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Abstract

We investigate a novel algorithm for an IC3-style checker that operates entirely at the level of equality

with uninterpreted functions (EUF). EUF abstraction is efficient to compute from a word-level transition

system, whereas predicate abstraction typically requires a (possibly exponential) number of calls to a theorem

prover. Data operations are treated as uninterpreted functions and relations as uninterpreted predicates.

Our checker, called EUForia, checks a transition system for a given safety property and either (1) discovers an

inductive strengthening EUF formula or (2) produces an abstract counterexample which corresponds to zero,

one, or many concrete counterexamples. We also present a simple method for computing refinement lemmas

that checks the feasibility of the abstract counterexamples. We formalize the EUF transition system, prove

our algorithm correct, and demonstrate our results on a subset of benchmarks from the software verification

competition (SV-COMP) 2017.



Chapter 1

Preliminaries

1.1 Introduction

Abstraction has become a principal technique for scaling automatic software verification. The predomi-

nant abstraction technique for software model checkers is predicate abstraction [1, 2], often combined with

counterexample-guided abstraction refinement (CEGAR) [3, 4]. For example, the SLAM project was suc-

cessful in showing that it is feasible to prove interesting safety properties about a C program using predicate

abstraction and refinement [5]. SLAM is now routinely used for API usage verification in Windows drivers.

Predicate abstraction casts the state space of a program into one over predicates on the original states.

The major challenges of predicate abstraction are determining the predicates and constructing the predi-

cate abstraction. Computing the predicate abstraction is exponential in the number of predicates, but later

approximations enabled more efficient computation (e.g., Cartesian abstraction [6]). Later improvements to

predicate abstraction included lazy abstraction [7] and various refinement schemes [8, 9]. See D’Silva et al.

for an overview [2].

In this paper, we present an algorithm which structurally abstracts programs using equality with unin-

terpreted functions (EUF), checks them with an adapted IC3-style algorithm [10], and automatically refines

away spurious counterexamples. We employ EUF instead of general predicate abstraction because (1) the

EUF abstraction is inexpensive to compute (it is simply a substitution on the concrete program) and (2)

we conjecture it is efficient for targeting control-centric properties. Burch and Dill [11] pioneered the use of

EUF for pipelined microprocessor verification. Babić and Hu employed EUF for software verification in the

style of extended static checking for their tool Calysto [12, 13]. We employ EUF in a fine grained way, at

the program statement level, to abstract data computations and concentrate on control relationships.

The aim of this work is to target control-centric properties. Informally, a property is control-centric if

only relatively small amounts of reasoning about data are required to prove or disprove it. For example,

proving the equivalence of two different programs that calculate the parity of a machine word is not control-
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centric, because it will require reasoning about all possible data values exactly. On the other hand, showing

that a protocol state machine never enters an illegal state, or verifying that function calls into an API are

called in a particular order, are examples of control-centric properties. The exact data values are not as

important—what is important is that the logic around the data, even as it interacts with the data, behaves

as it should.

We make the following contributions:

• an integration of incremental induction to the EUF abstraction, which we call EUForia, yielding a

potentially faster exploration of a program’s data space based on congruence closure,

• the automatic refinement of spurious counterexamples by data lemmas that eliminate infeasible abstract

states and transitions; and

• experimental evaluation of EUForia on a subset of benchmarks from SV-COMP ’17, including running

EUForia in a mode that does not use abstraction.

Section 1.2 gives an overview of our checker’s architecture. Sections 2.1 and 2.2 detail the EUF abstraction

and transition system encoding and our key algorithmic changes to IC3. Section 3 discusses refinement of

spurious counterexamples. We conclude with an evaluation (Section 4), related work (Section 1.3), and then

conclude (Section 4.1).

1.2 The EUForia Checker

The overall flow of EUForia is given in Figure 1.1. EUForia processes LLVM bitcode generated from well-

formed C programs. LLVM is a compiler infrastracture that provides an intermediate representation (IR) of

code in static single assignment (SSA) form and a variety of analyses for this IR [14]. Although in principle

using LLVM allows EUForia to support a number of source languages, in practice this is limited to C because

we only support a subset of LLVM operations. However, this is not a limitation of our approach, just of our

current checker prototype.

From the LLVM control flow graph, EUForia constructs a word-level concrete transition system (CTS)

in the style of Manna and Pnueli [15]. The CTS is encoded as formulas in the QF ABV logic [16] using the

Z3 4.5.0 Satisfiability Modulo Theories (SMT) solver [17]. A straightforward syntax-directed rewrite of the

CTS produces an abstract transition system (ATS) for checking. Following a typical CEGAR flow, EUForia

either produces (1) an inductive invariant for the checked property or (2) an abstract counterexample (ACX).

If an abstract counterexample is found, EUForia determines whether the counterexample corresponds to a

true error trace; if the counterexample was spurious, EUForia refines the abstract system by adding data

lemmas to the ATS. EUForia uses Boolector 2.4.1 [18] for refinement.

