op(i, f) selects the ith operand of f
subsop(i=g, f) replaces the ith operand of f with g

> f := sin(x) + 2*cos(x)^2*sin(x) + 3;

f := sin(x) + 2 cos(x)2 sin(x) + 3

> type(f, ‘+‘);

true

> type(f, ‘*‘);

false

> nops(f);

3

> op(1, f);

sin(x)

> subsop(2=0, f);

sin(x) + 3

The op command has several other useful forms.
The command

op(i..j, f)

returns the sequence

98 • Chapter 3: Maple Expressions and Statements

op(i, f), op(i+1, f), ..., op(j-1, f), op(j, f)

of operands of f between i and j inclusive.
The command

op([i, j, k], f)

is an abbreviation of

op(k, op(j, op(i, f)))

The last object in the list can also be a range.
The command

op([i1, ..., iN, j..k], f)

is an abbreviation of

op(j..k, op(iN, ..., op(i1, f)...))

To see the whole sequence of operands of an expression, use

op(f)

which is equivalent to op(1..nops(f),f).
The special operand op(0,f) generally returns the primary type of

an expression.31 However, if f is a function, it returns the name of the
function.

> op(0, f);

+

> op(1..3, f);

sin(x), 2 cos(x)2 sin(x), 3

> op(0, op(1,f));

31For a complete description of op(0,f), refer to ?op.

3.3 Using Expressions • 99

sin

> op(0, op(2,f));

∗

Using the results of these commands, you can start to develop an
expression tree of nodes, branches, and leaves for f.

sin(x) + 2 cos(x)2 sin(x) + 3

The complete tree is:

x

x
2cos

x
2^sin

sin*3

+

The first “node” of the expression tree labeled “+” is a sum. This
indicates the expression’s type (from op(f, 0)).

This expression has three branches corresponding to the three terms
in the sum (from op(1..3, f))—that is, sin(x), 2 cos(x)2 sin(x), and 3.

The nodes of each branch indicate the type of each term in the sum.
The leaves of the tree are the names and integers in this example.32,33

32The idea of an expression tree closely models how Maple interprets expressions.
More precisely, Maple uses DAGs (directed acyclic graphs) to represent arbitrary ex-
pressions. While similar to this idea of an expression tree, they have the additional
property that all common subexpressions are identified by Maple only once. As a re-
sult, since all like subexpressions are shared, expressions are nonmutable, and changing
an expression involves a copy operation. For more information about DAGs, refer to
chapter 6 of the Maple Advanced Programming Guide.

33For more information about the display of Maple data structures, refer to
?dismantle.

100 • Chapter 3: Maple Expressions and Statements

Evaluating and Simplifying Expressions
Example 1 To understand how Maple evaluates and simplifies expres-
sions, consider the following example.

> x := Pi/6:
> sin(x) + 2*cos(x)^2*sin(x) + 3;

17

4

Maple first reads and parses the input. As the input is parsed, Maple
builds an expression tree to represent the value

sin(x) + 2 cos(x)2 sin(x) + 3.

Maple simplifies the expression tree, and then evaluates the result.
The evaluation process substitutes values for variables and invokes any
functions or procedures. In this case, x evaluates to π/6. Hence, with these
substitutions, the expression is:

sin(π/6) + 2 cos(π/6)2 sin(π/6) + 3

Invoking the sin and cos functions, Maple obtains a new “expression
tree”,

1/2 + 2× (1/2
√
3)2 × 1/2 + 3.

Maple simplifies this result to obtain the fraction 17/4.

Example 2 Alternatively, consider the next example: evaluation occurs,
but no simplification is possible.

> x := 1;

x := 1

> sin(x) + 2*cos(x)^2*sin(x) + 3;

sin(1) + 2 cos(1)2 sin(1) + 3

Unevaluated Expressions
In general, Maple evaluates all expressions immediately. In some situa-
tions, it is necessary to delay evaluation. An expression enclosed in right
single quotes is called an unevaluated expression.

3.3 Using Expressions • 101

’expression’

For example, the statements

> a := 1; x := a + b;

a := 1

x := 1 + b

assign the value 1 + b to the name x, while the statements

> a := 1; x := ’a’ + b;

a := 1

x := a+ b

assign the value a + b to the name x if b has no value.
Evaluating an expression enclosed in right single quotes removes one

level of quotes, so in some cases nested quotes are useful.

Note: There is a distinction between evaluation and simplification of
statements.

Example Consider the following

> x := ’2 + 3’;

x := 5

which assigns the value 5 to the name x though the expression is
enclosed in right single quotes. First ’2+3’ simplifies to ’5’. The evaluator
removes the quotes, returning 5.

The result of evaluating an expression with two levels of quotes is an
expression of type uneval. This expression has only one operand, namely
the expression inside the outermost pair of quotes.

> op(’’x - 2’’);

x− 2

102 • Chapter 3: Maple Expressions and Statements

> whattype(’’x - 2’’);

uneval

To reset the value of a name, assign the unevaluated name (its initial
value) to the name.34

> x := ’x’;

x := x

Now the value of x is reset to x.
Another special case of unevaluation arises in the function call

’f’(sequence)

Suppose the arguments evaluate to the sequence a. Since the result of
evaluating ’f’ is not a procedure, Maple returns the unevaluated function
call f(a).

> ’’sin’’(Pi);

’sin’(π)

> %;

sin(π)

> %;

0

You will find this facility useful when writing procedures that imple-
ment simplification rules—refer to the section 1.4 of the Maple Advanced
Programming Guide.35

34For more information about unassigning names, see page 111.
35For more information and examples regarding unevaluated expressions in Maple,

refer to ?uneval.

3.3 Using Expressions • 103

Substituting Subexpressions
To combine the acts of substitution and evaluation, use the two-parameter
version of the eval command.

The eval command has the following syntax, where s is an equation,
list, or set of equations.

eval(expr, s);

> expr := x^3 + 3*x + 1;

expr := x3 + 3x+ 1

> eval(expr, x=y);

y3 + 3 y + 1

> eval(expr, x=2);

15

> eval(sin(x) + x^2, x=0);

0

The subs command performs syntactic substitution. It replaces
subexpressions in an expression with a new value; the subexpressions
must be operands in the sense of the op command.

The subs command has the following syntax where s is an equation,
list, or set of equations.

subs(s, expr);

The subs command traverses the expression expr and compares each
operand in expr with the left-hand side(s) of the equation(s) s. If an
operand is equal to a left-hand side of an equation in s, subs replaces
the operand with the right-hand side of the equation. If s is a list or set
of equations, Maple makes the substitutions indicated by the equations
simultaneously.

> f := x*y^2;

104 • Chapter 3: Maple Expressions and Statements

f := x y2

> subs({y=z, x=y, z=w}, f);

y z2

The general syntax of the subs command is

subs(s1, s2, ..., sn, expr);

where s1, s2, . . . , sn are equations, or sets or lists of equations, n > 0,
and expr is an expression. This is equivalent to the following sequence of
substitutions.

subs(sn, ..., subs(s2, subs(s1, expr))) ;

Thus, subs substitutes according to the given equations from left to
right. Notice the difference between the previous example and the follow-
ing one.

> subs(y=z, x=y, z=w, f);

y w2

The difference between the eval and subs commands is demonstrated
in the following example.

> subs(x=0, cos(x) + x^2);

cos(0)

> eval(cos(x) + x^2, x=0);

1

In the preceding subs command, Maple substitutes 0 (zero) for x and
simplifies the result. Maple simplifies cos(0) + 0^2 to cos(0). By using
the eval command, Maple evaluates cos(0) to 1 (one).

Substitution compares only operands in the expression tree of expr
with the left-hand side of an equation.

3.3 Using Expressions • 105

> eval(a*b*c, a*b=d);

a b c

The substitution does not result in d*c because the operands of the
product a*b*c are a, b, c. That is, the products a*b, b*c, and a*c do not
appear explicitly as operands in the expression a*b*c. The easiest way
to make such substitutions is to solve the equation for one unknown and
substitute for that unknown.

> eval(a*b*c, a=d/b);

d c

You cannot always do this, and you may find that it does not always
produce the results you expect. The algsubs routine provides a more
powerful substitution facility.

> algsubs(a*b=d, a*b*c);

d c

Displaying Large Expressions: Labels
A label in Maple has the following form.

%natural

That is, it consists of the unary operator % followed by a natural
integer.36

A label is only valid after Maple introduces it. The purpose of labels is
to name (label) common subexpressions to decrease the size of the printed
output, increasing comprehensibility. After the prettyprinter displays
it, you can use a label like an assigned name.

> solve({x^3 - y^3 = 2, x^2 + y^2 = 1}, {x, y});

36The percent sign performs two roles in the Maple program: a label indicator and
the ditto operator, which represents the result of the last, second last, and third last
result. For more information on the ditto operator, see page 25.

106 • Chapter 3: Maple Expressions and Statements

{y = %1, x = −1

3
%1 (−4%13 − 3−%12 + 6%1 + 2%14)}

%1 := RootOf(3_Z 2 + 3− 3_Z 4 + 2_Z 6 + 4_Z 3)

After Maple executes this statement, the label %1 is an assigned name
with a value of the preceding RootOf expression.

> %1;

RootOf(3_Z 2 + 3− 3_Z 4 + 2_Z 6 + 4_Z 3)

Two facilities are available for use with labels. The command

interface(labelwidth=n);

specifies that Maple should not display expressions less than (approx-
imately) n characters wide as labels. The default value is 20 characters.
The command

interface(labeling=truefalse);

enables the use of %1, %2, ... labels for output subexpressions. You can
turn off this facility by using the following command.

> interface(labeling=false);

Structured Types
A simple type check may not provide sufficient information. For example,
the command

> type(x^2, ‘^‘);

true

verifies that x^2 is an exponentiation, but it does not indicate whether
the exponent is, say, an integer. To do so, you must use structured types.
Consider the following example.

> type(x^2, name^integer);

true

3.3 Using Expressions • 107

Because x is a name and 2 is an integer, the command returns true.
To learn more about structured types, study the following examples.

The square root of x does not have the structured type name^integer.

> type(x^(1/2), name^integer);

false

The expression (x+1)^2 does not have type name^integer, because
x+1 is not a name.

> type((x+1)^2, name^integer);

false

The type anything matches any expression.

> type((x+1)^2, anything^integer);

true

An expression matches a set of types if the expression matches one
of the types in the set.

> type(1, {integer, name});

true

> type(x, {integer, name});

true

The type set(type) matches a set of elements of type type.

> type({1,2,3,4}, set(integer));

true

> type({x,2,3,y}, set({integer, name}));

true

108 • Chapter 3: Maple Expressions and Statements

Similarly, the type list(type) matches a list of elements of type
type.

> type([2..3, 5..7], list(range));

true

Note that e2 is not of type anything^2.

> exp(2);

e2

> type(%, anything^2);

false

Because e2 is the pretty-printed (output formatted) version of exp(2),
it does not match the type anything^2.

> type(exp(2), ’exp’(integer));

true

The next example illustrates the need to use right single quotes (’) to
delay evaluation when including Maple commands in type expressions.37

> type(int(f(x), x), int(anything, anything));

Error, testing against an invalid type

An error is returned because Maple evaluates int(anything, anything).

> int(anything, anything);

1

2
anything2

This is not a valid type. If you enclose the int command in right
single quotes, the type checking works as intended.

37For more information on delayed evaluation, see page 100.

3.3 Using Expressions • 109

> type(int(f(x), x), ’int’(anything, anything));

true

The type specfunc(type, f) matches the function f with zero or
more arguments of type type.

> type(exp(x), specfunc(name, exp));

true

> type(f(), specfunc(name, f));

true

The type function(type) matches any function with zero or more
arguments of type type.

> type(f(1,2,3), function(integer));

true

> type(f(1,x,Pi), function({integer, name}));

true

In addition to testing the type of arguments, you can test the number
of arguments. The type anyfunc(t1, ..., tn) matches any function
with n arguments of the listed types in the correct order.

> type(f(1,x), anyfunc(integer, name));

true

> type(f(x,1), anyfunc(integer, name));

false

> type(f(x), anyfunc(integer, name));

false

110 • Chapter 3: Maple Expressions and Statements

Another useful variation is to use the And, Or, and Not type construc-
tors to create Boolean combinations of types. Note that these are different
from the logical operators and, or, and not discussed on page 85.38

> type(Pi, ’And(constant, numeric)’);

false

Pi is of type symbol, not of type numeric.

> type(Pi, ’And(constant, Not(numeric))’);

true

3.4 Statements

The statement is an important component in the Maple language. There
are many types of statements in Maple.

• assignment statement

• selection statements

• repetition statements

• read and save statements

• break and next statements

• error and return statements

• use statement

• quit statement

• expressions

Expressions have been discussed at length earlier in this chapter. The
remainder of this chapter discusses the assignment statement in detail,
and introduces the other statements listed previously.

38For more information on structured types, refer to ?type,structured. For more
information on how to define your own types, refer to ?type,definition.

3.4 Statements • 111

The Assignment Statement
An assignment statement can take one of the following forms, where expr
is any expression.

name := expr;

(name1, ..., namen) := (expr1, ..., exprn);

Once an assignment statement is entered, the left-hand side of the
assignment operator is evaluated to a name. Then, the right-hand side is
evaluated to an expression. Finally, the assignment is performed.39

> a := 0;

a := 0

You can perform multiple assignments in one statement. If the left-
hand side is a sequence of names enclosed in parentheses, the right-hand
side must evaluate to a sequence of expressions (with the same number
of components) enclosed in parentheses. The assignments are then per-
formed, matching each name with the corresponding expression.

> (a, b) := (1,2);

a, b := 1, 2

> a; b;

1

2

A common error is to confuse an assignment statement with an equa-
tion. An assignment statement uses the assignment operator (:=) to assign
an evaluated expression to a name. An equation uses an equal sign (=)
to represent the equality of two operands, the right-hand side and the
left-hand side.

Consider the following examples. You can use equations as arguments
to the solve command. The first statement assigns the equation on the
right-hand side of the assignment statement to the name eq1. The second
statement solves the equation.

39You can also use the assign command to make an assignment. For more informa-
tion, refer to ?assign.

112 • Chapter 3: Maple Expressions and Statements

> eq1 := y = 3*x - 4;

eq1 := y = 3x− 4

> solve(eq1, x);

1

3
y +

4

3

Testing for Assignment You can test whether a name has an assigned
value by using the assigned command.

assigned(name);

The assigned command returns true if name has a value different
from its name. Otherwise, false is returned.

> assigned(a);

false

To return an expression sequence of names that are currently assigned
values different from their names, use the anames command. It has the
following syntax.

anames();

> a := 0: b:=1:
> anames();

b, a

You can also use anames to return an expression sequence of user-
assigned names, names assigned values of certain types, or the current en-
vironment variables in the session. For more information, refer to ?anames.

Unassigning a Name There are many ways to unassign a name (reset
its value to its name).

If a name is unassigned, it acts as an unknown. After a name is
assigned a value, it acts as a variable. However, it is often desirable to
unassign an assigned name, so that you can use the name as an unknown
again.

3.4 Statements • 113

One method of unassigning a name is to assign the unevaluated name
(its initial value) to the name. To do this, enclose the name in right single
quotes to delay evaluation.

> a := 4;

a := 4

> a;

4

> a := ’a’;

a := a

> a;

a

You can also unassign names by using the unassign command.

unassign(name1, name2, ...);

The arguments to unassign must be unevaluated names.

> i := 1;

i := 1

> unassign(i);

Error, (in unassign) cannot unassign ‘1’ (argument must
be assignable)

> unassign(’i’);

The value returned by unassign is NULL.
Another way you can unassign a name is by using the evaln command.

114 • Chapter 3: Maple Expressions and Statements

evaln(name);

The evaln command evaluates name to a name (as opposed to eval-
uating name to its value as in other calls). Therefore, you can unassign a
name by using evaln in the following manner.

> a := 4;

a := 4

> a := evaln(a);

a := a

> a;

a

Selection Statements
Selection is an important operation in programming. To perform selection,
use the conditional or if statement. It has the following syntax.

if Boolean expression then

statement sequence

elif Boolean expression then

statement sequence

else

statement sequence

end if

The construct elif conditional expression then statement sequence

can be repeated any number of times.

> a := sin(1.8): b := ln(1.8):
> if a > b then
> print("a is larger");
> else
> print("a is not larger");
> end if;

“a is larger”

3.4 Statements • 115

For more information about selection and the if statement, see
5.1 Selection and Conditional Execution.

Repetition Statements
Looping constructs, such as the for loop and the while loop, are used to
repeat similar actions a number of times.

Example 1 Without using looping constructs, the following statements
are necessary to calculate the sum of the first four natural numbers.

> total := 0;

total := 0

> total := total + 1;

total := 1

> total := total + 2;

total := 3

> total := total + 3;

total := 6

> total := total + 4;

total := 10

Example 2 The same calculation is simpler if you use the for loop.

> total := 0;

total := 0

> for i from 1 to 4 do
> total := total + i;
> end do;

116 • Chapter 3: Maple Expressions and Statements

total := 1

total := 3

total := 6

total := 10

The initial value of i is 1. After each execution of the assignment
statement (the body of the loop), the value of i is increased by 1. The
value of i is compared to 4 before the body is re-executed. If i is less
than or equal to 4, Maple executes the body of the loop again. After the
execution of the loop finishes, the value of total is 10 and the value of i
is 5.

> total;

10

Example 3 Alternatively, you can calculate the sum of the first four
natural numbers by using the while loop.

> total := 0; i := 0;

total := 0

i := 0

> while i <= 4 do
> total := total + i;
> i := i + 1;
> end do;

3.4 Statements • 117

total := 0

i := 1

total := 1

i := 2

total := 3

i := 3

total := 6

i := 4

total := 10

i := 5

Before each cycle through the while loop, Maple checks whether i

is greater than 4. If it is not, then Maple executes the body of the loop.
When the execution of the loop finishes, the value of total is 10 and the
value of i is 5.

Note: In the for loop, i is incremented in the for i from 1 to 4 do

part of the statement. In the while loop, i is incremented by the i :=

i+1 statement in the loop body.

The while and the for loop are both special cases of a more general
repetition statement. It has the following syntax.

for name from expr by expr to expr while expr do

statement sequence

end do;

For more information about repetition using loops, see 5.2 Repeti-
tion.

The read and save Statements
You can interact with Maple either directly by entering a command using
the keyboard, or indirectly by accessing information from a file. The read
and save statements read and save Maple data and procedures to and
from files. For more information about these statements, see chapter 7.

118 • Chapter 3: Maple Expressions and Statements

The break and next Statements
The break and next statements are used for controlling how a repetition
statement is executed.

The break statement causes Maple to exit from the repetition state-
ment. Execution then proceeds with the first statement that follows the
repetition statement.

> L := [9,8,7,6]:

> for i in L do
> if i=8 then
> break
> end if;
> print(i);
> end do;

9

The next statement causes Maple to immediately proceed to the next
iteration in the repetition statement.

> for i in L do
> if i=8 then
> next
> end if;
> print(i);
> end do;

9

7

6

An error occurs if Maple evaluates break or next in a context outside
a repetition statement. For more information about the break or next

statement, see page 179.

The error and return Statements
The error and return statements control flow in procedures. The error
statement raises an exception and interrupts the execution of the current
statement in a procedure. For more information about the error state-
ment, see page 219. The return statement causes an immediate return to
the point where the current procedure was invoked. For more information
about the return statement, see page 217.

3.5 Troubleshooting • 119

The use Statement
The use statement specifies local bindings of names, module exports, and
operator overloading. It has the following syntax:

use exprseq in stateseq end use;

where stateseq is a sequence of statements and exprseq is a sequence
of expressions. The expressions can be any of the following.

• equation of the form name = expression

• module member selection m:-e, which is equivalent to the equation
e=m:-e

• module expression m, which is equivalent to the equations e=m:-e for
all exports e of m.

> use StringTools in
> a:=Random(10);
> Encode(a, ’encoding’ = ’base64’);
> end use;

a := “Φd8p!<vΥ”

“/9BkOHAhPHaEzw==”

The quit Statement
The quit statement terminates the current Command-line Maple session.
It has the following syntax.

quit;

The keywords done and stop are equivalent to quit.
You can also use quit as a procedure to return a specific integer value

to the operating system

> ‘quit‘(0);

3.5 Troubleshooting

This section provides you with a list of common mistakes, examples, and
hints that will help you understand and avoid common errors. Use this

120 • Chapter 3: Maple Expressions and Statements

section to study the errors that you may encounter when entering the
examples from this chapter in a Maple session.

Syntax Errors
If input is not syntactically correct, Maple reports a syntax error.

> 2+-3;

on line 22, syntax error, ‘-‘ unexpected:
2+-3;

^

If the error occurs in a Maple expression and you cannot determine
the cause, use the parse command to indicate the location of the error.
For more information, see page 44 or refer to ?parse.

> parse("2+-3");

Error, incorrect syntax in parse: ‘-‘ unexpected (4)

If Maple returns an error after you enter a Maple command, refer to
the corresponding online help page, by using ?topic, to determine the
correct calling sequence.

> plot(x^2);

Plotting error, empty plot

> ?plot

Reserved Word Unexpected
An error occurs in Maple if you try to improperly use a reserved word.40

> mod(4, 2);

on line 61, syntax error, reserved word ‘mod‘
unexpected:
mod(4, 2);

^

40For more information about reserved words, see page 24 or refer to ?keyword.

3.6 Exercises • 121

To avoid this error, use left single quotes when you must use reserved
words as a name, for example, in function calls.

> ‘mod‘(4,2);

0

Break or Next Not in Loop
An error occurs if Maple evaluates break or next in a context different
from a repetition statement.41

> break;

Error, break or next not in loop

3.6 Exercises

1. Find the numerator and denominator of the irreducible form of
4057114691 divided by 4404825097799.

2. Construct floating-point numbers using the floating-point number
constructor. Construct the number 917.3366 using a positive expo-
nent, and then using a negative exponent. Construct a floating-point
approximation of 1/3.

3. Without using the Digits environmental variable, find the difference
between π estimated to 20 digits and 10 digits.

4. Calculate the negative complex root of -1369, and then sum 3 and
the root. Find the inverse of this complex sum. Find the inverse of
(a*b)/c+((a-d)/(b*e))*I) in standard form, where a, b, c, d, and
e are real.

5. Using the time command, determine the time required to multiply
two ten-by-ten matrices.

6. Compute 3^(3^98) modulo 7.

41For more information about break and next, see page 179.

122 • Chapter 3: Maple Expressions and Statements

7. Use Maple to verify de Morgan’s laws.

8. Contrast the behavior of functions and expressions by performing the
following commands.

a) Define a function f equal to x^3. Define an expression g equal to
x^3.

b) Evaluate f and g at 2.

c) Evaluate f and g at y.

d) Assign the value 2 to x. Evaluate f and g.

9. Swap the values of two variables using one statement.

10. Sum the smallest 100 prime integers.

Hint : Use the ithprime or nextprime function.

3.7 Conclusion

This chapter discussed the syntax and semantics of Maple expressions
and statements. There are many expression types in Maple, and by using
expression trees you can understand the types and the operands in an
expression. Expressions are commonly used in Maple statements. Maple
has many types of statements in its language, including assignments, con-
ditional and looping statements, and statements to read from and save to
files.

With the knowledge of how to form valid Maple statements, you can
proceed to the next chapter which discusses Maple data structures.

4 Basic Data Structures

Maple supports a variety of data structures such as tables, arrays (a spe-
cial case of tables), Arrays, stacks, and queues. Two basic data structures
commonly used in Maple are sets and lists.

In This Chapter
• Defining and manipulating sets, lists, tables, arrays, and Arrays

• Selecting elements from basic data structures

• Converting between data structures

• Stacks and queues, two additional data structures that are imple-
mented using tables

4.1 Sets

A set is an unordered sequence of unique expressions enclosed in braces
({}). Recall that a sequence is a group of expressions separated by com-
mas.

{ sequence }

Maple removes duplicate members and reorders them in a manner
convenient for internal storage. The sequence can be empty, so {} repre-
sents an empty set.1

> {x, y, y};

1Compare the results of these examples to those in 4.2 Lists.

123

124 • Chapter 4: Basic Data Structures

{x, y}

> {a, 1, b, 2};

{1, 2, a, b}

> {y[1],x,x[1],y[1]};

{y1, x, x1}

Manipulating a Set
There are a variety of commands that perform operations on sets.

Set Arithmetic The most commonly used built-in set arithmetic op-
erators are union, minus, and intersect. These operators perform set
union, set difference, and set intersection, respectively.

> s := {x, y, z};

s := {x, y, z}

> t := {w, y, z};

t := {y, z, w}

> s union t;

{x, y, z, w}

> s minus t;

{x}

> s intersect t;

{y, z}

4.1 Sets • 125

Testing Set Equality You can force the evaluation of expressions that
involve relational operators by using evalb. To perform equality testing
with sets, use the evalb command in conjuction with the relational op-
erator =.

> evalb(s = t);

false

Testing Set Membership To test for set membership, use the member

command or the in operator.

> member(x, s);

true

> evalb (x in s);

true

> member(w, s);

false

Applying a Function to the Members of a Set To apply a function to
the members of a set, use the map command. The simplest form of the
map command syntax, where f is a function or procedure and S is a set,
is:

map(f, S);

In this form, the map command replaces each member Si of S with
f(Si).

> map(f, {a,b,c});

{f(a), f(b), f(c)}

> S := {1,-2,3,-4};

S := {−4, −2, 1, 3}

126 • Chapter 4: Basic Data Structures

> map(abs,S);

{1, 2, 3, 4}

> map(x->x^2, S);

{1, 4, 9, 16}

You can also apply a function to the members of a set by using the
in command.

> for elem in S do
> elem^3;
> end do;

−64

−8

1

27

4.2 Lists

A list is an ordered sequence of expressions enclosed in square brackets
([]).

[sequence]

The ordering of the list is the same as the sequence ordering (specified
by the user). Also, unlike sets, duplicate entries are retained in the list.
In the case where sequence is empty, [] represents an empty list.2

> [x, y, y];

[x, y, y]

2Compare the results of these examples to those in 4.1 Sets.

4.2 Lists • 127

> [a, 1, b, 2];

[a, 1, b, 2]

> [y[1],x,x[1],y[1]];

[y1, x, x1, y1]

The elements of a list can be any expression, even other lists.

> L := [[1], [2, a], [X, Y, Z]];

L := [[1], [2, a], [X, Y, Z]]

Maple gives nested lists whose inner lists have the same number of
elements a special name—listlist.3

> M := [[a,b], [1,2], [3, 4]];

M := [[a, b], [1, 2], [3, 4]]

> type(M, list);

true

> type(L, listlist);

false

> type(M, listlist);

true

The following command creates a list of sets.

> [seq({ seq(i^j, j=1..3) }, i=-2..2)];

[{−8, −2, 4}, {−1, 1}, {0}, {1}, {2, 4, 8}]

3For more information about nested lists, refer to ?listlist.

128 • Chapter 4: Basic Data Structures

By changing the braces and brackets, you can create a set of lists, list
of lists, or set of sets.

> {seq([seq(i^j, j=1..3)], i=-2..2) };

{[−2, 4, −8], [−1, 1, −1], [0, 0, 0], [1, 1, 1], [2, 4, 8]}

Manipulating a List
There are a variety of commands that perform operations on lists.

Testing List Membership To test whether an element is in a list, use
the member command.

> L := [1,2,3];

L := [1, 2, 3]

> member(2, L);

true

> member(5, L);

false

You can also determine the position of an element in a list. If member
returns true and a third argument, for example ‘p‘, is included in the
calling sequence, the element’s position in the list is assigned to p.

> member(2, L, ‘p‘);

true

> p;

2

Concatenating Lists Use the op command to extract the expression
sequence of elements from the individual lists. Concatenate two lists by
creating a new list from the expression sequences.

4.2 Lists • 129

> L1 := [a,b,c];

L1 := [a, b, c]

> L2 := [y,z];

L2 := [y, z]

> L3 := [op(L1), op(L2)];

L3 := [a, b, c, y, z]

You can also concatenate parts of lists with another list by using the
op command to select particular elements from a list.4

> L4 := [op(2, L1), op(L2)];

L4 := [b, y, z]

Inserting Elements into a List To prepend and append elements to a
list, use the previous concatenation method.

> L1 := [grape];

L1 := [grape]

> [banana, op(L1)]; # prepend element

[banana, grape]

> [op(L1), orange]; # append element

[grape , orange]

You can also insert elements in a list by using the nops command.5

4For more information about selection using the op command, see page 155.
5The nops command determines the number of operands in an expression. For more

information about nops, refer to ?nops.

130 • Chapter 4: Basic Data Structures

> L1 := [banana, grape, orange, peach, pear, plum];

L1 := [banana, grape , orange , peach, pear , plum]

> [op(1..2, L1), kiwi, op(3..nops(L1), L1)];

[banana, grape , kiwi , orange , peach, pear , plum]

Replacing Elements in a List To replace an element in a list, use a
selection operation in an assignment statement.6

> L1 := [banana, grape, orange];

L1 := [banana, grape , orange]

> L1[2] := kiwi;

L1 2 := kiwi

> L1;

[banana, kiwi , orange]

To replace all occurrences of an expression in a list, use the eval

command.

> L1 := [banana, grape, orange, grape];

L1 := [banana, grape , orange , grape]

> eval(L1, grape=kiwi);

[banana, kiwi , orange , kiwi]

6For more information about the selection operation, see page 152 or refer to
?selection.

4.2 Lists • 131

Table 4.1 Sorting Options

List Element Type F Resulting sort Order

numeric < ascending
numeric > descending
string or symbol lexorder lexiographic

Reversing the Order of Elements in a List To reverse the order of the
elements in a list, use a combination of the selection operation, and the
seq and nops commands.7

> L1 := [banana, grape, orange];

L1 := [banana, grape , orange]

> [seq(L1[-i], i=1..nops(L1))];

[orange , grape , banana]

Sorting a List To sort the elements in a list, use the sort command. It
has the following syntax where L is a list and F is an optional parameter
that specifies the sort order.

sort(L, F);

If F is not specified, the elements of the list L are sorted in ascending
order. Otherwise, Table 4.1 displays the permissible values of F and the
resulting sort order for lists containing elements of a particular type.8

> sort([z,e,b]);

[b, e, z]

> sort([2.5, 7/3, 10]);

7For more information on the seq command, see page 183 or refer to ?seq.
8The algorithm that Maple uses for sort is a recursive implementation of merge

sort with an early detection of sorted sequences. For more information about sorting
lists, refer to ?sort.

132 • Chapter 4: Basic Data Structures

[
7

3
, 2.5, 10]

> sort([2.5, 7/3, 10], ‘>‘);

[10, 2.5,
7

3
]

Applying a Function to the Elements of a List Two commonly used
commands that apply functions to the elements of a list are the map

command and the zip command.
You can apply a function to the elements of a list by using the map

command. The simplest map command syntax, where f is a function or
procedure and L is a list, is:

map(f, L);

In this form, the map command replaces each element Li of L with
f(Li).

> map(f, [a,b,c]);

[f(a), f(b), f(c)]

> L := [1, -2, 3, -4];

L := [1, −2, 3, −4]

> map(abs, L);

[1, 2, 3, 4]

> map(x->x^2, L);

[1, 4, 9, 16]

You can apply a binary (two parameter) function to the elements of
two lists by using the zip command. It has the following syntax where f
is any binary function, and L1 and L2 are lists. If the optional argument
d is specified, it is used as the default value in f when L1 and L2 are not
the same size.

4.3 Tables • 133

zip(f, L1, L2, d);

If d is specified and L1 and L2 are the same size, d is ignored.

> zip((x,y)->x+y, [1,2,3], [4,5,6]);

[5, 7, 9]

> zip((x,y)->x+y, [1,2,3], [4,5], 10);

[5, 7, 13]

4.3 Tables

The table data structure in Maple is used for representing data in a
table—an arrangement of rows and columns. To create a table explicitly,
use the table command. The optional parameters F and L specify an
indexing function, and a list or set that specifies the initial values of the
table, respectively.

table(F, L);

If L is a list of entries9, the indices are set to the natural integers 1,
2,10

> T := table([a, b, c]);

T := table([1 = a, 2 = b, 3 = c])

> T0 := table([cos, sin, tan]);

T0 := table([1 = cos, 2 = sin, 3 = tan])

9The use of a set of initial values is ambiguous because there is no fixed ordering
of set elements. Hence, the ordering of the entries in the result may not correspond to
the ordering in which the entries are given.

10You can also create a table implicitly by using an indexed name. For more infor-
mation, see page 135 or refer to ?table.

134 • Chapter 4: Basic Data Structures

If L is a list of equations or a set of equations, the left-hand side of
each equation is the table index (key), and the right-hand side is the table
entry (value). Unlike arrays and Arrays (see 4.4 arrays and Arrays or
refer to ?array or ?Array), in which indices must be integers, the indices
of a table can be any value.

> T1 := table([0=alpha, 1=beta]);

T1 := table([0 = α, 1 = β])

> T2 := table({y1=x, y3=x^2, y2=x^3});

T2 := table([y1 = x, y3 = x2, y2 = x3])

> T3 := table([(shirt, S) = 12, (shirt, M) = 8, (shirt, L) = 9]);

T3 := table([(shirt , S) = 12, (shirt , L) = 9, (shirt , M) = 8])

If L is not specified, an empty table is created.

> table();

table([])

The optional indexing function F can be a procedure or a name
that describes the semantics of indexing in the table. If F is not spec-
ified, then ordinary indexing (integer) is assumed. The built-in in-
dexing functions are: symmetric, antisymmetric, sparse, diagonal,
and identity. For more information about indexing functions, refer to
?indexingfunctions.

The purpose of a table is to enable fast access to data. To access the
value of a table entry, enter the table name followed by a table key (in
square brackets).11

> T0[3];

tan

11For more information about table entry selection, see 4.5 Selecting Elements
from a Data Structure or refer to ?selection.

4.3 Tables • 135

> T3[shirt,M];

8

An Alternate Method for Generating a Table
A table can be created implicitly by making an assignment to an indexed
name T, where T does not have a previous value.

T[indexExpr] = entryValue;

In this format, T is the name of the table, indexExpr is the index of
the entry, and entryValue is the actual value of the entry in the table.

For example, the following statements have the same effect.

> T4 := table([(Cu,1) = 64]);

T4 := table([(Cu, 1) = 64])

> T4[Cu,1] := 64;

T4Cu, 1 := 64

Both statements create a table object with one component.

Table Evaluation Rules
Tables have special evaluation rules. If the name T is assigned to a table,
the result of evaluating T is the name T, not the value of T (contents of
the table).12

> T5 := table([1,2,3,4]);

T5 := table([1 = 1, 2 = 2, 3 = 3, 4 = 4])

> T5;

T5

12In Maple, an expression is normally evaluated by using full recursive evaluation—
that is, the result of the expression is the fully evaluated expression. For more infor-
mation about evaluation rules, see page 14 or refer to ?last_name_eval.

136 • Chapter 4: Basic Data Structures

To access the value of a table object, apply the eval command.

> eval(T5);

table([1 = 1, 2 = 2, 3 = 3, 4 = 4])

Manipulating a Table
There are a variety of commands that perform operations on tables.

Inserting Entries To add new entries to a table, use subscript notation.
Thus, T := table([4]) is equivalent to T[1] := 4 (implicit creation).

> mytable[1] := apple;

mytable1 := apple

If there is no entry in the table at the specified key, a new entry is
created.

> mytable[2] := banana;

mytable2 := banana

> eval(mytable);

table([1 = apple , 2 = banana])

If there is already an entry value for the specified key, it is updated
to the new value.

> mytable[2] := orange;

mytable2 := orange

> eval(mytable);

table([1 = apple , 2 = orange])

4.3 Tables • 137

Example To assign a value to a table key, use a procedure that accepts
an indexed name. Consider the following procedure.

> keyvalues := proc(b)
> b^3
> end proc:

If the first parameter to procedure keyvalues is valid, the assignment
is made.

> newtable := table(): #create an empty table
> newtable[1]:= keyvalues(2): #assign the value 8 to newtable[1]
> eval(newtable);

table([1 = 8])

To automatically assign values to table keys, use a flow control state-
ment.13

> newtable := table();

newtable := table([])

> for i to 5 do newtable[i]:= keyvalues(i) end do:
> eval(newtable);

table([1 = 1, 2 = 8, 3 = 27, 5 = 125, 4 = 64])

To determine whether a table component is assigned, use the assigned
command.

