
Aegean: Replication beyond the client-server model
Extended technical report

Remzi Can Aksoy, Manos Kapritsos

University of Michigan

{remzican,manosk}@umich.edu

Abstract
This paper presents Aegean, a new approach that allows

fault-tolerant replication to be implemented beyond the con-

fines of the client-server model. In today’s computing, where

services are rarely standalone, traditional replication proto-

cols such as Primary-Backup, Paxos, and PBFT are not di-

rectly applicable, as they were designed for the client-server

model. When services interact, these protocols run into a

number of problems, affecting both correctness and perfor-

mance. In this paper, we rethink the design of replication

protocols in the presence of interactions between services

and introduce new techniques that accommodate such in-

teractions safely and efficiently. Our evaluation shows that

a prototype implementation of Aegean not only ensures

correctness in the presence of service interactions, but can

further improve throughput by an order of magnitude.

1 Introduction
This paper rethinks the design and implementation of repli-

cated services in modern large-scale environments where

services are no longer standalone, but are components of

larger systems and frequently interact with other services.

Interactions between services are an integral part of to-

day’s computing [57]. Services, large and small, are typically

used in conjunction with other services to build complex

systems, like large-scale key-value stores [14, 24, 32], online

shopping centers [4], data processing systems [23, 31], etc.

In such environments, services frequently need to issue re-

quests to other services. For example, when an online store

processes a client checkout, it issues a nested request—i.e., a
request that is issued while the original checkout request is

being processed—to the client’s credit card service, asking

for a certain amount of money to be blocked. Similarly, a web

server processing client HTTP requests frequently needs to

issue nested requests to a backend database.

Infrastructure services follow a similar pattern: multiple

components work together to provide a high-level service.

Systems like HBase [32] and Google’s Photon system for pro-

cessing ad clicks [8] consist of multiple components, some of

which need to interact with as many as three other compo-

nents to process client requests. In the spirit of the microser-
vices paradigm [7, 27, 34], Uber’s infrastructure includes

about 1000 interacting microservices [35, 53]. Sometimes

multiple services make use of a shared service providing

useful functionality, such as a Single-Sign-On (SSO) service.

These interacting services are often mission-critical and

need to be replicated for high-availability; e.g., the 2PC co-

ordinator in Spanner [19], the HBase Master node [32], the

Distributed Sagas coordinator [54], online stores, banking ap-

plications, etc. If one tries to replicate these services, however,

one faces an unpleasant realization: our current replication

protocols are both inefficient and incorrect in the presence of

service interactions.

Our replication protocols, it turns out, were designed for

the client-server model, where clients issue requests to a stan-

dalone service. These protocols dutifully follow the recipe

of State Machine Replication [56] and provide clients the

abstraction that they are interacting with a single correct
machine. In a world where services interact, however, it is

no longer enough to provide this abstraction towards the

clients alone. If correctness is to be maintained, the abstrac-

tion must be provided towards any external entity that can

observe the replicated service’s state; e.g., any services that

the replicated service must issue a nested request to.

The implications of this observation are far-reaching. As

far as we can tell, all existing replication protocols, while per-

fectly fine in the client-server model, can run into a number

of problems if applied naively in an environment where

services interact. This includes Primary-Backup [12, 22],

the myriad variants of Paxos [42], PBFT [13], Zyzzyva [40],

Eve [38], Rex [29], Crane [21], XFT [47] and even the simple

approach of providing replication in time by having a server

log its requests on an external fault-tolerant log [11, 37, 41].

In the next section we give concrete examples of how inter-

actions violate the correctness of these replication protocols.

One of the contributions of this paper is to rethink the de-

sign of replication protocols and to ensure correctness in the

presence of service interactions.

But correctness is not the only concern here. Using tra-

ditional replication protocols in such a multi-service envi-
ronment would still lead to an inefficient implementation.

Consider, for example, how a Paxos-based replicated service

A would execute a client request that issues a nested request

while executing. Paxos, like most replication protocols, is

bound by sequential execution. That is, in order to guarantee

replica consistency, requests are executed in a well-defined

order and each request must finish executing before the next

one can start. In a multi-service setting, this means that ser-

vice A must remain idle while its nested request is being

processed at service B, resulting in an inefficient implemen-

tation. If, as is often the case with real services [57], the chain

of services is longer than just two, the performance loss only

grows worse. In this paper, we reconsider the need for se-

quential execution and propose a deterministic alternative

that is better suited for a multi-service environment.

