
UML Diagram Types

Dynamic Models
n activity diagrams
n statechart diagrams
n interaction diagrams

– sequence diagrams
– collaboration

diagrams

n use case diagrams

Structural Models
n class diagrams
n object diagrams
n packages
Architectural Models
n component diagrams
n deployment diagrams

Architectural Family

n Component Diagram: shows the
organization and dependencies among
a set of components (i.e., software
deployment)

n Deployment Diagram: shows the
configuration of run-time processing
nodes and the components that live on
them (i.e., hardware deployment)

Component

def’n: physical and replaceable part of a
system that conforms to and provides the
realization of a set of interfaces

n physical: bits
n replaceable: substitutable, conforming to same

interfaces
n part of a system: software partition of a system
n interfaces: collection of operations to specify

service of a class or component

Component

n physical thing that resides on a node
– exes, libraries, tables, files, documents

n representation of physical packaging of otherwise
logical elements
– classes, interfaces

n crisp abstraction with well-defined interface
n older components are easy to replace with

newer, still compatible components

Component

Convention
n name

– simple name: (e.g. agent)
– path name: (e.g. system::dialog)

n adornments
– tagged values

n symbol
– default: rectangle, with two smaller rectangles
– iconic representation

Components vs. Classes

Similarities
n names
n realize set of

interfaces
n relationships
n nesting
n instances

Differences
n physical

implementation vs.
logical abstraction

n operations
reachable only
through interfaces
vs. attributes and
operations directly

Interface

def’n: collection of operations to specify
service of a class or component

n represents seams in systems
n components realize the interfaces
n other components access services (dependency)

through interfaces

Convention
n short form (dependency)
n elided form (realization and dependency)
n fully specified form (expanded interface)

Separation of Interface and Component

n separate what class does from how it
interfaces

n break direct dependency between two
components

n component will function properly as long as it
uses given interface

n permits assembly of systems from binary
replaceable parts

n extension through new services and new
interfaces

Types of Components

Deployment
n necessary and sufficient to form an

executable system
n e.g. executables, libraries
Work Product
n residue of development process
n e.g. source code files, data files

Stereotypes

n executables: component that may be
executed on a node

n library: static or dynamic library
n table: represent a database table
n file: represents a document containing

source code or data
n document: represents a document

Common Uses

n Model deployment components of
implementation

n Configuration management of partitions
of system as it evolves

Hints and Tips

n crisp abstraction of physical aspect of
system

n realization of small, well-defined set of
interfaces

n directly implements set of classes to
carry out semantics of interfaces

n loosely coupled with other components

Component Diagram

def’n: shows organization and
dependencies among a set of
components

n physical aspects of OO system
n static, implementation view of system
n physical things that reside on node
n whereas class diagram is abstract overview,

component diagram is system software
architecture

Common Uses of Component Diagram

n Source code: for configuration mgmt of
files

n Executable releases: complete and
consistent set of artifacts to end user,
compilation dependencies

n Physical databases: storage of info in
tables

n Adaptable systems: dynamic existence of
components

Component Diagram: Source Code

n identify files
n use packages for grouping
n used tagged values when appropriate

(version, author, date)
n show compilation dependencies