> assigned(newtable[1]);

true

Removing Entries To remove an entry from a table, assign an unevalu-
ated table entry to its name by using right single quotes on the right-hand
side of an assignment statement, or use the evaln command. For exam-
ple, T[1] := ’T[1]’ removes the first entry from T. Alternatively, you
can use evaln(T[1]) or unassign(’T[1]’).

13For more information about flow control statements, see 5.1 Selection and Con-
ditional Execution.

138 • Chapter 4: Basic Data Structures

> T5[3] := ’T5[3]’;

T5 3 := T5 3

> eval(T5);

table([1 = 1, 2 = 2, 4 = 4])

Displaying Table Indices To return the sequence of the table entries,
use the indices command, where T is a table.14

indices(T);

> T := table([[shirt,S]=42,[shirt,M]=16,[shirt,L]=36]);

T := table([[shirt , M] = 16, [shirt , L] = 36, [shirt , S] = 42])

> indices(T);

[[shirt , M]], [[shirt , L]], [[shirt , S]]

Displaying Table Entries To return a sequence of the table values, use
the entries command, where T is a table.15

entries(T);

> entries(T);

[16], [36], [42]

Alternatively, you can use the op command to return the operands
of a table, for example, its entries and indexing function. (If no indexing
function has been specified, NULL is returned.) Table 4.2 lists the operands

14The order of the keys in the returned sequence does not necessarily correspond to
the order of the keys in the table because tables in Maple are implemented by using
hash tables. However, there is a one-to-one correspondence between the order of the
indices and the order of the entries.

15The order of the entries in the returned sequence does not necessarily correspond
to the order of the entries in the table.

4.3 Tables • 139

Table 4.2 Table Operands

Operand op Command

table structure op(T)

data type op(0, eval(T))

indexing function op(1, eval(T))

table entries op(2, eval(T))

and corresponding op command that you can use to access them. In the
op commands shown, T is the name of the table.16

The call op(T) returns the actual table structure.

> op(T4);

table([(Cu, 1) = 64])

The object assigned to T4 is a table.

> op(0,eval(T4));

table

The table T4 has no indexing function and the list of entries has only
one key/value pair.

> op(1,eval(T4));
> op(2,eval(T4));

[(Cu, 1) = 64]

Copying a Table If two names evaluate to the same table, an assignment
to a component of either affects both.

> T6 := table([w, x, y, z]);

T6 := table([1 = w, 2 = x, 3 = y, 4 = z])

16Tables have special evaluation rules. To access the table object, you must apply
the eval command. For more information, see page 135.

140 • Chapter 4: Basic Data Structures

> b := T6:
> b[1] := 7;

b1 := 7

> eval(T6);

table([1 = 7, 2 = x, 3 = y, 4 = z])

> eval(b);

table([1 = 7, 2 = x, 3 = y, 4 = z])

In this example, there is only one table. The name b points to the
name T6 which points to the table structure.

To create a copy of a table that is independent of the original, use the
copy command.

copy(T);

> c := copy(T6);

c := table([1 = 7, 2 = x, 3 = y, 4 = z])

> c[1] := 10:
> eval(T6);

table([1 = 7, 2 = x, 3 = y, 4 = z])

> eval(c);

table([1 = 10, 2 = x, 3 = y, 4 = z])

Applying a Function to the Entries of a Table To apply a function to
the entries of a table to create a new table, use the map command. The
indices of the table remain the same.

4.4 arrays and Arrays • 141

In the following example, the first statement creates a table of polyno-
mials, and the second statement creates a (new) table of their derivatives
by using the map command.17

> T7 := table([x, x^2 + 2, x^3 - x + 1, 1/x^2]):
> map(diff, T7, x);

table([1 = 1, 2 = 2x, 3 = 3x2 − 1, 4 = − 2

x3
])

To modify the values in-place, that is, change the values in the original
table, use the following method.

> for entry in op(2,eval(T6)) do
> T6[lhs(entry)] := 2*rhs(entry)
> end do;

T6 1 := 14

T6 2 := 2x

T6 3 := 2 y

T6 4 := 2 z

> eval(T6);

table([1 = 14, 2 = 2x, 3 = 2 y, 4 = 2 z])

4.4 arrays and Arrays

In Maple, there are two kinds of arrays : arrays and Arrays.
An array is a specialization of the table data structure, with zero

or more specified dimensions B, where each dimension is an integer range
(index bound). As in the case of tables (see 4.3 Tables or refer to ?table),
F is the optional indexing function, and L is the initial list of values.

17For more information about the map command, refer to ?map.

142 • Chapter 4: Basic Data Structures

array(F, B, L);

The number of ranges in B is called the dimension of the array. If no
index bound is specified in B, it is deduced from the intitial list of values.

The list of initial values L can be a:

• list of equations (similar to tables)

• list of values (one-dimensional)

• nested list of lists (row-by-row representation)

If L is the empty list, the array is zero-dimensional and the index
bound is NULL (a sequence of zero integer ranges). If L is given as a list of
n values, the array is one-dimensional and the index bound is the range
1..n. If L is a list of lists, the number of dimensions can be deduced from
the level of nesting of the lists and each dimension is indexed from 1.

All parameters to the array command are optional and can appear in
any order, but at least one bound or one list must appear. If the bounds
are not specified, they are deduced from the list of initial values. If the
bounds are specified without an initialization list, the array values are
unassigned.

> a2 := array(1..3); #empty 1-d array

a2 := array(1..3, [])

> a3 := array(1..3, [a,b,c]); #1-d array

a3 := [a, b, c]

> a4 := array([a,b,c]); #1-d array

a4 := [a, b, c]

> a5 := array(1..3, 1..2); #empty 3 x 2 array

a5 := array(1..3, 1..2, [])

> a6 := array([[1,2,3],[4,5,6]]); #2-d array

4.4 arrays and Arrays • 143

a6 :=

[

1 2 3
4 5 6

]

Similarly, an Array is a table-like structure with fixed dimensions and
integer indices. The difference between arrays and Arrays is the underlying
data structure. An array uses a hash table, while an Array uses a fixed
size data block.

The Array command has the same form as array, but accepts more
optional parameters. If the bounds are specified without an initialization
list, all Array values are assigned 0 (zero). For more information, refer to
?Array.

Array(F, B, L);

> A2 := Array(1..3); #empty 1-d Array

A2 := [0, 0, 0]

> A3 := Array(1..3, [a,b,c]); #1-d Array

A3 := [a, b, c]

> A4 := Array([a,b,c]); #1-d Array

A4 := [a, b, c]

> A5 := Array(1..3, 1..2); #empty 3 x 2 Array

A5 :=

0 0
0 0
0 0

> A6 := Array([[1,2,3],[4,5,6]]); #2-d Array

A6 :=

[

1 2 3
4 5 6

]

As in the creation of a table, the optional indexing function F can
be a procedure or a name that describes the semantics of indexing in
the array or Array. If F is not specified, ordinary indexing (integer) is

144 • Chapter 4: Basic Data Structures

implied. The built-in indexing functions are: symmetric, antisymmetric,
sparse, diagonal, and identity.18 For more information about indexing
functions, refer to ?indexingfunctions.

> a7 := array(symmetric, 1..2, 1..2, [(1,1) = 3]);

a7 :=

[

3 a7 1, 2

a7 1, 2 a7 2, 2

]

Evaluation Rules for arrays
There are special evaluation rules for arrays. If the name a has been
assigned to an array, the result of evaluating a is the name a, not the
value of a (contents of the array). As with a table, to access the value of
the array object, apply the eval command.19

> a := array([1,2,3,4]);

a := [1, 2, 3, 4]

> a;

a

> eval(a);

[1, 2, 3, 4]

In contrast, it is not necessary to use eval for Arrays.

> A6;

[

1 2 3
4 5 6

]

18There are additional built-in indexing function names for Arrays. For a complete
list, refer to ?rtable_indexingfunctions.

19For more information about evaluation rules, see page 14 or refer to
?last_name_eval.

4.4 arrays and Arrays • 145

Manipulating arrays and Arrays
There are a variety of commands that perform operations on arrays and
Arrays. You manipulate arrays and Arrays in a manner that is similar to
that used for tables.

Inserting Entries To assign entries in arrays and Arrays, use subscript
notation, that is, square brackets.

> a3[3] := d;

a3 3 := d

> eval(a3);

[a, b, d]

> A3[3] := d;

A3 3 := d

> A3;

[a, b, d]

> a7 := array(symmetric,1..2,1..2);

a7 := array(symmetric , 1..2, 1..2, [])

> a7[1,1] := 3;

a7 1, 1 := 3

> a7[1,2] := 4;

a7 1, 2 := 4

> eval(a7);

[

3 4
4 ?2, 2

]

146 • Chapter 4: Basic Data Structures

Removing Entries To remove entries from an array, assign an unevalu-
ated array entry to its name by using right single quotes on the right-hand
side of an assignment statement, or use the evaln command. For exam-
ple, a[1] := ’a[1]’ removes the first entry from a. Similarly, you can
use evaln(a[1]).

> a3[3] := ’a3[3]’;

a3 3 := a3 3

> eval(a3);

[a, b, ?3]

Entries cannot be removed from Arrays. Unless you specify
storage=sparse in its definition20, each entry must have an assigned
value.

Displaying array Indices To return a sequence of the indices to the array,
use the indices command, where a is an array (not an Array).

indices(a);

The order of the indices in the returned sequence does not necessarily
correspond to the order of the indices in the array.

> indices(a3);

[1], [2]

Displaying array Entries To return a sequence of the array entries, use
the entries command, where a is an array (not an Array).

entries(a);

The order of the entries in the returned sequence does not necessarily
correspond to the order of the entries in the array.

> entries(a3);

20For a list of Array storage formats, refer to ?Array.

4.4 arrays and Arrays • 147

Table 4.3 array Operands

Operand op Command

array structure op(a)

data type op(0, eval(a))

indexing function op(1, eval(a))

array bounds op(2, eval(a))

array entries op(3, eval(a))

[a], [b]

Alternatively, you can use the op command to return the operands of
an array, that is, its entries, data type, indexing function, and bounds. (If
no indexing function has been specified, nothing is returned.) Table 4.3
lists these operands and the corresponding op command that you can
enter to access them. In the op commands, a is the name of the array.21

The object assigned to a7 is the actual array structure.

> op(a7);

[

3 4
4 ?2, 2

]

The type of object assigned to a7 is an array.

> op(0,eval(a7));

array

As with tables, the first operand is the indexing function (if any).

> op(1,eval(a7));

symmetric

The second operand is the sequence of ranges that indicate the
bounds.

21Recall that arrays (like tables) have special evaluation rules. To access the array
object, apply the eval command.

148 • Chapter 4: Basic Data Structures

Table 4.4 Array Operands

Operand op Command

all operands op(A)

data type op(0, A)

indexing function op(1, A)

Array bounds op(2, A)

Array entries op(3, A)

other operands op(4, A)

> op(2,eval(a7));

1..2, 1..2

The third operand is a list of the entries in the array.

> op(3, eval(a7));

[(1, 1) = 3, (1, 2) = 4]

The example above displays only two entries in array a7 because the
values of the entries located at (2, 1) and (2, 2) are implicitly specified
by the symmetric indexing function.

Similarly, you can use the op command to return the operands of an
Array, that is, the data type, indexing function, bounds, entries, entry
data type, storage type, and order. Table 4.4 lists the operands and the
corresponding op commands.

> op(A6);

1..2, 1..3, {(2, 3) = 6, (2, 1) = 4, (2, 2) = 5, (1, 1) = 1,

(1, 3) = 3, (1, 2) = 2}, datatype = anything ,

storage = rectangular , order = Fortran_order

Copying arrays and Arrays If two names evaluate to the same array or
Array, an assignment to a component of either affects both.

> a8 := array([w,x,y,z]);

a8 := [w, x, y, z]

4.4 arrays and Arrays • 149

> b := a8;

b := a8

> b[1] := 7;

b1 := 7

> eval(a8);

[7, x, y, z]

> eval(b);

[7, x, y, z]

> A8 := Array([1,2,4,8]);

A8 := [1, 2, 4, 8]

> B := A8;

B := [1, 2, 4, 8]

> B[1] := 0;

B1 := 0

> A8;

[0, 2, 4, 8]

> B;

[0, 2, 4, 8]

In the preceding examples, there is only one array (or Array). The
name b (B) points to the name a8 (A8) that points to the array (or Array)
structure.

150 • Chapter 4: Basic Data Structures

To create a copy of an array that is independent of the original, use
the copy command.

copy(a);

> c := copy(a8);

c := [7, x, y, z]

> c[1] := 10;

c1 := 10

> eval(a8);

[7, x, y, z]

> eval(c);

[10, x, y, z]

To create a copy of an Array that is independent of the original, use
the Array command.

> C := Array(A8);

C := [0, 2, 4, 8]

> C[1] := Pi;

C1 := π

> A8;

[0, 2, 4, 8]

> C;

[π, 2, 4, 8]

4.4 arrays and Arrays • 151

Applying a Function to the Entries of an array or Array To apply a
function to the entries of an array or Array to create a new array or
Array, use the map command.

In the following example, the first statement creates an array of poly-
nomials, and the second statement creates an array of the factored poly-
nomials by using the map command.22

> a8 := array([2*x^4 - x^2, x^2 + 2*x, x^3 - x + 2*x]);

a8 := [2x4 − x2, x2 + 2x, x3 + x]

> map(factor, a8);

[x2 (2x2 − 1), x (x+ 2), x (x2 + 1)]

The Map command in the LinearAlgebra package applies a function
to the entries in an Array, returning a new Array.

> A8 := Array([x,23,y-2]);

A8 := [x, 23, y − 2]

> LinearAlgebra[Map](x->x*y,A8);

[x y, 23 y, (y − 2) y]

To modify the values in-place, that is, change the values in the original
array or Array, use the following method.23

> for entry in op(3,A8) do
> A8[lhs(entry)] := rhs(entry) + 1
> end do;

A8 1 := x+ 1

A8 2 := 24

A8 3 := y − 1

22For more information about the map command, refer to ?map.
23This method (with op(2,...)) is used to modify tables in-place.

152 • Chapter 4: Basic Data Structures

> A8;

[x+ 1, 24, y − 1]

4.5 Selecting Elements from a Data Structure

Selecting elements from a data structure is most commonly achieved by
performing a selection operation. However, there are a number of other
methods by which you can choose an element.

The Selection Operation []
The selection operation, [], selects components from aggregate objects,
for example, sequences, sets, lists, tables, arrays, and Arrays. The selection
operation uses the following syntax, where name represents the object and
sequence indicates the selected entry (or entries).24

name[sequence]

Sequences, Sets, and Lists If name evaluates to a sequence, set, or list,
and sequence evaluates to an integer, a range, or NULL, Maple performs
a selection operation.25

If sequence evaluates to an integer i, then Maple returns the ith

operand of the set, list, or sequence. Negative integers cause elements to
be counted from the end of the sequence, set, or list. For example, -1
indicates the last element.

> s := x,y,z:
> L := [s,s];

L := [x, y, z, x, y, z]

> S := {s,s};

S := {x, y, z}

24For more information about selecting elements, refer to ?selection.
25Although you can use the selection operation to select elements of a set, the order

of elements in a set is session dependent. Do not make any assumptions about this
order.

4.5 Selecting Elements from a Data Structure • 153

> S[2];

y

> L[-4];

z

If sequence evaluates to a range, the lower bound must be less than
or equal to one more than the upper bound. Specifically, A[3..3] selects
a single element, A[3..2] produces an empty selection, and A[3..1] is
not permitted.

> L[2..3];

[y, z]

> L[3..3];

[z]

> L[3..2];

[]

> L[3..1];

Error, invalid subscript selector

If sequence evaluates to NULL, Maple returns a sequence containing
all operands of the aggregate object.

> S[];

x, y, z

154 • Chapter 4: Basic Data Structures

Tables, arrays, and Arrays If name evaluates to a table, Maple returns
the value in the table entry, if there is one. If there is not an entry with
sequence as its key, the value returned is an indexed name. However, if
sequence evaluates to a range, the selection remains unevaluated.

> T := table([(1,1)=Bob, (1,2)=Mary, (2,1)=Sally, (2,2)=Joe]);

T := table([(1, 1) = Bob, (1, 2) = Mary , (2, 1) = Sally ,

(2, 2) = Joe

])

> T[2,2];

Joe

> T[3,1];

T3, 1

Because arrays are implemented as tables, the array behavior is the
same.

> a := array([w,x,y,z]);

a := [w, x, y, z]

> a[3];

y

> a[1..3];

a1..3

In this case, Arrays behave like lists. The range selection evaluates to
a subArray.

> B := Array([[1,2,3],[4,5,6],[7,8,9]]);

4.5 Selecting Elements from a Data Structure • 155

B :=

1 2 3
4 5 6
7 8 9

> B[1..2,1..2];

[

1 2
4 5

]

The op Command
You can use the op command to extract operands from sets, lists, tables,
and arrays.26 To use op in this manner, use the following syntax, where
i is an integer or integer range that represents the operand(s) to extract
and e is the data structure.27

op(i, e);

Sets and Lists Notice that if negative integers are used to indicate the
operands in a set or list, the elements are counted from the end: using -1

indicates the last element, using -2 indicates the second last, and so on.

> S := {10,11,12,13};

S := {10, 11, 12, 13}

> op(1, S);

10

> op(2..3, S);

11, 12

26In general, the use of op to extract operands from a list or set is less efficient than
using the selection operation because the entire list or set is evaluated. Therefore, if
possible, use the selection operation.

27You cannot use the op command on a sequence because Maple interprets the ele-
ments of the sequence as individual arguments to op. Instead, you must access elements
of a sequence by using the selection operation []. For more information on sequence
selection, see page 152 or refer to ?sequence.

156 • Chapter 4: Basic Data Structures

> L := [a,b,c,d,e];

L := [a, b, c, d, e]

> op(3..-1, L);

c, d, e

Tables, arrays, and Arrays Unlike sets, lists, and Arrays, tables and
arrays have special evaluation rules. For more information on using op

with tables, see 4.3 Tables. For more information on using op with arrays
and Arrays, see 4.4 arrays and Arrays.

The select, remove, and selectremove Commands
You can also use the select, remove, and selectremove commands to
select the elements of a list or set that satisfy a criterion.

The simplest forms are:

select(f, x)

remove(f, x)

selectremove(f, x)

where f is a Boolean-valued function and x is an expression which
must be a sum, product, list, set, function, or indexed name.

The select command returns a new object of the same type as x that
contains only the operands of x for which the Boolean-valued function f

returns true.

> X := [seq(i,i=1..10)];

X := [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

> select(isprime,X);

[2, 3, 5, 7]

The remove command is (almost) the complement of select. It re-
turns a new object of the same type as x that contains only the operands
of x for which the Boolean-valued function f returns false.

4.5 Selecting Elements from a Data Structure • 157

> remove(isprime,X);

[1, 4, 6, 8, 9, 10]

The selectremove function returns two new objects of the same type
as x, the first containing the operands for which the Boolean-valued func-
tion f returns true and the second containing the operands for which f

returns false. The result is computed more efficiently than using both
select and remove because it evaluates f(xi) once for each operand.

> selectremove(isprime,X);

[2, 3, 5, 7], [1, 4, 6, 8, 9, 10]

Note: If f(xi) returns FAIL, none of select, remove, and selectremove

returns an object containing xi.

The general forms of these commands are

select(f, x, y1, ..., yn)

remove(f, x, y1, ..., yn)

selectremove(f, x, y1, ..., yn)

where f is a function, x is a sum, product, list, set, function or indexed
name, and y1, ..., yn are expressions. The expressions y1, ..., yn are passed
to the function f. That is, for each operand of x, the Boolean evaluation
f(xi, y1, ..., yn) is calculated.

> X := {2, sin(1), exp(2*x), x^(1/2)};

X := {2, sin(1), e(2x),
√
x}

> select(type, X, ’function’);

{sin(1), e(2x)}

> remove(type, X, ’constant’);

{e(2x),
√
x}

158 • Chapter 4: Basic Data Structures

> integers := [$10..15];

integers := [10, 11, 12, 13, 14, 15]

> select(isprime, integers);

[11, 13]

> remove(isprime, integers);

[10, 12, 14, 15]

> selectremove(isprime, integers);

[11, 13], [10, 12, 14, 15]

4.6 Converting Between Data Structures

You can convert the structure of the result by using a variety of methods.
This is useful because some results are in the form of a data structure
that is not accepted by other Maple commands.

Converting a Sequence to a Set or a List
Many Maple commands return results in the form of a sequence. To con-
vert a sequence into a set or list, enclose the result in braces or square
brackets, respectively.

For example, the solve command returns a sequence of values if it
finds multiple solutions.

> s := solve(x^4 - 2*x^3 - x^2 + 4*x - 2, x);

s := 1, 1,
√
2, −

√
2

The result is a sequence of values, not an equation. Enclosing the
solutions in square brackets creates a list.

> [s];

4.7 Other Maple Data Structures • 159

[1, 1,
√
2, −

√
2]

Alternatively, you can convert the result to a set by enclosing s in
braces. Note that duplicate solutions do not appear in the set.

> {s};

{1,
√
2, −

√
2}

Converting Other Data Structures
In general, to convert the structure of one result to another, use the
convert command.

Example Convert a table to a list.

> T := table([x, x^2, x^3, x^4]);

T := table([1 = x, 2 = x2, 3 = x3, 4 = x4])

> convert(T, ‘list‘);

[x, x2, x3, x4]

For a complete list of conversions between data structures, refer to
?convert.

4.7 Other Maple Data Structures

In addition to the data structures already discussed in this chapter, Maple
has a wide variety of other data structures. In particular, two data struc-
tures commonly used in programming are stacks and queues.

Stacks
A stack is a data structure in which the removal order of the elements is
the reverse of the entry order. You can only insert (or push) and delete
(or pop) elements from the top of the stack. This behavior is referred to

160 • Chapter 4: Basic Data Structures

as LIFO (last in, first out). Stacks are implemented as tables in Maple.
They are created by using the stack commands.28

Begin by creating a new (empty) stack.

> s := stack[new]();

s := table([0 = 0])

Push the letters h, a, t onto the stack.

> stack[push](h, s);

h

> stack[push](a, s);

a

> stack[push](t, s);

t

Check the depth, the value of the top element, and the contents of
the stack.

> stack[depth](s);

3

> stack[top](s);

t

> eval(‘s‘);

table([0 = 3, 1 = h, 2 = a, 3 = t])

28For more information about stacks in Maple, refer to ?stack.

4.7 Other Maple Data Structures • 161

Pop the letters off the stack. The original order of the letters is re-
versed.29

> while not stack[empty](s) do stack[pop](s); end do;

t

a

h

Queues
A queue is a data structure in which the removal order of elements is
the same as the entry order. This behavior is referred to as FIFO (first in,
first out). Queues are implemented as tables in Maple and are created by
using the queue commands.30

Create a new (empty) queue.

> q := queue[new]();

q := table([0 = 0])

Place the letters h, a, t in the queue.

> queue[enqueue](q, h);

h

> queue[enqueue](q, a);

a

> queue[enqueue](q, t);

t

Check the length, the value of the front element, and the contents
of the queue.

29The order of this result is the reverse of that in the example in the following
subsection Queues.

30For more information about queues in Maple, refer to ?queue.

162 • Chapter 4: Basic Data Structures

> queue[length](q);

3

> queue[front](q);

h

> eval(‘q‘);

table([0 = 3, 1 = h, 2 = a, 3 = t])

Remove the letters from the queue. The original order of the letters
is maintained.31

> while not queue[empty](q) do queue[dequeue](q); end do;

h

a

t

Other important data structures are the connected graph and adja-
cency matrix. For more information on these data structures, see 6.10 Us-
ing Data Structures to Solve Problems.

There are many other data structures in Maple. For example, the
matrix32 and vector33 constructors create special cases of arrays, and
the Matrix34 and Vector35 constructors create special cases of Arrays.

4.8 Troubleshooting

This section provides you with a list of common mistakes, examples, and
hints that will help you understand and avoid common errors. Use this

31The order of this result is the reverse of that in the example in the preceding
subsection Stacks.

32For information on the matrix constructor, refer to ?matrix.
33For information on the vector constructor, refer to ?vector.
34For information on the Matrix constructor, refer to ?Matrix.
35For information on the Vector constructor, refer to ?Vector.

4.8 Troubleshooting • 163

section to study the errors that you may encounter when entering the
examples from this chapter in a Maple session.

Wrong Number of Parameters in Function
Maple generates an error if a sequence is used as a parameter to op or
nops.36

> s := a, b, c;

s := a, b, c

> op(2, s);

Error, invalid input: op expects 1 or 2 arguments, but
received 4

To avoid this error, convert s to a list (by enclosing s in square brack-
ets) in the call to op or nops.

> op(2, [s]);

b

Invalid Subscript Selector
Maple generates an error if, during a selection operation, an invalid range
is specified. An invalid range occurs if the following rule is broken: the
lower bound must be less than or equal to one more than the upper
bound. In the case that the range is an integer in a selection operation
from a list, you cannot access the zeroth operand because lists are indexed
by natural integers 1, 2,37

> L := [a, b, c, d];

L := [a, b, c, d]

> L[3..1];

Error, invalid subscript selector

36For more information, refer to ?op.
37For more information about selection and ranges, refer to ?selection.

164 • Chapter 4: Basic Data Structures

> L[0];

Error, invalid subscript selector

To avoid this error, use a range with a lower bound that is less than
the upper bound.

> L[1..3];

[a, b, c]

Requires Range or Initialization List for Building arrays
Maple generates an error if no parameters are specified in a call to array.

> a := array();

Error, needs ranges or initialization list for building
arrays

Unlike a table (for which an empty parameter list is permissible), in
a call to array you must specify either the bound or an initialization list.

> a := array(1..3);

a := array(1..3, [])

Error in array Bound or Array Index out of Range
Maple generates an error if you try to assign a value to an array or Array
index that is outside the array bound.

> a := array(1..3);

a := array(1..3, [])

> a[4] := p;

Error, 1st index, 4, larger than upper array bound 3

4.9 Exercises • 165

> A := Array(1..2);

A := [0, 0]

> A[4] := x^2;

Error, Array index out of range

To avoid this error, assign the entry to an index within the bound.

> a[3] := 100;

a3 := 100

> eval(a);

[?1, ?2, 100]

> A[2] := x-y;

A2 := x− y

> A;

[0, x− y]

4.9 Exercises

1. Define a set with elements that are the powers of 13 modulo 100 for
exponents ranging from 1 to 1000. Is 5 a member of the set? Why is
it beneficial to use a set instead of a list?

Hint : You can determine the set by using one statement if you use
the seq command.

2. Generate the sums of 4 and the first 100 multiples of 3. Determine
the sums that are square-free composite numbers.

Hint : The numtheory package has a function that you need to use.

166 • Chapter 4: Basic Data Structures

3. Find floating-point approximations for the sum of the square root and
cubic root of each of the first 15 powers of 2.

Hint : Use map, seq, and zip.

4. Write a procedure that implements the sieve of Eratosthenes: Count
the number of integers (less than or equal to a given integer) that are
prime.

4.10 Conclusion

When you write a procedure, you generally have freedom to choose the
data structure used for the data. The choice of data structure can have
a great impact on the complexity and efficiency of the procedure. This
chapter presented a variety of data structures that you can use to write
procedures in Maple.

Procedures were introduced in chapter 1. Detailed information about
procedures is provided in chapter 6.

The next chapter formally discusses the statements and other con-
structs that control the number of times and order in which operations
are executed. These include the for...while...do looping construct,
and the if...then...else selection statement.

5 Flow Control

In the Maple programming language, there are control structures that
direct the flow of execution in a procedure. In particular, you can or-
ganize the Maple statements in a procedure by sequence, selection, or
repetition. You have primarily used sequential flow in the preceding chap-
ters. This chapter describes the Maple control structures for selection and
repetition.1

In This Chapter
• Selection and conditional execution control structures, the if state-
ment and the ‘if‘ operator

• Repetition control (looping) structures, the for and while statements

• Looping commands: map; select, remove, and selectremove; zip;
seq, add, and mul; and $, sum, and product

5.1 Selection and Conditional Execution

A selection (or conditional execution) control structure selects one state-
ment to execute from many listed. In Maple, to control the selection of a
statement, use the if statement, or the ‘if‘ operator.

The if Statement
The most general form of the if statement has the following syntax.

1Procedure calls and exception handlers (try...catch...finally statements) are
also forms of flow control in Maple. For more information about procedure calls, see
chapter 6. For more information about handling exceptions, see chapter 8.

167

168 • Chapter 5: Flow Control

if conditional expression then

statement sequence

elif conditional expression then

statement sequence

else

statement sequence

end if

The elif conditional expression then construct can appear zero,
one, or many times. The else construct can be excluded.

This section describes various forms of this general if statement.

Simple Forms of the if Statement The following is the syntax of two
simpler forms of the general if statement.

if expr then

statseq

end if

if expr then

statseq1

else

statseq2

end if

Maple executes these selection statements as follows.

1. The conditional expression (expr) in the if clause is evaluated. The
conditional expression can be any Boolean expression, which evaluates
to true, false, or FAIL, formed by using:

• relational operators: <, <=, >, >=, =, and <>

• logical operators: and, or, and not

• logical names: true, false, and FAIL

Otherwise, the if statement returns an error.

> x := -2:
> if x then
> 0
> else
> 1
> end if;

Error, invalid boolean expression

5.1 Selection and Conditional Execution • 169

2. If the result of the if clause is the Boolean value true, Maple executes
the statement sequence in the then clause. If the result of the if clause
is the Boolean value false or FAIL, Maple executes the statement
sequence in the else clause (if there is one).2

> if x<0 then
> 0
> else
> 1
> end if;

0

You can omit the else clause if you do not want to specify an action
if the condition is false.

> if x>0 then
> x := x-1
> end if;

Nested Selection Statements A selection statement can be nested—
that is, the statement sequence in the then clause or else clause can be
any statement (or sequence of statements), including an if statement.

> if x>0 then
> print("Positive")
> else
> if x=0 then
> print("Zero")
> else
> print("Negative")
> end if
> end if;

“Negative”

The following example demonstrates the behavior of if statements in
the case that the conditional expression evaluates to FAIL.

> r := FAIL:

2For more information about Boolean expressions in Maple, see page 86 or refer to
?boolean.

170 • Chapter 5: Flow Control

> if r then
> print(1)
> else
> if not r then
> print(0)
> else
> print(-1)
> end if
> end if;

−1

General Forms of the if Statement For more complicated scenarios,
use one of the following two forms of the if statement.

if expr then

statseq

elif expr then

statseq

end if

if expr then

statseq

elif expr then

statseq

else

statseq

end if

The elif expr then statseq construct can appear more than once.
The following example implements the mathematical sign function by

using an elif clause.

> x := -2;

x := −2

> if x<0 then
> -1
> elif x=0 then
> 0
> else
> 1
> end if;

5.1 Selection and Conditional Execution • 171

−1

Maple does not have a formal case statement. However, you can use
the if statement as a case statement with the optional else clause as the
default case. For example, to write a program that accepts a parameter
n with four possible values (0, 1, 2, and 3), use the following code.3,4

> n := 5;

n := 5

> if n=0 then
> 0
> elif n=1 then
> 1/2
> elif n=2 then
> sqrt(2)/2
> elif n=3 then
> sqrt(3)/2
> else error "bad argument: \%1", n;
> end if;

Error, bad argument: 5

The ‘if‘ Operator
The operator form ‘if‘ requires three arguments and it returns the eval-
uation of the second or third argument, depending on the truth value of
the first.

‘if‘(conditional expr,true expr,false expr)

The first argument must evaluate to true, false, or FAIL. If the
first argument evaluates to true, the second argument is evaluated and
returned. If the first argument evaluates to false or FAIL, the third ar-
gument is evaluated and returned. When the operator form is used, the

3A case statement is one that directs a program to choose one action from a list of
alternatives, depending on the value of a given variable. Case statements (or similar
constructs) are common to most programming languages.

4For more information about the error statement, see page 219 or refer to ?error.

172 • Chapter 5: Flow Control

name of this function must be enclosed in right single quotes (’) because
if is a Maple reserved word.5

> b:=4;

b := 4

> ‘if‘(b>5, 10, 11);

11

This ‘if‘ operator statement is equivalent to the following if state-
ment.

> if b>5 then
> 10
> else
> 11
> end if;

11

5.2 Repetition

A loop structure (repetition statement) executes a section of code multiple
times. Maple has two general forms of repetition statements that you can
use to perform looping in procedures. They have the following syntax.

for name from expr by expr to expr while expr do

statement sequence

end do

5For more information about reserved words in Maple, see page 24 or refer to
?reserved.

5.2 Repetition • 173

for name in expr while expr do

statement sequence

end do

Many of the clauses in these general repetition statements are op-
tional. As a result, you can extract two special cases of loop-control
statements—the for and the while statements. These special cases pro-
vide the ability to execute a statement sequence repeatedly, either for a
counted number of times (by using the for clause) or until a condition is
satisfied (by using the while clause).6

The for Loop
The for loop is used to repeatedly execute a sequence of statements for
a counted number of times. The for loop has two forms: the for...from
loop and the for...in loop.

The for...from Loop A typical for...from loop has the following
syntax.

for name from expr by expr to expr

while expr do

statseq

end do

The following clauses are optional.

• for name

• from expr

• by expr

• to expr

• while expr

You can also omit the sequence of statements statseq. Excluding the
for clause, which must appear first, the clauses can appear in any order.
If you omit a clause, it has the default value shown in Table 5.1.

A typical for...from loop is used to generate a sequence of results.

6You can replace many of the loops that use for or while statements with more effi-
cient and concise special forms. For more information, see 5.3 Looping Commands.

174 • Chapter 5: Flow Control

Table 5.1 for Clauses and Their Default Values

Clause Default Value

for dummy_variable
from 1
by 1
to infinity

while true

> for i from 2 to 5 do
> i^2
> end do;

4

9

16

25

This sequence of results is generated as follows.

• Maple assigns i the value 2.

• Because 2 is less than 5, Maple executes the statement between the
do and the end do.

• Then i is incremented by 1 to 3, and tested again.

• The loop executes until i is strictly larger than 5. In this case, the
final value of i is 6.

> i;

6

You can also write the previous example by using the following state-
ment.

> for i from 2 by 1 to 5
> while true do
> i^2
> end do:

5.2 Repetition • 175

When the by clause is negative, the for loop counts down.

> for i from 5 to 2 by -1 do
> i^2
> end do;

25

16

9

4

Example To find the first prime number greater than 107, you could
write:

> for i from 10^7
> while not isprime(i) do
> end do;

After this statement is executed, i is the first prime larger than 107.

> i;

10000019

Notice that the body of the loop is empty. Maple permits the empty
statement. Improve the program by considering only odd numbers.

> for i from 10^7+1 by 2
> while not isprime(i) do
> end do;

> i;

10000019

The following code demonstrates how to repeat an action n times, in
this case, throwing a die five times.

> die := rand(1..6):

176 • Chapter 5: Flow Control

> to 5 do
> die();
> end do;

5

2

5

6

2

If all of the clauses in the for statement are omitted, an infinite loop
is produced.

do statseq end do

This has the same effect as the following code, but the do loop does
not assign a value to a dummy variable each iteration.

for dummy_variable from 1 by 1 to infinity

while true do

statseq

end do

Such a loop statement repeats indefinitely unless Maple encounters a
break statement (see page 179), return statement (see page 219), quit
statement (see page 119), or error.

The for...in Loop The for...in loop has the following syntax.

for name in expr

while expr do

statseq

end do

The loop index name is assigned the operands of the first expr. You
can test the value of the index in the optional while clause, and, of course,
the value of the index is available when you execute the statseq. If the
object in expr contains at least one operand, then the value of the index
variable name remains assigned at the end of the loop .

For example, given a list L of integers, to find the integers that are
less than or equal to 7, use the following for loop.

5.2 Repetition • 177

> L := [7,2,5,8,7,9];

L := [7, 2, 5, 8, 7, 9]

> for i in L do
> if i <= 7 then
> print(i)
> end if;
> end do;

7

2

5

7

This code cycles through the operands of object L, in this case, a list.
The object can be, for example, a set, sum of terms, product of factors,
or string of characters.