EUForia is implemented in 13,700 lines of C++. EUForia runs various LLVM optimizations on the target

source code including full inlining, dead code elimination, and promoting memory to registers, but EUForia
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Abstract System (EUF) Checker Refinement

Safe! Unsafe!
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Figure 1.1: The overall flow of EUForia. The grayed boxes are parts of EUForia; LLVM is a third party

tool. The abstract transition system (ATS) is explained in Section 2.1 and the concrete transition system

(CTS) is covered briefly in Section 2.2.3. Refinement and abstract counterexamples (ACXs) are discussed

in Section 3

does no slicing.1 As EUForia is a prototype tool, it cannot yet process programs with dynamic memory

allocation or recursion. EUForia also assumes that C programs do not exhibit undefined behavior (signed

overflow, buffer overflow, etc.), and may give incorrect results if the input program is ill-defined.

1.3 Related Work

Incremental Induction EUForia’s model checker implementation is inspired by the hardware model

checking algorithm called Property Directed Reachability (PDR) of Een et al. [19], with some key changes to

support software and enabling our abstraction techniques. PDR is an updated implementation of IC3 [20, 10].

Cimatti and Griggio [21] and Hoder and Bjørner [22] presented the first software model checkers built around

IC3. Our work uses one Boolean variable per program location (instead of a pc variable) and bit-precise bit

vector operations (instead of linear arithmetic). Lange et al. adapted IC3 to check control flow automata [23]

by associated with each program location its own copy of IC3’s over-approximate frames. Our work only

uses one copy of the frames. Cimatti et al. further generalized IC3 to support predicate abstraction [24]. In

their work, IC3 operates at the Boolean level of an abstract state space, and their predicates are instantiated

over bit vectors and linear rational arithmetic. CTIGAR also generalized IC3 to predicate abstraction with

refinement applied during abstract reachability [25]. Our work does not employ predicate abstraction; it

operates on an EUF state space directly. Bjørner and Gurfinkel integrated polyhedral abstract interpretation

with PDR to compute safe convex polyhedral invariants [26]. Karbyshev et al. generalize IC3 to a procedure

for inferring quantified universal invariants or proving that none exist [27]. Welp and Kuehlmann use PDR

to refine loop invariants [28] as well as a hybrid approach of cooperating IC3/PDR solver instances that are

each responsible for disjoint parts of the program to verify [29, 30]. The distinguishing features of our checker

are that it uses simple EUF abstract and is capable of checking and refining an EUF transition system; and

1Inlining is not required for our approach, but for this paper all function calls were inlined.
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that its bit-precise mode uses no specific abstract domains (just the QF BV theory) for generalizing bit

vector constraints.

Structural Abstraction Babić and Hu [12, 13] implemented Calysto, a CEGAR abstraction that uses

EUF to abstract at function boundaries. Calysto computes verification conditions (VCs) and function

summaries for all the functions in the program. If the abstraction is too coarse to establish the property,

then Calysto finds abstract summaries that are responsible for the spurious counterexample, and refines

them by removing EUF terms and make them bit-precise. Our refinement differs in that refinement lemmas

are lifted to EUF instead of certain EUF terms becoming bit-precise; moreover, we do not unroll loops,

as Calysto does. EUF abstraction has been studied extensively, especially for translation validation and

equivalence check, but not for IC3/PDR applied to checking safety properties; see [31] for further discussion

of EUF abstraction. Similar techniques to ours have been developed by Lee and Sakallah [32] for hardware

verification, particularly using uninterpreted functions for abstracting wide datapaths. Our work applies

directly to software.

Predicate Abstraction Our work is similar to work in predicate abstraction [1], e.g., in the SLAM [5],

BLAST [7], and CPAChecker [33] tools. SLAM’s approach is to abstract the program into a program on

Boolean variables alone, which preserves control and abstracts data with respect to a set of predicates.

SLAM checks its Boolean program with pushdown techniques using Binary Decision Diagrams (BDDs).

BLAST improves of the SLAM scheme; it uses interpolants to discover relevant predicates locally and these

predicates are only kept track of in the parts of the abstract state space where spurious counterexamples

occurred. SLAM requires an exponential number of calls to the theorem prover in the worst case (or an

approximation to the abstraction [6]). EUF abstraction is nearly “free” in that it does not require any calls

to a theorem prover and preserves the structure of the transition relation.

Abstraction in general has been employed extensively to address verification complexity [4, 34, 35, 36].

Counterexample-Guided Abstraction Refinement (CEGAR) was introduced by Kurshan [3] and refined and

generalized by Clarke et al. [4]. Jhala and Majumdar [37] give a survey of model checking techniques,

including CEGAR and modeling programs as state machines.

Transition System Encoding Our program encoding is mostly standard, with the exception that where

control resides is encoded with a set of one-hot Boolean variables. Standard approaches include using an

explicit pc variable [21] or hierarchical Boolean variables [15].
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Abstract PDR

2.1 Abstract Transition System Encoding

Program Representation by Transition Systems The template for a transition system [38, 20] consists

of a (non-empty) set of state variables X = {x1, · · · , xn}, a (possibly empty) set of input variables Y =

{y1, · · · , ym}, and a set of n next-state formulas {f1 (X,Y ) , . . . , fn (X,Y )} that define the system’s transition

behavior. The system’s transition relation is expressed as a conjunction of constraints

T
(
X,Y,X+

) .
=

∧
16i6n

(
x+i = fi (X,Y )

)
(2.1)

where the ‘+’ superscript denotes the next-state version of a state variable. We write expressions as

E(X[, Y,X+]) when we wish to emphasize that the only free variables in the expression E are drawn from

the sets X[, possibly including Y and X+]. This template is quite general, allowing the state variables to

have different types such as single bits, bit vectors of various widths, unbounded integers, and terms in FOL.