In the absence of a comprehensive solution to the prob-

lem of service interactions, existing systems take one of the

following two approaches. The simplest is to ignore their im-

plications and accept the resulting inconsistencies. Google,

for example, uses this approach in some of their services

and try to deal with the inconsistencies at the application

level [1]. If one does not wish to give up consistency, the

alternative is to design a custom protocol to regulate these

interactions. For example, Salus [61] creates a custom pro-

tocol to allow its replicated region servers to interact. The

resulting protocol is quite complicated and does not gen-

eralize to other settings. Similarly, in Farsite [3] groups of

replicated nodes can issue requests to other such groups. To

simplify the design, Farsite uses a custom protocol based

solely on message passing and avoids using nested requests

altogether. While this circumvents the problem, it is hardly

practical, as most developers prefer the simplicity of RPCs

to having to decompose their requests into a sequence of

independent state machine transitions. This paper aims to

establish a set of principles and techniques that will facilitate

the replication of services in multi-service environments,

without resorting to ad-hoc solutions.

Contributions This paper rethinks the design of replica-

tion protocols beyond the client-server model. It proposes

new techniques that address the shortcomings of existing

replication protocols and allow replicated services to interact

without harming performance or correctness. In particular,

we make the following contributions:

• Problem statement We identify the shortcomings

of existing replication protocols in the presence of

service interactions and pinpoint three challenges that

a comprehensive solution must address (§2).

• Ensuring correctness We introduce three new tech-

niques, server-shim, response-durability and spec-tame,
which together aim to provide the single correct ma-
chine (hereafter, SCM) abstraction (§4).

• Designing for performance We introduce request
pipelining, a novel technique that achieves replica con-
sistency without resorting to sequential execution. Re-

quest pipelining thus allows replicated services to issue

nested requests without having to remain idle waiting

for the response (§5).

• EvaluationWe built Aegean, a replication library that

implements the above techniques. We evaluate its per-

formance using the TPC-W benchmark and two in-

teracting services. Our experiments indicate that, not

only does Aegean ensure the correctness of replicated

services in a multi-service setting, but it can also in-

crease their throughput by an order of magnitude (§7).

2 The consequences of interactions
We now explain in more detail how service interactions can

violate the correctness of existing replication protocols. We

will illustrate these violations using a simple setting in which

a number of clients send requests to a replicated online store—

which we call the middle service. As part of executing some

client requests (e.g., checkout requests), the online store must

make a nested request to another, unreplicated service (e.g., a
credit card service)—that we call the backend service.

Despite its simplicity, this setting is representative of the

call pattern found in many real applications. This is, for ex-

ample, how a travel metasearch engine—e.g. Expedia [25],

Kayak [39]—would work. This is the pattern one would ob-

serve if they replicated the Master node of HBase [32] or the

coordinator in Distributed Sagas [54] to increase availability;

etc. The only difference is that in these real applications, the

interactions are even more complicated than our simple set-

ting: the middle service may interact with multiple backend

services, the chain of nested requests may be longer, and a

request may issue any number of nested requests.

Our basic “client→middle→backend” setting is deliber-

ately simple, to allow for clear exposition and also to demon-

strate the fundamental nature of the problems we discuss.

Our solutions and prototype, however, are motivated by

real-world applications and thus they are not limited to this

simple setting: they support an arbitrary number of nested

requests per client request (including no nested requests),

longer chains of services, interactions with multiple backend

services and interactions with replicated backend services.

We do not currently support circular service dependencies,

as they can introduce deadlocks.

Note that, if performance is not a concern, some of the

correctness issues we discuss can have simple, if inefficient,

solutions. In this paper we focus not only on ensuring cor-

rectness in the presence of service interactions, but also on

implementing these interactions efficiently.

Primary-backup Let us first consider primary-backup [12,

22], a class of replication protocols where the primary ex-

ecutes client requests and forwards state updates to the

backup. Once the backup acknowledges receiving an up-

date, the primary sends the corresponding response to the

client. Now consider the implications of having a middle ser-

vice replicated with primary-backup. Remember that only

the primary executes requests and thus only the primary

sends nested requests to the backend service.

Consider the case where the primary sends a nested pay-

ment request and then crashes. This will cause an incon-

sistency: the backend service will receive the request and

process it, but the state of the middle service does not re-

flect that. The backup will eventually time out and become

the new primary, having no idea that such a request was

ever made. What is worse, it has no way of replaying the

primary’s execution; it does not even know what requests

2

the primary executed. The backup may therefore end up

re-issuing that nested request, issuing a slightly different

request, or even realizing that the item is sold out and return-

ing an error message to the client—who has already been

charged.

The fundamental problem here is that the primary sends

a nested request, essentially performing an output commit
without first ensuring that its state is replicated at the backup.

