
1

Programming Languages

Agenda
n Questions re/ Programming Languages
n History of Programming Languages
n Traits of a Good Programming Language
n Programming and Operating Environment
n Four Language Paradigms

Language Family Questions

n Often work at job with 1-2 languages.
n Why is C like FORTRAN like Pascal not like

LISP not like Java? What are the
characteristics that they share? Differ?

n If we can describe the characteristics that
make a family of languages similar, then we
can come up with a modeling language to
represent the characteristics.

Why understand programming
languages?

n To improve ability to develop effective algorithms
n To increase vocabulary of useful programming

constructs
n To allow a better choice of programming

language
n To make it easier to learn a new language
n To make it easier to design a new language

2

History

n 1950s:
– FORmula TRANslator

• FORTRAN

– International Algorithmic Language
• IAL, became Algol

– Common Business Oriented Language
• COBOL

– LISt Processing Language
• Lisp

History

n 1970s:
– Ada
– C
– Pascal
– Prolog
– Smalltalk

History

n 1980s:
– C++

n 1990s:
– HTML

– Java

3

Attributes of a good language

n Clarity, simplicity, unity
n Orthogonality:

– combine various features of a language in
all possible combinations, with every
combination being meaningful

n Naturalness for application
n Support for abstraction
n Ease of program verification

Attributes of a good language

n Programming environment
n Transportability
n Cost

– Program execution: historically more important
that at present

– Program translation: especially for teaching
languages

– Program creation, testing and use: overall
simplicity in usage lifecycle

– Program maintenance: repairing late errors

Operating and Host Environments
Host environment: environment of

design, coding, test, and debug
Operating/target environment:

environment of program execution
Types
n Batch
n Interactive
n Embedded
n Programming

4

Programming Language Families

Common Form for Discussion
n Type
n Traits
n General Form
n Example Program
n Languages in Family

Programming Language Families
Type: Procedural or Imperative

n Traits
– Command-driven or

statement-oriented
– Basic concept is

machine state
– Often, imperative

languages are first
view of programming

n General Form
statement1;
statement2

n Example Program
sum = 0; count = 0;
for i = 1,n

 {sum = sum + array[i];
 count = count + 1}

average = sum/count;

n Example Languages
– FORTRAN
– C
– Pascal

Programming Language Families
Type: Functional or Applicative

n Traits
– look at desired result

rather than available
data

– Program
development
proceeds by
developing functions
from previously
developed functions

n General Form
funcn n(..funcn2 (funcn 1(data))..)

n Example Program
divide(sum(data),count(data))

n Example Languages
– LiSP

5

Programming Language Families
Type: Logic or Rule-Based

n Traits
– Check for presence

of enabling cond.,
when satisfied
execute appropriate
action

– Execution is not
necessarily
sequential, but is
based upon enabling
conditions

n General Form
enabling condition 1 ⇒ action 1

enabling condition 2 ⇒ action 2
…
enabling condition n ⇒ action n

n Example Program
sum_avail and count_avail ⇒

avg = sum/count;
data_avail ⇒

sum(data), sum_avail = T,
count(data), count_avail = T;

n Example Languages
– Prolog

Programming Language Families
Type: Object Oriented

n Traits
– Design complex data

objects, describe
limited functionality to
operate on data

– Complexity obtained
by extending
(inheriting) traits of
simpler objects

– Close to human
perception and
problem domain

n General Form
Class Name
Attributes
Operations

n Example Program
Class Name: set_of_numbers
Attributes
 size: integer
Operations
 find_avg(): real

n Example Languages
– C++
– Java
– Smalltalk