Two additional sets of constraints are needed to completely define a model checking instance: a formula

I(X) specifying a set of initial states, and a formula P (X) characterizing “safe” states. The model checking

problem is to check if states that violate P are reachable from I or to prove that all states reachable from I

are safe. For simplicity, unless otherwise specified, we assume I and P are cubes.

Much previous work has explored checking these kinds of transition systems [15, 39, 20, 21, 24, 40].

IC3, the algorithm on which our checker is based, checks transition systems in which all state variables are

Boolean [20]. Other relevant checkers analyze transition systems with linear rational arithmetic [21], bit

vectors [24, 40], etc. Our paper focuses on transition systems where (1) each state variable is either Boolean

or a 0-arity term, and (2) each next-state function fi is an EUF formula. EUF is covered in the next section.

The Logic of Formulas Our setting is standard quantifier-free, first-order logic (FOL) with the standard

notions of theory, atom, term, predicate, formula, satisfiability, validity, entailment, and models. A literal is

5
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an atom. A clause is a disjunction of literals. A cube is a conjunction of literals. a |= b means that a entails

b.

Following the presentation in [31], we begin with a review of the EUF logic. Its syntax is simple: it

is made up of atoms, terms, and formulas. Terms may be passed to uninterpreted functions (UFs) and

uninterpreted predicates (UPs) and returned from UFs. Atomic formulas (atoms) are made up of Boolean

identifiers, UPs, and equalities and disequalities between terms. Formulas are made of atoms in arbitrary

Boolean combinations:

0-arity term term ::= identifier

UF | F(term1, term2, . . . , termn)

Equality atom ::= term1 = term2

Boolean | identifier

UP | P(term1, term2, . . . , termn)

Atom formula ::= atom

Not | ¬formula

And | formula1 ∧ formula2

We write uninterpreted terms T and functions (and predicates) F(X) in sans serif face. The semantics of these

expressions is standard. In order to represent programs, we use the well-known formalism of a transition

system.

Our abstraction approach is to substitute 0-arity terms for the corresponding values and UFs and UPs

for the corresponding concrete operations (see [31], pp. 61ff, for a thorough discussion of EUF abstrac-

tion). To summarize: concrete constants 1, 2, . . . , n are represented as unique uninterpreted 0-arity terms

K1,K2, . . . ,Kn; data operations such as addition, division, bit-extraction, etc. are represented with UFs;

relational operators are represented as UPs; non-Boolean variables x are represented by 0-arity terms x̂, and

given a hat to distinguish them from constants. Boolean variables can be represented directly in EUF. For

example, we would represent x+ = a + 3 as x̂+ = ADD(â,K3). The abstraction function AJ.K is formally

defined in the appendix.

Formally, our abstract transition system consists of state variables X̂ = {x̂1, x̂2, . . . , x̂n}, input variables

Ŷ = {ŷ1, ŷ2, . . . , ŷm}, and a set of next-state formulas {f̂1(X̂, Ŷ ), . . . , f̂n(X̂, Ŷ )}. The transition relation is:

T̂
(
X̂, Ŷ , X̂+

)
.
=

∧
16i6n

(
x̂+i = f̂i(X̂, Ŷ )

)
(2.2)

where f̂i(X̂, Ŷ ) = AJfi(X,Y )K.

Consider a concrete formula φ and its EUF abstraction φ̂; the relation of the concrete and abstract

systems is give by the following relation [31]:

|= φ̂ =⇒|= φ

That is, the concretization φ of any valid EUF formula φ̂ is valid. Therefore, if the abstract system cannot

reach an unsafe state, then the concrete system will also never reach it.
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Deriving the abstract system takes linear time on the original concrete system. We now turn to the topic

of checking the abstract system once it is created.

2.2 Abstract Reachability

EUForia implements an IC3-style reachability computation on the abstract transition system described in

Section 2.1. The implementation’s main novelty is that it checks an entirely uninterpreted transition system.

Our implementation is most closely related to PDR (an abbreviation of Property Directed Reachability),

which is a popular variant of IC3 [19]. IC3 and PDR were developed for hardware verification and operate

on purely Boolean transition systems. While the basic flow of our adaptation is the same as PDR, there are

some novelties that are specific to handling EUF transition systems. We begin with a review of PDR.

Briefly, PDR constructs an iteratively-deepened sequence of k over-approximate frames, each representing

a set of states reachable in at most k steps from the initial state. The basic computation step in PDR is a query

of the form φ(Source,Target) = Source(X) ∧ T (X,Y,X+) ∧ Target(X+) where Source and Target denote

sets of current and next states. A satisfiable (SAT) query indicates the existence of a counterexample-to-

induction (CTI), a state s ∈ Source that has a transition to state t+ ∈ Target under some input assignment.