The while Loop
The for loop is used to repeatedly execute a sequence of statements until
a condition is satisfied. The while loop is a for loop with all of its clauses
omitted except the while clause.

while expr do

statseq

end do

The expression expr is called the while condition. It must be a
Boolean-valued expression. That is, it must evaluate to true, false, or
FAIL.

> x := 256;

x := 256

> while x>1 do
> x := x/4
> end do;

178 • Chapter 5: Flow Control

x := 64

x := 16

x := 4

x := 1

The while loop behaves as follows.

• Maple evaluates the while condition. An error occurs if the while
condition does not evaluate to true, false, or FAIL.

• If the condition evaluates to true, Maple executes the body of the
loop.

• The loop repeats until the while condition evaluates to false or FAIL.7

> x := 1/2:

> while x>1 do
> x := x/2
> end do;

> x;

1

2

> while x do
> x := x/2
> end do;

Error, invalid boolean expression

Control within Loops
Within the Maple language reside two additional loop control constructs:
break and next.

7Maple evaluates the while condition before it executes the body of the loop.

5.2 Repetition • 179

The break Statement When Maple executes a break statement, the
result is to exit from the repetition statement in which it occurs. Ex-
ecution then proceeds with the first statement following this repetition
statement.8

> L := [2, 5, 7, 8, 9];

L := [2, 5, 7, 8, 9]

> for i in L do
> print(i);
> if i=7 then
> break
> end if;
> end do;

2

5

7

The next Statement When Maple executes a next statement, it pro-
ceeds immediately to the next iteration. For example, to skip the elements
in a list that are equal to 7, use the following for loop.

> L := [7,2,5,8,7,9];

L := [7, 2, 5, 8, 7, 9]

> for i in L do
> if i=7 then
> next
> end if;
> print(i);
> end do;

2

5

8

9

8For more information about the break statement, refer to ?break.

180 • Chapter 5: Flow Control

An error occurs if Maple encounters the names break or next in a
context different from a repetition statement.

> next;

Error, break or next not in loop

5.3 Looping Commands

The previous section described the for and while loops. Some processes
that involve loops are used so often that Maple provides special-purpose
commands for them. These commands help to make writing programs
simpler and more efficient. You can group these eight loop−based Maple
commands into three categories.9

1. map, select, remove, selectremove

2. zip

3. seq, add, mul

The map Command
The map command applies a function to every element of an aggregate
object. The simplest form of the map command is

map(f, x)

where f is a function and x is an expression. The map command re-
places each operand xi of the expression x with f(xi).

10

> map(f, [a,b,c]);

9When possible, use these Maple commands instead of a generic for or while loop
since the code for these commands is built into the Maple kernel. Therefore, it is
usually more efficient to perform computations by using them. However, there are
circumstances in which it is not desirable to use these special looping commands. For
more information, see page 185.

10The exceptions are for a table, array, Array, or rtable. Maple applies the function
to the entries of the table, array, or Array not the operands or indices. For an rtable,
the function is applied to each element of the rtable, and then returns a new rtable of
the mapped result.

5.3 Looping Commands • 181

[f(a), f(b), f(c)]

Example Given a list of integers, you can create a list of their absolute
values and of their squares by using the map command.

> L := [-1, 2, -3, -4, 5];

L := [−1, 2, −3, −4, 5]

> q:=map(abs, L);

q := [1, 2, 3, 4, 5]

> map(x->x^2, L);

[1, 4, 9, 16, 25]

The general syntax of the map command is

map(f, x, y1, ..., yn)

where f is a function, x is any expression, and y1, ..., yn are expres-
sions. The action of map is to replace each operand xi of x by f(xi, y1,

..., yn).

> map(f, [a,b,c], x, y);

[f(a, x, y), f(b, x, y), f(c, x, y)]

> map((x,y) -> x^2+y, L, 1);

[2, 5, 10, 17, 26]

The select, remove, and selectremove Commands
The select command returns the operands for which the specified
Boolean-valued function returns true. The remove command returns the
operands for which the specified Boolean-valued function returns false.
The selectremove command returns two objects: the operands for which
the specified Boolean-valued function returns true and the operands for

182 • Chapter 5: Flow Control

which the specified Boolean-valued function returns false. The select,
remove, and selectremove commands have the same syntax as the map

command.

> X := 2*x*y^2 - 3*y^4*z + 3*z*w + 2*y^3 - z^2*w*y;

X := 2x y2 − 3 y4 z + 3 z w + 2 y3 − z2w y

> select(has, X, z);

−3 y4 z + 3 z w − z2w y

> remove(x -> degree(x)>3, X);

2x y2 + 3 z w + 2 y3

For more information about these commands, see page 156 or refer to
?select.

The zip Command
The zip command merges two lists or vectors, and then applies a binary
function. The zip command has two forms

zip(f, u, v)

zip(f, u, v, d)

where f is a binary function, u and v are both lists or vectors, and d

is any value. The zip command takes each pair of operands ui, vi, and
creates a new list or vector from f(u_i, v_i).11

> zip((x,y) -> x || y, [a,b,c,d,e,f], [1,2,3,4,5,6]);

[a1 , b2 , c3 , d4 , e5 , f6]

If the lists or vectors are not the same length, the length of the result
depends on whether you provide the argument d.

If you do not specify d, the length of the result is the same as the
length of the smaller list or vector.

11There is a similar command for rtable-based Matrices and Vectors. For more in-
formation, refer to ?Zip.

5.3 Looping Commands • 183

> zip((x,y) -> x+y, [a,b,c,d,e,f], [1,2,3]);

[a+ 1, b+ 2, c+ 3]

If d is specified, the length of the result of the zip command is the
same as the length of the longer list or vector. Maple replaces the missing
value(s) with d.

> zip((x,y) -> x+y, [a,b,c,d,e,f], [1,2,3], xi);

[a+ 1, b+ 2, c+ 3, d+ ξ, e+ ξ, f + ξ]

The seq, add, and mul Commands
The seq, add, and mul commands form sequences, sums, and products,
respectively. They have the following syntax.

seq(f, i = a..b)

add(f, i = a..b)

mul(f, i = a..b)

where f, a, and b are expressions, and i is a name. The expressions
a and b must evaluate to numerical constants (except in seq, for which
they can be single character strings).

The index name i is successively assigned the values a, a+1, ..., b (or
up to the last value not exceeding b). The result returned by seq is the
sequence that Maple produces by evaluating f at each value of i.

> seq(i, i = 4.123 .. 6.1);

4.123, 5.123

> seq(i^2, i=1..4);

1, 4, 9, 16

The result returned by add is the sum of the sequence. The result of
mul is the product of the sequence.

> add(i^2, i=1..4);

184 • Chapter 5: Flow Control

30

> mul(i^2, i=1..4);

576

> add(x[i], i=1..4);

x1 + x2 + x3 + x4

In the case that a is greater than b, the result returned by seq, add,
and mul is the NULL sequence, 0, and 1, respectively.

> mul(i^2, i = 4..1);

1

You can also use the seq, add, and mul commands with the following
syntax.

seq(f, i = X)

add(f, i = X)

mul(f, i = X)

where f and X are expressions, and i is a name.
Using this form, the index name i is successively assigned the

operands of the expression X (or the characters of string X). The re-
sult returned by seq is the sequence that Maple produces by evaluating
f at each value of i.

> a := x^3 + 3*x^2 + 3*x + 1;

a := x3 + 3x2 + 3x+ 1

> seq(degree(i,x), i=a);

3, 2, 1, 0

> seq(i, i="square");

“s”, “q”, “u”, “a”, “r”, “e”

5.3 Looping Commands • 185

The result of add is the sum of the sequence. The result of mul is the
product of the sequence.

> add(degree(i,x), i=a);

6

> a := [23,-42,11,-3];

a := [23, −42, 11, −3]

> add(i^2, i=a);

2423

> mul(abs(i), i=a);

31878

This form of the seq function can be used to generate a sequence of
indexed names.

> seq(x[i], i=1..5);

x1, x2, x3, x4, x5

Using Specialized Looping Commands
Using the specialized looping commands described in this section can
make writing Maple programs simpler and more efficient. However, there
are conditions in which it is preferable to use the selection and repetition
constructs instead of these specialized commands, and others in which
the use of one specialized looping construct is recommended over another.
This section illustrates some of these situations.

if versus map The use of map or zip to simplify procedure code is not
always recommmended. For example, it is common for a procedure to
move to the next iteration once a result is determined without performing
all the operations. In these cases, use an if statement instead of the map

or zip command.

186 • Chapter 5: Flow Control

Example Consider the following procedure that uses an if statement.

> IsStringList := proc(e) local i;
> if type(e, ’list’) then
> for i from 1 to nops(e) do
> if not type(e[i], ’string’) then
> return false
> end if
> end do;
> true
> else
> false
> end if
> end proc:

This procedure can be written in a simpler form by using map.

> IsStringList := proc(e)
> type(e, ’list’) and member(false, map(type, e,
> ’string’))
> end proc:

However, this “simpler” form allocates storage for a new set that is
otherwise unrelated to the problem and tests every element of the list.
Procedure IsStringList could also be written by using the following
code.

> IsStringList := proc(e)
> type(e, ’list’) and evalb(remove(type, e, ’string’)
> = [])
> end proc:

Unfortunately, this version also tests every element of e to perform
the test.

For example, if you call the latter two versions of IsStringList on
a 1,000,000 element list whose third member is not a string, it performs
1, 000, 000 type tests, while the first version of IsStringList (that uses
an if statement) stops after the third element.

This example illustrates that if a procedure can return early, it is
better to implement it by using an if statement.

seq, add, and mul versus $, sum, and product The sequence operator,
$, and the sum and product commands are very similar to the seq, add,
and mul commands. However, they differ in an important way—the index
variable i and the end points a and b do not have to be integers.

> x[k] $ k=1..n;

5.4 Troubleshooting • 187

xk $ (k = 1..n)

> sum(k^2, k=0..n);

1

3
(n+ 1)3 − 1

2
(n+ 1)2 +

1

6
n+

1

6

These commands are designed for symbolic sequences, sums, and
products. The index variable k is a global variable to which you must
not assign a value. If a previous value was assigned to k, an error message
is returned.

> k := 10;

k := 10

> sum(k^2, k=0..n);

Error, (in sum) summation variable previously assigned,
second argument evaluates to 10 = 0 .. n

Using $, sum, and product To produce a symbolic sequence, sum, or
product, you must use $, sum, or product. For example, if the end points
are unknown, use $, sum, or product. If you are producing an explicit
finite sequence, sum, or product—that is, when the range points a and b

are integers—use seq, add, or mul.12

For more information about the $ operator, refer to ?$. For more
information about the sum and product commands, refer to ?sum and
?product, respectively.

5.4 Troubleshooting

This section provides you with a list of common mistakes, examples, and
hints that will help you understand and avoid common errors. Use this

12The sum and product commands are not built into the kernel. Therefore, in general,
they are not as efficient as add and mul. For more information about efficiency, see
page 330 or refer to ?efficient.

188 • Chapter 5: Flow Control

section to study the errors that you may encounter when entering the
examples from this chapter in a Maple session.13

Cannot Evaluate Boolean in if Statement
The conditional expression in an if clause must be a Boolean expression
formed by using relational operators, logical operators, and logical names.
Maple generates an error if the Boolean expression cannot be evaluated
to true, false, or FAIL.14

> p := proc(x)
> if x < 0 then
> -x
> else
> x
> end if
> end proc;

p := proc(x) ifx < 0 then − x elsex end if end proc

> p(a);

Error, (in p) cannot determine if this expression is
true or false: a < 0

Instead, you must use a parameter that can be compared to 0 in
procedure p.

> p(-2);

2

To avoid this error message, use type-checking in the formal parameter
list of the procedure definition. For more information, see page 197.

Value in Loop Must Be Numeric or Character
Maple generates an error if the expression in the from or to part of a for

statement does not result in a value of type numeric or a character (string
of length 1).15

13You can also use the Maple debugger to find errors in programs. For more infor-
mation, see chapter 8 or refer to ?debugger.

14For more information about Boolean expressions, see page 86 or refer to ?boolean.
15For more information about types, see 2.4 Types and Operands or refer to

?type.

5.4 Troubleshooting • 189

> for i from a to d do print(i) end do;

Error, initial value in for loop must be numeric or
character

> for i from 1 to "z" do print(i) end do;

Error, final value in for loop must have same type as
initial

Study the following examples to see how to fix these errors.

> for i from "a" to "d" do print(i) end do;

“a”

“b”

“c”

“d”

> for i from 1 to 2 do print(i) end do;

1

2

> for i from evalf(tan(Pi/8)) to evalf(sqrt(17)) by 1.5
> do print(i) end do;

0.4142135625

1.914213562

3.414213562

Variable Previously Assigned
Maple generates an error if the index variable in a sum or product com-
mand has a previously assigned value. This occurs because the index
variable in these commands is the global variable.16

16For more information about the global variables, see Variables on page 201.

190 • Chapter 5: Flow Control

> k := 100;

k := 100

> sum(k^2, k=0..4);

Error, (in sum) summation variable previously assigned,
second argument evaluates to 100 = 0 .. 4

It is recommended (and often necessary) that both the expression and
index arguments be enclosed in right single quotes to delay evaluation, so
that the name (not value) is used.17

> sum(’k^2’, ’k’=0..4);

30

Wrong Parameters in Function $

Maple generates an error if the index variable in a statement containing
the $ operator has an assigned value. This occurs because the index vari-
able, which is the same as the global variable, is evaluated to its value,
and hence cannot be used as a counting variable.18

> i := 100;

i := 100

> a[i] $ i = 1..3;

Error, invalid input: $ expects its 2nd argument,
range, to be of type name, but received 100 = 1 .. 3

It is recommended that i be enclosed in right single quotes to delay
evaluation.19

> ’a[i]’ $ ’i’ = 1..3;

17For more information on delaying evaluation, see Unevaluated Expressions on
page 100.

18For more information about the global variables, see Variables on page 201.
19For more information on delaying evaluation, see Unevaluated Expressions on

page 100.

5.5 Exercises • 191

a1, a2, a3

5.5 Exercises

1. Find the product of the square root of all prime numbers less than
100.

Hint : The function isprime determines the primality of an integer.

2. Find the sum of all odd composite numbers less than 150.

3. Find the sum of the first 30 powers of 2.

4. Write a looping structure that finds the four substrings (of a string
assigned to the name MyString) containing only lower case letters,
upper case letters, decimal digits, and special characters.

Hint : You can use relational operators to compare characters.

5. Write a procedure, SPLIT, that, upon input of a product f and a
variable x, returns a list of two values. The first item in the list should
be the product of the factors in f that are independent of x, and the
second item should be the product of the factors that contain an x.

Hint : Use the has, select, remove, and selectremove commands.

5.6 Conclusion

This chapter discussed flow control in the Maple programming language.
Normally, the statements in a procedure body are executed sequentially.
However, you can control the order in which operations are executed by us-
ing the if...then...else selection statement, or the for...while...do
looping construct. For certain procedures, it is more efficient to use the
specialized looping commands: map; select, remove, and selectremove;
zip; seq, add, and mul; and $, sum, and product.

192 • Chapter 5: Flow Control

6 Maple Procedures

A Maple procedure definition is a prearranged group of statements en-
tered within a proc()...end proc construct. In this construct, you must
declare the parameters and variables that the procedure uses, and specify
the statements that form the body of the procedure. You can also define
simple one-line procedures using functional operators.

In chapter 1, a brief introduction to procedures was presented. This
chapter describes the syntax and semantics of a Maple procedure in de-
tail, and discusses how to create mathematical functions using functional
operators.

In This Chapter
• Structure of procedures

• Using procedures

• Automatic simplification of procedures

• Procedure return values

• Adding comments, such as copyright statements, and help pages for
procedures

• Alternate methods for defining procedures

• The procedure object

• Implementing data structures, using procedures, to solve problems

6.1 Defining a Procedure

A Maple procedure definition has the following general syntax.

193

194 • Chapter 6: Maple Procedures

proc(P)

local L;

global G;

options O;

description D;

procedure body

end proc

The letter P represents the formal parameter names, which may
be NULL (an empty expression). The local variables, global variables,
options, description, and procedure body statements are optional.

Example The following is a simple Maple procedure definition. It con-
tains two formal parameters, x and y, and one statement in the body of
the procedure, but no local variables, global variables, options, or descrip-
tion.

> proc(x,y)
> x^2 + y^2
> end proc;

proc(x, y)x2 + y2 end proc

Naming a Procedure
You can name a procedure by using an assignment statement in the same
manner as for other Maple objects. In general, a procedure must be as-
signed to a name so that you can invoke it with procedure calls. For
information about unnamed procedures, see page 232.1

> f := proc(x,y)
> x^2 + y^2
> end proc;

f := proc(x, y)x2 + y2 end proc

Executing a Procedure
You can execute (or invoke) a procedure assigned to a name by using a
procedure call.

1You can assign a procedure to any number of names. For example, both f and g

are assigned the same procedure by using the following commands. f:=proc(x) x2 end

proc; g:=eval(f); map(addressof@eval,[f,g]);

6.1 Defining a Procedure • 195

procedureName(A);

The procedureName is the name to which the procedure definition
is assigned, and the letter A represents the expression sequence of actual
parameters used in the procedure call.

When Maple executes the statements in the body of a procedure,
it substitutes the formal parameters P in the procedure definition with
the actual parameters A in the procedure call. Normally, the result a
procedure returns is the value of the last executed statement in the body
of the procedure.2

Note: Maple evaluates the actual parameters before they are substi-
tuted for the formal parameters. These parameters are not evaluated
again during execution of the procedure. Prior to substitution, each actual
parameter is also checked against its specified type, if any (see page 197).
If the type checking fails, the procedure returns an error. The order in
which Maple tests the types of the actual parameters is unspecified. Type
checking actual parameters is optional.

In the following procedure call, Maple executes the statements in the
body of procedure F and replaces the formal parameters, x and y, with
the actual parameters, 2 and 3. The result of the last, and in this case
only, statement in the procedure is the returned value of procedure F.

> f(2,3);

13

The number of actual parameters need not be the same as the number
of specified formal parameters. If too few actual parameters are specified,
an error occurs if (and only if) a missing parameter is used during the ex-
ecution of the procedure body. Maple does not process extra parameters.

> f := proc(x,y,z)
> if x>y then
> x
> else
> z
> end if
> end proc:
> f(1,2,3,4);

2For more information about return values, see 6.4 Procedure Return Values.

196 • Chapter 6: Maple Procedures

3

> f(1,2);

Error, (in f) f uses a 3rd argument, z, which is
missing

> f(2,1);

2

6.2 Procedure Components

The following sections describe the components of a procedure definition
in detail. These are the formal parameters, local variables, global vari-
ables, options, description, and body statements.

Formal Parameters

proc(P)

...

end proc

The letter P represents the formal parameter names in a procedure
definition. It can be NULL (an empty expression), a sequence of names, or
a sequence of names and their type definitions.

Procedures without Formal Parameters If no input is required to run a
procedure, that is, no formal parameters are required, enter empty paren-
theses in the heading of the procedure definition and in procedure calls.

> F := proc()
> "Hello World"
> end proc;

F := proc() “Hello World” end proc

> F();

6.2 Procedure Components • 197

“Hello World”

Specifying Formal Parameters Procedures that do not require formal
parameters usually perform very simple tasks. In general, procedure ex-
ecution requires input. In these cases, you must enter formal parameters
as a sequence of names between the parentheses in the heading of the
procedure definition.

> F := proc(x, y)
> gcd(x,y)
> end proc;

F := proc(x, y) gcd(x, y) end proc

You must specify actual parameters between parentheses in the calling
sequence.

> F(4,6);

2

Type-checking Formal Parameters To restrict the type of parameters,
specify the parameter types in the formal parameter list of a procedure
definition. To include the type declaration that parameter p must be of
type t, the parameter must be specified by using the following syntax.

p::t

Although this is optional, it is recommended because it makes the
procedure more robust. At invocation, each argument is checked against
the type specified for the parameter. If any fail the type check, an error
message is generated.3

> F := proc(x :: integer, y :: integer)
> gcd(x,y)
> end proc;

F := proc(x::integer , y::integer) gcd(x, y) end proc

3Maple has many expression types. For more information, refer to ?type. For more
information about parameters and type checking, refer to ?paramtype.

198 • Chapter 6: Maple Procedures

> F(4, 6.3);

Error, invalid input: F expects its 2nd argument, y, to
be of type integer, but received 6.3

> F(4, 6);

2

If you do not declare the type of a parameter, it can have any type.
For example, proc(x) is equivalent to proc(x::anything). In that case
it is recommmended that you use the latter form to inform other users
that the procedure works for any input.

The closing bracket of the formal parameter list can optionally be fol-
lowed by ::type_name; where type_name specifies a Maple type. Unlike
the case of formal parameters, this is not a type declaration, but rather
an assertion—a statement about the procedure that you assert to be
true. This optional assertion facility checks the return value type if you
set kernelopts(assertlevel=2). If the type violates the assertion, an
exception is raised.4

> F := proc(x :: numeric) :: integer;
> x/2;
> end proc:
> F(3);

3

2

> kernelopts(assertlevel=2):
> F(3);

Error, (in F) assertion failed: F expects its return
value to be of type integer, but computed 3/2

In this case, executing procedure F causes an exception because its
definition asserted that the return value must be of type integer.

4For more information about assertions and exceptions, see 8.3 Detecting Errors.

6.2 Procedure Components • 199

Evaluation Rules Parameters play a special role in procedures. Maple
replaces them with arguments (actual parameters) when you invoke the
procedure.

Examine the following procedure that squares its first argument and
assigns the answer to the second argument, which must be a name.

> Sqr1 := proc(x::anything, y::name)
> y := x^2;
> end proc;

Sqr1 := proc(x::anything , y::name) y := x2 end proc

> Sqr1(d, ans);

d2

> ans;

d2

The procedure squares the value of d and assigns the result to the
name ans.

To demonstrate parameter evaluation, first assign the name a the
value b. Then assign the name b the value c.

> a:=b;

a := b

> b:=c;

b := c

Use a as the first argument. Reset ans to a name so that the procedure
type check does not fail.

> ans := ’ans’;

ans := ans

> Sqr1(a, ans);

200 • Chapter 6: Maple Procedures

c2

> ans;

c2

From the answer, it is clear that the value c is assigned to the param-
eter x.

Maple evaluates the arguments before invoking the procedure.
When you call a procedure, Maple evaluates the arguments as de-

termined by the context of the call. For example, if you call Sqr1 from
inside a procedure, Maple evaluates the local variable a to one level. For
more information about procedure variable evaluation rules, see page 203.
Thus, in the procedure g below, Maple evaluates a to b not c.

> g := proc()
> local a,b,ans;
> a := b;
> b := c;
> Sqr1(a,ans);
> end proc;

g := proc()

local a, b, ans ;

a := b ; b := c ; Sqr1(a, ans)

end proc

> g();

b2

Whether you call a procedure from the interactive level or from inside
a procedure, Maple evaluates the arguments to the level specified by the
context before invoking the procedure. Once Maple evaluates the argu-
ments, it replaces all occurrences of the corresponding formal parameters
with the actual arguments. Then Maple invokes the procedure.

Because Maple only evaluates parameters once, you cannot use them
as local variables. This is demonstrated by the following procedure.

> Cube := proc(x::anything, y::name)
> y := x^3;
> y;
> end proc:
> ans := ’ans’;

6.2 Procedure Components • 201

ans := ans

> Cube(2, ans);

ans

> ans;

8

Maple replaces each y with ans, but does not evaluate these occur-
rences of ans again. Thus, the final line of Cube returns the name ans,
not the value assigned to ans.

Use parameters only to pass information into the procedure. Param-
eters are objects that are evaluated to zero levels.

Variables
A variable represents a data item, such as a numerical value or a character
string, that can change its value during the execution of a program. This
section describes local variables, global variables, and their use in Maple
procedures.

A local variable is a variable that has meaning only within a particu-
lar procedure. If the name of a local variable is used outside the procedure,
it (usually) refers to a different instantiation of the name. Global vari-
ables are recognized inside and outside the procedure.

Local and Global Variable Declarations Variables that occur inside a
procedure can be global or local to the procedure. Variables that occur
outside a procedure are always global. Local variables in different proce-
dure invocations are distinct variables even if they have the same name.
Thus, one procedure can change the value of a local variable without af-
fecting variables of the same name in other procedures, or a global variable
of the same name. You should always declare variables as local or global
by using the following declaration statement in a procedure definition.

local L1, L2, ..., Ln;

global G1, G2, ..., Gm;

In procedure Max, i and m are local variables.

202 • Chapter 6: Maple Procedures

> Max := proc()
> local i,m;
> if nargs = 0 then
> return -infinity
> end if;
> m := args[1];
> for i from 2 to nargs do
> if args[i] > m then
> m := args[i]
> end if;
> end do;
> m;
> end proc:

Like procedure return values, you can assert the type of each local
variable in the local variable declaration statement by using the following
syntax.

local L1::type1, var2::type2, ...

This is not a type declaration—it is an assertion. If you use this
optional assertion facility for checking the local variable types in a proce-
dure and set kernelopts(assertlevel=2), any assignment to a variable
with a type assertion is checked before the assignment is performed. If
the assignment violates the assertion, an exception is raised.

To illustrate how this facility works, consider the revised procedure
Max that includes an incorrect type assertion for local variable m.

> kernelopts(assertlevel=2):
> Max := proc()
> local i, m :: string;
> if nargs = 0 then
> return -infinity
> end if;
> m := args[1];
> for i from 2 to nargs do
> if args[i] > m then
> m := args[i]
> end if;
> end do;
> m;
> end proc:
> Max(1,2,3);

Error, (in Max) assertion failed in assignment,
expected string, got 1

In the case of nested procedures, where one procedure is defined
within the body of another, variables can also acquire local or global

6.2 Procedure Components • 203

declaration from procedures which enclose them. For more information
about nested procedures, refer to chapter 1 in the Maple Advanced Pro-
gramming Guide or ?examples,lexical.

Evaluation Rules for Procedure Variables Maple fully evaluates global
variables, even inside a procedure. However, local variables are evaluated
in a special way. During the execution of a procedure body, a local variable
is evaluated only one level. The following examples clarify this concept.

Consider a sequence of Maple statements.

> f := x + y;

f := x+ y

> x := z^2/ y;

x :=
z2

y

> z := y^3 + 3;

z := y3 + 3

Since these statements undergo normal full recursive evaluation, the
following result is returned.

> f;

(y3 + 3)2

y
+ y

The actual level of evaluation is controlled by using the eval com-
mand. You can use the following commands to evaluate to one, two, or
three levels, respectively.

> eval(f,1);

x+ y

> eval(f,2);

204 • Chapter 6: Maple Procedures

z2

y
+ y

> eval(f,3);

(y3 + 3)2

y
+ y

Unlike the full evaluation of the sequence of statements in the previous
example, in procedures, local variables are only evaluated to one level.

> f := proc()
> local x, y, z;
> x := y^2; y := z; z := 3;
> x;
> end proc:
> f();

y2

The concept of one-level evaluation is important for efficiency. It
has very little effect on the behavior of programs because most programs
have a sequential structure. In the case that a procedure body requires a
full (recursive) evaluation of a local variable, use the eval command.5

> f := proc()
> local x, y, z;
> x := y^2; y := z; z := 3;
> eval(x);
> end proc:
> f();

9

Without the call to eval, the value of x is y^2.
In the same manner as global variables, you can use local variables as

unknowns. This use is recommended when it is not necessary to access the
variables. For example, in the RootsOfUnity procedure, the local variable
x does not have an assigned value. The procedure uses it as the variable
in the polynomial x^n-1.

5The concept of one-level evaluation does not occur in traditional programming
languages. However, in Maple, you can assign to a variable a formula involving other
variables (to which you can assign values, and so on).

6.2 Procedure Components • 205

> RootsOfUnity := proc(n)
> local x;
> [solve(x^n - 1=0, x)];
> end proc:
> RootsOfUnity(5);

[1, −1

4
+

1

4

√
5 +

1

4
I
√
2
√

5 +
√
5,

−1

4
− 1

4

√
5 +

1

4
I
√
2
√

5−
√
5, −1

4
− 1

4

√
5− 1

4
I
√
2
√

5−
√
5,

−1

4
+

1

4

√
5− 1

4
I
√
2
√

5 +
√
5]

Undeclared Variables If a variable is not declared local or global in the
one (or more) procedures in which it is enclosed, Maple determines its
scope. A variable is automatically made local in the following two cases.

• It appears on the left-hand side of an assignment statement. For ex-
ample, A in A := y or A[1] := y.

• It appears as the index variable in a for loop, or seq, add, or mul

command.

If neither of these two rules applies, the variable is a global variable.
To illustrate how Maple reacts to undeclared variables, consider the

revised Max procedure.

> Max := proc()
> if nargs = 0 then
> return -infinity
> end if;
> m := args[1];
> for i from 2 to nargs do
> if args[i] > m then
> m := args[i]
> end if;
> end do;
> m;
> end proc:

Warning, ‘m‘ is implicitly declared local to procedure
‘Max‘
Warning, ‘i‘ is implicitly declared local to procedure
‘Max‘

Do not rely on this facility to declare local variables. Declare all
your local variables explicitly. Use Maple warning messages to identify
variables that you have misspelled or neglected to declare.

206 • Chapter 6: Maple Procedures

The NewName procedure creates the next unused name in the sequence
C1, C2, The name that NewName creates is a global variable since neither
of the two previous rules apply to cat(C,N).

> NewName := proc()
> global N;
> N := N+1;
> while assigned(cat(C,N)) do
> N := N+1;
> end do;
> cat(C,N);
> end proc:
> N := 0;

N := 0

> NewName() * sin(x) + NewName() * cos(x);

C1 sin(x) +C2 cos(x)

It is recommended that you do not assign a value to a global vari-
able in a procedure. A change in the value of a global variable updates
all instances of the variable, including those of which you are unaware.
Therefore, use this technique judiciously.6

Procedure Options

proc(...)

variable declarations

options O;

description

procedure body

end proc

The options of a procedure definition must appear immediately after
the local and global variable declarations, if any. A procedure can have
one or more options. These options are specified by using the options

clause in a procedure definition.

6As is the case with any global side effect, assigning to a global variable in a pro-
cedure invalidates that procedure for option remember. For more information about
option remember, see page 210.

6.2 Procedure Components • 207

options O1, O2, ...,Om;

You can use any symbol to specify an option name. However, the
following terms have special meanings.7

The arrow Option The arrow option has meaning only when specified in
conjunction with option operator. The arrow option causes the Maple
prettyprinter to print the procedure using arrow notation. For more
information, see page 209.

> f := proc(x, y)
> option operator;
> x^2 + y^2
> end proc;

f := proc(x, y)optionoperator ; x2 + y2 end proc

> f := proc(x, y)
> option operator, arrow;
> x^2 + y^2
> end proc;

f := (x, y) → x2 + y2

The builtin Option Maple has two classes of procedures: kernel pro-
cedures written in the C programming language, and library procedures
written in the Maple programming language. Because the built-in kernel
functions are compiled, you cannot view their procedure definitions. The
builtin option is used to identify a kernel procedure.

You see this option when you evaluate a built-in procedure. Also,
instead of displaying the source code, a number is displayed. This number
uniquely identifies each built-in procedure. You cannot create built-in
procedures.8

For example, the add function is in the kernel.9

> eval(add);

7For more information about symbols in Maple, see Names on page 26 or refer to
?symbol. For more information about procedure options, refer to ?options.

8For information on using external compiled code, see the call_external option in
this section.

9For more information about the Maple system and built-in functions, refer to
?builtin.

208 • Chapter 6: Maple Procedures

proc()option builtin; 114 end proc

You can also use type-checking to determine if a Maple procedure is
built-in. An expression is of type builtin if it is a procedure with option

builtin. This type identifies procedures implemented in the Maple ker-
nel, rather than the library.

> type(add, ’builtin’);

true

> type(int, ’builtin’);

false

The call_external Option To create a link to and call functions
that are external to the Maple program, use the define_external and
call_external functions, respectively. The define_external function
returns a call_external procedure. That is, you do not need to con-
struct a procedure with option call_external. For more information
about defining procedures that call external functions, refer to chapter 6
of the Maple Advanced Programming Guide or ?define_external.

The Copyright Option To add a copyright notice to a procedure,
use option Copyright. Maple considers any option that begins with
the word Copyright to be a copyright option. The body of a proce-
dure with a copyright option is not printed unless the interface vari-
able verboseproc is at least 2—this is accomplished with the command
interface(verboseproc=2).10 All Maple library routines have the copy-
right option.

> f := proc(expr::anything, x::name)
> option ‘Copyright (c) 1684 by G. W. Leibniz‘;
> Diff(expr, x);
> end proc;

f := proc(expr ::anything , x::name) . . . end proc

10For more information about using the interface variable, see page 258 or refer to
?interface.

6.2 Procedure Components • 209

> interface(verboseproc=2);

1

> eval(f);

proc(expr ::anything , x::name)

option ‘Copyright (c) 1684 by G . W . Leibniz ‘;

Diff(expr , x)

end proc

The inline Option To create an inline Maple procedure, include
option inline in the options field of the procedure definition. An inline
Maple procedure avoids the overhead of a procedure call by executing
the Maple instructions directly, as if it were written inline, rather than
in a separate procedure. By avoiding the overhead of the procedure call,
small performance improvements can be achieved. However, not all Maple
procedures can be inline. Only procedures whose body consists of a single
expression or an expression sequence can be inline—the body cannot con-
sist of a statement or statement sequence. Other restrictions also apply.
For more information about procedure inlining, refer to ?inline.

The operator Option Functional operators (or arrow operators) pro-
vide an alternate method for representing a mathematical function (or
mapping) in Maple—they are a special form of a procedure. An arrow
operator consists of a sequence of arguments (generally enclosed in paran-
theses) followed by an arrow (->), and then the expression that defines
the function.

> (x, y) -> x^2 + y^2;

(x, y) → x2 + y2

If option operator is specified in a procedure definition, it iden-
tifies the procedure as a functional operator. If option arrow is used
in conjunction with option operator in the procedure definition, the
Maple prettyprinter prints the procedure using arrow notation. See
also page 207.11

11For more information about functional operators, see page 231 or refer to
?operators,functional.

210 • Chapter 6: Maple Procedures

> f := proc(x, y)
> option operator;
> x^2 + y^2
> end proc;

f := proc(x, y)optionoperator ; x2 + y2 end proc

> f := proc(x, y)
> option operator, arrow;
> x^2 + y^2
> end proc;

f := (x, y) → x2 + y2

The remember Option To associate a remember table with a procedure,
include option remember in the list of procedure options. If a remember
table is not explicitly associated with a procedure, the remember table for
the procedure is the NULL expression. A remember table that is associated
with a procedure can be manipulated as other Maple tables.12

If you specify the remember option in the options field of a Maple
procedure, after each invocation of the procedure, an entry that records
the result for the specified arguments is made in the procedure’s remember
table. For subsequent invocations of the procedure, Maple checks whether
you have called the procedure with the same parameters. If so, Maple
retrieves the previously calculated result from the remember table, instead
of executing the procedure.

The use of option remember and remember tables can drastically
improve the efficiency of recursively-defined procedures. For example, con-
sider the following procedure that calculates the Fibonacci numbers.13

> Fib := proc(n :: nonnegint)
> option remember;
> if n<2 then
> n
> else
> Fib(n-1) + Fib(n-2)
> end if;

12You can also explicitly associate a remember table with a procedure by direct
assignment to the table. For example, if f is the name of the procedure definition,
the commands f(0):=0; f(2):=1; creates the remember table table([0=0, 2=1)] for
procedure f. For more information about tables and remember tables in Maple, refer
to ?table or ?remember.

13For a comparison of run-time efficiency with option remember, see Profiling a
Procedure on page 332.