This is an example of the principle we mentioned earlier:

when services interact, it is imperative that the SCM abstrac-

tion be provided towards any external entity that observes

the replicated service’s state.

Paxos-like protocols Paxos [42, 43] is the most popular

replication protocol, with a large number of variants [10, 26,

36, 44, 45, 48, 50, 52, 60]. The problems we highlight here

apply to all variants of Paxos, including all Byzantine replica-

tion protocols (e.g., PBFT [13], UpRight [15], XFT [47]) and

the multithreaded execution of Crane
1
[21]. These protocols

use active replication, where replicas first agree on the order

of requests and then execute them in that order.

In a multi-service setting, these protocols run into several

problems. Using active replication means that all replicas

execute requests and thus, if no precautions are taken, the

backend will receive and execute multiple copies of each

nested request. The good news is that these requests are

now guaranteed to be identical, making it easy to detect

duplicates.

Duplicate detection, however, is not enough. Consider

one of the replicas executing a batch of 10 requests, each of

which makes a nested request to the backend service. After

executing all 10 requests, the replica sends its responses back

to the client and then crashes. When other replicas try to

execute these same 10 requests, they must reach the same

state as the failed replica—as this state has already been

exposed to the client.

But how can they? Even if the backend service detects

that these are duplicate requests and refuses to re-execute

them, this does not help the replicas of the middle service,

which are now stuck, with no way to get the reply to their

nested requests. Here, one may consider employing existing

techniques such as using a reply cache at the backend [46];

i.e. storing the latest response from each client. Such tech-

niques are only part of the solution, however, as they do not

consider the implications of a replicated client. Indeed, in

such a setting one client replica may make an unbounded

number of requests and overwrite the cache before another

replica makes its first request.

Needless to say, BFT versions of Paxos introduce addi-

tional problems. For example, it is clearly not safe to allow

any single replica to issue nested requests to the backend

service, for fear of that replica being malicious.

1
Crane also suffers from divergence if multiple replicas receive responses

to their nested requests in different orders.

Finally, correctness is not the only problem for Paxos-like

protocols. As we discussed earlier, their reliance on sequen-

tial execution results in significant inefficiencies in a multi-

service setting. In Section 5 we rethink the use of sequential

execution in this setting and propose request pipelining, an
alternative mode of execution that can increase throughput

up to 9x compared to sequential execution.

Speculative execution In the pursuit of high performance,

some replication protocols use various forms of speculation.

For example, Zyzzyva [40] executes requests before the repli-

cas have reached agreement on the ordering of requests.

Eve [38] takes speculation even further, speculating not only

on the order of requests, but also on the result of a non-

deterministic execution of the requests in a multithreaded

environment.

While speculation can be an important tool towards im-

proving performance, its use in multi-service settings, if left

unchecked, can threaten the correctness of the system. The

premise behind speculation is that it is acceptable to execute

requests speculatively, as long as the client—the only exter-

nal observer in the client-server model—is not exposed to

the inconsistent states that result from mis-speculation. This

is why speculative systems like Eve and Zyzzyva employ

“repair” mechanisms to roll back the application state, in case

the speculation is not successful. In a multi-service setting,

however, the client is not the only external observer. When

a middle service A makes a nested request to a backend ser-

vice B, then B is also implicitly exposed to the internal state

of A. If A made the nested request as part of a speculative

execution, but the speculation was not successful, A should

be able to roll back its application state; but it cannot take

back the nested request it sent to B, nor revert the cascading
effects of that nested request on the state of B and on any

responses that B may have sent to its other clients.

This is yet another example of the basic principle behind

this paper: when services interact it is not enough to provide

the SCM abstraction towards the client; it must be provided

towards any external entity that can observe the replicated

service’s state.

2.1 Putting it all together
The bad news so far is that our existing ways of achieving

replication do not fare well when the replicated service is not

standalone. What is more, each replication protocol seems

to fail in its own particular way. Fortunately, that is not

entirely true. If we look carefully at the above examples, we

can distill these seemingly disparate issues into three key

challenges raised by service interactions. Unsurprisingly,

all three challenges are related to re-establishing the SCM

abstraction.

Replicated client In the client-server model, a client is a

single machine that issues requests to a server. In the multi-

service setting, however, where a replicated service may

3

issue requests to other services, it effectively functions as

a replicated client. While multiple replicas of the client may

send their own copies of a request, these should be logically

treated as a single request to maintain the SCM abstraction.