This state s can now be used as a target cube and built on to find a path backward, eventually finding a

counterexample. On the other hand, an unsatisfiable (UNSAT) query indicates the absence of transitions

between Source and Target under any possible input assignment. This means Target is blocked and cannot

be used to construct a counterexample.

In order to obtain a practical algorithm, satisfiable queries and unsatisfiable queries must be generalized.

Our generalization procedure for satisfiable queries is specific to the EUF ATS, and is covered next.

2.2.1 Generalizing Satisfiable Queries

PDR performs generalization using ternary simulation at the bit level, which is not possible for the EUF

abstract transition system. Other research has explored generalization specific to linear arithmetic [21,

22] and polyhedra [40], as well as weakest preconditions [32]. EUForia’s generalization is a model-based

simplification of the weakest precondition of the target state with respect to T .

Let M = (π, δ) be a model for a satisfiable one-step query. Consider a four-element set {a, b, c, d} and

the following partition of this set: {{a, b}, {c}, {d}}. We write this partition π = {a, b | c | d}. This partition

states that the elements a and b are equal to each other, but c and d are distinct from one another and from

a and b. The assignment δ is an assignment to each Boolean variable; we write δ(z) = 1 (resp. 0) to indicate

that under the assignment δ, variable z is true (resp. false).

The model M produced by the solver includes a (complete) partition π on all the terms in the formula as

well as a Boolean assignment δ to all the Boolean variables and uninterpreted predicates. It is straightforward

to encode this model as a first-order cube CM : the partition is expressed as a conjunction of equalities and
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disequalities and the Boolean assignment by definition is a cube. The goal of cube generalization is to extract

the cube containing the most extensions. One way to do this is to drop literals one at a time from CM while

the resulting formula still reaches the target cube.

This procedure can be improved by a cone-of-influence reduction: literals in M that do not occur in the

next-state cones of the variables in Target(X+) may be dropped.

Example It can be difficult to see exactly what kinds of pre-states this procedure would produce, so we

provide an example. Consider the target t+ = GT(x+1 , x
+
2 ) and the model M = {x1 7→ 1, x2 7→ 1,K1 7→

2,ADD[(·, ·) 7→ 2],GT[(·, ·) 7→ true}. The syntax x 7→ v denotes that the model maps term x to the domain

value v. F[(vi) 7→ vr] means that the UF F evaluates to vr on all terms mapped to domain value vi; if vi = ·, F

unconditionally evaluates to vr (this notation is straightforward but tedious to extend to multiple-argument

functions and predicates, so we elide those details). Consider the following transition system:1

x+1 = ITE(x1 = x2,ADD(x1,K1), x2) x+2 = x1

The WP(T, t+) = GT(ITE(x1 = x2,ADD(x1,K1), x2), x1). Simplify produces:

φsimp ≡ GT(ADD(x1,K1), x1) A ≡ {(x1 = x2)}

Literal φsimp is excluded since it contains a UF. The generalized pre-state is then, s̃ ≡ (x1 = x2).

2.2.2 Generalizing Unsatisfiable Queries

If the query φ is unsatisfiable, then no s ∈ Source transitions to any t+ ∈ Target. In this case, we want to

generalize by finding a cube c∗ that represents a set of states T ⊆ Target such that ∀t ∈ T : φ(Source, t+) is

unsatisfiable. We use a simple greedy scheme for finding a minimal unsatisfiable set. Recall that Target is

encoded as a cube c. We drop literals li one at a time from c, each time querying φ(Source, c \ {li}). If the

query is still unsatisfiable, li is dropped permanently; otherwise li is put back and we proceed to the next

literal in c.

2.2.3 Concrete Transition System Encoding

The concrete transition system is encoded using standard methods, but we summarize our approach here.

Program variables – locals and globals – are represented as bit vectors of the appropriate bit widths. Location

variables are used as labels of program statements in order to capture the program’s control flow and can

be encoded in a variety of ways (see, e.g., [15, 21, 23]). We choose to label each program statement with

a single Boolean location variable that becomes true when that statement is reached and executed. This is

different from other checkers which introduce a dedicated pc variable; our encoding is similar to [15].

1The motivation is that GT stands for the greater-than operation, but its concrete semantics are not required for this

example.
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Briefly, the transition equation for a location li expresses that the location becames active when there is

a transfer of control from a predecessor location:

l+i =
∨

j∈pred(i)

(lj ∧ cji) (2.3)

where cji is the predicate on the transition from each predecessor location j to location i (pred(i) is the set

of predecessors of location i).

The transition constraints for program variables are slighly more complex. Let Modify(v) be the set

of locations where program variable v is on the left-hand-side of an assignment. Let 〈expri〉 denote the

translation of the right-hand-side expression into the QF BV logic. Let li range over Modify(v). Variable

updates are represented with the following constraints:∨
j∈pred(i)

(lj ∧ cji)→
(
v+ = 〈expri〉

)
[Update] (2.4)

¬ ∨
j∈pred(i)

(lj ∧ cji)

→ (
v+ = v

)
[Preserve] (2.5)

Note that in equation (2.3), l+i is defined as the disjunction in the antecedent of equations (2.4) and (2.5),

so we could use l+i in place of the disjunction.