6.2 Procedure Components • 211

> end proc;

Fib := proc(n::nonnegint)

option remember ;

ifn < 2 thenn elseFib(n− 1) + Fib(n− 2) end if

end proc

> Fib(4);

3

If you enter interface(verboseproc=3), and then view the proce-
dure definition by using the eval command, the contents of its remember
table are printed below its procedure definition.14

> interface(verboseproc=3);

1

> eval(Fib);

proc(n::nonnegint)

option remember ;

ifn < 2 thenn elseFib(n− 1) + Fib(n− 2) end if

end proc

#(0) = 0

(1) = 1

(2) = 1

(3) = 2

(4) = 3

Since Fib has the remember option, if you invoke the procedure again
with an argument greater than 4:

• The results for all calls to Fib with arguments less than or equal to 4

are read from the Fib remember table, and

14An alternate way to view the remember table of a procedure that has option
remember is to use op(4, eval(f)), where f is the name of the procedure definition.
For more information, see Procedure Operands on page 237, or refer to ?procedure

or ?op.

212 • Chapter 6: Maple Procedures

• All calls to Fib with arguments greater than 4 are computed and
appended to the Fib remember table.

> Fib(7);

13

> eval(Fib);

proc(n::nonnegint)

option remember ;

ifn < 2 thenn elseFib(n− 1) + Fib(n− 2) end if

end proc

#(0) = 0

(1) = 1

(2) = 1

(3) = 2

(5) = 5

(4) = 3

(7) = 13

(6) = 8

The system Option If option system is specified in conjunction with
option remember in the options field of a Maple procedure, entries in
the procedure’s remember table are removed during garbage collection,
freeing the space occupied by the remember table and its entries.15

> Fib := proc(n :: nonnegint)
> option remember, system;
> if n<2 then
> n
> else
> Fib(n-1) + Fib(n-2)
> end if;
> end proc;

15For more information about garbage collection in Maple, see page 335 or refer to
?gc.

6.2 Procedure Components • 213

Fib := proc(n::nonnegint)

option remember , system;

ifn < 2 thenn elseFib(n− 1) + Fib(n− 2) end if

end proc

The trace Option If the trace option is included in a procedure defini-
tion, Maple shows the entry and exit calls, and all the internal statements
when the procedure is executed. This effect is independent of the value of
the printlevel variable.16

> Fib := proc(n :: nonnegint)
> option remember, system, trace;
> if n<2 then
> n
> else
> Fib(n-1) + Fib(n-2)
> end if;
> end proc:
> Fib(3);

{--> enter Fib, args = 3

{--> enter Fib, args = 2

{--> enter Fib, args = 1

1

<-- exit Fib (now in Fib) = 1}

{--> enter Fib, args = 0

0

<-- exit Fib (now in Fib) = 0}

1

<-- exit Fib (now in Fib) = 1}

value remembered (in Fib): Fib(1) -> 1

16For more information about tracing a procedure and printlevel, see chapter 8 or
refer to ?trace and ?printlevel.

214 • Chapter 6: Maple Procedures

2

<-- exit Fib (now at top level) = 2}

2

Procedure Description

proc(...)

variable and option declarations

description D;

procedure body

end proc

The last part of the procedure header is the description field. It is used
to specify lines of text that describe a procedure. Its use is optional. How-
ever, if used, it must be entered after local variables, global variables, and
options, and before the body of the procedure. Descriptions are specified
by using the following format, where D is any symbol or string.

description string ;

The description field has no effect on the execution of a procedure. It
is used only for documentation purposes.

> f := proc(x :: integer, y :: integer)
> local a;
> description "compute the average of two integers";
> a := (x + y)/2;
> end proc:
> eval(f);

proc(x::integer , y::integer)

local a;
description “compute the average of two integers”;

a := 1/2 ∗ x+ 1/2 ∗ y
end proc

Maple prints the description field even if it does not print the body
of a procedure because there is a copyright option.

6.3 Procedure Interpretation • 215

> f := proc(x)
> option ‘Copyrighted ?‘;
> description "computes the square of x";
> x^2; # compute x^2
> end proc:
> eval(f);

proc(x)

description “computes the square of x”
. . .

end proc

You can include more than one line of text in the description field by
splitting the description string into smaller strings.

> f := proc(x)
> description "This example shows "
> "how to include "
> "a multi-line description.";
> x^2;
> end proc:
> eval(f);

proc(x)

description“This example shows how to include a \
multi-line description.”;

x2

end proc

Procedure Body Statements
The procedure body can contain any number of valid Maple statements.
The only condition on the procedure body is that it must terminate with
end proc.17

6.3 Procedure Interpretation

When a procedure definition is entered, Maple does not execute the proce-
dure. However, Maple automatically simplifies the body of the procedure,

17For more information about statements to perform numeric, symbolic, and graph-
ical computations, refer to the Maple Advanced Programming Guide.

216 • Chapter 6: Maple Procedures

if possible. This simplification is identical to that which Maple performs
in interactive mode.

Consider the following procedure.

> f := proc(x)
> local t;
> t := x + 0*2;
> if true then
> sqrt(t)
> else
> t^2
> end if;
> end proc;

f := proc(x) local t; t := x ; sqrt(t) end proc

The multiplication by zero is omitted and the if statement simplifies
to sqrt(t).

Because Maple tries to simplify the body of a procedure, you should
use caution if you try to hard-code a floating-point constant in a proce-
dure body. (This also applies when specifying floating-point constants in
interactive mode.) Consider procedures F and G.

> F := proc(x) x*(1/100000000000000000001) end proc;

F := proc(x) 1/100000000000000000001 ∗ x end proc

> G := proc(x) x*(1/100000000000000000001.0) end proc;

G := proc(x)

x ∗ 1/0.1000000000000000000010 ∗ 1021
end proc

If these procedures are executed with Pi as the parameter and then
evaluated to a floating-point result, procedure F works correctly, but pro-
cedure G does not because the reciprocal has already been computed at
10 Digits of precision. Notice the different results.18

> evalf[200](F(Pi));

18For more information about floating-point numbers and Digits, see page 65 and
refer to ?Digits.

6.4 Procedure Return Values • 217

0.3141592653589793238431227456743604951812\
85712480766977145681602105973970857164083\
84174374282564006595979737122307183000511\
14107487243399231214218333256047125138141\
919369378049854178225429255174431840210−19

> evalf[200](G(Pi));

0.3141592653589793238431227456743604951812\
85712480766977145681602105973970857164083\
84174374282564006595979737122307183000511\
14107487243399231214218333256047125138141\
919369378049854178225429255174431840210−19

6.4 Procedure Return Values

When a procedure is invoked, the value that Maple returns is normally
the value of the last statement in the statement sequence in the body of
the procedure. There are three other types of returns.

• explicit return

• error return

• return through a parameter19

In addition to these types of returns, it is also possible for a procedure
to return unevaluated.

Explicit Returns
An explicit return occurs when a return statement is executed inside a
procedure. The return statement causes an immediate return to the point
where the current procedure was invoked. It has the following syntax,
where sequence is a sequence, set, or list of zero, one, or more expressions.

19It is possible to return a value through a parameter in a Maple procedure, but
it is not recommended. Parameters in Maple procedures should be treated as input
parameters—used for input, but not changed in the procedure. For more information,
see page 220.

218 • Chapter 6: Maple Procedures

return sequence

If the procedure executes the return statement, the return value is
sequence.

Example The following procedure computes the first position i of a
value x in a list of values L. If x is not in the list L, the procedure returns
0.

> Position := proc(x::anything, L::list) local i;
> for i to nops(L) do
> if x=L[i] then
> return i
> end if;
> end do;
> 0;
> end proc:

The following GCD procedure computes the greatest common divisor g
of two integers, a and b. It returns the sequence g, a/g, b/g. Procedure
GCD treats the case a = b = 0 separately because, in that case, g is zero.

> GCD := proc(a::integer, b::integer) local g;
> if a=0 and b=0 then
> return 0,0,0
> end if;
> g := igcd(a,b);
> g, iquo(a,g), iquo(b,g);
> end proc:
> GCD(0,0);

0, 0, 0

> GCD(12,8);

4, 3, 2

You can use the Boolean constants true, false, and FAIL in a return

statement. In particular, FAIL is often used in a return statement to
indicate that the computation failed or was abandoned.20

20For more information about return statements, refer to ?return and ?FAIL.

6.4 Procedure Return Values • 219

> Division := proc(x, y)
> if y=0 then
> return FAIL
> else
> x/y
> end if;
> end proc:
> Division(2,0);

FAIL

Error Returns
An error return occurs when an error statement is executed inside a pro-
cedure. The error statement indicates that an exception has occurred,
and the execution of the current statement sequence in the procedure is
interrupted. Then, control is passed to the next applicable catch clause
in the enclosing try...catch statement (if one exists) to test whether
the error can be handled. If control is not passed to a catch clause at this
level, or if the exception cannot be handled by a catch clause at this level,
the exception is re-raised at the next higher execution handler level (in
other words, at the next enclosing try...catch statement). This process
continues until either the exception is handled or execution returns to
the top level (in which case the exception becomes an error). The error

statement has the following syntax, where msgString is the string Maple
displays when the error occurs and msgParams are the parameters substi-
tuted into msgString.21

error msgString

error msgString, msgParams

If an exception becomes an error (because the exception was not
caught), msgString from the error statement associated with the ex-
ception is returned.22

> MyDivision := proc(x, y)
> if y=0 then
> error "trying to divide by zero"
> else
> x/y
> end if;

21For more information, refer to ?error.
22For more information about error returns and handling exceptions, see page 323

or refer to ?error.

220 • Chapter 6: Maple Procedures

> end proc:
> MyDivision(2,0);

Error, (in MyDivision) trying to divide by zero

Returning Values through Parameters
You can write a Maple procedure that returns a value through a param-
eter. Though creating side effects such as this is possible in Maple,
it is not recommended.

Consider the following Boolean procedure, Member, which determines
whether a list L contains an expression x. Moreover, if you call Member
with a third argument, p, the position of x in L is assigned to p.

> Member := proc(x::anything, L::list, p::evaln) local i;
> for i to nops(L) do
> if x=L[i] then
> if nargs>2 then
> p := i
> end if;
> return true
> end if;
> end do;
> false
> end proc:

If Member is called with two arguments, that is, nargs is 2, the part
of the body of Member that is executed does not refer to the formal pa-
rameter, p. Therefore, Maple does not return an error.

> Member(x, [a,b,c,d]);

false

If Member is called with three arguments, the type declaration,
p::evaln, ensures that Maple evaluates the third actual parameter to
a name rather than by using full evaluation.23

> q := 78;

q := 78

23If the third parameter has not been declared as evaln, enclose the name q in single
right quotes (’q’) to ensure that the name, and not the value, of q is passed to the
procedure.

6.4 Procedure Return Values • 221

> Member(c, [a,b,c,d], q);

true

> q;

3

Maple evaluates the actual parameters only once—prior to substitut-
ing them for the formal parameters in a procedure call. This means that
you cannot use formal parameters in the same manner as local variables in
a procedure body. Once you have assigned a value to a formal parameter,
you should not refer to that parameter again.24

The Count procedure is an example of this behavior. Procedure Count
determines whether a product of factors, p, contains an expression, x. If
p contains x, Count returns the number of factors that contain x in the
third parameter, n.

> Count := proc(p::‘*‘, x::name, n::evaln) local f;
> n := 0;
> for f in p do
> if has(f,x) then
> n := n+1
> end if;
> end do;
> evalb(n>0);
> end proc:

This version of the Count procedure does not work as intended.

> Count(2*x^2*exp(x)*y, x, m);

0 < m

The value of the formal parameter, n, inside the procedure is always
m, the actual parameter that Maple determines when you invoke the pro-
cedure. Thus, when execution reaches the evalb statement, the value of
n is the name m, and not the value of m. Even worse, if you evaluate m one
level, you can see that the n:=n+1 statement assigns to m the name m+1.

> eval(m, 1);

24For a simple example, see page 200.

222 • Chapter 6: Maple Procedures

m+ 1

The m in the previous result also has the value m+1.

> eval(m, 2);

m+ 2

Therefore, if m is fully evaluated, Maple enters an infinite loop and
returns an error message.

> eval(m);

Error, too many levels of recursion

This example shows that, in general, it is not recommended that you
use parameters to return values in Maple procedures.

Returning Unevaluated
If a procedure cannot perform a computation, the unevaluated function
invocation may be returned. For example, procedure Max calculates the
maximum of two numbers, x and y.

> Max := proc(x,y)
> if x>y then
> x
> else
> y
> end if
> end proc:

This version of Max requires that its arguments are numerical values.

> Max(3.2, 2);

3.2

> Max(x, 2*y);

Error, (in Max) cannot determine if this expression is
true or false: 2*y < x

6.4 Procedure Return Values • 223

Furthermore, the absence of symbolic capabilities in Max causes prob-
lems if you try to plot expressions involving Max.

> plot(Max(x, 1/x), x=1/2..2);

Error, (in Max) cannot determine if this expression is
true or false: 1/x < x

The error occurs because Maple evaluates Max(x, 1/x) before the
plot command is invoked. The solution is to make Max return unevaluated
when its parameters, x and y, are not numeric. That is, in such cases Max
should return ’Max’(x,y).

> Max := proc(x, y)
> if type(x, numeric) and type(y, numeric) then
> if x>y then
> x
> else
> y
> end if;
> else
> ’Max’(x,y);
> end if;
> end proc:

The new version of Max handles both numeric and non-numeric input.

> Max(3.2, 2);

3.2

> Max(x, 2*y);

Max(x, 2 y)

> plot(Max(x, 1/x), x=1/2..2);

224 • Chapter 6: Maple Procedures

1

1.2

1.4

1.6

1.8

2

0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

You can improve Max so that it can find the maximum of any number
of arguments. Inside the revised procedure, args is the sequence of actual
parameters, nargs is the number of actual parameters, and procname is
the name of the procedure.

> Max := proc() local m, i;
> m := -infinity;
> for i in (args) do
> if not type(i, numeric) then
> return ’procname’(args);
> end if;
> if i>m then
> m := i
> end if;
> end do;
> m;
> end proc:
> Max(3,1,4);

4

> Max(3,x,1,4);

Max(3, x, 1, 4)

The sin function and int command (integration) follow the same
model as the Max procedure. If Maple can compute the result, it is re-
turned. Otherwise, sin and int return unevaluated.

6.5 Documenting Your Procedures • 225

6.5 Documenting Your Procedures

To minimize the time required to fix code, it is recommended that you
annotate code with comments. To improve the readability of the code, in-
clude indentation. Other procedure documentation methods include pro-
viding a copyright notice, indicating the procedure’s purpose, and writing
an online help page.

Indicating Copyright
The Copyright option is used to indicate a copyright notice for a proce-
dure. For more information, see page 208 or refer to ?options.

Formatting Code for Readability
In chapter 1, it was shown how you can enter a procedure in a Maple
session by entering its definition on one line.

> f := proc(x :: integer, y :: integer) local a;

description "compute the average of two integers"; a:=

(x + y) / 2; end proc:

However, for readability, it is recommended that you enter the proce-
dure on multiple lines.

Entering Multi-line Procedure Definitions To enter a procedure defi-
nition on more than one line, hold the Shift key and press Enter at
the end of each line.25 You can indent any of the lines in the procedure
by using the spacebar. After you enter the last line, which contains end

proc, press the Enter key.

> f := proc(x :: integer, y :: integer) local a;
> description "compute the average of two integers";
> a:= (x + y) / 2;
> end proc:

Using Line Continuation Occasionally, it is not possible to fit a state-
ment on one line. In these cases, use the Maple line continuation character,
the backslash (\). For more information, see page 47.

Including Indentation Formatting code increases readability. However,
there are no standard rules for when and how to indent procedure state-
ments. The following are some general guidelines.

25As described in chapter 1, you can enter Maple commands over multiple lines in
interactive mode.

226 • Chapter 6: Maple Procedures

• Enter every statement on a distinct line.

• Use indentation to indicate that the following line or block of code is
a subblock of an if or loop statement. Use two spaces for each level
of indentation. For more information about if statements and loops,
see chapter 5 or refer to ?if and ?do.

> f := proc(x)
> local a;
> description "odd or even integer";
> a := x/2;
> if type(a, integer) then
> "even"
> else
> "odd"
> end if;
> end proc:

• Enter long comments on a separate line.

• Use continuation lines to ensure that no line exceeds 80 characters in
length, or to break a long sequence of digits into groups of smaller
sequences to enhance readability.

Adding Comments
The pound sign (#) marks the characters following it on a line as a com-
ment. In other words, Maple does not process anything on the line after
the #. If you use the eval command to view the contents of a procedure
definition, any comments in the definition are not displayed.

> f := proc(x)
> x^2; # compute x^2
> end proc:
> eval(f);

proc(x)x2 end proc

Including a Procedure Description
The desciption field is used to indicate the purpose of a procedure. Unlike
a comment, which Maple omits when displaying the code of a procedure,
the description field provides a way to attach a one-line comment to a
procedure when its code is viewed. For more information, see page 214 or
refer to ?procedure.

6.6 Saving and Retrieving Procedures • 227

> f := proc(x)
> description "computes the square of x";
> x^2; # compute x^2
> end proc:
> eval(f);

proc(x)

description “computes the square of x”;

x2

end proc

Creating Help Pages
The routines in the Maple library all have an associated online help page.
To access a help page, enter ?topic where topic is the name of the func-
tion.

If you create a procedure, you can create a corresponding help page.
You can convert any text file or Maple worksheet to a Maple help file,
and then add it to a help database. For more information on creating help
pages, refer to ?helppages.

6.6 Saving and Retrieving Procedures

As you develop a new procedure, you can save your work by saving the
worksheet. When you have finished, save (only) the procedure in a file by
using the save command.26

> CMax := proc(x::complex(numeric), y::complex(numeric))
> if abs(x) > abs(y) then
> x;
> else
> y;
> end if;
> end proc:

> save CMax, "myfile";

26For more detailed information about Maple I/O features, see chapter 7, or refer to
?read and ?save.

228 • Chapter 6: Maple Procedures

The read command reads files that contain Maple statements back
into a Maple session. The statements in the file are read and executed as
if they were being entered directly into a Maple session.27

> read "myfile";

proc(x::complex(numeric), y::complex(numeric))

if abs(y) < abs(x) thenx else y end if

end proc

You can also use the read command to read Maple procedures written
in your favorite text editor.

6.7 Viewing Maple Library Source Code

An important feature of Maple is its open architecture. You can access
the source code of most Maple library routines (only the code for the
built-in kernel routines cannot be viewed). This accessibility is helpful for
learning the Maple programming language, and it is essential for enhanc-
ing existing routines to meet your specific needs. Prior to learning the
commands to display the source code, it is recommended that you learn
the evaluation rules for procedures.28

Special Evaluation Rules for Procedures
For most named objects in Maple, you can obtain the actual value of the
name simply by referring to it.

> a := 3;

a := 3

> a;

3

27When using the read command, the statements are not echoed to the display unless
interface(echo) is set to 2 or higher. For more information, refer to ?interface.

28For more information about the built-in kernel routines, see page 207 or refer to
?builtin.

6.7 Viewing Maple Library Source Code • 229

In a chain of assignments, each name is fully evaluated to the last
assigned expression.

> c := b:
> b := a:
> a := 1:
> c;

1

This is called full evaluation.
For a procedure (like a table), Maple displays only the name, not its

value (the procedure definition). For example, in the previous section, f
was defined as a procedure. If you try to view the body of procedure f by
referring to it by name, the procedure definition is not displayed.

> f := proc(x) x^2 end proc:
> f;

f

This model of evaluation that hides the procedure details is called last
name evaluation. This approach is used because procedures can contain
many subobjects. To obtain the true value of the name f, use the eval

command, which forces full evaluation.29

> eval(f);

proc(x)x2 end proc

Displaying Maple Library Source Code
The interface routine is the mechanism by which the Maple com-
putational engine communicates with the user interface. In particular,
interface is used to set and query all options that affect the format of
the output, but do not affect the computation. To view the source code
for Maple library procedures, set the interface option verboseproc to
2.

> interface(verboseproc=2);

29Last name evaluation applies to procedures, tables, and modules in Maple. For
more information, refer to ?last_name_eval.

230 • Chapter 6: Maple Procedures

1

Then, to view the code for any Maple library routine that is not built-
in or local to a module, use the name of the procedure as the argument
to the print command. For example, use the following command to view
the source code for the blackscholes routine in the finance package.30

> print(finance[blackscholes]);

proc(Amount , Exercise , Rate , Nperiods , Sdev , Hedge)

local d1 , d2 , Nd1 , Nd2 ;

option‘Copyright (c) 1995 by Waterloo Maple Inc .\
All rights reserved .‘;

d1 := (

ln(Amount/Exercise) + (Rate + 1/2 ∗ Sdev2) ∗Nperiods)/(

Sdev ∗Nperiods (1/2));

d2 := d1 − Sdev ∗Nperiods (1/2) ;

Nd1 := 1/2 ∗ erf(1/2 ∗ d1 ∗ 2(1/2)) + 1/2 ;

Nd2 := 1/2 ∗ erf(1/2 ∗ d2 ∗ 2(1/2)) + 1/2 ;

if nargs = 6 thenHedge := Nd1 end if ;

Amount ∗Nd1 − Exercise ∗ exp(−Rate ∗Nperiods) ∗Nd2

end proc

Once you have viewed the code for a procedure, reset the interface
variable to the default output level.31

> interface(verboseproc=1):

To view the local routines of a module, set
kernelopts(opaquemodules=false). For more information, refer to
?kernelopts.

30Viewing the source code in this manner does not display any procedure documen-
tation.

31You must set the interface option verboseproc because Maple library routines
use the copyright option, which suppresses the display of the procedure body. User-
defined procedures generally do not use this option. Hence, setting the interface option
is not necessary to view user-defined procedures. To view the code of a user-defined
procedure, use the eval command.

6.8 Alternate Methods for Defining a Procedure • 231

6.8 Alternate Methods for Defining a Procedure

Encapsulating statements in a proc...end proc construct is not the only
way to create a procedure in Maple. Alternatively, you can use functional
operators or the unapply command.

Functional Operators: Mapping Notation
Using a functional operator (arrow operator) is another method by which
you can create a special form of a procedure in Maple, which represents
a mathematical function (or mapping).

(P) -> B

The sequence, P, of formal parameters can be empty and the body, B,
of the procedure must be a single expression or if statement.

> F := (x,y) -> x^2 + y^2;

F := (x, y) → x2 + y2

If the procedure requires only one parameter, you can omit the paren-
theses around the formal parameter.

> G := n -> if n<0 then 0 else 1 end if;

G := n → ifn < 0 then 0 else 1 end if

Invoking a function definition is similar to invoking a procedure.

> F(1, 2);

5

> G(-1);

0

You can also use declared parameters with the functional operator.

> H := (n::even) -> n! * (n/2)!;

H := n::even → n! (
1

2
n)!

232 • Chapter 6: Maple Procedures

> H(6);

4320

> H(5);

Error, invalid input: H expects its 1st argument, n, to
be of type even, but received 5

The arrow notation is designed for simple one-line function definitions.
It does not provide a mechanism for specifying local or global variables,
or options. If these are required, use the proc...end proc construct.32

The unapply Command
Another way to create a function in Maple is by using the unapply com-
mand.

unapply(B, P);

The sequence, P, represents the formal parameters, and B represents
the body of the function.33

> B := x^2 + y^2:
> F := unapply(B, x, y);

F := (x, y) → x2 + y2

> F(1, 2);

5

Unnamed Procedures and the map Command
Procedures are valid Maple expressions. Therefore, you can create, ma-
nipulate, and invoke any procedure definition without assigning it to a
name.34

Consider the following mapping.

32For more information about functional operators, see page 209 or refer to
?functional.

33For more information about the unapply command, refer to ?unapply.
34For information about named procedures, see page 194.

6.8 Alternate Methods for Defining a Procedure • 233

> x -> x^2;

x → x2

You can invoke this unnamed procedure in the following manner.

> (x -> x^2)(t);

t2

You can use the same method to invoke an unnamed procedure created
by using the proc...end proc construct.

> proc(x,y) x^2 + y^2 end proc(u,v);

u2 + v2

When using the map command35, you can use unnamed procedures.

> map(x -> x^2, [1,2,3,4]);

[1, 4, 9, 16]

You can add procedures, or, if appropriate, process them by using
commands such as the differential operator, D.36

> D(x -> x^2);

x → 2x

> F := D(exp + 2*ln);

F := exp + 2 (z → 1

z
)

You can apply the result, F, directly to arguments.

> F(x);

35For more information on the map command, see page 180.
36For more information about the differential operator, refer to ?D.

234 • Chapter 6: Maple Procedures

ex +
2

x

Building a List of Arguments
When you enter a procedure definition, it is not always necessary to sup-
ply names for the formal parameters (see page 196). You can access the
sequence of arguments (actual parameters) in the procedure by using the
special name args.

For example, the following procedure builds a list of its arguments.

> f := proc()
> [args]
> end proc;

f := proc() [args] end proc

> f(a,b,c);

[a, b, c]

> f(c);

[c]

> f();

[]

The ith argument is args[i]. Therefore, the following two proce-
dures are equivalent, provided they are called with at least two actual
parameters of type numeric.

> Max := proc(x::numeric,y::numeric)
> if x > y then
> x
> else
> y
> end if;
> end proc;

6.8 Alternate Methods for Defining a Procedure • 235

Max := proc(x::numeric , y::numeric)

if y < x thenx else y end if
end proc

> Max := proc()
> if args[1] > args[2] then
> args[1]
> else
> args[2]
> end if;
> end proc;

Max := proc()

if args2 < args1 then args1 else args2 end if

end proc

The special name nargs is assigned the total number of actual parame-
ters passed to a procedure. Using nargs, it is possible to write a procedure,
Max, that finds the maximum of any number of arguments, but does not
have any formal parameters declared in the procedure header.

> Max := proc()
> local i,m;
> if nargs = 0 then
> return -infinity
> end if;
> m := args[1];
> for i from 2 to nargs do
> if args[i] > m then
> m := args[i]
> end if;
> end do;
> m;
> end proc:

Find the maximum of the three values 2/3, 1/2, and 4/7.

> Max(2/3, 1/2, 4/7);

2

3

Find the maximum of the four values 1.3, 4/3, 7/5, and 9/7.

> Max(1.3, 4/3, 7/5, 9/7);

236 • Chapter 6: Maple Procedures

7

5

The use of nargs is a convenient way of creating a procedure without
specifying the number of formal parameters in the procedure definition.

6.9 The Procedure Object

The first part of this chapter described the syntax and semantics of a
Maple procedure. This section describes the procedure object, its type
and operands.

The procedure Type
Maple recognizes all procedures (including those created by using the
mapping notation and any names to which you assign procedures) as
being of type procedure. To verify whether a name or a statement is a
procedure, use the type command.

> F := proc(x) x^2 end proc:
> type(F,name);

true

> type(F,procedure);

true

> type(F,name(procedure));

true

> type(eval(F),procedure);

true

As a consequence, you can use the following test to ensure that F is
the name of a procedure.37

37For more information about if statements, see page 167 or refer to ?if.

6.9 The Procedure Object • 237

Table 6.1 Procedure Operands

Operand op Command

sequence of formal parameters op(1, eval(procName))

sequence of local variables op(2, eval(procName))

sequence of options op(3, eval(procName))

remember table op(4, eval(procName))

description string op(5, eval(procName))

sequence of global variables op(6, eval(procName))

lexical table op(7, eval(procName))

return type op(8, eval(procName))

if type(F, name(procedure)) then ... end if

The procedure type is structured. Therefore, you can also perform
the following types of tests.38

> G := proc(n::integer, s::string) print(s); 2*n end proc:
> type(G, ’procedure(integer, string)’);

true

Procedure Operands
Every Maple procedure has seven operands (the value for any of the
operands can be NULL). Table 6.1 lists these operands and the correspond-
ing op command that you can use to access them. In the op commands,
procName is the name of the procedure.

Example Consider the following procedure.

> f := proc(x::name, n::posint)
> local i;
> global y;
> option Copyright;
> description "a summation";
> sum(x[i] + y[i], i=1..n);
> end proc:

38For more information about structured types in Maple, see page 106 or refer to
?structured.

238 • Chapter 6: Maple Procedures

The following statements indicate how to access the various parts of
a procedure definition.39,40

> f; #name of the procedure

f

> eval(f); #procedure

proc(x::name , n::posint)

description “a summation”
. . .

end proc

> op(1, eval(f)); #formal parameters

x::name , n::posint

> op(2, eval(f)); #local variables

i

> op(3, eval(f)); #options

Copyright

> f(t,3) := 12; #place an entry in the remember table

f(t, 3) := 12

> op(4, eval(f)); #remember table

table([(t, 3) = 12])

> op(5, eval(f)); #description

“a summation”

39For more information about remember tables in procedures, see page 210.
40The lexical table of a procedure stores information about lexically-scoped variables.

For more information, refer to ?examples,lexical.

6.10 Using Data Structures to Solve Problems • 239

> op(6, eval(f)); #global variables

y

> op(7, eval(f)); #lexical table is NULL

Alternatively, you can list all of the operands of a procedure with one
command.

> op(eval(f));

x::name , n::posint , i, Copyright , table([(t, 3) = 12]),

“a summation”, y

Note: The body of a procedure is not one of its operands, so you cannot
use the op command to access it.

6.10 Using Data Structures to Solve Problems

When writing procedures you must decide how to represent the data.
Sometimes the choice is straightforward, but often it requires consider-
able thought and planning. The appropriate choice of data structure can
make your procedures more efficient, and easier to write and debug.41

In chapter 4, you were introduced to the basic data structures, such as
sequences, lists, and sets, and shown how to use them in various Maple
commands. This section illustrates, by means of examples, how such data
structures are useful in writing procedures and solving problems.

Computing an Average
A common problem is to write a procedure that computes the average of
n > 0 data values x1, x2, . . . , xn according to the following equation.

µ =
1

n

n
∑

i=1

xi.

Before the procedure is written, think about which data structure and
Maple commands to use. You can represent the data for this problem as

41For a list of built-in Maple types, refer to ?type.

240 • Chapter 6: Maple Procedures

a list. The nops command returns the total number of entries in a list X,
while the ith entry of the list is found by using X[i].

> X := [1.3, 5.3, 11.2, 2.1, 2.1];

X := [1.3, 5.3, 11.2, 2.1, 2.1]

> nops(X);

5

> X[2];

5.3

You can add the numbers in a list by using the add command.

> add(i, i=X);

22.0

Using these ideas, write the procedure Average which computes the
average of the entries in a list. It handles empty lists as a special case.

> Average := proc(X::list) local n, i, total;
> n := nops(X);
> if n=0 then
> error "empty list"
> end if;
> total := add(i, i=X);
> total / n;
> end proc:

Using this procedure you can find the average of list X defined above.

> Average(X);

4.400000000

The procedure also works if the list contains symbolic entries.

> Average([a , b , c]);

1

3
a+

1

3
b+

1

3
c

6.10 Using Data Structures to Solve Problems • 241

Testing for Membership
You can write a procedure that determines whether a certain object is
an element of a list or a set. Procedure Member accomplishes this task by
using the return statement discussed on page 217.42

> Member := proc(a::anything, L::{list, set}) local i;
> for i from 1 to nops(L) do
> if a=L[i] then
> return true
> end if;
> end do;
> false;
> end proc:

Test procedure Member on a list.

> MyList := [1,2,3,4,5,6];

MyList := [1, 2, 3, 4, 5, 6]

Use Member to show that 3 is a member of MyList.

> Member(3, MyList);

true

The type of loop that Member uses occurs so frequently that Maple
has a special version of the for loop for it. Compare the previous version
of Member to the one below.43

> Member := proc(a::anything, L::{list, set}) local i;
> for i in L do
> if a=i then
> return true
> end if;
> end do;
> false;
> end proc:

Test the new for loop version of the procedure Member on a set.

> myset := {1,2,3,4};

42Instead of using procedure Member, you can use the built-in member command.
43For more information about loops, see 5.2 Repetition or refer to ?for.

242 • Chapter 6: Maple Procedures

myset := {1, 2, 3, 4}

> Member(x, myset);

false

Performing a Binary Search
One of the most basic and well-studied computing problems is that of
searching. A typical problem involves searching a list of words (a dictio-
nary, for example) for a specific word w. There are many possible methods.
One approach is to search the list by comparing each word in the dictio-
nary with w until Maple either finds w or it reaches the end of the list.

Study the code for procedure Search (the first attempt at solving this
problem).

> Search := proc(Dictionary::list(string), w::string) local x;
> for x in Dictionary do
> if x=w then
> return true
> end if
> end do;
> false
> end proc:

Unfortunately, if Dictionary is large (say 50,000 entries), this ap-
proach can take a long time.

You can reduce the execution time required by sorting the dictionary
before you search it. If you sort the dictionary into ascending order, then
you can stop searching as soon as you encounter a word greater than w.
On average, it is necessary to search half the dictionary.

Binary searching provides an even better approach. Check the word in
the middle of the sorted dictionary. Since the dictionary is already sorted,
you can determine whether w is in the first or the second half. Repeat the
process with the appropriate half of the dictionary until w is found, or it
is determined not to be in the dictionary.

The procedure BinarySearch searches the dictionary D for the word
w from position s to position f in D. It also uses the built-in lexorder

command to determine the lexicographical ordering of two strings.

> BinarySearch := proc(D::list(string), w::string, s::integer,
> f::integer) local m;
> if s>f then
> return false
> end if; # entry was not found

6.10 Using Data Structures to Solve Problems • 243

> m := iquo(s+f+1, 2); # midpoint of D
> if w=D[m] then
> true;
> elif lexorder(w, D[m]) then
> BinarySearch(D, w, s, m-1);
> else
> BinarySearch(D, w, m+1, f);
> end if;
> end proc:

Test BinarySearch on a short dictionary.

> Dictionary := ["induna", "ion", "logarithm", "meld"];

Dictionary := [“induna”, “ion”, “logarithm”, “meld”]

Try searching the dictionary.

> BinarySearch(Dictionary, "hedgehogs", 1, nops(Dictionary));

false

> BinarySearch(Dictionary, "logarithm", 1, nops(Dictionary));

true

> BinarySearch(Dictionary, "melody", 1, nops(Dictionary));

false

Plotting the Roots of a Polynomial
You can construct lists of any type of object, including other lists. A
list that contains two numbers often represents a point in the plane. The
Maple plot command uses this structure to generate plots of points and
lines.44

44For more information about plotting in Maple, refer to the Maple User Manual or
?plot. For information about graphics programming, refer to chapter 5 of the Maple
Advanced Programming Guide.

244 • Chapter 6: Maple Procedures

> plot([[0, 0], [1, 2], [-1, 2]],
> style=point, symbol=point, color=black);

0.5

1

1.5

2

–1 –0.5 0.5 1

You can use this approach to write a procedure that plots the complex
roots of a polynomial.

Example Consider the polynomial x3 − 1.

> y := x^3-1;

y := x3 − 1

First, find the roots of this polynomial. You can find the numeric
solutions to this polynomial by using fsolve.

> R := [fsolve(y=0, x, complex)];

R := [−0.5000000000− 0.8660254038 I,

−0.5000000000 + 0.8660254038 I, 1.]

Next, change this list of complex numbers into a list of points in the
plane. The Re and Im commands return the real and imaginary parts of
a complex number, respectively.

> points := map(z -> [Re(z), Im(z)], R);

points := [[−0.5000000000, −0.8660254038],

[−0.5000000000, 0.8660254038], [1., 0.]]

Plot the points.

6.10 Using Data Structures to Solve Problems • 245

> plot(points, style=point, symbol=point, color=black);

–0.8

–0.6

–0.4

–0.2
0

0.2

0.4

0.6

0.8

–0.4 –0.2 0.2 0.4 0.6 0.8 1

Using the sequence of steps in the previous example, you can write a
procedure to automate the process. The input must be a polynomial in x

with constant coefficients.

> RootPlot := proc(p::polynom(constant, x)) local R, points;
> R := [fsolve(p, x, complex)];
> points := map(z -> [Re(z), Im(z)], R);
> plot(points, style=point, symbol=point,
> color=black);
> end proc:

Test procedure RootPlot by plotting the roots of the polynomial x6+
3x5 + 5x+ 10.

> RootPlot(x^6+3*x^5+5*x+10);

–1

–0.5

0.5

1

–3 –2 –1 1

Generate a random polynomial by using the randpoly command, and
then test procedure RootPlot again.

> y := randpoly(x, degree=100);

y := −56x95 − 62x42 + 97x8 − 73x5 − 4x3

246 • Chapter 6: Maple Procedures

> RootPlot(y);

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

Connected Graphs
Suppose that there is a number of cities, some with roads between them.
You want to determine whether travel by road between any two of the
cities is possible.

