Statistical Estimation and Learning

Statistical learning extends the scope of signal processing beyond traditional waveform and image data to essentially any kind of quantitative measurement, such as gene expression intensities, Internet traffic volumes, and social networks. The emphasis is on large scale, complex, and potentially heterogeneous systems for which statistical models are not available a priori. Statistical learning instead seeks to learn models or decision rules from the data itself. Problem areas include classification or pattern recognition, clustering, anomaly detection, semi-supervised learning, dimensionality reduction, and dynamic Bayes networks.

ECE Faculty

Balzano, Laura
Fessler, Jeffrey A.
Hero, Alfred O.
Nadakuditi, Rajesh Rao
Scott, Clayton D

CSE Faculty

Lee, Honglak
Mozafari, Barzan

form photo