Equations (2.3)-(2.5) can easily be adapted to produce small and large block encodings [41]. Our imple-

mentation uses a large-step encoding that is similar to the adjustable-block encoding [42].

EUForia provides a mode to generate this CTS and perform a concrete reachability check in a similar

way to the abstract reachibility check. In fact, the concrete pre-state generalization is almost the same as

the one used in the ATS, except that there are no UFs to handle in the CTS. MUS generalization is done

identically in the concrete check. Our CTS checking algorithm is, to the best of our knowledge, unique

among the bit vector adaptations of IC3/PDR. Other algorithms have used predicate abstraction (over BV

predicates) [24], polytope domains [40], and unadorned weakest preconditions [23] (with a implicit encoding

of program locations). This close correspondence between our concrete checker and our abstract checker

makes our evaluation nearly “apples to apples.”

The CTS must be used for refining the abstraction, in case the abstraction is too coarse to prove the

property. We discuss refinement next.

Large Block Encoding Implementation

• Associated with every location li are two relations Ini and Outi, as is typical for a data flow analysis.

• Our intent is that getting from lj to li using edge eji is expressed as SP(eji, Ini).

1. For all locations li, initially Ini = Outi = true.

2. For the entry location l0, there is no In0 and Out0
.
= l0.
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3. For an error or loop header location li:

Ini
.
=

∨
j∈pred(i)

Outj

Outi
.
= l+i

(2.6)

This expresses the intent that these types of locations begin a new transition, so they do not propagate

constraints on Out.

4. For any other location li:

Ini
.
=

∨
j∈pred(i)

Outj

Outi
.
=

∨
j∈pred(i)

∧ SP(eji, Ini)
(2.7)

5. Flow these around the graph until no P or S changes.

For a single edge from l1 to l2. Assume edge says i = i+ 1 and that In1 is φ as shown below.

Iteration Location In Out

1 1 φ1 l+1 = φ1

2 l+1 = φ1 (l+2 = l1) ∧ (i+ = i+ 1)

2 1 T l+1 = φ1

2 l+1 = φ1 (l+2 = l1) ∧ (i+ = i+ 1)

The transition relation for these locations is Outi.

l+1 = φ1

(l+2 = l1) ∧ (i+ = i+ 1)

Consider adding a predecessor l3 → l2 to the graph, labeled with i = i− 1.

Iteration Location In Out

1 1 φ1 l+1 = φ1

3 φ3 l+3 = φ3

2 l+1 = φ1 ∨ l+3 = φ3 (l+2 = l1 ∧ i+ = i+ 1)

∨ (l+2 = l3 ∧ i+ = i− 1)

2 1 φ1 l+1 = φ1

3 φ3 l+3 = φ3

2 l+1 = φ1 ∨ l+3 = φ3 (l+2 = l1 ∧ i+ = i+ 1)

∨ (l+2 = l3 ∧ i+ = i− 1)

The transition relation is then:

l+1 = φ1
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l+3 = φ3

(l+2 = l1 ∧ i+ = i+ 1) ∨ (l+2 = l3 ∧ i+ = i− 1)

Consider l1 → l2 → l3 with e12 = (i = i+ 1) and e13 = (i = i+ 2):

Iteration Location In Out

1 2 T (l+2 = l1) ∧ (i+ = i+ 1)

3 T (l+3 = l2) ∧ (i+ = (i+ 1) + 2)
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Refinement

When an abstract counterexample is found, it must be checked for feasibility against the concrete transition

system. An n-step abstract counterexample is a sequence Â1
Ŷ1−→ Â2

Ŷ2−→ · · · Ân−1
Ŷn−1−−−→ Ânwhere each Âk

is an abstract state cube (1 ≤ k ≤ n) and Ŷk is an abstract input predicate (1 ≤ k < n). The abstract

reachability algorithm guarantees that this is a continuous counterexample – that Âk−1 ∧ Ŷk−1 ∧ T̂ ⇒ Â+
k .

However, it is possible that the abstract counterexample is not concretely feasible. Let Ak stand for the

concretized cube corresponding to Âk; and similarly for Yk. The abstract counterexample is spurious if:

1. Ak is unsatisfiable for some k, i.e., there are no concrete states that correspond to the abstract state

cube; or

2. Ak−1 ∧Yk−1 ∧T ∧Ak is unsatisfiable for some k, i.e., there are no concrete transitions that correspond

to the abstract state transition; or

3. the concretized counterexample is discontinuous. This will happen if all concretized cubes and tran-

sitions are feasible but the transitions “land” on distinct concrete states in a concretized cube (see

Figure 3.1).