You can express this problem in terms of graph theory by using the
Maple networks package. You do not need to understand graph theory or
the networks package to benefit from the examples in this section. The
networks package is used primarily as a shortcut for drawing graphs.

Example First, load the networks package.

> with(networks):

Create a new graph G using the new command and add a few cities
(or vertices, in the terminology of graph theory).

> new(G):
> cities := {Zurich, Rome, Paris, Berlin, Vienna};

cities := {Rome , Zurich, Paris , Berlin, Vienna}

> addvertex(cities, G);

Rome , Zurich, Paris , Berlin, Vienna

To add roads between Zurich and each of Paris, Berlin, and Vienna,
use the connect command. The roads are automatically named e1, e2,
and e3.

> connect({Zurich}, {Paris, Berlin, Vienna}, G);

6.10 Using Data Structures to Solve Problems • 247

e1 , e2 , e3

Similarly, add roads between Rome and Zurich, and between Berlin
and both Paris and Vienna.

> connect({Rome}, {Zurich}, G);

e4

> connect({Berlin}, {Vienna, Paris}, G);

e5 , e6

Draw the graph of G.

> draw(G);

Vienna

Paris

Rome

Berlin

Zurich

From the drawing, it is obvious that you can travel by road between
any two cities. You can also use the connectivity command to determine
this fact.

> evalb(connectivity(G) > 0);

true

The data structures that the networks package uses are complicated
because the package supports more general structures than this example
requires. You must decide what data structure to use to determine how
the cities and roads can best be represented in this example.

248 • Chapter 6: Maple Procedures

Representing the Data as a Set Since cities have distinct names and
the order of the cities is irrelevant, represent the cities as a set of names.

> vertices(G);

{Rome , Zurich, Paris , Berlin, Vienna}

The networks package assigns distinct names to the roads, so it can
also represent these roads as a set of names.

> edges(G);

{e2 , e1 , e3 , e4 , e6 , e5 }

You can also represent a road as the set consisting of the two cities
that the road connects.

> ends(e2, G);

{Zurich, Berlin}

Thus, you can represent the roads as a set of sets.

> roads := map(ends, edges(G), G);

roads := {{Rome , Zurich}, {Zurich, Paris},
{Zurich, Berlin}, {Zurich, Vienna}, {Paris , Berlin},
{Berlin, Vienna}}

However, to determine which cities are directly connected to a city,
you must search the whole set of roads. Therefore, representing the data
as a set of cities and a set of roads is computationally inefficient for
determining whether you can travel between any two cities.

Representing the Data as an Adjacency Matrix Instead of using a set,
try representing the data as an adjacency matrix—a square matrix with
a row for each city. The (i,j)th entry in the matrix is 1 if the ith and
the jth city have a road between them, and 0 otherwise. The following is
the adjacency matrix for the graph G.

> adjacency(G);

6.10 Using Data Structures to Solve Problems • 249

0 1 0 1 1
1 0 0 0 1
0 0 0 0 1
1 0 0 0 1
1 1 1 1 0

The adjacency matrix is an inefficient representation if few roads exist
relative to the number of cities. In that case, the matrix contains many
zeros, representing an overall lack of roads. Also, though each row in the
matrix corresponds to a city, you cannot tell which row corresponds to
which city.

Representing the Data as a Table Another way to represent the cities
and roads is to consider neighboring cities: Paris has roads between it
and both Zurich and Berlin. Thus, Berlin and Zurich are the neighbors of
Paris.

> neighbors(Paris, G);

{Zurich, Berlin}

You can represent the data as a table of neighbors; there is one entry
in the table for each city.

> T := table(map(v -> (v)=neighbors(v,G), cities));

T := table([Zurich = {Rome , Paris , Berlin, Vienna},
Rome = {Zurich}, Vienna = {Zurich, Berlin},
Berlin = {Zurich, Paris , Vienna},
Paris = {Zurich, Berlin}
])

The representation of a system of cities and roads as a table of neigh-
bors is ideally suited to answering the question of whether it is possible to
travel between any two cities. Start at one city and then use the table to
efficiently find the cities to which you can travel. Similarly, you can find
the neighbors of the neighbors. Thus, you can quickly determine how far
you can travel.

You can write a procedure that determines whether you can travel
between any two cities. The procedure can use the indices command to
extract the set of cities from the table.

250 • Chapter 6: Maple Procedures

> indices(T);

[Zurich], [Rome], [Vienna], [Berlin], [Paris]

Since the indices command returns a sequence of lists, you must use
the op and map command to generate a set.

> map(op, {%});

{Rome , Zurich, Paris , Berlin, Vienna}

Write a procedure Connected that determines whether you can travel
between any two cities and uses the indices command.

The Connected procedure initially visits the first city, v. It adds v to
the set of cities that it has visited and the neighbors of v to the set of
cities to which it can travel. It visits the neighbors of v and repeats the
process. When Connected has no more new cities to which it can travel,
it determines whether it has visited all the cities.

> Connected := proc(T::table) local canvisit, seen, v, V;
> V := map(op, {indices(T)});
> seen := {};
> canvisit := { V[1] };
> while canvisit <> {} do
> v := canvisit[1];
> seen := seen union {v};
> canvisit := (canvisit union T[v]) minus seen;
> end do;
> evalb(seen = V);
> end proc:

> Connected(T);

true

You can add the cities Montreal, Toronto, and Waterloo, and the
highways between them.

> T[Waterloo] := {Toronto};

TWaterloo := {Toronto}

> T[Toronto] := {Waterloo, Montreal};

6.11 Troubleshooting • 251

TToronto := {Waterloo, Montreal }

> T[Montreal] := {Toronto};

TMontreal := {Toronto}

You can no longer travel by road between any two cities. For example,
you cannot travel from Paris to Waterloo.

> Connected(T);

false

Choosing the Best Data Structure The importance of this example is
not to teach you about networks, but to emphasize how the choice of
data structures suited to the problem enables you to create an efficient
and concise version of the procedure Connected. In this case, sets and
tables were the best choices. The best choice for the next problem you
solve may be very different. Before writing code to perform your task,
consider which structures best suit your needs. The first step in good
program design is to choose appropriate structures and methods for the
data and task.

6.11 Troubleshooting

This section provides you with a list of common mistakes, examples, and
hints that will help you understand and avoid common errors. Use this
section to study the errors that you may encounter when entering the
examples from this chapter in a Maple session.45

Missing Argument
Maple generates an error if an argument in a procedure call is missing,
but only when it is first required.46

45You can also use the Maple debugger for finding errors in programs. For more
information, see chapter 8 or refer to ?debugger.

46For more information about the if statement, see 5.1 Selection and Conditional
Execution or refer to ?if.

252 • Chapter 6: Maple Procedures

> G := proc(x, y)
> if x > 2 then
> x
> else
> y
> end if
> end proc:
> G(3);

3

> G(1);

Error, (in G) G uses a 2nd argument, y, which is
missing

> G(1,12);

12

Incorrect Argument Type
When a procedure is invoked, Maple tests the types of the actual param-
eters, before executing the body of the procedure. Any of these tests can
generate an error message. If no type error occurs, the procedure executes.

> Max := proc(x::numeric, y::numeric)
> if x>y then
> x
> else
> y
> end if
> end proc:
> Max(Pi, 3);

Error, invalid input: Max expects its 1st argument, x,
to be of type numeric, but received Pi

Implicitly Declared Local Variable
If a variable is used in a procedure definition, but not declared local or
global, Maple determines the type of variable and issues a warning. To
avoid these warnings, always declare variables as either local or global in
the procedure definition.

6.11 Troubleshooting • 253

> F := proc(x)
> y := x + 1;
> end proc;

Warning, ‘y‘ is implicitly declared local to procedure
‘F‘

F := proc(x) local y; y := x+ 1 end proc

Understanding Names, Functions, and Remember Tables
A common mistake is to confuse names, functions, and remember tables.
If no value has been assigned to a name, its value is itself.

> phi;

φ

However, you can assign any expression to a name. Study the following
examples to see the difference between assigning a value, function, and
remember table to a name.

Assign the value t^2 to the name phi.

> phi := t^2;

φ := t2

> phi;

t2

> print(phi);

t2

Assign a function of t to the name phi.47

> phi := t -> t^2;

47Functions can be defined by using the arrow notation ->. For more information,
see Functional Operators: Mapping Notation on page 231.

254 • Chapter 6: Maple Procedures

φ := t → t2

> phi;

φ

> phi(3);

9

> print(phi);

t → t2

Create an entry in the remember table for procedure phi.

> phi(t) := t^2;

φ(t) := t2

> phi;

φ

> print(phi);

proc()option remember ; ’procname(args)’ end proc

> op(4, eval(phi));

table([t = t2])

> phi(t);

t2

6.12 Exercises • 255

6.12 Exercises

1. Improve the general Max procedure on page 224 so that Max(3,x,1,4)
returns Max(x,4). That is, the procedure returns the maximum nu-
merical value along with all nonnumerical values.

2. Implement the function f (x) =
√
1− x2

3−1, first as a procedure, and
then by using the mapping notation. Compute f (1 /2) and f (0 .5),
and comment on the different results.

3. You can use ab/g to compute the least common multiple of two inte-
gers, a and b, where g is the greatest common divisor of a and b. For
example, the least common multiple of 4 and 6 is 12. Write a Maple
procedure, LCM, which takes as input n > 0 integers a1, a2, ... , an
and computes their least common multiple. By convention, the least
common multiple of zero and any other number is zero.

4. Write a Maple procedure called Sigma which, given n > 1 data val-
ues, x1, x2, . . . , xn, computes their standard deviation. The following
equation gives the standard deviation of n > 1 numbers, where µ is
the average of the data values.

σ =

√

√

√

√

1

n

n
∑

i=1

(xi − µ)2

5. Write a Maple procedure which, given a list of lists of numerical data,
computes the mean of each column of the data.

6. Write a Maple procedure called Position which returns the position
i of an element x in a list L. That is, Position(x,L) should return
an integer i > 0 such that L[i]=x. If x is not in list L, 0 is returned.

7. Demonstrate that the BinarySearch procedure always terminates.

Hint : Suppose the dictionary has n entries. How many words in the
dictionary D does BinarySearch look at in the worst case?

8. Rewrite BinarySearch to use a while loop instead of a recursive call.

9. The system of cities and roads in Connected Graphs on page 246
splits naturally into two components: the Canadian cities and roads
between them, and the European cities and roads between them. In
each component you can travel between any two cities, but you cannot

256 • Chapter 6: Maple Procedures

travel between the two components. Write a procedure that, given a
table of neighbors, splits the system into such components.

Hint : Think about the form in which the procedure returns its result.

10. Procedure Connected cannot handle an empty table of neighbors.

> Connected(table());

Error, (in Connected) invalid subscript selector

Correct this shortcoming.

6.13 Conclusion

This chapter discussed the various parts of a Maple procedure when it
is created by using the proc...end proc construct. Alternate methods
to create a procedure, such as using functional operators, the unapply

command, and the map command were also discussed.
Once a procedure is defined, it is beneficial to format and docu-

ment the code for readability. This saves time in the future when error-
correcting or adding enhancements.

When a procedure is invoked, Maple uses particular evaluation rules.
Local variables are, generally, evaluated to one level, and global variables
are evaluated fully. The arguments to a procedure are evaluated at the
time it is invoked. The manner in which they are evaluated depends upon
the environment in which the call occurs, and in some cases, the types
specified in the procedure definition. Once evaluated, Maple substitutes
the values into the procedure, and then executes it. Maple does no further
evaluation on the values which it substituted, unless you specifically use
an evaluation command, for example, eval. This rule makes it impractical
to use parameters to store temporary results, as you would use local
variables.

7 Input and Output

Input and output (I/O) in Maple can be divided into two categories:
screen and keyboard I/O (for communication within Maple, and between
Maple and the user), and standard disk I/O (for communication between
Maple and other software). This chapter discusses both types of I/O in
relation to writing procedures.1

In This Chapter
• Displaying output to the screen

• Collecting input interactively from users

• Reading data from files

• Writing data to files

7.1 Screen and Keyboard I/O

This section describes how to present output in various forms on the
screen, and how to request input directly from the user during procedure
execution. These features make it possible to write interactive procedures.

Printing Output to the Screen
As each complete statement is entered in a Maple session, it is evalu-
ated and the result is printed on the output device, usually the com-
puter terminal. The printing of expressions is normally presented in a
two-dimensional, multi-line format (in command-line versions of Maple),

1The Sockets package contains routines that perform data exchanges between pro-
cesses on remote hosts on a network. This allows I/O operations over Intranets and the
Internet. For more information, refer to ?Sockets.

257

258 • Chapter 7: Input and Output

or as close to typeset mathematical notation as possible (in graphical
user interface versions with Maple worksheets). There are several meth-
ods for altering the display of expressions: change the interface variable
prettyprint, set the global variable printlevel, or use one of the numer-
ous Maple commands that controls the appearance of output, for example,
print, lprint, and printf.

The interface Command The interface command is a mechanism
for communication between the computational component and user in-
terface. It is used to set and query all variables that affect the format
of the output. However, it does not affect the computation. In par-
ticular, the interface variable prettyprint controls the method that
Maple uses to render Maple expressions in the user interface. If the
interface variable prettyprint is set to 0 (zero) by using the command
interface(prettyprint=0), expressions are printed in one-dimensional
line-printing mode.2

> interface(prettyprint=0);

4

> Int(x^2, x=1..10);

Int(x^2,x = 1 .. 10)

If the interface variable prettyprint is set to 1 (one) by using the
command interface(prettyprint=1), expressions are printed in two-
dimensional character-based format.

> interface(prettyprint=1);

0

> Int(x^2, x=1..10);

2For greater control over the format of output, you can set other interface variables
such as verboseproc and screenwidth. For more information about the interface

command and these variables, refer to ?interface.

7.1 Screen and Keyboard I/O • 259

10
/

| 2
| x dx
|

/
1

If you are using Maple in a graphical user interface (GUI), you can set
the value of prettyprint to higher values, or you can use the Options
Dialog in the Maple worksheet to set the Output Display.3

> interface(prettyprint=2);

1

> Int(x^2, x=1..10);

10
/

| 2
| x dx
|

/
1

> interface(prettyprint=3);

2

> Int(x^2, x=1..10);

3For more information about the Options Dialog, refer to
?worksheet,managing,preferences.

260 • Chapter 7: Input and Output

10
/

| 2
| x dx
|

/
1

The difference between prettyprint=2 (Typeset Notation) and
prettyprint=3 (Standard Math Notation) is that with prettyprint=3

you can select and edit subexpressions of the output.
You can always determine the current value of the prettyprint vari-

able by entering the command interface(prettyprint). The default
value of the prettyprint variable is 1 (for command-line versions) or 3

(for GUI environments). The prettyprint variable is reset to its default
value if the restart command is entered or the Maple session is exited.

The printlevel Global Variable The global variable printlevel de-
termines how much output is displayed. The default value of printlevel
is 1. Setting this variable to -1 prevents the printing of any results. If
printlevel is set to a value larger than 1, more information, for example,
the routines used when execution errors are encountered, is displayed.4

The print Command The print command displays the values of the
expressions that appear as its arguments, separated by a comma and a
blank space.

print(expr1, expr2, ...);

It is important to note that the value returned by a call to print is
NULL. For this reason, the output of the print command is not recalled
by using a ditto operator.

> print(apple, banana, orange);

apple, banana, orange

4For more information about printlevel, see Tracing a Procedure on page 315
or refer to ?printlevel.

7.1 Screen and Keyboard I/O • 261

> %;

Maple checks the interface variable prettyprint to determine the
print format for expressions. Because the default value for prettyprint is
1 for Maple command-line versions, the print command normally returns
output in a character-based format. Similarly, for Maple GUI versions, the
default value of prettyprint is 3 so the print command normally returns
output to a worksheet in an editable typeset format. For more information
about these formats and the prettyprint variable, see page 258 or refer
to ?interface.

The print command is most useful for displaying special objects such
as tables, arrays, modules, and procedures. These objects have last name
evaluation rules. If they are referenced by name, only their name is
printed. The print command enables you to see the contents of these
objects.

> T := table([w,x,y,z]);

T := table([1 = w, 2 = x, 3 = y, 4 = z])

> T;

T

> P := proc(x) x^2 end proc;

P := proc(x) x^2 end proc

> P;

P

> print(T);

table([1 = w, 2 = x, 3 = y, 4 = z])

262 • Chapter 7: Input and Output

> print(P);

proc(x) x^2 end proc

The lprint Command The lprint command displays the values of the
expressions expr1, expr2, ... as valid Maple syntax in a one-dimensional
format.

lprint(expr1, expr2, ...);

Like the print command, the value returned by a call to lprint is
NULL. For this reason, the output of the lprint command is not recalled
by using a ditto operator.

> lprint(apple, banana, orange);

apple, banana, orange

> %;

By setting interface(prettyprint)=0, Maple uses lprint to print
all expressions in the interface. For more information, see page 258 or
refer to ?interface.

The lprint command is intended for device-independent printing. To
achieve formatted output, use the printf command.

The printf Command The printf command is used to display output
in accordance with indicated formatting specifications. The values of the
expressions that appear in the calling sequence are formatted according
to the format string in the first argument.5

printf(formatString, expr1, expr2, expr3, ...);

The formatString is a Maple symbol or string consisting of a se-
quence of formatting specifications, possibly separated by other charac-
ters. Each formatting specification has the following structure:

%[flags][width][.precision][modifiers]code

5The printf function is based on a C standard library function of the same name.

7.1 Screen and Keyboard I/O • 263

where the options in brackets are optional.
The % symbol begins the format specification. One or more of the

specifications can optionally follow the % symbol. Also, it is important
to note that a new line is not automatically started at the end of the
output. If a new line is required, the formatString must contain a new
line character ("\n").

The flags specify how to format the output. For example, + causes
the output to appear with a leading positive or negative sign; - causes
left-justified output.

The width indicates the minimum number of characters to display.
If the formatted value has fewer characters than width, the output is
padded with blank spaces.

The precision specifies the number of digits that appear after the
decimal point for floating-point formats, or the maximum field width for
string formats.

The modifiers specify the type of the value. For example, Z indicates
the formatting of a complex number.

The code specifies the format of the output object for integer, floating-
point number, string, or algebraic formats. For example, d indicates a
signed decimal integer, e indicates a floating-point number in scientific
notation, s indicates a Maple symbol or string, and c indicates a Maple
symbol or string with exactly one character.

For a comprehensive list of permissible formatting specifications, refer
to ?printf.

Study the following examples to gain a better understanding of how
to use formatting strings in printf.

> printf("%d\n", 12345);

12345

> printf("%10d\n", 12345);

12345

> printf("%+10d\n", 12345);

+12345

> printf("%-10d %d\n", 12345, 6789);

264 • Chapter 7: Input and Output

12345 6789

> printf("%+10d %+5s %-c \n", 12345, hi, z);

+12345 hi z

> printf("The %-s of the %-s\nis %-a dollars.", price, hat, 10);

The price of the hat

is 10 dollars.

> printf("%-5s is approximately %5.2f.\n", Pi, 3.14159);

Pi is approximately 3.14.

> printf("The least common multiple of %a and %a is %a.", 4, 6,
> lcm(4,6));

The least common multiple of 4 and 6 is 12.

Interactive Input
Input is normally passed to Maple procedures by using parameters. How-
ever, you can write a procedure that requests input from the user while
the procedure is executing. For example, you can write a procedure that
quizes a student (for example, generates random problems, accepts input,
and then verifies the student’s answers). The input can be the value of a
certain parameter or whether a number is positive. Maple has two com-
mands for reading input from the terminal: the readline and readstat

commands.

Reading Text from the Terminal The readline command reads one
line of text from a file or the keyboard. It has the following syntax.

readline(filename)

If filename is the special name terminal, readline reads a line of
text from the keyboard. The text is returned as a string. For example,
enter the following statement.

7.1 Screen and Keyboard I/O • 265

> s := readline(terminal);

At the next Maple prompt, enter a line of text.

> This is my line of text

s := "This is my line of text"

A simple application of the readline command6 is the following ex-
ample that prompts the user for an answer to a question.7

> DetermineSign := proc(a::algebraic) local s;
> printf("Is the sign of %a positive? "
> "Answer yes or no:\n",a);
> s := readline(terminal);
> evalb(s="yes" or s = "y");
> end proc:

> DetermineSign(u-1);

Is the sign of u-1 positive? Answer yes or no:

> y

true

Reading Expressions from the Terminal You can also write procedures
that require the user to input an expression rather than a string. The
readstat command reads one Maple statement from the keyboard.

6You can also use the readline command to read a single line of text from a file.
For more information, see page 274 or refer to ?readline.

7The printf command is used to print expressions. For more information about
printf, see page 262 or refer to ?printf.

266 • Chapter 7: Input and Output

readstat(promptString)

If the optional string promptString is included, it is displayed as
the prompt when the readstat command is executed. If you omit this
argument, Maple uses a blank prompt.8

For example, when the following statement is entered, the promptString
is immediately displayed, and Maple waits for the user to enter a state-
ment that terminates in a semicolon (or colon). In this case, n-1; was
entered.

> readstat("Enter degree: ");

Enter degree: n-1;

n-1

If an incomplete statement is entered (for example, one that does not
end in a semicolon or colon), readstat redisplays the promptString to
indicate that further input is required. This continues until a complete
statement is entered. If a syntax error is discovered, an error message is
returned and promptString is redisplayed.

Unlike the readline command, which reads only one line, the
readstat command accepts a large expression broken across multiple
input lines.

Another advantage of using the readstat command is that if the
user makes a mistake in the input, the readstat command automatically
prompts the user for new input, providing an opportunity to correct the
error.

> readstat("Enter a number: ");

Enter a number: 5^^8;

syntax error, ‘^‘ unexpected:

5^^8;

^

Enter a number: 5^8;

390625

The following procedure shows how to use readstat to prompt a user
about the derivative of a function.

8For information about other options available to readstat, refer to ?readstat.

7.1 Screen and Keyboard I/O • 267

> InteractiveDiff :=
> proc() local a, b;
> a := readstat("Please enter an expression: ");
> b := readstat("Differentiate with respect to: ");
> printf("The derivative of %a with respect to %a is %a\n",
> a, b, diff(a,b))
> end proc:

> InteractiveDiff();

Please enter an expression: x^2 + 1/x;

Differentiate with respect to: x;

The derivative of x^2 + 1/x with respect to x is 2*x-1/x^2

The final example in this section is an application of the readstat

command that implements an interface to the limit command. The pro-
cedure does the following: Given the function f(x), assume x is the vari-
able if only one variable is present. Otherwise, ask the user to enter the
variable. Ask the user for the limit point.9

> GetLimitInput :=
> proc(f::algebraic) local x, a, K;
> # choose all variables in f
> K := select(type, indets(f), name);
> if nops(K) = 1 then
> x := K[1];
> else
> x := readstat("Input limit variable: ");
> while not type(x, name) do
> printf("A variable is required: received %a\n", x);
> x := readstat("Please reinput limit variable: ");
> end do;
> end if;
> a := readstat("Input limit point: ");
> x = a;
> end proc:

The expression sin(x)=x depends only on one variable, so GetLimitInput
does not ask for a limit variable.

> GetLimitInput(sin(x)/x);

Input limit point: 0;

x = 0

9The indets command finds the indeterminates of an expression. For more infor-
mation, refer to ?indets.

268 • Chapter 7: Input and Output

In the next call to GetLimitInput, the number 1 is entered as the
limit variable. Since 1 is not a name, GetLimitInput asks for another
limit variable.

> GetLimitInput(exp(u*x));

Input limit variable: 1;

A variable is required: received 1

Please re-input limit variable: x;

Input limit point: infinity;

x = infinity

The readstat command can also be used to read one statement from
a file. For more information, refer to ?readstat.

Controlling the Evaluation of Procedure Input Occasionally, more con-
trol is required over how and when Maple evaluates user input to a proce-
dure than the readstat command permits (see page 265). In such cases,
use the readline command to read the input as a string, and then the
parse command to convert the string to an expression. For information
on the readline command, see page 264. The parse command has the
following syntax.

parse(string, options)

The string must represent a complete Maple expression. When the
string is parsed, it becomes an expression.

In the following example, the string “a ∗ x2 + 1” is parsed as an ex-
pression.

> s := "a*x^2 + 1";

s := "a*x^2 + 1"

> y := parse(s);

7.2 Standard Disk I/O • 269

2
y := a x + 1

In this case, the expression is a sum.

> type(s, string), type(y, ‘+‘);

true, true

The parse command does not evaluate the expression it returns. You
must use the eval command to evaluate the expression explicitly. For
example, Maple does not evaluate the variable a to its value 2 until you
explicitly use the eval command.

> a := 2;

a := 2

> z := parse(s);

2
z := a x + 1

> eval(z);

2
2 x + 1

For more information about the parse command, refer to chapter 3
of the Maple Advanced Programming Guide or ?parse.

7.2 Standard Disk I/O

Previously, the procedures discussed use keyboard input. However, if a
large amount of data must be processed, a different method is recom-
mended. To improve efficiency, use data files to store input and output.

270 • Chapter 7: Input and Output

This section discusses some basic tools for accessing and storing data in
files.

Readable File Formats in Maple
Maple accepts a variety of different file formats. The remainder of this
chapter discusses how to use the Maple I/O utilities with the following
file types.10

• Maple worksheet files

• Maple language files

• general data files created by a text editor

Worksheet Files If you are running Maple in a GUI environment, you
can save your session as a worksheet file. Worksheet files are identified by
filenames that end with the “.mw” extension. You can save and retrieve
worksheet files in Maple by using the menus in the GUI environment.11

The Worksheet package contains tools for generating and manipulat-
ing worksheets. For more information, refer to ?Worksheet.

Note: Maple worksheets use an .mw file extension. Previous releases of
Maple create worksheets as .mws files. The two formats are different, but
Maple can open and run both file types. Older worksheets might not
behave exactly as they would in the version they were created because
improvements to the system sometimes result in different forms of re-
sponses.

Language Files A Maple language file is one that contains statements
conforming to the syntax of the Maple language. These statements are
the same as those that are entered interactively during a Maple session.
Reading a language file is identical to entering the same sequence of state-
ments into a Maple session—each statement is executed and its result is
displayed.

Maple language files can be created by using a text editor, or by
using the save statement in Maple. Any filename consisting of letters,
decimal numbers, periods, and the underscore (_) can be used to save
a Maple language file. The extension cannot be “.m”, which indicates a

10For more information about other file formats in Maple, refer to ?filetypes and
?files.

11For more information about file management with worksheet files in a GUI envi-
ronment, refer to the Maple Getting Started Guide or ?managing.

7.2 Standard Disk I/O • 271

Maple internal file (refer to ?filenames). In addition, like most software
programs, special characters are not permitted in filenames. This excludes
the dollar sign ($), question mark (?), and exclamation point (!), which
can be used.

General Data Files Maple can import and export files that contain for-
matted numerical data, and files that contain both formatted textual and
numerical data. You can create these general data files by using a text
editor, and then read them into Maple to perform computations.

Using Filenames in Maple Statements
If a Maple statement expects a filename as a parameter, enter it as a
string. However, if you are entering the filename and it does not contain
a slash (\ or / to indicate the directory location) or a period (to indicate
a file extension), you can enter the filename as a symbol. In other words,
if there are no special characters in the filename, neither single nor dou-
ble quotes are necessary. For example, MyFile, ‘MyFile‘, and “MyFile”
represent the same valid filename.

If a filename contains slashes or periods, then the name must be en-
closed in double quotes ("). Backslashes that appear in a filename (the
directory separator character on some operating systems) must be es-
caped by “doubling up” (the first backslash acts as an escape character to
the second backslash). For example, the filename C:\Maple\Data\MyFile
must be written as "C:\\Maple\\Data\\MyFile". Alternatively, you can
use the canonical form "C://Maple/Data/MyFile".12

Reading and Saving Data in Maple
You can use Maple without understanding how to access data files for
input. However, accessing files from a Maple session, instead of re-entering
commands and data, is an important feature (especially for command-
line versions). You can save time by reading files that contain Maple
statements saved from a previous session, or by accessing general data
files that contain formatted data to use in Maple and other applications.

You can interact with the file system either explicitly by using the
read and save statements, or implicitly by executing a command that
automatically accesses information from a general data file.

Saving Assignment Statements in a Maple Session You can save the
values of a sequence of variables by using the save statement. It has

12For more information about backslashes and filenames, refer to ?backslash and
?filename.

272 • Chapter 7: Input and Output

the following syntax where nameseq is a sequence of names of assigned
variables, and filename is a valid filename.

save nameseq, filename;

Maple saves each variable (and its value) in nameseq in the file
filename. Maple evaluates each argument in nameseq to a name. The
last argument (filename) is fully evaluated. It must evaluate to a string
(or name) that specifies a valid filename.

For example, clear the Maple internal memory by using the restart

command and assign new values.

> r0 := x^3:
> r1 := diff(r0,x):
> r2 := diff(r1,x):
> r3 := proc(y) local a;
> a := irem(y, 2);
> if a=0 then
> "Even"
> else
> "Odd"
> end if
> end proc:

The following statement saves r0, r1, r2, and r3 in the ASCII file
named my_file in the current working directory.13

> save r0, r1, r2, r3, "my_file";

Once this statement is executed, the following lines form the contents
of file my_file.14

r0 := x^3;

r1 := 3*x^2;

r2 := 6*x;

r3 := proc (y) local a; a := irem(y,2);

if a = 0 then "Even" else "Odd" end if end proc;

13To determine the current working directory, use the currentdir function.
14You can also append commands entered in a Maple session to an existing file. For

more information, refer to ?appendto.

7.2 Standard Disk I/O • 273

Reading Files Containing Maple Assignments into a Maple Session
You can read files that contain Maple statements into a Maple session by
using the read statement. The read statement has the following syntax,
where filename is any Maple language file (a sequence of valid Maple
statements, separated by semicolons or colons, entered during a Maple
session and saved by using the save statement, or created in a text editor
and saved as a text file).15

read filename;

The filename must evaluate to the name of a valid file. Reading the
file is identical to entering the same sequence of statements interactively
into a Maple session, except that the input statements are not echoed to
the screen. The system only displays the result of executing each state-
ment read from the file.

> read "my_file";

r0 := x3

r1 := 3x2

r2 := 6x

r3 := proc(y)

local a;

a := irem(y, 2) ; if a = 0 then “Even” else “Odd” end if

end proc

If you prefer to display both the input assignment statements and
their results, you must set the interface variable echo to 2 or higher.
For more information, refer to ?interface.16

15The read statement is particulary useful for reading long procedure definitions. If
you must enter a long procedure that requires much formatting and indentation, it is
easier to enter it in a text editor that has a tabulation feature, and then read it into
Maple.

16Because the Maple language contains enhancements with each new release, a con-
version utility that translates Maple language files from previous releases is shipped with
each new version of Maple that requires it. For more information, refer to ?updtsrc.

274 • Chapter 7: Input and Output

> interface(echo=2);
> read "my_file";

> r0 := x^3;

r0 := x3

> r1 := 3*x^3;

r1 := 3x2

> r2 := 6*x;

r2 := 6x

> r3 := proc (y)

> local a;

> a := irem(y,2);

> if a = 0 then

> "Even"

> else

> "Odd"

> end if

> end proc;

r3 := proc(y)

local a;

a := irem(y, 2) ; if a = 0 then “Even” else “Odd” end if

end proc

Importing Data from Files
You have already seen how to use readline to read text from the key-
board. You can also use readline to read one line of data from a
specified file. Alternatively, you can use the readdata command to read
numerical data arranged in columns from a file.

The readline Command The readline command has the following
syntax.

7.2 Standard Disk I/O • 275

readline(filename);

If a readline command is entered, Maple attempts to read the next
line from the specified file. If successful, a string consisting of the line
read from the file is returned. However, the new line character at the end
of the line is excluded from the string. If there are no more lines in the
file to read, readline returns 0 to indicate that the end of the file has
been reached.17

Study the following example to understand how to use readline for
reading files.

Suppose that the following three lines of data were saved in the file
mydata.txt in the current working directory.18

1 -5.2

2 6.0

3 7.8

You could read this data by entering the following statements.

> readline("mydata.txt");

“1 -5.2”

The readline statement opens file mydata.txt for reading, and reads
the first line of the file. The readline statement returns the data as a
string. Numerical data is not very useful to Maple in the form of a string.
Thus, if you want to use this data for further calculations, use the string
formatting command sscanf to convert the string to a list of values.

> sscanf(%, "%d%f");

[1, −5.2]

17If the file was not opened for reading when the readline command is entered,
Maple opens it. Once readline returns 0 to indicate that the end of the file has been
reached, the file is automatically closed.

18To determine the current working directory, use the currentdir function.

276 • Chapter 7: Input and Output

The arguments to the sscanf command are very similar to the printf
command. Here, d indicates a decimal integer and f indicates a floating-
point value.19

To read the remaining lines in the file, continue to enter readline

statements.

> readline("mydata.txt");

“2 6.0”

> readline("mydata.txt");

“3 7.8”

> readline("mydata.txt");

0

The value 0 is returned because readline reached the end of the file.
You can automate the process of reading this data by using the following
procedure.

> readfile := proc(s::string) local line;
> do
> line:=readline(s);
> if line = 0 then
> break
> end if;
> print(line);
> end do;
> end proc:

19For more information about sscanf, refer to chapter 3 of the Maple Advanced
Programming Guide or ?sscanf.

7.2 Standard Disk I/O • 277

> readfile("mydata.txt");

“1 -5.2”

“2 6.0”

“3 7.8”

0

Since readline returns lines read from a file in the form of a string,
it is more useful for reading textual data. If a file contains numerical
data formatted into columns, it is more appropriate to use the readdata

command.

The readdata Command The readdata command has the following
syntax where filename is the file that contains numeric data formatted
into columns, format specifies whether the data is to be read as integer or
floating-point values, and n is the number of columns of data in filename.

readdata(filename, format, n);

If only one column of data is read, the output is a list of the data.
If more than one column is read, the output is a list of lists of data
corresponding to the rows of data in filename.

> readdata("mydata.txt", 2);

[[1., −5.2], [2., 6.0], [3., 7.8]]

The data is automatically returned as floating-point values because
no format was specified in the calling sequence and Maple detected a
floating-point value in the file. You can specify the format of the values
in each column by using the following version of the readdata command.

> readdata("mydata.txt", [integer, float]);

[[1, −5.2], [2, 6.0], [3, 7.8]]

278 • Chapter 7: Input and Output

Once you have read the data from a file, use Maple commands to
process the data. For example, plot the data points from file mydata.txt.

> points := %;

points := [[1, −5.2], [2, 6.0], [3, 7.8]]

> plot(points, style=point, color=black);

–4

–2

0

2

4

6

8

1 1.5 2 2.5 3

Importing Files Containing Non-uniform Data Data files frequently
contain both numbers and text. These types of data files can be read
as formatted input by using the fscanf command and the low-level I/O
routines. For more information about the low-level routines, refer to chap-
ter 3 of the Maple Advanced Programming Guide or the Maple online
help system.

Exporting Data to Files
You can use the writeline command to write strings to a specified file.
Alternatively, you can use the writedata command to write numerical
data to a text file.

The writeline Command The writeline command writes a sequence
of strings as strings separated by new line characters to filename. A new
line character is also inserted after the last string.

writeline(filename, string1, string2,...);

A count of the number of characters written to filename is returned.
If no string sequence is specified in the calling sequence, writeline writes
a blank line to filename. If filename exists, the file is overwritten.

7.2 Standard Disk I/O • 279

The writedata Command The writedata command writes data to a
specified filename. The data can be in the form of a list or an array. The
format of the entries in data can be integer, float, or string.

writedata(filename, data, format);

If filename exists, the file is overwritten. If data is a list of values,
each value is printed on a separate line. If data is an array or a list of
lists of values, the data is printed one row per line, with values separated
by a tab. If no format is specified, float is used.20

For example, consider the following array.

> a := array(1..3, 1..3):
> for i to 3 do
> for j to 3 do
> a[i,j] := evalf(i/j,3)
> end do
> end do;
> print(a);

1. 0.500 0.333
2. 1. 0.667
3. 1.50 1.

To save the entries of a to file arraydata, enter the following com-
mand.

> writedata("arraydata", a, float):

File arraydata contains the following data.