There are many options for performing these feasibility checks and deriving suitable refinements from

them if one or more of them fail (e.g., [43, 9, 7]). Our prototype currently performs a very simple procedure

1k
A - k

A 1k
A +

1k
Y -

k
Y

Discontinuous concrete counterexample

Figure 3.1: Illustration of a spurious abstract counterexample when all corresponding concrete cubes and

transitions are feasible. The circles represent concrete cubes each containing a set of concrete states repre-

sented by the small filled circles.

12
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for checking feasibility and deriving refinement lemmas:

1. Check SAT(I ∧A0), i.e., check if the concrete counterexample is consistent with the initial state(s):

a. If UNSAT, obtain from the concrete solver an unsatisfiable core {a1, . . . , am} which is an un-

satisfiable subset of the literals in I and A0. EUForia adds the following (global) lemma to the

abstract transition system, T̂ : ¬(â1 ∧ · · · ∧ âm). Return immediately to abstract reachability.

b. If SAT, call the satisfying assignment s0, which is a single concrete state. A concrete program

simulation is now begun using s0 as the initial state.

2. For each 1 ≤ k ≤ n, check SAT(sk−1∧T ∧Yk−1∧Ak), i.e., check that the current concrete state reaches

a next state from the counterexample:

a. If UNSAT, form a lemma in the same way as in step 1, add it to the abstraction, and return to

abstract reachability. Otherwise, we continue.

b. If all steps of the abstract counterexample are feasible, we have found a true counterexample,

and verified it with the concrete transition system. Hence we return to the user with a property

violation.

We chose this refinement procedure in our prototype for its simplicity and because our initial focus was on

assessing the suitability and effectiveness of EUF abstraction for the class of control-centric properties we

target. For the set of benchmarks we tested, most did not require even a single refinement, and for many that

did require refinement, the number of refinement lemmas was modest. This suggests that EUF abstraction

is a plausible over-approximation of program behavior for these benchmarks and associated properties. That

said, the refinement procedure can still be improved significantly and we plan to explore several optimizations

including:

1. Performing the feasibility checks on state cubes and transitions in parallel since they are largely inde-

pendent.

2. Using the abstract counterexample to guide a concrete symbolic execution that can potentially rule

out not just one but several infeasible concrete executions

3. Interleaving abstract reachability with feasibility checking: rather than wait for a complete abstract

counterexample to be produced before checking its feasibility, concrete checks of intermediate abstract

cubes can be done concurrently with the abstract reachability. Many options exist for orchestrating

such an approach.

4. In any of the above schemes for feasibility checking, derive not just one but several refinement lemmas.

Several of these optimizations have been mentioned in the literature (e.g., [9, 25]). One element of future

work is to evaluate them, as well as other variants, in the context of EUF abstract reachability.



Chapter 4

Evaluation

We evaluate euforia on 753 benchmarks from the SVCOMP’17 competition [44]. All the benchmarks are C

programs in the ReachSafety-ControlFlow, ReachSafety-Loops, and ReachSafety-ECA sets. The benchmarks

contain assertions and the checker’s job is to find a path to that assertion or an invariant that proves safety.

516 are safe and 236 are unsafe. We elided all the benchmarks that use pointers or arrays, as well as

those which took greater than 30 seconds to preprocess (typical instances take just a second or two in

preprocessing). We ran all the benchmarks on 2.6 GHz Intel Sandy Bridge (Xeon E5-2670) machines with

2 sockets, 8 cores with 64GB RAM. Each benchmark was assigned to one socket during execution. Each

benchmark was given a one hour timeout.

It is well known that the encoding technique one uses can drastically alter checking time. In order to

make sure both checkers are using the same encoding of the transition system, we dump euforia’s model

checking problem (transition system and property encoding) into a .vmt file, which is readable by ic3ia. More

information on the vmt format is available online1. It is a straightforward text format, based on SMT-LIB,

that describes a model checking problem.

Our evaluation desires to answer the following questions:

1. How does euforia perform overall compared to ic3ia?

2. Where is the time spent during checking?

3. When euforia performs relatively well, why?

4. When euforia performs relatively poorly, why?

5. Does euforia require more cubes than ic3ia to accomplish verification? (unanswered, no added cubes

data)

6. How does convergence depth compare?

1https://es-static.fbk.eu/tools/nuxmv/index.php?n=Languages.VMT

14
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Figure 4.1: Plot of overall runtime in seconds
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euforia ic3ia

avg 12.98 766.57

med 0.11 135.95

(a) Refinement time, euforia

terminated (26 benchmarks)

euforia ic3ia

avg 937.65 154.27

med 975.41 81.59

(b) Refinement time, ic3ia ter-

minated (61 benchmarks)

Figure 4.2: Summary statistics for timeout benchmarks (avg = average, med = median). Figure 4.2a is for

the set of benchmarks on which ic3ia timed out but euforia solved. Figure 4.2b is the opposite: it’s for the

set of benchmarks on which euforia timed out but ic3ia solved.

Figure 4.1 shows our overall results on all benchmarks compared with ic3ia. euforia seems to win quickly

or not at all. Due to the many timeouts of benchmarks completed by the other solver, euforia and ic3ia are

to a certain extent complementary in what they are able to solve.

When euforia completes but ic3ia times out (26 cases), it is because the abstraction is matching the code,

and euforia is able to spend very little time in refinement. Indeed, euforia is on average spending only 13

seconds in refinement on these benchmarks (see figure 4.2a), compared to 767 for ic3ia. Moreover, all but

one of the benchmarks are safe, suggesting that euforia is able to quickly find inductive invariants for some

hard instances (but it is less easy to find a counterexample). euforia solved 11 benchmarks without any

refinements; the rest required up to 161 refinements.

ic3ia solves 61 of euforia’s timeout cases. In all but a few of these the number of predicates is under

20, meaning interpolation is able to efficiently discover a small and sufficient set of predicates. euforia

required dozens or hundreds of refinement steps for each and every benchmark, and spent much of its time

in refinement (see figure 4.2b).

euforia seems to be better and finding invariants than it is at finding counterexamples (since the blue in

figure 4.1 is lower than the green, and there are a bunch of green timeouts). [Why?]

Both solvers have three main phases: backward reachability, forward propagation, and refinement. The

following table shows the average time spent in each of the phases for both checkers:

Backward Reachability Forward Propagation Refinement

euforia 71% 3% 22%

ic3ia 54% 20% 24%

These averages were obtained on benchmarks where both checkers terminated within the timeout and euforia

took at least two seconds.2 The rest of the time is spent in preprocessing and optimizing the instance.

Notably, the checkers’ refinement times are similar but ic3ia spends relatively more in propagation and less

in reachability. We conjecture that this is due to the fact that euforia tends to produce cubes with more

literals than ic3ia, leading to more time spent minimizing cubes (see figure 4.3).

2If the runtime is less than two seconds, then it is dubious to rely on the runtime breakdown in the different parts of the
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Figure 4.3: Plot showing average cube size compared to runtime. euforia’s cubes are on average much larger

than ic3ia and harder instances tend to have the largest cubes.
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Figure 4.4: Plot showing, for all benchmarks solved by euforia and ic3ia, how many cubes were blocked

during solving. Overall, euforia seems to add fewer cubes.

The fact that euforia’s cubes contain more literals means they are relatively less general than ic3ia’s

cubes. Given a cube c in over fixed theory T (such as QF BV), if we form c′ = c ∧ l by adding literal l to c,

then (1) l could be redundant (i.e., c is equivalent to c′), or (2) l could further constrain c (i.e., c′ → c but

not vice versa). In case (2), we say that c′ is less general than c. euforia is operating on cubes that are less

general than perhaps they could be. Given a cube c over QF BV, euforia is operating on cubes less general

than its abstraction, AJcK. In future work, we will explore improving the cube expansion to strengthen the

abstract cubes.

Figure 4.4 shows the number of cubes blocked during solving. Every time a cube is blocked, for any

frame i, the running number is incremented. We note that generally, euforia is able to complete with fewer

blocked cubes than ic3ia. Given that euforia’s cubes are on average larger (i.e. contain more literals) than

ic3ia, one might hypothesize that it would require more cubes to prove the property. This plot shows that

euforia can use less general cubes, and fewer of them, while still proving the property.

solver, since the absolute time is so small. The measurements are dominated by noise.
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Figure 4.5: Plot showing the depth of IC3 after terminated, for both euforia and ic3ia. The area of the

squares is proportional to the number of different benchmarks terminating at the given depths.
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The termination depths of euforia and ic3ia are compared in figure 4.5. Generally, the termination depths

of both checkers are comparable.

4.1 Conclusions and Future Work

We have presented an approach for the abstraction and verification of programs using EUF abstraction that

has the following desirable traits.

• Abstraction and refinement are automatic and driven by the program itself.

• EUF abstraction is simple, because it preserves the structure of the transition system and can be

computed in linear time over a given transition system.

• We have integrated in a simple way with modern, incremental inductive solving.

• Our initial experiments show that many benchmarks can be solved without any refinement which

validates our conjection that EUF abstraction is plausible for control-centric safety properties.

We implemented EUF abstraction over a concrete transition system in a prototype tool, EUForia, and

evaluated it on a set of 291 benchmarks from SV-COMP 2017.

For future work, we plan to expand the C language constructs that EUForia can handle: we plan to add

static memory allocation, generic memory access, and support for recursion. These features will allow us

to evaluate our approach on more, different kinds of software. Since most interesting programs have loops,

we plan to explore how to leverage loop identification inside the EUForia algorithm. For example, it should

be possible to map abstract counterexamples to much longer concrete counterexamples during feasibility

checking; this has the potential to produce better refinement lemmas. We also plan to explore refinement

strategies as detailed in Section 3.

Appendix

Encoding of phi variables as state variables Theorem. Within an LLVM function F , it is sufficient

to designate left-hand-sides of PHI instructions as state variables and all other local variables as auxiliary

variables.

Proof. In order for a variable to be encoded as an auxiliary, its defining expression must be available at

every use. Consider a variable assignment %x = f a b at location y, where f may be a phi instruction or

some other LLVM instruction. By definition, the expression f a b is available at the instruction immediately

after y; the expression becomes unavailable at any definition of a or b, because then f a b will evaluate to

a possibly different value. Thus, for any location z, the expression is available at z if there is no re-definition

of a or b on any path from y to z (that doesn’t go through y).