> writedata(terminal, a, float);

1 .500 .333

2 1 .667

3 1.50 1

C, Fortran, JavaTM, MATLAB, and Visual Basic Code Generation
Maple also provides commands to translate Maple expressions to other
programming languages: C, Fortran, JavaTM, MATLAB r©, and Visual
Basic r©. These commands are available in the Maple codegen and
CodeGeneration packages. For more information, refer to chapter 6 of the
Maple Advanced Programming Guide, ?codegen, or ?CodeGeneration.

20For more information about writedata, refer to ?writedata.

280 • Chapter 7: Input and Output

7.3 Troubleshooting

This section provides you with a list of common mistakes, examples, and
hints that will help you understand and avoid common errors. Use this
section to study the errors that you may encounter when entering the
examples from this chapter in a Maple session.21

Syntax Error in readstat
Maple generates an error if the input statement supplied to a readstat

command contains a syntax error.22

> readstat("Bad Input: ");

Bad Input: a ++ b;

syntax error, ‘+‘ unexpected:

a ++ b;

^

The Bad Input prompt redisplays to request new input. To correct
this error, enter a valid statement that ends in a colon or semicolon.

Bad Input: a + b;

a+ b

Extra Characters at End of Parsed String
The readstat routine reads as many lines of characters as necessary to
parse a complete statement. Maple generates a warning if the last line
contains additional characters after the semicolon or colon. Therefore,
multiple statements per line are permitted, but those after the first are
ignored.

> readstat("Extra Input: ");

Extra Input: a+b; c+d;

Warning, extra characters at end of parsed string

a+ b

21For more information about I/O errors in Maple, refer to ?IO_errors.
22For more information about the readstat statement, refer to ?readstat.

7.4 Exercises • 281

Unable to Read Filename
Maple returns an error message if the filename supplied to the read state-
ment is invalid or if the file does not exist. To correct this error, check
that the spelling of the filename is correct and that the file exists in the
directory that you have specified.

> read MyDataFile;

Error, unable to read ‘MyDataFile‘

7.4 Exercises

1. Write a loop (with a single statement in its body) that prints strings
listing the cubes of the integers 1 to 10.

2. Create a file in a text editor that contains the following lines.

x := 1; # valid input line

if := 2;} # invalid assignment

y := 3; # valid input line

two words := 4; # invalid assignment

Save the file. In a Maple session, open the file by using the read

statement. Observe how Maple reacts to invalid statements.

3. Create a data file in a text editor that contains the following informa-
tion.

1 2 3

4 5 6

Save the file. Read this file into a Maple session, convert the data to a
list, and reverse its order. Write the reversed data in the same format
to a different file.

282 • Chapter 7: Input and Output

7.5 Conclusion

The techniques in this chapter illustrated some of the basic I/O facilities
that are available in Maple—how to incorporate interactive input in your
procedures, and how to import and export data from Maple. In addition
to the commands discussed in this chapter, Maple has many low-level
I/O routines, which are useful for reading formatted and non-uniform
data from text files.

In Maple, there are packages that generate code in the C, Fortran,
Java, MATLAB, and Visual Basic programming languages. For more in-
formation, refer to chapter 6 of the Maple Advanced Programming
Guide. The Sockets and Worksheet packages also contain important
I/O routines.

8 Debugging and Efficiency

New programs, whether developed in Maple or any other language, often
work incorrectly. Problems that occur in the execution of a program are
usually due to syntax errors introduced during implementation, or logic
errors in the design of the algorithm. Most errors are subtle and hard to
find by visual inspection of the program. Maple provides error detection
commands and a debugger to help you find these errors.

Maple provides a variety of commands to help you find errors in pro-
cedures. Among these are commands to trace procedure execution, check
assertions, raise exceptions and trap errors, and verify procedure seman-
tics and syntax.

Alternatively, the Maple debugger lets you stop execution in a Maple
procedure, inspect and modify the values of local and global variables, and
continue execution, either to completion, or one statement or block at a
time. You can stop execution when Maple reaches a particular statement,
when it assigns a value to a specified local or global variable, or when a
specified error occurs. This facility lets you investigate the inner workings
of a program.

Even when a program is working correctly, you may want to ana-
lyze its performance to try to improve its efficiency. Maple commands
are available to analyze the time and memory consumption involved in
running the program.

In This Chapter
• Using the Maple debugger

• Detailed debugger information

• Additional commands for error detection

• Measuring and improving program efficiency

283

284 • Chapter 8: Debugging and Efficiency

8.1 A Tutorial Example

The Maple debugger is a tool that you can use to detect errors in your
procedures. Using this facility, you can follow the step-by-step execution
of your program to determine why it is not returning the results that you
expect.

This section illustrates how to use the Maple debugger as a tool for
debugging a Maple procedure. The debugger commands are introduced
and described as they are applied. Additional information about the com-
mands is provided in 8.2 Maple Debugger Commands.

As an alternative to the command-line Maple debugger, you can use
the interactive Maple debugger available in the graphical user interface
(GUI) version of Maple.

The interactive Maple debugger is invoked automatically by Maple
when a breakpoint or watchpoint is encountered. An interactive debugger
window is displayed, which contains the following:

• a main text box that displays a procedure name and the debugger
output

• a text box for entering commands and an associated Execute button

• buttons that perform common debugging functions

The interactive Maple debugger functions identically to the command-line
Maple debugger. For more information, refer to ?InteractiveDebugger.

Example Consider the following procedure, sieve, which is used as a
case study. It implements the Sieve of Eratosthenes : Given a parameter
n, return a count of the prime numbers less than n (inclusive). To debug
the sieve procedure, use breakpoints and watchpoints, which cause Maple
to stop the execution of the procedure.

> sieve := proc(n::integer)
> local i, k, flags, count,twicei;
> count := 0;
> for i from 2 to n do
> flags[i] := true
> end do;
> for i from 2 to n do
> if flags[i] then
> twicei := 2*i;
> for k from twicei by i to n do
> flags[k] = false;
> end do;
> count := count+l
> end if;

8.1 A Tutorial Example • 285

> end do;
> count;
> end proc:

Numbering the Procedure Statements I
To use the Maple debugger, you must enter a variety of debugger com-
mands. Many of these debugger commands refer to statements in the
procedures that you are debugging. Statement numbers allow such ref-
erences. The showstat command displays a Maple procedure along with
numbers preceeding each line that begins a new statement.

> showstat(sieve);

sieve := proc(n::integer)
local i, k, flags, count, twicei;

1 count := 0;
2 for i from 2 to n do
3 flags[i] := true

end do;
4 for i from 2 to n do
5 if flags[i] then
6 twicei := 2*i;
7 for k from twicei by i to n do
8 flags[k] = false

end do;
9 count := count+l

end if
end do;

10 count
end proc

Note: The numbers preceeding each line differ from line numbers that
may display in a text editor. For example, keywords that end a statement
(such as end do and end if) are not considered separate commands and
are therefore not numbered.

Invoking the Debugger I
To invoke the Maple debugger, start the execution of a procedure, and
stop the execution within the procedure. To execute a Maple procedure,
call it by using a Maple command at the top-level, or call it from an-
other procedure. The simplest way to cause execution to stop within the
procedure, is to set a breakpoint in the procedure.

286 • Chapter 8: Debugging and Efficiency

Setting a Breakpoint Use the stopat command to set a breakpoint in
procedure sieve.

> stopat(sieve);

[sieve]

This command sets a breakpoint before the first statement in proce-
dure sieve. When you subsequently execute sieve, Maple stops before
executing the first statement. When execution stops, the debugger prompt
appears (DBG>).1

The following example demonstrates an initial execution of sieve.

> sieve(10);

sieve:
1* count := 0;

Preceding the debugger prompt are several pieces of information.

• The previously computed result (This particular execution stopped
at the first statement before making any computations, so no result
appears.)

• The name of the procedure in which execution has stopped (sieve)

• Execution stopped before statement number 1. An asterisk (*) follows
this statement number to indicate that a breakpoint was set before
the statement.

At the debugger prompt, you can evaluate Maple expressions and
invoke debugger commands. Maple evaluates expressions in the context
of the stopped procedure. You have access to the same procedure pa-
rameters, and local, global, and environment variables, as the stopped
procedure. For example, since sieve was called with parameter value 10,
the formal parameter n has the value 10.

1If a procedure has a remember table, you may have to execute a restart command
before issuing a second or subsequent stopat command. For more information about
remember tables, see page 210 or refer to ?remember.

8.1 A Tutorial Example • 287

DBG > n

10
sieve:

1* count := 0;

Notice that for each expression that Maple evaluates, it displays:

• the result of the expression,

• the name of the stopped procedure,

• the statement number where the procedure stopped followed by the
statement, and

• a new debugger prompt.

Note: To remove a breakpoint from a procedure, use the unstopat com-
mand.

Controlling the Execution of a Procedure During Debugging I
Debugger commands control the execution of the procedure once the de-
bugger is active. Some commonly used debugger commands are next,
step, into, list, outfrom, and cont.

The next command executes the next statement at the current nesting
level. After the statement is executed, control is returned to the debugger.
If the statement is a control structure (an if statement or a loop), the
debugger executes any statements within the control structure that it
would normally execute. It stops execution before the next statement
after the control structure. Similarly, if the statement contains calls to
procedures, the debugger executes these procedure calls in their entirety
before execution stops.

DBG > next

0
sieve:

2 for i from 2 to n do
...

end do;

288 • Chapter 8: Debugging and Efficiency

The 0 in the first line of the output represents the result of the exe-
cuted statement—that is, the result of count := 0. A “*” does not appear
next to the statement number because there is no breakpoint set immedi-
ately before statement 2. The debugger does not show the body of the for
loop, which itself consists of statements with their own statement num-
bers, unless execution actually stops within its body. Maple represents
the body of compound statements by ellipses (...).

Executing the next command again results in the following output.

DBG > next

true
sieve:

4 for i from 2 to n do
...

end do;

Execution now stops before statement 4. Statement 3 (the body of
the previous for loop) is at a deeper nesting level. Therefore, the loop
is executed n-1 times. The debugger displays the last result computed in
the loop (the assignment of the value true to flags[10]).

To step into a nested control structure (such as an if statement or
for loop) or a procedure call, use the step debugger command.

DBG > step

true
sieve:

5 if flags[i] then
...

end if

DBG > step

true
sieve:

6 twicei := 2*i;

8.1 A Tutorial Example • 289

If you use the step debugger command when the next statement to
execute is not a deeper structured statement or procedure call, it has the
same effect as the next debugger command.

DBG > step

4
sieve:

7 for k from twicei by i to n do
...

end do;

At any time during the debugging process, you can use the showstat
debugger command to display the current status of the debugging process.

DBG > showstat

sieve := proc(n::integer)
local i, k, flags, count, twicei;

1* count := 0;
2 for i from 2 to n do
3 flags[i] := true

end do;
4 for i from 2 to n do
5 if flags[i] then
6 twicei := 2*i;
7 ! for k from twicei by i to n do
8 flags[k] = false

end do;
9 count := count+l

end if
end do;

10 count
end proc

Maple displays a debugger prompt to indicate that you are still work-
ing inside the Maple debugger. The asterisk (*) marks the unconditional
breakpoint. An exclamation point (!) that follows a statement number
(see line 7) indicates the statement at which the procedure is stopped.

290 • Chapter 8: Debugging and Efficiency

To continue the debugging process, issue another debugger command.
For example, you can use into or step to enter the innermost loop.

The behavior of the into debugger command is between that of the
next and step commands. Execution stops at the next statement in the
current procedure independent of whether it is at the current nesting level
or in the body of a control structure (an if statement or a loop). That is,
the into command steps into nested statements, but not procedure calls.
It executes called procedures completely, then stops. The into command
is a very useful debugging tool.

DBG > into

4
sieve:

8 flags[k] = false

A debugger command that is related to showstat is the list com-
mand. It displays the previous five statements, the current statement, and
the next statement, to provide an indication of where the procedure has
stopped.

DBG > list

sieve := proc(n::integer)
local i, k, flags, count, twicei;

...
3 flags[i] := true

end do;
4 for i from 2 to n do
5 if flags[i] then
6 twicei := 2*i;
7 for k from twicei by i to n do
8 ! flags[k] = false

end do;
9 count := count+l

end if
end do;
...

end proc

8.1 A Tutorial Example • 291

You can use the outfrom debugger command to finish execution at
the current nesting level or deeper. Execution of the procedure is stopped
once a statement at a shallower nesting level is reached, that is, after a
loop terminates, a branch of an if statement executes, or the current
procedure call returns.

DBG > outfrom

true = false
sieve:

9 count := count+l

DBG > outfrom

l
sieve:

5 if flags[i] then
...

end if

The cont debugger command continues execution, until either the
procedure terminates normally or it encounters another breakpoint.

DBG > cont

9 l

You can now see that the procedure does not give the expected output.
Although you may find the reason obvious from the previous debugger
command examples, in most cases it is not easy to find procedure er-
rors. Therefore, continue to use the debugger. First, use the unstopat

command to remove the breakpoint from sieve.

> unstopat(sieve);

[]

292 • Chapter 8: Debugging and Efficiency

Invoking the Debugger II
The procedure sieve maintains the changing result in the variable count.
Therefore, a logical place to look during debugging is wherever Maple
modifies count. The easiest way to do this is by using a watchpoint,
which invokes the debugger whenever Maple modifies a watched variable.

Setting a Watchpoint Use the stopwhen command to set watchpoints.
In this case, stop execution whenever Maple modifies the variable count

in the procedure sieve.

> stopwhen([sieve,count]);

[[sieve , count]]

The stopwhen command returns a list of all the currently watched
variables.

Execute the sieve procedure again.

> sieve(10);

count := 0
sieve:

2 for i from 2 to n do
...

end do;

Execution stops because Maple has modified count, and the debugger
displays the assignment statement count := 0. As in the case of break-
points, the debugger then displays the name of the procedure and the next
statement to be executed in the procedure. Note that execution stops af-
ter Maple has assigned a value to count.

This first assignment to count is correct. Use the cont debugger com-
mand to continue execution of the procedure.

DBG > cont

count := l
sieve:

5 if flags[i] then
...

end if

8.1 A Tutorial Example • 293

If you do not look carefully, this also looks correct. Assume that noth-
ing is wrong and continue execution.

DBG > cont

count := 2*l
sieve:

5 if flags[i] then
...

end if

This output is suspicious because Maple should have simplified 2*1.
Notice that it has printed 2*l (two times the letter l) instead. By studying
the source text for the procedure, you can see that the letter “l” was
entered instead of the number “1”. Since the source of the error has been
discovered, there is no reason to continue the execution of the procedure.
Use the quit debugger command to exit the debugger, and then use the
unstopwhen command to remove the watchpoint from the procedure.

DBG > quit

Warning, computation interrupted

> unstopwhen();

[]

After correcting the source text for sieve, issue a restart command,
read the corrected version of sieve into Maple, and execute the procedure
again.

> sieve(10);

9

294 • Chapter 8: Debugging and Efficiency

This result is still incorrect. There are four primes less than 10, namely
2, 3, 5, and 7. Therefore, invoke the debugger once more, stepping into the
innermost parts of the procedure to investigate. Since you do not want to
start at the beginning of the procedure, set the breakpoint at statement
6.

> stopat(sieve,6);

[sieve]

> sieve(10);

true
sieve:

6* twicei := 2*i;

DBG > step

4
sieve:

7 for k from twicei by i to n do
...

end do;

DBG > step

4
sieve:

8 flags[k] = false

DBG > step

true = false
sieve:

8 flags[k] = false

8.1 A Tutorial Example • 295

The last step reveals the error. The previously computed result should
have been false (from the assignment of flags[k] to the value false),
but instead true = false was returned. An equation was used instead
of an assignment. Therefore, Maple did not set flags[k] to false.

Once again, exit the debugger and correct the source text.

DBG > quit

Warning, computation interrupted

The following code represents the corrected procedure.

> sieve := proc(n::integer)
> local i, k, flags, count,twicei;
> count := 0;
> for i from 2 to n do
> flags[i] := true
> end do;
> for i from 2 to n do
> if flags[i] then
> twicei := 2*i;
> for k from twicei by i to n do
> flags[k] := false;
> end do;
> count := count+1
> end if;
> end do;
> count;
> end proc:

Execute procedure sieve again to test the corrections.

> sieve(10);

4

The sieve procedure returns the correct result.

296 • Chapter 8: Debugging and Efficiency

8.2 Maple Debugger Commands

This section provides additional details about the commands used in the
tutorial in 8.1 A Tutorial Example and a description of other debugger
commands.

Numbering the Procedure Statements II
The showstat command has the following syntax. The procedureName

parameter is optional.

showstat(procedureName);

If showstat is called with no arguments, all procedures that contain
breakpoints are displayed.

You can also use the showstat command to display a single statement
or a range of statements by using the following syntax.

showstat(procedureName, number);

showstat(procedureName, range);

In these cases, the statements that are not displayed are represented
by ellipses (...). The procedure name, its parameters, and its local and
global variables are always displayed.

> f := proc(x)
> if x <= 2 then
> print(x);
> end if;
> print(-x)
> end proc:

> showstat(f, 2..3);

f := proc(x)
...

2 print(x)
end if;

3 print(-x)
end proc

Invoking the Debugger III
This section provides additional information about breakpoints and
watchpoints.

8.2 Maple Debugger Commands • 297

Setting Breakpoints The stopat command has the following syntax
where procedureName is the name of the procedure in which to set
the breakpoint, statementNumber is the line number of the statement
in the procedure before which the breakpoint is set, and condition is
a Boolean expression which must be true for execution to stop. The
statementNumber and condition arguments are optional.

stopat(procedureName, statementNumber, condition);

This condition argument can refer to any global variable, local vari-
able, or parameter of the procedure. These conditional breakpoints are
marked by a question mark (?) if showstat is used to display the proce-
dure.

Since the stopat command sets the breakpoint before the specified
statement, when Maple encounters a breakpoint, execution stops and
Maple engages the debugger before the statement. This means that
you cannot set a breakpoint after the last statement in a statement
sequence—that is, at the end of a loop body, an if statement body,
or a procedure.

If two identical procedures exist, depending on how you created them,
they may share breakpoints. If you entered the procedures individually,
with identical procedure bodies, then they do not share breakpoints. If
you created a procedure by assigning it to the body of another procedure,
then their breakpoints are shared.

> f := proc(x) x^2 end proc:
> g := proc(x) x^2 end proc:
> h := op(g):
> stopat(g);

[g, h]

> showstat();

g := proc(x)
1* x^2

end proc

h := proc(x)
1* x^2

end proc

298 • Chapter 8: Debugging and Efficiency

Removing Breakpoints The unstopat command has the following syn-
tax where procedureName is the name of the procedure that contains
the breakpoint, and statementNumber is the line number of the state-
ment where the breakpoint is set. The statementNumber parameter is
optional.

unstopat(procedureName, statementNumber);

If statementNumber is omitted in the call to unstopat, then all
breakpoints in procedure procedureName are cleared.

Setting Explicit Breakpoints You can set an explicit breakpoint by in-
serting a call to the DEBUG command in the source text of a procedure.
The DEBUG command has the following syntax. The argument parameter
is optional.

DEBUG(argument);

If no argument is included in the DEBUG command, execution in the
procedure stops at the statement following the location of the DEBUG

command, and then the debugger is invoked.2

> f := proc(x,y) local a;
> a:=x^2;
> DEBUG();
> a:=y^2;
> end proc:

> showstat(f);

f := proc(x, y)
local a;

1 a := x^2;
2 DEBUG();
3 a := y^2

end proc

> f(2,3);

2The showstat command does not mark explicit breakpoints with a “*Ô or a “?Ô.

8.2 Maple Debugger Commands • 299

4
f:

3 a := y^2

DBG > quit

Warning, computation interrupted

If the argument of the DEBUG command is a Boolean expression, execu-
tion stops only if the Boolean expression evaluates to true. If the Boolean
expression evaluates to false or FAIL, the DEBUG command is ignored.

> f := proc(x,y) local a;
> a:=x^2;
> DEBUG(a<1);
> a:=y^2;
> DEBUG(a>1);
> print(a);
> end proc:

> f(2,3);

9
f:

5 print(a)

DBG > quit

Warning, computation interrupted

If the argument of the DEBUG command is anything but a Boolean
expression, the debugger prints the value of the argument (instead of the
last result) when execution stops at the following statement.

300 • Chapter 8: Debugging and Efficiency

> f := proc(x)
> x^2;
> DEBUG("This is my breakpoint. The current value of x\
> is:", x);
> x^3
> end proc:

> f(2);

"This is my breakpoint. The current value of x is:",
2
f:

3 x^3

Removing Explicit Breakpoints The unstopat command cannot re-
move explicit breakpoints. You must remove breakpoints that were set
by using DEBUG by editing the source text for the procedure.

DBG > unstopat

[f, g, h]
f:

3 x^3

DBG > showstat

f := proc(x)
1 x^2;
2 DEBUG("This is my breakpoint. The current value of x is:",x);
3 ! x^3

end proc

DBG > quit

Warning, computation interrupted

8.2 Maple Debugger Commands • 301

Note: If you display the contents of a procedure by using print (or
lprint) and the procedure contains a breakpoint that was set by using
stopat, the breakpoint appears as a call to DEBUG.

> f := proc(x) x^2 end proc:
> stopat(f);

[f, g, h]

> print(f);

proc(x)DEBUG() ; x2 end proc

Setting Watchpoints The stopwhen command has the following syn-
taxes.

stopwhen(globalVariableName);

stopwhen([procedureName, variableName]);

The first form specifies that the debugger should be invoked when
the global variable globalVariableName is changed. Maple environment
variables, such as Digits, can also be monitored by using this method.

> stopwhen(Digits);

[Digits]

The second form invokes the debugger when the (local or global) vari-
able variableName is changed in the procedure procedureName.

When any form of stopwhen is called, Maple returns a list of the
current watchpoints.

Execution stops after Maple assigns a value to the watched vari-
able. The debugger displays an assignment statement instead of the last
computed result (which would otherwise be the right-hand side of the
assignment statement).

Clearing Watchpoints The syntax to call unstopwhen is the same as
that for stopwhen. Similar to stopwhen, unstopwhen returns a list of all
(remaining) watchpoints.

If no arguments are entered in the call to unstopwhen, then all watch-
points are cleared.

302 • Chapter 8: Debugging and Efficiency

Setting Watchpoints on Specified Errors You can use an error watch-
point to invoke the debugger when Maple returns a specified error mes-
sage. When a watched error occurs, execution of the procedure stops and
the debugger displays the statement in which the error occurred.

Error watchpoints are set by using the stoperror command. The
stoperror command has the following syntax

stoperror("errorMessage");

where errorMessage is a string or a symbol that represents the error
message returned from a procedure. A list of the current error watchpoints
is returned.

If no argument is entered in the call to stoperror, the list of current
watchpoints is returned.

> stoperror();

[]

> stoperror("numeric exception: division by zero");

[“numeric exception: division by zero”]

> stoperror();

[“numeric exception: division by zero”]

If the special name ‘all‘ is used instead of a specific error message
as the parameter to the stoperror command, execution of a procedure
stops when any error that would not be trapped occurs.

Errors trapped by a traperror construct (try...catch statement) do
not generate an error message. Hence, stoperror cannot be used to
catch them. For more information about the try...catch structure,
see Trapping Errors on page 325. If the special name ‘traperror‘

is used instead of a specific error message as the parameter to the
stoperror command, execution of a procedure stops when any error
that is trapped occurs. If the errorMessage parameter is entered in the
form traperror["message"] to stoperror, the debugger is invoked only
if the error specified by "message" is trapped.

8.2 Maple Debugger Commands • 303

When execution of a procedure stops due to an error which causes an
exception, continued execution is not possible. Any of the execution con-
trol commands, such as next or step (see Controlling the Execution
of a Procedure During Debugging I on page 287 and Controlling
the Execution of a Procedure During Debugging II on page 305),
process the error as if the debugger had not intervened. For example, con-
sider the following two procedures. The first procedure, f, calculates 1/x.
The other procedure, g, calls f but traps the "division by zero" error
that occurs when x = 0.

> f := proc(x) 1/x end:
> g := proc(x) local r;
> try
> f(x);
> catch:
> infinity;
> end try;
> end proc:

If procedure g is executed at x=9, the reciprocal is returned.

> g(9);

1

9

At x=0, as expected, infinity is returned.

> g(0);

∞

The stoperror command stops execution when you call f directly.

> stoperror("numeric exception: division by zero");

[“numeric exception: division by zero”]

> f(0);

Error, numeric exception: division by zero
f:

1 1/x

304 • Chapter 8: Debugging and Efficiency

DBG > cont

Error, (in f) numeric exception: division by zero

The call to f from g is inside a traperror (try...catch statement),
so the "division by zero" error does not invoke the debugger.

> g(0);

∞

Instead, try to use stoperror(traperror).

> unstoperror("numeric exception: division by zero");

[]

> stoperror(‘traperror‘);

[traperror]

This time Maple does not stop at the error in f.

> f(0);

Error, (in f) numeric exception: division by zero

However, Maple invokes the debugger when the trapped error occurs.

> g(0);

Error, numeric exception: division by zero
f:

1 1/x

8.2 Maple Debugger Commands • 305

DBG > step

Error, numeric exception: division by zero
g:

3 infinity

DBG > step

∞

In the case that a particular error message is specified in the form
traperror["message"], the debugger is invoked only if the error specified
by "message" is trapped.

Clearing Watchpoints on Specified Errors Error watchpoints are cleared
by using the top-level unstoperror command. The syntax to call unstoperror
is the same as for stoperror. Like stoperror, unstoperror returns a list
of all (remaining) error watchpoints.

If no argument is entered in the call to unstoperror, then all error
watchpoints are cleared.

> unstoperror();

[]

Controlling the Execution of a Procedure During Debugging II
Once the execution of a procedure is stopped and the debugger is invoked,
you can examine the values of variables or perform other experiments (see
the following section, Changing the State of a Procedure During
Debugging). After you have examined the state of the procedure, you
can cause execution to continue by using a number of different debugger
commands.

The most commonly used debugger commands are into, next, step,
cont, outfrom, return, and quit.

The return debugger command causes execution of the currently ac-
tive procedure call to complete. Execution stops at the first statement
after the current procedure.

306 • Chapter 8: Debugging and Efficiency

The other commands are described in the tutorial in 8.1 A Tuto-
rial Example. For more information about these and other debugger
commands, refer to ?debugger.

Changing the State of a Procedure During Debugging
When a breakpoint or watchpoint stops the execution of a procedure, the
Maple debugger is invoked. In the debugger mode, you can examine the
state of the global variables, local variables, and parameters of the stopped
procedure. You can also determine where execution stopped, evaluate
expressions, and examine procedures.

While in the debugger mode, you can evaluate any Maple expres-
sion and perform assignments to local and global variables. To evaluate
an expression, enter the expression at the debugger prompt. To perform
assignments to variables, use the standard Maple assignment statement.

> f := proc(x) x^2 end proc:
> stopat(f);

[f]

> f(10);

f:
1* x^2

DBG > sin(3.0)

.1411200081
f:

1* x^2

DBG > cont

100

The debugger evaluates any variable names that you use in the ex-
pression in the context of the stopped procedure. Names of parameters or
local variables evaluate to their current values in the procedure. Names of
global variables evaluate to their current values. Environment variables,

8.2 Maple Debugger Commands • 307

such as Digits, evaluate to their values in the stopped procedure’s envi-
ronment.

If an expression corresponds to a debugger command (for example,
your procedure has a local variable named step), you can still evaluate
it by enclosing it in parentheses.

> f := proc(step) local i;
> for i to 10 by step do
> i^2
> end do;
> end proc:

> stopat(f,2);

[f]

> f(3);

f:
2* i^2

DBG > step

1
f:

2* i^2

DBG > (step)

3
f:

2* i^2

DBG > quit

Warning, computation interrupted

308 • Chapter 8: Debugging and Efficiency

While execution is stopped, you can modify local and global vari-
ables by using the assignment operator (:=). The following example sets
a breakpoint in the loop only when the index variable is equal to 5.

> sumn := proc(n) local i, sum;
> sum := 0;
> for i to n do
> sum := sum + i
> end do;
> end proc:

> showstat(sumn);

sumn := proc(n)
local i, sum;

1 sum := 0;
2 for i to n do
3 sum := sum+i

end do
end proc

> stopat(sumn,3,i=5);

[sumn]

> sumn(10);

10
sumn:

3? sum := sum+i

Reset the index to 3 so that the breakpoint is encountered again.

DBG > i := 3

sumn:
3? sum := sum+i

8.2 Maple Debugger Commands • 309

DBG > cont

17
sumn:

3? sum := sum+i

Maple has added the numbers 1, 2, 3, 4, 3, and 4 and returned 17 as
the result. Continuing the execution of the procedure, the numbers 5, 6,
7, 8, 9, and 10 are added and 62 is returned as the result.

DBG > cont

62

Examining the State of a Procedure During Debugging
There are two debugger commands available that return information
about the state of the procedure execution. The list debugger command
shows you the location within a procedure where execution stopped, and
the where debugger command shows you the stack of procedure activa-
tions.

The list debugger command has the following syntax.

list procedureName statementNumber[..statNumber]

The list debugger command is similar to showstat, except in the
case that you do not specify any arguments. If no arguments are included
in the call to list, only the five previous statements, the current state-
ment, and the next statement to be executed are displayed. This provides
some context in the stopped procedure. In other words, it indicates the
static position where execution stopped.

The where debugger command shows you the stack of procedure ac-
tivations. Starting from the top-level, it shows you the statement that
is executing and the parameters it passed to the called procedure. The
where debugger command repeats this for each level of procedure call
until it reaches the current statement in the current procedure. In other
words, it indicates the dynamic position where execution stopped. The
where command has the following syntax.

310 • Chapter 8: Debugging and Efficiency

where numLevels

To illustrate these commands, consider the following example. The
procedure check calls the sumn procedure from the previous example.

> check := proc(i) local p, a, b;
> p := ithprime(i);
> a := sumn(p);
> b := p*(p+1)/2;
> evalb(a=b);
> end proc:

There is a (conditional) breakpoint in sumn.

> showstat(sumn);

sumn := proc(n)
local i, sum;

1 sum := 0;
2 for i to n do
3? sum := sum+i

end do
end proc

When check calls sumn, the breakpoint invokes the debugger.

> check(9);

10
sumn:

3? sum := sum+i

The where debugger command reveals that:

• check was invoked from the top-level with argument 9,

• check called sumn with argument 23, and

• execution stopped at statement number 3 in sumn.

DBG > where

8.2 Maple Debugger Commands • 311

TopLevel: check(9)
[9]

check: a := sumn(p)
[23]

sumn:
3? sum := sum+i

DBG > cont

true

The next example illustrates the use of where in a recursive function.

> fact := proc(x)
> if x <= 1 then
> 1
> else
> x * fact(x-1)
> end if;
> end proc:

> showstat(fact);

fact := proc(x)
1 if x <= 1 then
2 1

else
3 x*fact(x-1)

end if
end proc

> stopat(fact,2);

[fact]

> fact(5);

fact:
2* 1

312 • Chapter 8: Debugging and Efficiency

DBG > where

TopLevel: fact(5)
[5]

fact: x*fact(x-1)
[4]

fact: x*fact(x-1)
[3]

fact: x*fact(x-1)
[2]

fact: x*fact(x-1)
[1]

fact:
2* 1

If you are not interested in the entire history of the nested procedure
calls, use the numLevels parameter in the call to where to print a specified
number of levels.

DBG > where 3

fact: x*fact(x-1)
[2]

fact: x*fact(x-1)
[1]

fact:
2* 1

DBG > quit

Warning, computation interrupted

The showstop command (and the showstop debugger command) dis-
plays a report of all currently set breakpoints, watchpoints, and error
watchpoints. Outside the debugger at the top-level, the showstop com-
mand has the following syntax.

8.2 Maple Debugger Commands • 313

showstop();

The next example illustrates the use of showstop.

> f := proc(x) local y;
> if x < 2 then
> y := x;
> print(y^2);
> end if;
> print(-x);
> x^3;
> end proc:

Set breakpoints.

> stopat(f):
> stopat(f,2):
> stopat(int);

[f, int]

Set watchpoints.

> stopwhen(f,y):
> stopwhen(Digits);

[Digits , [f, y]]

Set an error watchpoint.

> stoperror("numeric exception: division by zero");

[“numeric exception: division by zero”]

The showstop command reports all the breakpoints and watchpoints.

> showstop();

Breakpoints in:
f
int

Watched variables:
Digits
y in procedure f

Watched errors:

314 • Chapter 8: Debugging and Efficiency

"numeric exception: division by zero"

Using Top-Level Commands at the Debugger Prompt
The showstat, stopat, unstopat, stopwhen, unstopwhen, stoperror,
and showstop commands can be used at the debugger prompt. The fol-
lowing list describes the syntax rules for top-level commands used at the
debugger prompt.

• Do not enclose the arguments of the command in parentheses.

• Do not separate the arguments of the command with a comma. The
arguments must be separated by a space character.

• Do not use colons or semicolons to end statements.

• The procedure name is not required by any command. Commands
that use a procedure name assume the currently stopped procedure if
one is not specified.

• For the stoperror command, double quotes are not required.

Except for these rules, the debugger prompt call for each command
is of the same form and takes the same arguments as the corresponding
top-level command call.

Restrictions
At the debugger prompt, the only permissible Maple statements are de-
bugger commands, expressions, and assignments. The debugger does not
permit statements such as if, while, for, read, and save. However, you
can use ‘if‘ to simulate an if statement, and seq to simulate a loop.

The debugger cannot set breakpoints in, or step into, built-in routines,
such as diff and has. These routines are implemented in C and compiled
into the Maple kernel. Debugging information about these routines is
not accessible to Maple. However, if a built-in command calls a library
routine, for example, the diff command calling ‘diff/sin‘, you can use
a breakpoint to stop in the latter.

If a procedure contains two identical statements that are expressions,
the debugger cannot determine with certainty the statement at which
execution stopped. If this situation occurs, you can still use the debugger

8.3 Detecting Errors • 315

and execution can continue. The debugger merely issues a warning that
the displayed statement number may be incorrect.3

8.3 Detecting Errors

This section describes some simple commands that you can use for de-
tecting errors in procedures that are written in Maple. If you are not
successful in finding the error by using these commands, you can use the
Maple debugger, which is discussed in 8.1 A Tutorial Example and
8.2 Maple Debugger Commands, to display the stepwise execution
of a procedure.

Tracing a Procedure
The simplest tools available for error detection in Maple are the printlevel
global variable, and the trace and tracelast commands. These facili-
ties enable you to trace the execution of both user-defined and Maple
library procedures. However, they differ in the type of information that
is returned about a procedure.

The printlevel variable is used to control how much information is
displayed when a program is executed. By assigning a large integer value
to printlevel, you can monitor the execution of statements to selected
levels of nesting within procedures. The default value of printlevel is
1. Larger, positive integer values cause the display of more intermediate
steps in a computation. Negative integer values suppress the display of
information.

The printlevel global variable is set by using the following syntax,
where n is the level to which Maple commands are evaluated.

printlevel := n;

To determine what value of n to use, remember that statements within
a particular procedure are recognized in levels that are determined by the
nesting of conditional or repetition statements, and by the nesting of pro-
cedures. Each loop or if condition increases the evaluation level by 1, and
each procedure call increases the evaluation level by 5. Alternatively, you
can use a sufficiently large value of n to ensure that all levels are traced.

3This problem occurs because Maple stores all identical expressions as a single occur-
rence of the expression. The debugger cannot determine at which invocation execution
stopped.

316 • Chapter 8: Debugging and Efficiency

For example, printlevel := 1000 displays information in procedures up
to 200 levels deep.

> f := proc(x) local y; y := x^2; g(y) / 4; end proc;

f := proc(x) local y; y := x2 ; 1/4 ∗ g(y) end proc

> g := proc(x) local z; z := x^2; z * 2; end proc;

g := proc(x) local z; z := x2 ; 2 ∗ z end proc

> f(3);

81

2

> printlevel := 5;

printlevel := 5

> f(3);

{--> enter f, args = 3

y := 9

81

2

<-- exit f (now at top level) = 81/2}

> printlevel := 10;

printlevel := 10

8.3 Detecting Errors • 317

> f(3);

{--> enter f, args = 3

y := 9

{--> enter g, args = 9

z := 81

162

<-- exit g (now in f) = 162}

81

2

<-- exit f (now at top level) = 81/2}

81

2

The amount of information that is displayed depends on whether the
call to the procedure was terminated with a colon or a semicolon. If a
colon is used, only entry and exit points of the procedure are printed. If
a semicolon is used, the results of the statements are also printed.

To reset the value of the printlevel variable, reassign its value to 1.

> printlevel := 1;

printlevel := 1

By assigning a large value to printlevel, the trace of all subsequent
Maple procedure calls is displayed. To display the trace of specific pro-
cedures, you can use the trace command. The trace command has the
following syntax, where arguments is one or more procedure names.

318 • Chapter 8: Debugging and Efficiency

trace(arguments);

The trace command returns an expression sequence containing the
names of the traced procedures. To begin tracing, you must call the pro-
cedure.

> trace(f,g);

f, g

> f(3):

{--> enter f, args = 3

{--> enter g, args = 9

<-- exit g (now in f) = 162}

<-- exit f (now at top level) = 81/2}

> f(3);

{--> enter f, args = 3

y := 9

{--> enter g, args = 9

z := 81

162

<-- exit g (now in f) = 162}

81

2

<-- exit f (now at top level) = 81/2}

8.3 Detecting Errors • 319

81

2

Like printlevel, the amount of information that is displayed during
tracing when trace is used depends on whether the call to the procedure
was terminated with a colon or a semicolon. If a colon is used, only entry
and exit points of the procedure are printed. If a semicolon is used, the
results of the statements are also printed.

To turn off the tracing of specific procedures, use the untrace com-
mand.4

> untrace(f,g);

f, g

> f(3);

81

2

If a procedure returns an error message, you can use the tracelast

command to determine the last statement executed and the values of vari-
ables at the time of the error. The tracelast command has the following
syntax.

tracelast;

When a procedure returns an error message, the following information
is returned from a call to tracelast.

• The first line displays which procedure was called and what parameter
was used.

• The second line displays the # symbol, the procedure name with the
line number of the statement that was executed, and the statement
that was executed.

• Finally, if there are any local variables in the procedure, they are
displayed with their corresponding values.

4You can use debug and undebug as alternate names for trace and untrace.

320 • Chapter 8: Debugging and Efficiency

> f := proc(x) local i,j,k;
> i := x;
> j = x^2;
> seq(k, k=i..j);
> end proc;

f := proc(x)

local i, j, k;

i := x ; j = x2 ; seq(k, k = i..j)

end proc

> f(2,3);

Error, (in f) unable to execute seq

> tracelast;

f called with arguments: 2, 3

#(f2,3): seq(k,k = i .. j)

Error, (in f) unable to execute seq

locals defined as: i = 2, j = j, k = k

You can find the error in this procedure by studying the results of the
tracelast command—the assignment to the local variable j incorrectly
uses an equal sign (=) instead of an assignment operator (:=).

The information provided by tracelast can become unavailable
whenever Maple does a garbage collection. Therefore, it is advisable to
use tracelast immediately after an error occurs. 5

Using Assertions
An assertion is a statement about a procedure that you assert to be
true. You can include assertions in your procedure to guarantee pre- and
post-conditions, and loop invariants during execution by using the ASSERT
command. You can also use assertions to guarantee the value returned by
a procedure or the value of local variables inside a procedure. The ASSERT
command has the following syntax.

5For more information about garbage collection in Maple, see page 335 or refer to
?gc.

8.3 Detecting Errors • 321

ASSERT(condition, message);

If condition evaluates to false, an error is generated and message

is printed. If the first argument evaluates to true, ASSERT returns NULL.
To check assertions, turn on assertion checking prior to executing

a procedure that contains an ASSERT command. To query the current
state of assertion checking, or turn assertion checking on or off, use the
kernelopts command.6

The default state for assertion checking is false.

> kernelopts(ASSERT); #query the current state

false

If you enter a kernelopts command to turn assertion checking on,
kernelopts returns its previous value.

> kernelopts(ASSERT=true);

false

At any time during the Maple session, you can confirm whether as-
sertion checking is on by entering the following command.

> kernelopts(ASSERT);

true

If assertion checking is on and a procedure that contains an ASSERT

statement is executed , the condition represented by the ASSERT statement
is checked.

> f := proc(x,y) local i,j;
> i:=0;
> j:=0;
> while (i <> x) do
> ASSERT(i > 0,"invalid index");
> j := j + y;
> i := i + 1;
> end do;
> j;
> end proc;

6For more information about kernelopts, refer to ?kernelopts.

322 • Chapter 8: Debugging and Efficiency

f := proc(x, y)

local i, j;
i := 0 ;

j := 0 ;

while i 6= xdo

ASSERT(0 < i, “invalid index”) ; j := j + y ; i := i+ 1

end do;
j

end proc

> f(2,3);

Error, (in f) assertion failed, invalid index

Use the kernelopts command again to turn assertion checking off.
(Again, kernelopts returns its previous value.) When assertion checking
is off, the overhead of processing an ASSERT statement in a procedure is
negligible.

> kernelopts(ASSERT=false);

true

Related to assertions are Maple warning messages. The WARNING com-
mand causes a specified warning, preceded by the string "Warning,", to
display. The WARNING command has the following syntax.

WARNING(msgString, msgParam1, msgParam2, ...);

The msgString parameter is the text of the warning message and
msgParami are optional parameters to substitute into msgString, if any.

> f := proc(x)
> if x < 0 then
> WARNING("the result is complex")
> end if;
> sqrt(x)
> end proc;

8.3 Detecting Errors • 323

f := proc(x)

ifx < 0 thenWARNING(“the result is complex”) end if ;

sqrt(x)

end proc

> f(-2);

Warning, the result is complex

√
2 I

You can turn the WARNING command off by using interface(warnlevel=0).
In this case, the warning is not displayed and the call to WARNING has no
effect.

> interface(warnlevel=0);

3

> f(-2);

√
2 I

Handling Exceptions
An exception is an event that occurs during the execution of a procedure
that disrupts the normal flow of instructions. Many kinds of errors can
cause exceptions, for example, attempting to read from a file that does
not exist. Maple has two mechanisms available when such situations arise:

• the error statement to raise an exception, and

• the try...catch...finally block to handle exceptions.

Raising Exceptions The error statement raises an exception. Execu-
tion of the current statement sequence is interrupted, and the block and
procedure call stack is popped until either an exception handler is encoun-
tered, or execution returns to the top-level (in which case the exception
becomes an error). The error statement has the following syntax.

324 • Chapter 8: Debugging and Efficiency

error msgString, msgParam1, msgParam2, ...

The msgString parameter is a string that gives the text of the error
message. It can contain numbered parameters of the form %n or %-n,
where n is an integer. These numbered parameters are used as placeholders
for actual values. In the event that the exception is printed as an error
message, the actual values are specified by the msgParams.

For example, the error message "f has a 4th argument, x, which

is missing" is specified by the following error statement.

error "%1 has a %-2 argument, %3, which is missing", f, 4, x

A numbered parameter of the form %n displays the nth msgParam in
line-printed notation (that is, as lprint would display it). A numbered
parameter of the form %-n displays the nth msgParam, assumed to be
an integer, in ordinal form. For example, the %-2 in the error statement
above is displayed as “4th”. The special parameter %0 displays all the
msgParams, separated by a comma and a space.

The error statement evaluates its arguments, and then creates an
exception object which is an expression sequence with the following ele-
ments.

• The name of the procedure in which the exception was raised, or the
constant 0 if the exception was raised at the top-level.

• The msgString.

• The msgParams, if any.

The created exception object is assigned to the global variable
lastexception as an expression sequence.7,8

The error statement normally causes an immediate exit from the
current procedure to the Maple session. Maple prints an error message of
the following form.

7The actual arguments to the error statement are also assigned to lasterror for
compatibility with older versions of Maple. For more information, refer to ?traperror.

8To view the value of the lastexception variable inside the debugger, use the
showexception debugger command.

8.3 Detecting Errors • 325

Error, (in procName) msgText

In this case, msgText is the text of the error message (which is con-
structed from the msgString and optional msgParams of the error state-
ment), and procName is the procedure in which the error occurred. If
the procedure does not have a name, procName is displayed as unknown.
If the error occurs at the top-level, outside of any procedure, the (in

procName) part of the message is omitted.
The error statement is commonly used when parameter declarations

are not sufficient to check that the actual parameters to a procedure are of
the correct type. The following pairup procedure takes a list L of the form
[x1, y1, x2, y2, . . . , xn, yn] as input, and creates from it a list of the form
[[x1, y1], [x2, y2], . . . , [xn, yn]]. A simple type check cannot determine if list
L has an even number of elements, so you need to check this explicitly by
using an error statement.

> pairup := proc(L::list)
> local i, n;
> n := nops(L);
> if irem(n,2) = 1 then
> error "list must have an even number of "
> "entries, but had %1", n
> end if;
> [seq([L[2*i-1],L[2*i]], i=1..n/2)]
> end proc:

> pairup([1, 2, 3, 4, 5]);

Error, (in pairup) list must have an even number of
entries, but had 5

> pairup([1, 2, 3, 4, 5, 6]);

[[1, 2], [3, 4], [5, 6]]

Trapping Errors The try statement is a mechanism for executing pro-
cedure statements in a controlled environment so that if an error occurs,
it does not immediately terminate the procedure. The try statement has
the following syntax (the finally clause is optional).

326 • Chapter 8: Debugging and Efficiency

try tryStatSeq

catch catchStrings : catchStatSeq

finally finalStatSeq

end try

If procedure execution enters a try...catch block, the tryStatSeq

is executed. If no exceptions occur during the execution of tryStatSeq,
procedure execution continues with the statement after end try.

If procedure execution enters a try...catch...finally block, the
tryStatSeq is executed. If no exceptions occur during the execution of
tryStatSeq, the finalStatSeq in the finally clause is executed. Exe-
cution then continues with the statement after end try.

If an exception occurs during the execution of tryStatSeq (in a
try...catch or try...catch...finally block), execution of tryStatSeq
terminates immediately. The exception object corresponding to the excep-
tion is compared against each catchString. Any number of catch clauses
can be provided, and each can have any number of catchStrings sep-
arated by commas. Alternatively, a catch clause need not have a catch
string. Any given catchString (or a catch clause without one) can ap-
pear only once in a try...end try construct.

If a matching catch clause is found, or the catch clause contains no
catchStrings, the catchStatSeq of that catch clause is executed, and
the exception is considered to have been caught. If no matching catch
clause is found, the exception is considered not caught, and is re-raised
outside the try block.

When Maple is looking for a matching catch clause, the following
definition of “matching” is used.

• Neither the exception object nor the catchStrings are evaluated (the
exception object has already been evaluated by the error statement
that produced it).

• The catchStrings are considered to be prefixes of the exception ob-
ject’s msgString. If a catchString has n characters, only the first
n characters of the msgString need match the catchString. This
permits the definition of classes of exceptions.

• A missing catchString matches any exception.

• The “result” of a try statement (the value that % returns if it is
evaluated immediately after execution of the try statement) is the
result of the last statement executed in the try statement.

8.3 Detecting Errors • 327

A catchStatSeq can contain an error statement with no arguments,
which also re-raises the exception. When an exception is re-raised, a new
exception object is created that records the current procedure name, and
the message and parameters from the original exception.

Under normal circumstances, the finalStatSeq of the finally

clause, if there is one, is always executed before control leaves the try

statement. This is true in the case that an exception occurs, independent
of whether it is caught or whether another exception occurs in the catch
clause.

This is true even if a catchStatSeq re-raises the exception, raises a
new one, or executes a return, break, or next statement.

Under certain abnormal circumstances, the finalStatSeq is not ex-
ecuted:

• If an exception is raised in a catch clause and this exception is caught
by the debugger and the user exits the debugger, the user’s command
to stop execution overrides everything.

• If one of the following untrappable exceptions occurs, the exception
is not caught, and finalStatSeq is not executed:

1. Computation timed out. (This can only be caught by timelimit,
which raises a “time expired” exception that can be caught. For
more information on the timelimit command, see page 334.)

2. Computation interrupted. (In other words, the user pressedCtrl+C,
Break, or equivalent.)

3. Internal system error. (This indicates a bug in Maple itself.)

4. ASSERT or local variable type assertion failure. (Assertion failures
are not trappable because they indicate a coding error, not an al-
gorithmic failure.)

5. Stack overflow. (If a stack overflow occurs, there is generally not
enough stack space to do anything, such as running cleanup code.)

If an exception occurs during the execution of a catchStatSeq or the
finalStatSeq, it is treated in the same way as if it occurred outside the
try...end try statement.

Example 1 A useful application of the try and error statements is to
abort an expensive computation as quickly and cleanly as possible. For
example, suppose that you are trying to compute an integral by using one
of several methods, and in the middle of the first method, you determine

328 • Chapter 8: Debugging and Efficiency

that it will not succeed. You would like to abort that method and try
another method. The following code implements this example.

> try
> result := MethodA(f,x)
> catch "FAIL":
> result := MethodB(f,x)
> end try:

MethodA can abort its computation at any time by executing the state-
ment error "FAIL". The catch clause will catch that exception, and pro-
ceed to try MethodB. If any other error occurs during the execution of
MethodA, or if an error occurs during the execution of MethodB, it is not
caught.

Another useful application of the try statement is to ensure that
certain resources are freed when you are done with them, regardless of
whether anything went wrong while you were using them.

Example 2 Use the following code to access the Maple I/O facilities to
read the lines of a file and process them in some way.

> f := fopen("myfile",TEXT,READ):
> try
> line := readline(f);
> while line < 0 do
> ProcessContentsOfLine(line);
> line := readline(f)
> end do
> finally
> fclose(f)
> end try:

In this example, if any exception occurs while reading or processing
the lines of the file, it is not caught because there is no catch clause. How-
ever, fclose(f) is executed before execution leaves the try statement,
regardless of whether there was an exception.

The next example uses both catch and finally clauses to write to a
file instead of reading from one.

> f := fopen("myfile",TEXT,WRITE):
> try
> for i to 100 do
> fprintf(f,"Result %d is %q\n",i,ComputeSomething(i))
> end do
> catch:
> fprintf(f,"Something went wrong: %q\n",lastexception);
> error
> finally
> fclose(f)

8.3 Detecting Errors • 329

> end try:

If any exception occurs, it is caught with the catch clause that has no
catchString, and the exception object is written into the file. The excep-
tion is re-raised by executing the error statement with no msgString. In
all cases, the file is closed by executing fclose(f) in the finally clause.

Checking Syntax
The Maple maplemint command generates a list of semantic errors for
a specified procedure, if any. The semantic errors for which maplemint

checks include parameter name conflicts, local and global variable name
conflicts, unused variable declarations, and unreachable code. The maplemint
command has the following syntax.

maplemint(procedureName);

In the case where the specified procedure is free of semantic errors,
maplemint returns NULL.

> f := proc() local a,i; global c;
> for i from 1 to 10 do
> print(i);
> for i from 1 to 5 do
> if (a=5) then
> a:=6;
> return true;
> print(‘test‘);
> end if;
> end do;
> end do;
> end proc;

> maplemint(f);

This code is unreachable:
print(test)

These global variables were declared, but never used:
c

These local variables were used before they were assigned a value:
a

These variables were used as the same loop variable for nested loops:
i

330 • Chapter 8: Debugging and Efficiency

Similar to maplemint, Maple also has an external program utility
called mint. The mint program is called from outside Maple and it is used
to check both semantic and syntax errors in an external Maple source file.
For more information about mint, refer to ?mint.

8.4 Creating Efficient Programs

After a Maple procedure is debugged, it is often desirable to improve the
performance of the code. Maple commands are available to analyze the
time and memory consumption involved in executing individual state-
ments. Maple also provides commands to monitor the efficiency of proce-
dures.

During the performance improvement phase, keep in mind that Maple
is based on a small kernel written in C, and on large libraries of Maple
code which are interpreted. Therefore, whenever possible, it is generally
more efficient to perform computations by using the built-in functions
in the kernel. The phrase option builtin is used to identify the built-in
functions. For example, the add function is a built-in function in Maple.
To determine if a function is built-in, use the eval command with the
function name as its argument.

> eval(add);

proc()option builtin; 114 end proc

The option builtin phrase identifies this as a built-in function, and
the number following builtin is a special number that identifies this par-
ticular function in the kernel.9

Displaying Time and Memory Statistics
A simple way to measure the time and memory requirements of an exe-
cuted command at the interactive level is to use the showtime command.
The showtime command has the following syntax.

9For more information about efficiency in Maple programming, refer to
?efficiency.

8.4 Creating Efficient Programs • 331

showtime();

Once the showtime command is entered, subsequent Maple state-
ments that are executed are evaluated normally with the exception that
the input statements are assigned to the global variables 01, 02, 03,
Immediately after the output, the amount of CPU time taken and the
amount of memory used is displayed.10

The following statements all return the sum of the same sequence
of numbers. However, by using the showtime command, it is clear that
statement 03, which uses the add command, is the most efficient method
with respect to time and memory consumption. The for...do loop is the
least efficient method in this case.

> S:=0: #initialize sum
> showtime();

01 := for i from 1 to 100 do S := S + 2^i end do:

time = 0.10, bytes = 32166

02 := ‘+‘(seq(2^i, i=1..100)):

time = 0.01, bytes = 13462

03 := add(2^i, i=1..100):

time = 0.01, bytes = 12450

To turn showtime off, enter the off command. Maple returns to its
normal interactive mode using the standard prompt.

04 := off:

An alternate method for measuring the time requirements of an exe-
cuted command at the interactive level is to use the time command. The
total CPU time used since the start of the Maple session is returned.
The units are in seconds and the value returned is a floating-point number.
The time command has the following syntax.

10For more information about using the global variables 0i at a later time in a Maple
session, refer to ?history.

332 • Chapter 8: Debugging and Efficiency

time();

To find the time used to execute particular statements or groups of
statements, use the following assignments.

st := time():

... statements to be timed ...

time() - st;

Therefore, you could use the following set of statements to calculate
the amount of time (in seconds) required to add the first 10, 000 powers
of 2 by using the add command.

> st:=time(): add(2^i, i=1..10000): time()-st;

8.402

Profiling a Procedure
Used in conjunction with the profile command, the showprofile com-
mand is used to display run-time information about a procedure. The
run-time information is displayed in tabular form and it contains the
number of calls to the procedure, the nesting level of each call, the CPU
time used, and the number of bytes used by each call. To turn on profiling,
use the profile command.

profile(procedureName);

Then, to display the run-time information collected for the specified
procedure, use the showprofile command. If no argument is supplied
to showprofile, the run-time information for all profiled procedures is
displayed.

showprofile(procedureName);

To illustrate the use of profiling in Maple, consider the following proce-
dures which compute the nth Fibonacci number. Both procedures contain
the same code except that fib1 uses option remember.11

11For more information about option remember, see page 210 or refer to ?remember.

8.4 Creating Efficient Programs • 333

> fib1:=proc(n) option remember;
> if n<2 then
> n
> else
> fib1(n-1)+fib1(n-2)
> end if;
> end proc;

fib1 := proc(n)

option remember ;

ifn < 2 thenn elsefib1(n− 1) + fib1(n− 2) end if

end proc

> fib2:=proc(n)
> if n<2 then
> n
> else
> fib2(n-1)+fib2(n-2)
> end if;
> end proc;

fib2 := proc(n)

ifn < 2 thenn elsefib2(n− 1) + fib2(n− 2) end if

end proc

Turn on profiling for both procedures.

> profile(fib1);
> profile(fib2);

Execute the procedures.

> fib1(10);

55

> fib2(10);

55

Use showprofile to display the run-time information about fib1 and
fib2.

> showprofile();

334 • Chapter 8: Debugging and Efficiency

function depth calls time time% bytes bytes%
--
fib2 10 177 0.040 80.00 95300 88.61
fib1 10 19 0.010 20.00 12244 11.39
--
total: 20 196 0.050 100.00 107544 100.00

By studying the run-time information, particularly the number of calls
to each procedure, you can see that it is more efficient to use option

remember in a recursive procedure.
To turn off profiling, use the unprofile command. If no argument is

supplied to unprofile, all procedures currently profiled are returned to
their original state.

unprofile(procedureName);

When a procedure is unprofiled, all run-time information for that
procedure is lost.

> unprofile();
> showprofile();

function depth calls time time% bytes bytes%
--
--
total: 0 0 0.000 0.00 0 0.00

8.5 Managing Resources

Maple provides a number of commands to use for managing the com-
puter’s resources during computation. In particular, timelimit controls
the maximum amount of time available for a computation, gc causes
garbage collection, and kernelopts provides communication with the
Maple kernel.

Setting a Time Limit on Computations
The timelimit command is used to limit the amount of CPU time for a
computation. The timelimit command has the following syntax, where
time is the time limit (in seconds) to evaluate expression.

8.5 Managing Resources • 335

timelimit(time, expression);

If the expression is successfully evaluated within the specified time,
timelimit returns the value of the expression. If the time limit is reached
before the expression is evaluated, timelimit generates an error message.

> f := proc ()
> local i;
> for i to 100000 do
> 2^i
> end do
> end proc:

> timelimit(0.25, f());

Error, (in f) time expired

Garbage Collection
Garbage collection deletes all objects that are no longer in use by the
program and are occupying space in memory. In Maple, garbage collection
also clears the remember tables of procedures that use an option system

or option builtin by removing entries that have no other references to
them.12

The Maple garbage collection function is gc. The gc command has
the following syntax.

gc();

The gc command explicitly invokes a garbage collection process and
returns NULL. Otherwise, garbage collections are done automatically by
Maple every 1, 000, 000 words used. To change the frequency of automatic
garbage collections, use the kernelopts command.

The kernelopts command can also be used to query other garbage
collection information such as the number of bytes returned after the last
garbage collection, and the number of times garbage collection has been
invoked. The kernelopts command is discussed more in the next section.

12For more information about procedure options, see page 206 or refer to ?options.

336 • Chapter 8: Debugging and Efficiency

Communicating with the Kernel
The kernelopts command13 is provided as a mechanism of communi-
cation between the user and the kernel. You have already seen how to
use kernelopts to include assertions in procedures. Specifically, this
command is used to set and query variables that affect computations
in Maple.14 For example:

• kernelopts(gcfreq) sets or queries the frequency of automatic
garbage collections.

• kernelopts(gcbytesavailable) queries the number of bytes avail-
able after the last garbage collection.

• kernelopts(gctimes) queries the number of times that garbage col-
lection has been invoked.

• kernelopts(memusage) reports the amount of storage used by objects
of different types.

• kernelopts(stacklimit) sets the total amount of stack space, in
kilobytes, that Maple can consume.

For more information about kernelopts, refer to ?kernelopts.

8.6 Exercises

1. The following procedure tries to compute 1− x|a|.

> f := proc(a::integer, x::anything)
> if a<0 then
> a := -a
> end if;
> 1-x^a;
> end proc:

Determine what is wrong with this procedure.

Hint : Use the Maple debugger described in 8.1 A Tutorial Example
and 8.2 Maple Debugger Commands to isolate the error.

13For information about the KernelOpts Maplet application, which provides a graph-
ical user interface to the kernel options, refer to ?Maplets[Examples][KernelOpts].

14For more information about kernelopts, refer to ?kernelopts.

8.7 Conclusion • 337

2. The following recurrence relation defines the Chebyshev polynomials
of the first kind, Tn(x).

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x)

The following procedure computes Tn(x) in a loop for any given integer
n.

> T := proc(n::integer, x) local t1, tn, t;
> t1 := 1; tn := x;
> for i from 2 to n do
> t := expand(2*x*tn - t1);
> t1 := tn; tn := t;
> end do;
> tn;
> end proc:

Warning, ‘i‘ is implicitly declared local to procedure
‘T‘

This procedure has several errors. Which variables must be declared
local? What happens if n is zero or negative? Identify and correct
all errors, using the Maple debugger where appropriate. Modify the
procedure so that it returns unevaluated if n is a symbolic value.

8.7 Conclusion

This chapter surveyed a variety of Maple commands that are available to
help you find errors in procedures, and those available to analyze the time
and memory consumption involved in running a program. In particular,
the Maple debugger was presented as a tool that you can use to find and
correct errors.

338 • Chapter 8: Debugging and Efficiency

9 Introduction to the
Maplet User Interface
Customization System

A Maplet application is a graphical user interface for Maple, which is
launched from a Maple session. It allows a Maple software user to combine
packages and procedures with interactive windows and dialogs.

This chapter provides an overview of the Maplets package. For de-
tailed information and a tutorial, enter ?Maplets at the Maple prompt.

In This Chapter
• Uses of Maplet applications

• Structure of the Maplets package

• Elements used to construct a Maplet application definition

• Example Maplet applications and authoring tools provided in the
package

• Writing and running Maplet applications

9.1 Uses of Maplet Applications

The Maplet user interface customization system can be used to create cus-
tom Maple calculators, interfaces to Maple packages and routines, queries,
and messages.

339

340 • Chapter 9: Introduction to the Maplet User Interface Customization System

Custom Maple Calculators
The Maplet system can be used to create calculators. Students or profes-
sionals, who have little or no experience with Maple, can use the calcula-
tors.

9.1 Uses of Maplet Applications • 341

Interfaces to Maple Packages and Routines
A Maplet application can facilitate changing default values and options
in Maple packages and routines. For example, a package may have a list
of global settings, which users need or want to modify occasionally. A
Maplet application to a Maple package can also be created to help users
learn about a package. For example, many routines have a myriad of
associated options. Giving users an interface to options facilitates the use
of a package. The following Maplet application is a graphical interface to
a function in the LinearAlgebra package.1,2

1For more information on this Maplet application, refer to
?examples/VectorNormMaplet.

2For information on using this Maplet application, refer to
?Maplets[Examples][VectorNorm].

342 • Chapter 9: Introduction to the Maplet User Interface Customization System

Queries
The Maplet system can be used to create queries. Users can be prompted
for information, from the basic name and student number query, to ’Is x
positive?’ and arguments to a routine.

Messages
The Maplet system can be used to create various messages, which display
information, a warning, or an error. Additionally, users can be informed
of their progress in a session.

9.2 The Maplets Package

The Maplets package contains three subpackages:

• Elements

• Examples

• Tools

and one top-level function.

• Display

9.3 Terminology • 343

Elements
Elements are the individual components used to create a Maplet appli-
cation, for example, windows, buttons, and check boxes. A variety of
different elements are used in the Maplets[Examples] subpackage. Each
element has a help page, describing various options.

Examples
Example Maplet applications show how the Maplet system can be used.
The more complicated examples have an associated help page and work-
sheet describing how particular Maplet applications were constructed.
The worksheets guide you from simple to complex Maplet applications.

Tools
Tools are aids for Maple software users developing Maplet applications.

Display
The Display function is used to display (run) a Maplet application.

9.3 Terminology

Maplet Application A Maplet application is a collection of elements,
such as window, layout, dialog, and command elements. A Maplet appli-
cation contains windows and dialogs.

Maplet Application Author A programmer who uses Maple code to
write a Maplet application.

Maplet Application User Someone who interacts with a Maplet appli-
cation.

Layout A layout defines how elements within a Maplet application are
visually assembled.

Window A window should not be thought of as the Maplet application,
but rather as the top-level element within a Maplet application.

Window Element An element that creates a window within a Maplet
application. A Maplet application can contain more than one window.
Each window can contain many elements that control the layout and
function of the window. The Window element is classified under Other
Elements.

344 • Chapter 9: Introduction to the Maplet User Interface Customization System

Window Body Elements Window body elements is a category of ele-
ments that specify viewable elements in a window other than menu bars
and toolbars. There are many viewable elements in the window body cat-
egory, including drop-down boxes, sliders, and tables.

Dialog Element A dialog element has a predefined layout. For a dialog, a
Maplet application author can only specify text. This is different from the
Window element, which can contain other elements, for example, buttons
and layout elements. The dialog elements in the Maplets package include
the color selection and alert dialogs.

9.4 Elements

Each element belongs to one of seven categories:

• Window Body Elements

• Layout Elements

• Menubar Elements

• Toolbar Elements

• Command Elements

• Dialog Elements

• Other Elements

The most significant element, which can be included in a Maplet ap-
plication, is the Window element. A Window element can contain layout,
menu, toolbar, and command elements.

The Elements section of this guide provides:

• Descriptions of individual elements.

• A short section on Reference Options.

Window Body Elements
Button Defines a button that can appear in a Maplet application win-
dow. Each button can be associated with an Action element, which is run
when the button is clicked. The text, font, colors, and other properties of
the button can be modified.

9.4 Elements • 345

CheckBox Displays a box in a Maplet application window which, when
selected, contains a check mark. Like buttons, each check box can be
associated with an Action element, which is run when the check box is
selected or cleared.

ComboBox Displays a box in which users can enter a value or select from
a predefined list of strings. An initial value can be specified, otherwise it
defaults to the first element in the list. The predefined list of strings can
be entered either by using Item elements, or simply as a list of strings.
When the combo box is queried for its value, the currently selected string
is returned.

346 • Chapter 9: Introduction to the Maplet User Interface Customization System

DropDownBox The DropDownBox is similar to the ComboBox, except
that users cannot enter a value. This is most useful when users must select
from a finite set of objects. To view an example of both elements, compare
the VectorNorm and MatrixNorm advanced example Maplet applications
in the LinearAlgebra subpackage of the Maplets[Examples] package.3

Label Contains either a single line of text or an image. If multiple lines
of text are preferred, a TextBox element is more appropriate. A Label

element (text or image) in a running Maplet application cannot be high-
lighted and copied. To create text that can be highlighted and copied
within a Maplet application, use the TextField or TextBox element. For
more information, see TextField or TextBox element later in this section.

3For more information on the MatrixNorm and VectorNorm Maplet applications,
refer to ?Maplets[Examples][MatrixNorm] and ?Maplets[Examples][VectorNorm].

9.4 Elements • 347

ListBox A list box is similar to a drop-down box, in that the user must
select from a list, but more than one selection can be made, and more
than one entry appears on the screen. The Shift and Control keys are
used to make multiple selections. The return value is a comma-delimited
(separated) string, which can be converted to a list of strings by using the
ListBoxSplit function from the Maplets[Tools] subpackage.

348 • Chapter 9: Introduction to the Maplet User Interface Customization System

MathMLEditor Displays, and allows the user to edit and create math-
ematical expressions. To enter mathematical constructs, use the input
expression templates and keyboard. Subexpressions can be deleted, cut,
or copied to the clipboard as MathML. From the clipboard, you can paste
them into a Maple session.

MathMLViewer Displays MathML expressions. The displayed expres-
sion cannot be copied and pasted into a Maple session. The expression
is displayed by using formatted mathematical notation instead of Maple
syntax. For example, the square root symbol is displayed not the Maple
function sqrt.

9.4 Elements • 349

Plotter Displays a 2-D or 3-D static Maple plot in a Maplet application.

350 • Chapter 9: Introduction to the Maplet User Interface Customization System

RadioButton A radio button is similar to a check box. It appears as
a circle, which is filled when selected. Radio buttons should always
be grouped together. This is done by using the ’group’ option, in
combination with the ButtonGroup element. For more information, see
ButtonGroup element in Other Elements on page 361.

Slider Allows users to specify an integer value from a range.

Table Allows data to be arranged into columns. The TableHeader,
TableItem, and TableRow elements are described in the Other Ele-
ments section on page 362.

9.4 Elements • 351

TextBox Amultiple line box for input, output, or labels. The ’editable’
option can be set to true to create input fields and false to create output
fields or labels. Text boxes have pop-up menus, which can be accessed by
right-clicking the field. By default, an editable=true text box has the
entries Cut, Copy, Paste, Delete, and Select All in the pop-up menu.
An editable=false text box has Copy and Select All in the pop-up
menu.

Note: Other entries can be appended to the associated pop-up menu,
by using the ’popupmenu’ option.

352 • Chapter 9: Introduction to the Maplet User Interface Customization System

TextField A single line input or output field depending on whether the
’editable’ option is set to true or false. Text fields, like text boxes,
have pop-up menus, which can be accessed by right-clicking the field.
Entries can be appended to the pop-up menu. For more information, see
the previous description for TextBox or the Menu Elements section on
page 354.

ToggleButton A toggle button is similar to a check box, except in ap-
pearance. The toggle button can contain text or an image on the face of
the button.

9.4 Elements • 353

Layout Elements
The layout of a window describes how various elements in a Maplet ap-
plication are positioned. Two different forms of layout are provided by
the elements BoxLayout and GridLayout. Additionally, nested lists can
be used to define box layouts. When writing a Maplet application, text
strings, user prompts, or text fields are defined as expressions in lists. A
Maplet application window definition includes the main list, which con-
tains the lists of text strings, user prompts, and other elements.

The following elements are classified as layout elements:

• BoxCell

• BoxColumn

• BoxLayout

• BoxRow

• GridCell

• GridLayout

• GridRow

For details about each element, see the help pages.

BoxLayout A relative layout scheme in which you can control where
items appear horizontally or vertically relative to other elements. For
horizontal control in box layout, use the BoxRow element. For vertical
control in box layout, use the BoxColumn element.

GridLayout A square layout where all elements must appear within a
square grid. Grid layout is best used for simple layout designs. For complex
layout designs, box layout is recommended.

Nested Lists Nested lists (lists of lists) can be used to define box layouts.
In Maple, a list is an ordered sequence of comma-delimited expressions
that is enclosed in square brackets ([]).

For example:

> List := [1,5,7];

List := [1, 5, 7]

A nested list is an ordered sequence of expressions that is enclosed in
square brackets, in which each expression can be a list.

354 • Chapter 9: Introduction to the Maplet User Interface Customization System

For example:

> NestedList:= [1, [2,3], [4,[5,6]], 7, 8, [9,10]];

NestedList := [1, [2, 3], [4, [5, 6]], 7, 8, [9, 10]]

MenuBar Elements
The following elements are classified as menubar elements:

• MenuBar - Must be defined in a Window element.

• Menu - Must be defined in a Menu, MenuBar, or PopupMenu element.

• MenuItem - Must be defined in a MenuBar or PopupMenu element.

• CheckBoxMenuItem - Must be defined in a MenuBar or PopupMenu

element.

• RadioButtonMenuItem - Must be defined in a MenuBar or PopupMenu
element.

• MenuSeparator - Must be defined in a MenuBar or PopupMenu element.

• PopupMenu - Must be defined in a TextField or TextBox element.

A menu bar can contain any number of menus. Each menu can
contain items, defined by using the MenuItem, CheckBoxMenuItem, and
RadioButtonMenuItem elements, and submenus, defined by nesting Menu

elements. Separators can be used to group the menu into logically distinct
groups separated by horizontal bars.

9.4 Elements • 355

The default pop-up menu contains Copy and Select All. If the box
or field is editable, it also contains the selection items Paste, Delete,
and Clear. Other entries can be appended to the pop-up menu.

ToolBar Elements
A toolbar can contain any number of buttons. The buttons can be grouped
into logically distinct groups by using a separator, which produces a large
space between adjacent buttons. The following elements are classified as
toolbar elements:

• ToolBar - Must be defined in a Window element.

• ToolBarButton - Must be defined in a ToolBar element.

• ToolBarSeparator - Must be defined in a ToolBar element.

356 • Chapter 9: Introduction to the Maplet User Interface Customization System

Command Elements
A Maplet application can perform actions in response to user actions such
as clicking a button or changing the value in a text field. Each command
element is performed before the next one is started. These are non-visual
elements. The following elements are classified as command elements:

• CloseWindow

• Evaluate

• RunDialog

• RunWindow

• ShutDown

• SetOption

CloseWindow Closes a running window by referencing the window.

Evaluate The Evaluate command element runs a Maple procedure with
the given set of arguments args in the underlying Maple session. An
Evaluate element can contain Argument elements.

RunDialog Displays a dialog element. The RunDialog element takes
only one option ’dialog’, which is a reference to the dialog to be run. If
the dialog is already running, nothing happens.

RunWindow Displays a Window element. The RunWindow element takes
only one option ’window’, which is a reference to the window to be run.
If the window is already running, nothing happens.

Note: There are separate RunDialog and RunWindow command elements
because the Maplets[Elements][Window] element is intrinsically differ-
ent from the Maplets dialog elements. A dialog has a predefined structure.
A Maplet application author can specify options for a dialog, but cannot
add elements. A window does not have a predefined structure. A Maplet
application author specifies its structure by using elements and options.
They also behave differently. For example, a window can be minimized.