Variables are either defined as SSA temporaries or PHI instructions, so there are two cases to consider.
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• If %x = f a b is a non-PHI variable, then SSA form guarantees two properties: (1) its definition

dominates its use and (2) there is only one definition of %x in F . Therefore, the expression f a b

is available at every use of %x. Hence, it may be encoded as an auxiliary variable. Logically, this is

equivalent to replacing every use of %x with f a b.

• If %x = phi ... is defined by a PHI instruction, then it is possible that there is a use of %x in the

definition. In this case, the value of %x may depend on its current assignment. In this case, the

encoding must “remember” the previous value of %x in order to define it. Hence, it must be encoded

as a state variable.

Therefore, it is sufficient to encode the left-hand-sides of PHI instructions as state variables and all other

local variables as auxiliary variables.

4.1.1 EUForia soundness and termination

Lemma. There is a Galois connection for the EUF abstraction We define an abstraction function

AJ·K which returns the abstraction of a given concrete expression. We write x[n] to indicate that x is a concrete

bit vector of bit width n.3 We write e〈n〉 to indicate that the abstract term e is a term of uninterpreted sort

Un.

Boolean variables b and constants are translated to themselves. Bit vector variables x[n] and constants

c[n] are translated to uninterpreted terms of sort Un.

AJbK .
= b (for Boolean b)

AJc[n]K .
= K̂c

〈n〉

AJx[n]K .
= x̂〈n〉

Equalities are translated into abstract equalities and Boolean structure is preserved.

AJa[n] = b[n]K .
= AJa[n]K = AJb[n]K

AJ¬aK .
= ¬AJaK

AJa ∧ bK .
= AJaK ∧ AJbK

AJITE(c, a, b)K .
= ITE(AJcK,AJaK,AJbK)

Each operation is rewritten to an uninterpreted variant on translated arguments. For example, for the

signed greater-than and bitwise-or operators:

AJx[n] >s y
[n]K .

= SGTn(AJxK,AJyK)

3We treat n = 1 as Boolean.
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AJx[n] | y[n]K .
= BORn(AJxK,AJyK)

The rest of the operators follow this pattern.

This abstraction ensures type safety. LLVM is type safe and by ensuring that each concrete type is

translated into its corresponding abstract type, we guarantee that the abstract system respect the types of

the underlying values. Therefore the abstract system will never attempt to compare a byte with a 32 bit

integer, for example.

Concretization works by performing the reverse mapping. Let Fc range over all the concrete operators

implementing LLVM instructions (e.g., add); then let F̂ be its corresponding uninterpreted function.

DJK̂c
〈n〉

K .
= c[n]

DJ%̂x
〈n〉

K .
= %x

[n]

DJF̂(x1, x2, . . . , xk)K .
= Fc(DJx1K,DJx2K, . . . ,DJxkK)

DJITE(c, x, y)K .
= ITE(DJcK,DJxK,DJyK)

DJx = yK .
= DJxK = DJyK

DJx ∧ yK .
= DJxK ∧ DJyK

DJ¬xK .
= ¬DJxK

Let 〈C,v〉 denote a partial order on the concrete set of states C (implication is the ordering) and let 〈H,4〉

denote a partial order on the abstract set of states H. A Galois connection between 〈C,v〉 and 〈H,4〉 is a

pair of monotonic functions (α, γ) where α : P(C)→ P(H) and γ : P(H)→ P(C) such that α(S) 4 Y ⇐⇒

S v γ(Y ). The abstraction function is α and the concretization function is γ.

Let P be a set of concrete states. Consider α(P ). In EUF, more terms (values) may be equal than at

the concrete level; and uninterpreted functions may have more behaviors than their concrete counterparts.

Hence P v γ(α(P )).

Let Q̂ be an EUF formula (denoting a set of abstract states). By the same reasoning as above, some

of these may be concretely infeasible. Or perhaps Q̂ is concretely infeasible (e.g., x̂ = K0 ∧ x̂ > K1).

Because DJQ̂K is defined syntactically, concretizing will produce a concrete formula. Because this formula

behaves consistently wrt EUF, α(γ(Q̂)) will only contain states in Q̂ (those implied by functional consistency,

transitivity of equality, and other things). Therefore α(γ(Q̂)) 4 Q̂. Hence we have established a Galois

connection.

Lemma. The CTS has a finite state space. (Termination of ATS reachability) The ATS state space

has finitely many models. Either there is a finite path from the goal back to the initial states (there are

finitely many paths??) or there is no path back to the goal. If there is no path, then eventually the frames

will be constrained by unreachable cubes so the reachability will terminate.



CHAPTER 4. EVALUATION 23

It is sufficient to refine by simulating the counterexample. If the counterexample is infeasible, this will be

witnessed as some concrete transition that is infeasible. Some concrete query c∧T ∧A+ will be UNSAT. The

unsatisfiable set of constraints extracted from this will rule out the offending transition from the abstraction.

Therefore, EUForia will always terminate, sooner or later, with either a counterexample to the property

or a proof of the property.
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