SetOption Allows values of certain options to be changed while the
Maplet application is running. For example, if a user clicks a button,
the ’onchange’ option of the button can use the SetOption element to
initiate a change such as clearing a text field. The SetOption element is
used within a Maplet application and the Set routine (see 9.6 Tools) is
used within a procedure.

9.4 Elements • 357

Shutdown Closes a running Maplet application. Optionally, it can send
a return value to the Maple session. It can return specific values stored
within the Maplet application, for example, the content of a text field, or
a fixed value.

Dialog Elements
Dialogs are small windows that provide information, such as alert or warn-
ing messages, and gather input, such as a filename, from users. Users
respond to a dialog by clicking a button. The Maplet application author
can modify only specific features in the layout, for example, the text in
the title bar, in a caption, or on a button. Dialogs are displayed by using
the RunDialog element.

Important: Dialog element values cannot be queried after the dialog
closes. As a Maplet application author, it is important to create a Maplet
application that returns relevant information to the Maple session.

AlertDialog Draws attention to a potential issue. Allows users to indi-
cate approval to continue (OK) or to heed the warning (Cancel).

358 • Chapter 9: Introduction to the Maplet User Interface Customization System

ColorDialog A standard color chooser that provides users with interfaces
for choosing a color: Color swatches, RGB palettes, and HSB palettes.

ConfirmDialog Allows users to specify whether an action is performed.
A dialog box with a statement like: "Is x greater than 0 ?" is displayed
with the options Yes (and exit), No (but exit), and Cancel (do not exit).

9.4 Elements • 359

FileDialog A standard file chooser dialog.

InputDialog The InputDialog element is similar to the AlertDialog

element except that it contains a text field in which the user can enter or
modify data. An initial value can be included in the text field of the box
when it is displayed.

360 • Chapter 9: Introduction to the Maplet User Interface Customization System

MessageDialog Presents users with information and closes the dialog
when the OK button is clicked.

QuestionDialog Poses a question to the user and allows the user to
reply, Yes or No.

9.4 Elements • 361

Other Elements
Action Defines an action in a Maplet application. Contains any number
of Action or command elements to be executed.

Argument Specifies the argument of a Maple function call. It can be
used only in an Evaluate element.

ButtonGroup A radio button must be associated with a button group
so that at any time, only one button in the group can be selected. By
using the ’group’ option in combination with the ButtonGroup element,
radio buttons are grouped, as required.

Font Specifies a font for an element. The fonts available are dependent
on your operating system. If you specify a family that is not recognized by
your system, the Unrecognized Font message dialog displays. To view
the Maplet application using the default font, click OK. To determine
which font families are recognized, click Valid fonts....

Image Specifies a jpeg or gif image in a Maplet application.

Item Specifies an entry in a ComboBox, DropDownBox, or ListBox ele-
ment. The Item element cannot contain other elements.

Maplet Contains the elements defining a Maplet application. The top-
level Maplet application element.

Return Encapsulates values to be returned to the Maple session when
the Maplet application closes. It can contain any number of ReturnItem
elements.

ReturnItem Specifies which values are to be returned to the Maple ses-
sion when the Maplet application closes. It cannot contain other elements.

362 • Chapter 9: Introduction to the Maplet User Interface Customization System

TableHeader A Table element contains up to one TableHeader ele-
ment, which displays the text in the header of the table, and any number
of TableRow elements.

Note: A table with a header must be specified in a scroll pane, that is, a
BoxCell or GridCell element with the ’vscroll’=’as_needed’ option.
Otherwise, the header is not displayed. If a table without a header is spec-
ified in a scroll pane, default header values are used: A,...Z, AA,...ZZ...

TableItem Specifies an entry in a Maplet application table header or
row.

TableRow Specifies a row in a Maplet application table. The individual
columns in a row are defined by using the TableItem element.

Note: Each TableRow must have the same number of TableItem ele-
ments. The number of TableItem elements in the TableHeader, if spec-
ified, must equal the number of TableItem elements in each TableRow.

9.5 Example Maplet Applications • 363

Window Defines a window in a Maplet application. A Maplet applica-
tion can contain more than one Window element. Each window can contain
many elements that control the layout and function of the window. The
MenuBar and ToolBar elements (or a reference to these elements) must be
defined within the Window element. When creating a window, the Maplet
application author can choose from options that control the height, width,
and whether the window is resizable, visible, or contains a title. A com-
plete list of options is listed in the Maplets[Elements][Window] help
page.

Reference Options
Most elements can be given an identifying reference by using the ’reference’
option, or as a short cut, by placing the reference in an index.

Long form: TextField(’reference’= ’TF1’, ’value’ = "Hello")

Short form: TextField[TF1](’value’ = "Hello")

If references are specified by using both an index and an option, the
index reference takes precedence. The reference can be a name or a string.
Note that the variable name TF1 and the string "TF1" are interpreted
as different references.

9.5 Example Maplet Applications

The Maplets[Examples] subpackage provides examples of how Maplet
applications can be used to solve problems. These Maplet applications
provide information to a user, query a user, or display an interface to a
package or routine. The Examples package contains the following routines
and subpackages:

364 • Chapter 9: Introduction to the Maplet User Interface Customization System

• Alert

• Confirm

• GetColor

• GetEquation

• GetExpression

• GetFile

• GetInput

• Message

• Question

• Selection

• SignQuery

Advanced Example Maplet Applications:

• Integration

• KernelOpts

• ShowTable

• LinearAlgebra subpackage.

Linear Algebra Subpackage
The LinearAlgebra subpackage contains the following example Maplet
applications, which are interfaces for some of the LinearAlgebra routines.

• Constructors - BezoutMatrix and HilbertMatrix

• Queries - ConditionNumber

• Solvers - QRDecomposition

• Eigenvalue Problems - SingularValues

• Standard Routines - MatrixNorm and VectorNorm

Using the Example Maplet Applications
As stated in 9.1 Uses of Maplet Applications, the Maplet system
can be used to create calculators, interfaces to Maple packages and rou-
tines, queries, and messages. The following example Maplet applications
demonstrate these four major uses.

9.5 Example Maplet Applications • 365

Creating a Calculator and Interface to a Maple Package The
LinearAlgebra subpackage shows how Maplet applications can be used
to support an existing package.

Creating Queries The example GetEquationMaplet application prompts
the user for an equation. If the user enters an expression, it is set equal
to zero when the user clicks OK. The equation is returned by the Maplet
application.

366 • Chapter 9: Introduction to the Maplet User Interface Customization System

Creating Messages The example Message Maplet application displays
a message to the user.

For a list of all example Maplet applications, refer to
?examples,ExampleMaplets.

9.6 Tools

Maplets tools are aids for Maplet application authors. The Maplets[Tools]
subpackage contains routines for manipulating and interacting with
Maplet applications and Maplet application elements.

The package can be accessed by using either the long or short form
of the function name in the command calling sequence. For example, the
short form is with(Maplets[Tools]). For complete details regarding the
command calling sequence, see the Maplets[Tools], overview help page.

The following functions are available in the Tools subpackage:

AddAttribute Adds attributes to a previously constructed element. For
example, if you have created and run a Maplet application that displays
a button, but want to add color to the button, you must add a color
attribute (’color’="#FF00FF") to the Maplet application code. Instead
of recoding the Maplet application, you can test the look of the Maplet
application by using the AddAttribute function.

AddContent Adds content to a previously constructed element.

Get Retrieves the value of a specified element option from a running
Maplet application. Must be used in a procedure. Cannot be used in a
Maplet application definition.

ListBoxSplit Converts a list box value to a list of strings.

9.7 Running a Maplet Application • 367

Print Prints the XML data structure of a Maplet application. Default
values are included. This is useful when investigating why a Maplet ap-
plication does not display as expected.

Set Cannot be used in a Maplet application definition. Must be used in
a procedure. The Set function sets the value of a specified element option
in a running Maplet application. The SetOption (a command element)
is used in a Maplet application.

StartEngine Starts the Maplets environment.

StopEngine Stops the Maplets environment. All running Maplet appli-
cations are closed.

Maplet System Global Variables
There are two global variables in the Maplets[Tools] subpackage that
are useful tools to Maplet application authors:

lastmaplet Each time a user runs a Maplet application by using the
Display function, the Maplet application is assigned to the global vari-
able, lastmaplet. This Maplet application can be used to debug or dis-
play the last Maplet application run.

thismaplet Each time a procedure is evaluated by using an Evaluate

action element, the global variable, thismaplet is assigned the handle for
the Maplet application that called the procedure. After evaluation, the
variable is reset to its previous value.

9.7 Running a Maplet Application

To run a Maplet application, you must use the top-level Display func-
tion. In the following example, the "Hello World " Maplet application is
displayed (or run).

> Maplets[Display](Maplet["Hello World",
> Button("OK", Shutdown())]);

368 • Chapter 9: Introduction to the Maplet User Interface Customization System

For more information on running a Maplet application, refer to chap-
ter 9 of the Maple User Manual.

9.8 Writing a Maplet Application

Defining a Maplet Application
Each Maplet application must be defined in a top-level element Maplet.
For example, a Button element is defined in the following Maplet element.

> Maplet(["Hello World", Button("OK", Shutdown())]);

Note: To run this Maplet application, use the top-level Display func-
tion. For more information, see 9.7 Running a Maplet Application.

Maplet Application Programming Style Guidelines
1. Use only one element definition per line.

2. Indent each subsequent nested element or list.

3. Place closing parentheses, brackets of elements, or nested lists at the
same level of indentation as the opening line.

4. The Font and Image elements can be defined anywhere. The Maplet
application code, however, is easier to read if these elements are de-
fined first in the Maplet application. These two elements are listed
under the category of Other Elements on page 361.

5. Keep attributes separate from the content of an element.

6. Place unevaluation quotes (right single quotes) around any symbols
or names used as option names or references. Otherwise, if any of the
symbols or names are assigned values in the user’s Maple session, your
Maplet application definition will generate errors.

9.9 After Reading This Chapter • 369

7. In a procedure, use the use statement rather than the with statement.
If another user runs your code, the with command affects that user’s
environment, while use does not.

The following illustrates correct code structure.

> use Maplets[Elements] in
> maplet := Maplet(
> ’onstartup’ = RunWindow(’W1’),
> Font[’F1’](’family’ = "times"),
>
> Window[’W1’]("Vector Norm",
> [
>
> BoxCell(’left’,
> TextBox(’editable’ = ’false’, ’width’ = 50,
> ’font’ = ’F1’, "A vector norm is a function
> ||V|| that satisifies the conditions of a norm."
>)
>),
> [
> "Norm (Select from list or enter non-negative
> number):",
> ComboBox[’CoB1’](["infinity", "1",
> "Euclidean (2)", "Frobenius"])
>],
> [
> "Vector has real entries: ",
> CheckBox[’ChB1’](’true’)
>],
> [
> "Evaluate result: ",
> CheckBox[’ChB2’](’true’)
>],
> [
> Button[’B1’]("OK", Shutdown([’CoB1’,’ChB1’,
> ’ChB2’])),
> Button[’B2’]("Cancel", Shutdown())
>]
>]
>)
>);
> end use:
> Maplets[Display](maplet);

9.9 After Reading This Chapter

When first reviewing the help pages:

370 • Chapter 9: Introduction to the Maplet User Interface Customization System

1. Read the short Introduction to Maplets help page (?Maplets).

2. Depending on your experience with the Maple software and Maplets

package, you can choose from three paths:

• As a Maplet application user, select the Maplet Application User
Hints link.

• As a beginning Maplet application author, select the Roadmap to
Using the Maplet User Interface Customization System link. The
roadmap guides you through theTutorial: Creating a Maplet Appli-
cation, Maplet Application Code Style Guide worksheet, Maplet
Application Layout Guidelines worksheet, Overviews of the Ele-
ments and Tools subpackages, and Example Maplet Applications.

• If you are an experienced Maplet application author, select the
Maplets Package Index link. You can navigate to all the Maplets

help pages and worksheets from this index.

9.10 Conclusion

This book described the basic programming concepts in the Maple lan-
guage: the construction of expressions and other statements from tokens,
data structures, flow control, procedures, I/O, debugging, and efficiency.
In this chapter, the Maple Maplets package, which provides the tools
necessary to create graphical user interfaces to Maple, was introduced.

For more information about programming topics, refer to the Maple
online help system and the Maple Advanced Programming Guide.

Index

!, 27, 51, 78, 89
$, 26, 27, 89, 187

vs seq, 186
%, 27, 77, 89, 105
%%, 77
%%%, 77
&, 27, 81, 89
&*, 26
’, 49
(), 49
*, 8, 26, 71, 89
+, 8, 26, 27, 71, 89
,, 26, 50
-, 8, 26, 27, 71, 89
->, 26
., 26, 27, 71, 74, 89
.., 26, 77, 89
/, 8, 26, 71, 89
:, 7, 48
::, 26
:=, 8, 20, 26
;, 7, 48
<, 26, 82, 89
<=, 26
<>, 26, 50, 82, 89
=, 20, 26, 89
=>, 82, 89
>, 6, 26, 82, 89
>=, 26, 82, 89
?, 7, 51
@, 26, 76, 89
@@, 26, 76, 89
[], 50
#, 51
%, 25
\, 51
", 7

||, 30, 42
names, 30
strings, 42
vs cat, 32, 33

{}, 50
^, 26, 71, 89
‘, 49
2-D, 349
3-D, 349

Action, 361
add, 183

vs sum, 186
AddAttribute, 366
AddContent, 366
adjacency matrices, 248
Advanced Programming Guide,

2
AlertDialog, 357
and, 26, 85, 89
anything, 107
args, 224, 234
Argument, 356, 361
arithmetic operators, 8, 71
Array

accessing, 148
bounds, 148
data type, 148
entries, 148
indexing function, 148
op, 148
operands, 148

array

accessing, 147
bounds, 147
data type, 147
entries, 147

371

372 • Index

indexing function, 147
op, 147
operands, 147

arrow option, 207, 231
ASSERT, 320
assertions

in procedures, 320
return value type, 198
variable type, 202
warnings, 322

assignment, 20
:=, 8
names, 8
vs. equality, 20

assignment statement, 111
assuming, 88, 89
audience, 1

binary operators, 26
binary search, 242
BoxCell, 353

TableHeader, 362
BoxColumn, 353
BoxLayout, 353
BoxRow, 353
break statement, 118, 179
breakpoints

explicit, 298
removing, 298
removing explicit, 300
setting, 297

built-in routines, 6, 13
builtin option, 16, 207
ButtonGroup, 350, 361

RadioButton, 361
ToggleButton, 361

C programming language
and Maple code, 13
code generation, 279

calculator, 340, 365

call_external option, 208
calling

procedures, 13
cat, 29, 41

names, 29
strings, 41
vs ||, 32, 33

Catalan, 35
characters

special, 24
CheckBox, 345
CheckBoxMenuItem, 354
classic worksheet, 1
CloseWindow, 356
codegen, 279
CodeGeneration, 279
color

HSB palettes, 358
RGB palettes, 358
swatches, 358

ColorDialog, 358
columns, 350
ComboBox, 345

Item, 361
comma-delimited expression, 353
comma-delimited string, 347
command calling sequence, 366
command-line interface, 6
command-line version, 1
comments, 47, 226
complex numbers, 68

types of, 68, 69
composition, 76

operators, 26, 76, 89
repeated, 76

concatenation, 29–33, 41–43, 55
names, 29–33
strings, 32–33, 41–43

conditional execution, 167–172
ConfirmDialog, 358
connected graphs, 246

Index • 373

constants
complex numbers, 37
floating-point numbers, 37
fractions, 37
integers, 37

constants, 35
cont, 305
control key, 347
converting

data structures, 158
sequences to sets or lists, 158

Copyright option, 208, 225
creating help pages, 227
customer feedback, 4

data
exporting, 278
importing, 274
reading, 271
saving, 271

data structures, 89–91, 123–166
and procedures, 239
converting, 158

DEBUG, 298
debugger, 284, 296

breakpoints, 297, 298
clearing watchpoints, 301
controlling execution, 305
explicit breakpoints, 298
interactive, 284
invoking, 296
numbering statements, 296
removing explicit breakpoints,

300
tutorial, 284
watchpoints, 301, 302

debugging
procedures, 284, 296

default
pop-up menu, 355

define_external, 208

defining
Maplet applications, 368
procedures, 9

definition
procedure, 12

description, 226
detecting

errors, 315
Digits, 35
Display, 343, 367
display

procedure, 12
displaying

library source code, 229
ditto operators, 25, 77
do loop, 176
double quotes

", 7
and strings, 7

DropDownBox, 346
Item, 361

elif, 167
else, 168
end proc, 9, 193
entering

input, 6
statements, 6

environment
worksheet, 6

equality, 20
testing
evalb, 20

vs. assignment, 20
equations, 20
error statement, 118, 219, 323
error return, 219
errors

detecting, 315
syntax, 19
trapping, 302, 325

374 • Index

eval, 15
evalb, 20
Evaluate, 356

thismaplet, 367
evaluation

delayed, 49
eval, 15
evalb, 20
full, 14
last name, 14
of parameters, 200

evaluation rules
parameters, 199
variables, 203

exceptions, 323
executing

procedures, 10, 13, 194
explicit return, 217
exponent, 66
exporting

data, 278

factorial operator, 78
FAIL, 35
false, 35
FileDialog, 359
files

data, 271
language, 270
reading, 273, 274
worksheet, 270
writing, 271, 278

floating-point numbers
parts, 66

flow control, 167–191
Font, 361
for

clauses, 174
loop, 173
default clause values, 174

for..from loop, 172, 173

for..in loop, 173, 176
Fortran programming language

code generation, 279
full evaluation, 14

and chained assignments, 14
and named objects, 14
vs. last name evaluation, 14

functional operators, 231
functions

composition of, 76

gamma, 35
Get, 366
Getting Started Guide, 2
gif, 361
global

variables, 201, 367
global variables, 201
graphical interface

versions, 1
graphical user interface, 6
graphs

connected, 246
GridCell, 353

TableHeader, 362
GridLayout, 353

definition, 353
GridRow, 353
GUI, see graphical user interface

help, 7
?, 7
online, 7

help pages
creating, 227
Introduction to Maplets, 370
Maplets Package Index, 370
Roadmap, 370
User Hints, 370

I, 35
I/O, 257–282

Index • 375

disk, 269
file formats, 270
files
data, 271
language, 270
worksheet, 270

keyboard, 257–269
screen, 257–269

if

vs map, 185
if operator, 171
if statement, 167

general form, 168, 170
nested, 169

Image, 361
implies, 26, 85, 89
importing

data, 274
in, 89
indent, 368
infinity, 35
initially known names, 35
inline option, 209
input

and output, 257–282
data, 271
entering, 6
file, 273, 274
interactive, 264
prompt (>), 6
terminal, 264, 265

InputDialog, 359
integer

subtypes, 52
interactive debugger, 284
interactive input, 264
interface

command-line, 6
worksheet, 6

interface, 15, 258, 322
interrupting

Maple computation, 16
intersect, 26, 88, 89
into, 305
invalid arguments, 19
invoking

debugger, 296
procedures, 10, 13

Item, 361

Java programming language
code generation, 279

jpeg, 361

kernel
about, 6
built-in routines, 6, 13
C programming language, 13
fast computations, 13
size, 6

kernelopts, 320
keywords, 25

Label, 346
last name evaluation, 14, 229

and procedures, 15
and tables, 15
vs. full evaluation, 15

last statement return, 195
lasterror, 35
lastexception, 324
lastmaplet, 367
libname, 35
library

about, 6
code
viewing, 15

packages, 6
routines, 6
in statements, 9

library source code
displaying, 229

line continuation, 47, 225

376 • Index

LinearAlgebra subpackage, 364
MatrixNorm, 346
VectorNorm, 346
VectorNorm Maplet example

application, 341
list, 309
list of lists, 353
ListBox, 347

Item, 361
ListBoxSplit, 366
lists, 126

applying functions to, 132
concatenating, 128
inserting elements, 129
manipulating, 128
replacing elements, 130
reversing order, 131
sorting, 131
testing membership, 128

local variable, 12
in procedures, 11, 12

local variables, 201
logical operators

truth tables of, 87
loop invariants, 320
looping, 172–187

do loop, 176
for loop, 173
for..from loop, 172, 173
for..in loop, 173, 176
while loop, 177

lprint, 262

mantissa, see significand
manual

audience, 1
conventions, 2
customer feedback, 4
set, 2
using, 3

map, 180, 232

vs if, 185
Maple

clearing memory, 17
commands, 9
components, 5
computation
interrupting, 16
stopping, 16

kernel, 6
library, 6, 14
library routines, 9
memory
clearing, 17

modularity of, 6
parts of, 5
platforms, 6
programming, 3
prompt (>), 6
restart, 17
restarting, 17
statements, 7
user interface, 6
vs. traditional languages, 3
worksheet, 6

Maple Advanced Programming
Guide, 2

Maple Debugger, 284, 296
tutorial, 284

Maple Getting Started Guide,
2

Maple session
returning information, 357
returning values, 361

Maple User Manual, 2
maplemint, 329
Maplet

applications, 1
Maplet

top-level, 361, 367
Maplet application

alert message, 357

Index • 377

calculator, 340
close, 357
defining, 368
definition, 339, 343
layout, 343
message, 342
programming indent, 368
programming style, 368
running, 343, 367
Shutdown, 357
window, 343
window body elements, 344
window definition, 353
with statement, 369
writing, 368

Maplet application author, 343
tools, 366

Maplet application button, 344
ButtonGroup, 361
group, 352, 355
RadioButton, 350
ToggleButton , 352

Maplet application calculator, 365
Maplet application categories, 344
Maplet application command el-

ements, 356
Maplet application default

table header values, 362
Maplet application default op-

tions
changing, 341

Maplet application default values
changing, 341

Maplet application dialog elements,
357

definition, 344
Maplet application dialogs

AlertDialog, 357
ColorDialog, 358
ConfirmDialog, 358
FileDialog, 359

InputDialog, 359
MessageDialog, 360
QuestionDialog, 360

Maplet application elements
Action, 361
AlertDialog, 357
Argument, 361
BoxCell, 353
BoxColumn, 353
BoxLayout, 353
BoxRow, 353
Button, 344
ButtonGroup, 361
CheckBox, 345
CheckBoxMenuItem, 354
CloseWindow, 356
ColorDialog, 358
ComboBox, 345
command, 356
ConfirmDialog, 358
dialog, 357
DropDownBox, 346
Evaluate, 356
FileDialog, 359
Font, 361
GridCell, 353
GridLayout, 353
GridRow, 353
Image, 361
InputDialog, 359
Item, 361
Label, 346
layout, 353
ListBox, 347
MathMLEditor, 348
MathMLViewer, 348
Menu, 354
MenuBar, 354
MenuItem, 354
MenuSeparator, 354
MessageDialog, 360

378 • Index

non-visual, 356
other, 361
Plotter, 349
PopupMenu, 354
QuestionDialog, 360
RadioButton, 350
RadioButtonMenuItem, 354
Return, 361
ReturnItem, 361
RunDialog, 356
RunWindow, 356
SetOption, 356
Shutdown, 357
Slider, 350
Table, 350
TableHeader, 362
TableItem, 362
TableRow, 362
TextBox, 351
TextField, 346, 352
ToggleButton , 352
ToolBar, 355
ToolBarButton, 355
ToolBarSeparator, 355
Window, 363
window, 344
window body, 344

Maplet application examples, 363,
364

advanced, 364
GetEquation, 365
help page, 366
Message, 366

Maplet application layout
boxlayout, 353
complex, 353
horizontal, 353
nested lists, 353
simple, 353
vertical, 353

Maplet application layout elements,
353

Maplet application menu bar el-
ements, 354

CheckBoxMenuItem, 354
Menu, 354
MenuBar, 354
MenuItem, 354
MenuSeparator, 354
PopupMenu, 354
RadioButtonMenuItem, 354

Maplet application message
alert, 357
warning, 357

Maplet application options
changing, 356
editable, 351, 352
group, 350, 361
height, 363
reference, 363
resizable, 363
title, 363
visible, 363
vscroll, 362
width, 363

Maplet application queries
creating, 342
GetEquation, 365

Maplet application reference op-
tions, 363

Maplet application title
Window element, 363

Maplet application toolbar ele-
ments, 355

Maplet application tools, 366
AddAttribute, 366
AddContent, 366
Get, 366
global variables, 367
lastmaplet, 367
ListBoxSplit, 366

Index • 379

Print, 366
Set, 367
StartEngine, 367
StopEngine, 367
thismaplet, 367

Maplet application top-level
function, 367

Maplet application user, 343
Maplet application vscroll

as needed, 362
Maplet application window body

elements, 344
Maplet system

Display function, 343, 367
global settings, 341
uses, 339

Maplet system help pages
Introduction to Maplets, 370
Maplets Package Index, 370
Roadmap, 370
User Hints, 370

Maplets, 1
Maplets elements, 343
Maplets examples, 343
Maplets tools, 343
Maplets

Elements subpackage, 344–
363

Examples subpackage, 363–
366

LinearAlgebra subpackage,
341, 364

constructors, 364
eigenvalue problems, 364
queries, 364
solvers, 364
standard routines, 364

package, 339–370
Tools subpackage, 366–367

Maplets[Elements], 343
Maplets[Examples], 343

Maplets[Tools], 343
MathMLEditor, 348
MathMLViewer, 348
MATLAB programming language

code generation, 279
matrices

adjacency, 248
Matrix, 162
matrix, 162
MatrixNorm Maplet application,

346
memory

clearing the internal, 17
Menu, 354
MenuBar, 354

Window element, 363
MenuItem, 354
MenuSeparator, 354
message, 342
MessageDialog, 360
mint, 329
minus, 26, 88, 89
missing operator, 18
mod, 26, 79, 89
modp, 79
mods, 79, 80
mul, 183

vs product, 186
multiple selections, 347
multiplication

*, 18
missing operator, 18
non-commutative, 26, 74

names
assignment, 8
initially known, 35
procedure, 12
special characters in, 33

nargs, 224, 235
nested

380 • Index

if statements, 169
lists, 353

networks, 246
neutral operators, 81
new, 246
next, 305
next statement, 118, 179
non-commutative multiplication

operator, 74
non-visual Maplet application el-

ements, 356
nops, 97
not, 27, 85, 89
NULL, 35
nullary operators, 25
numbering statements, 296

one-level evaluation, 204
online help, 7
op, 97
operands

procedures, 237
operator option, 209, 231
operators

!, 78
%, 77
%%, 77
%%%, 77
., 74
.., 77
<, 82
<>, 82
=>, 82
>, 82
>=, 82
@, 76
@@, 76
and, 85
arithmetic, 8, 71
assuming, 88
binary, 26

composition, 76
ditto, 77
factorial, 78
if, 171
implies, 85
intersect, 88
logical, 85
minus, 88
mod, 79
modp, 79
mods, 79
neutral, 81
non-commutative multiplica-

tion, 74
not, 85
or, 85
precedence rules, 89
range, 77
relational, 82
set, 88
subset, 88
unary, 27
union, 88
xor, 85

options
arrow, 207
builtin, 16, 207
call_external, 208
Copyright, 208, 225
inline, 209
operator, 209, 231
remember, 210
system, 212
trace, 213

or, 26, 85, 89
Order, 35
order

sort, 131
of evaluation, 200

other Maplet application elements,
361

Index • 381

outfrom, 305
output

and input, 257–282
data, 271
file, 271, 278
screen, 257

packages
library, 6

parameter return, 220
parameters

actual, 195, 197
evaluating, 200
evaluation rules, 199
formal, 195, 196
type-checking, 197

parse, 268
Pi, 35
plot, 349
Plotter, 349
plotting

polynomial roots, 243
pop-up menu, 351

appended entries, 351, 355
default, 355

PopupMenu, 354
precedence rules

operator, 89
predefined structure, 356
preface, 1
premature end of input, 17
pretty print

MathMLViewer, 348
Print, 366
print, 15, 260
printf, 262
printlevel, 35, 260, 315
proc, 9, 193
procedure

type, 236
procedures, 9, 193–256, 366, 367

accessing operands, 237
actual parameters, 195, 197
and colons, 12
and data structures, 239
and semicolons, 12
assertions, 320
body, 215
breakpoints, 297, 298
built-in, 13
C programming language, 13
calling, 13, 194
characteristics of, 12
clearing watchpoints, 301
comments, 226
components, 196
controlling execution, 305
Copyright, 208, 225
debugging, 284, 296
defining, 9, 193
alternate methods, 231
functional operators, 231
unapply, 232
unnamed, 232

definitions, 11, 12, 193
components, 196
displaying, 13
multi-line, 225
omitting semicolons, 12
suppressing display, 13
vs value, 12

description, 214, 226
display, 12
suppressing, 13

documenting, 225
empty parentheses, 12
end proc, 9, 193
entering, 10
on multiple lines, 10
on one line, 10

error return, 219
evaluation rules, 228

382 • Index

exceptions, 323
executing, 10, 194
explicit breakpoints, 298
explicit return, 217
formal parameters, 195, 196
formatting, 225
functional operators, 231
global variables, 201
individual commands, 12
input required, 11
interpretation, 215
introduction, 9
last name evaluation, 15, 229
last semicolon, 12
last statement executed, 10,

13
last statement return, 195
local variables, 11, 12, 201
Maple library, 13
multi-line, 225
name, 11, 12
naming, 194
numbering statements, 296
omitting semicolons, 12
one-level evaluation, 204
op, 237
operands, 237
options, 206–214
output, 12
parameter return, 220
parameters
actual, 195, 197
evaluation rules, 199
formal, 195, 196
type-checking, 197

proc, 9, 193
read, 228
readability, 10
removing explicit breakpoints,

300
result, 10, 13

returns, 217–224
error, 219
explicit, 217
last statement, 195
parameter, 220
unevaluated, 222

reusing code, 13
running, 10
save, 227
simple, 3, 9
simplification, 215
special evaluation rules, 228
statements within, 12
syntax, 329
tracing, 315, 317, 319
undeclared variables, 205
unevaluated return, 222
unnamed, 232
use statement, 369
user-defined, 13
using, 10, 11
value, 12, 13
variables, 201
declarations, 201
evaluation rules, 203
global, 201
local, 11, 12, 201
one-level evaluation, 204
type assertions, 202
undeclared, 205

viewing
built-in routines, 16
definitions, 15

watchpoints, 301, 302
writing, 3

procname, 224
product, 187

vs mul, 186
programming

indent, 368

Index • 383

Maple vs. traditional languages,
3

rationale for learning, 3
style, 368

programs, see procedures
prompt (>), 6
punctuation marks, 48

queries
creating, 342
GetEquation Maplet appli-

cation, 365
QuestionDialog, 360
queues, 161
quit, 305
quit statement, 119

RadioButton, 350
RadioButtonMenuItem, 354
raising exceptions, 323
range operator, 77
read statement, 117, 228
readdata, 277
reading

data, 271
file data, 274
from terminal, 264, 265
variable values, 273

readline, 264, 266, 268
readstat, 265, 268
reference options, 363

long form, 363
short form, 363

relational operators, 82
remember option, 210
remember tables, 210
remove, 181
repetition, 115, 172–187
reserved words, 25
restart, 17
result

computing, 7
displaying, 7
preventing display, 7

Return, 361
return, 305
return statement, 118, 217
return values, 217–224

type assertion, 198
returning

information to Maple session,
357

values to Maple session, 361
ReturnItem, 361
returns

error, 219
explicit, 217
last statement, 195
parameter, 220
unevaluated, 222

right single quotes, 368
routines

built-in, 13
library, 6
reusing code, 13
user-defined, 13

rules
precedence, 89

RunDialog, 356, 357
running

Maplet applications
Display, 343, 367

procedures, 10, 194
RunWindow, 356

save statement, 117, 227
saving

data, 271
variable values, 271

scroll pane, 362
search

binary, 242

384 • Index

select, 181
selection, 167–172

operation, 152
statements, 114

selectremove, 182
semicolons

omitting in procedures, 12
separators, 354
seq, 77, 183
Set, 367
set operators, 88
SetOption, 356

reference options, 363
Set routine, 356

sets, 123
applying functions to, 125
arithmetic, 124
manipulating, 124
testing equality, 125
testing membership, 125

shift key, 347
showstat, 296, 297
showstop, 312
Shutdown, 357
significand, 66
SingularValues, 365
Slider, 350
software

Maple, 5
sort

order, 131
special characters

>, 6
*, 8
+, 8
-, 8
/, 8
:, 7
:=, 8, 20
;, 7
=, 20

?, 7
", 7
list of, 24
using, 46

square brackets, 353
sscanf, 275
stacks, 159
standard worksheet, 1
start, 367
StartEngine, 367
statements, 7

arithmetic, 8
assignment, 8, 111
break, 118, 179
displaying strings, 7
entering, 6, 8
error, 118
help, 7
if, 167
library routines, 9
Maple commands, 9
next, 118, 179
quit, 119
read, 117
repetition, 115
return, 118, 217
save, 117
selection, 114
try..catch, 219
use, 119

step, 305, 306
stop, 367
stopat, 297, 306
StopEngine, 367
stoperror, 302
stopping

Maple computation, 16
stopwhen, 301
strings, 7, 366

", 7
double quotes, 7

Index • 385

entering, 7
special characters in, 43

subset, 26, 88, 89
subsop, 97
subtype

integer, 52
sum, 187

vs add, 186
syntax

checking procedures, 329
errors, 19

system
Maple, 5

system option, 212

Table, 350
TableHeader, 362

table

accessing, 139
data type, 139
entries, 139
indexing function, 139
op, 139
operands, 139

TableHeader, 350, 362
TableRow, 362

TableItem, 350, 362
TableHeader, 362
TableRow, 362

TableRow, 350, 362
tables

last name evaluation, 15
remember, 210

TextBox, 346, 351, 352
TextField, 346, 352
thismaplet, 367
ToggleButton, 352
ToolBar, 355

Window element, 363
ToolBarButton, 355
ToolBarSeparator, 355

top-level
Maplet, 361, 367
Maplet function, 342

trace, 315, 317
trace option, 213
tracelast, 315, 319
tracing

procedures, 315, 317, 319
traperror, 324
trapping

errors, 325
troubleshooting, 17, 162

invalid arguments, 19
missing operator, 18
premature end of input, 17
syntax errors, 19

true, 35
truth tables, 87
try, 302, 323, 325
try..catch statement, 219
type, 97

||, 55
complex(float), 69
complex(integer), 69
complex(numeric), 68, 69
complex(rational), 69
concatenation, 55
even, 52
extended_numeric, 62, 66
float, 65, 66
fraction, 64, 66
indexed, 53
integer, 52, 62–66
integer subtypes, 52
name, 53
negint, 52
nonnegint, 52
nonposint, 52
numeric, 65, 68
numeric_type, 66
odd, 52

386 • Index

of complex numbers, 68
posint, 52
prime, 53
procedure, 236
rational, 64
string, 53
symbol, 53

unapply, 232
unary operators, 27
undeclared variables, 205
undefined, 35
unevaluated return, 222
unevaluation quotes, 368
union, 26, 88, 89
unnamed procedures, 232
unstopat, 298, 300
unstopwhen, 301
untrace, 319
use statement, 119, 369
user interface, see graphical user

interface
User Manual, 2
uses

calculators, 340

variables, 201, 367
evaluation rules, 203
global, 201
local, 11, 12, 201
one-level evaluation, 204
reading values, 273
saving values, 271
type assertions, 202
undeclared, 205

Vector, 162
vector, 162
VectorNorm

Maplet example application,
341

VectorNorm Maplet application,
346

verboseproc, 15
version

classic worksheet, 1
command-line, 1
standard worksheet, 1

viewing
library code, 15
print, 15
procedure definitions, 15
interface(verboseproc), 15

Visual Basic programming lan-
guage

code generation, 279

WARNING, 322
warning message, 357
warnlevel, 322
watchpoints

clearing, 301
setting, 301, 302

where, 309
while loop, 177
Window element, 344, 363

definition, 343
RunWindow, 356
title, 363
toolbar, 363

with statement, 369
worksheet, 6

classic, 1
graphical interface, 1
standard, 1
versions, 1

worksheet interface, 6
writedata, 278, 279
writeline, 278
writing

file data, 278
Maplet applications, 368

wrong number of arguments, 19
wrong type of arguments, 19

Index • 387

XML data structure, 366
xor, 26, 85, 89

zip, 182

388 • Index