Durability of nested responsesWe refer to the response

to a nested request as a nested response. When a middle

service replica receives a nested response, it cannot simply

finish the execution of the corresponding request and send

the response back to the client. If the replica does so and then

crashes, the other replicas may not be able to identify what

was the response to that particular nested request. Instead,

the replica should first ensure that the nested response has

been received by enough middle service replicas so as to be

considered durable.

Speculative execution A nested request should never be
made based on speculative state. Doing so risks exposing to

the backend service an uncommitted state which may later

be rolled back, violating the SCM abstraction.

Section 4 presents our solutions to these challenges. In

particular, we introduce three novel techniques, server-shim,

response-durability and spec-tame, which address each of

these challenges, respectively.

2.2 Alternative designs
The above problems manifest when a replicated middle ser-

vice issues nested requests to a backend service. It is impor-

tant to note that there are ways to achieve fault tolerance in

middle services without replicating the middle service itself,

thus avoiding the problems we mentioned above. In particu-

lar, one may not need to replicate a service if the following

conditions hold: a) the service is purely stateless, and b) one

only cares about tolerating crash failures. If such a state-

less service crashes, one can restore it by starting another

instance of the service [14, 32].

Such stateless designs often rely on a fault-tolerant back-

end store [9, 19]—to keep all application state—and some-

times use a reliable message queue [6] or logging service [37,

41]—to ensure reliable message exchange between the mid-

dle and backend service. For example, Amazon Web Services

(AWS) provides applications with both a Simple Queue Ser-

vice [6] and a Simple Notification Service [5] to facilitate

such interactions. If a stateless service wants to change the

application state, it can then issue requests to a backend

storage service and receive the results via one of these ab-

stractions. One of the drawbacks of this approach is that

all such state updates, no matter how fine-grain, must be

explicitly encoded in the state of the backend service and

each such update must be issued through an explicit message

between the two services.

3 System model
The concepts and techniques presented in this paper are fully

general: they apply to both synchronous and asynchronous

systems, and can be configured to tolerate all types of fail-

ures, from crashes to Byzantine failures. We primarily target

asynchronous systems, where the network can arbitrarily

delay, reorder or drop messages without imperiling safety.

For liveness, we assume the existence of synchronous inter-

vals during which messages sent between correct nodes are

received and processed with bounded delay.

Backend service We consider both replicated and non-

replicated backend services. Of course, not replicating the

backend service is inadvisable, since a single machine failure

can render it unavailable. Thismay seem like aweird setting—

a high-availability service relying on a low-availability one—

but in practice this can happen if the backend service is an

optional service (e.g. a side banner on a web page, a plugin, or

an optimization/refinement service) and the middle service

can simply timeout on that service and continue operating

without it.

Failure model To accommodate all failure types, we adopt

the hybrid failure model of UpRight [15]. The system is

guaranteed to be live—i.e., to provide a response to client

requests—despite a total of up to u failures of any type. Ad-

ditionally, the system is safe—i.e., ensures that all responses
that are accepted by clients are correct—despite up to r com-

mission failures and any number of omission failures
2
. Omis-

sion failures occur when a node omits some of the steps in

its execution, but other than that adheres to the protocol;

e.g., it crashes and takes no more steps or it neglects to send

a message. Commission failures occur when a node performs

actions that do not adhere to the protocol; e.g., it behaves

maliciously. The union of omission and commission failures

are Byzantine failures. Finally, we assume that faulty nodes

cannot subvert cryptographic primitives, such as inverting

SHA-256.

Correctness Previous replication protocols which employ

sequential execution [2, 13, 16, 20, 40, 42] typically provide

linearizability of requests [33]. This has led to the miscon-

ception that linearizability is the consistency guarantee that

should be provided by a replication protocol. While this may

be true when sequential execution is assumed, it is not true in
general. For example, protocols like Primary-Backup [12, 22],

Rex [29] and Eve [38] which support multithreaded execu-

tion have already moved away from linearizability, for the

simple reason that a parallel execution of requests is not

necessarily equivalent to any sequential ordering of those

requests.

In Aegean we aim at a more general definition of cor-

rectness, that is not bound to sequential execution. We de-

fine correctness as indistinguishability from a single correct

server; namely that the outputs of a replicated service should

2
To quickly convert to the traditional “f” notation, one can substitute u =
f , r = 0 when tolerating benign failures, and u = r = f when tolerating

Byzantine failures.

4

be indistinguishable from the outputs provided by an un-

replicated version of the service. Note that this definition

does not prevent achieving a linearizable execution. In fact,

if the unreplicated version is executing requests sequentially,

then the replicated service must guarantee linearizability.

At the same time, this definition allows for other modes of

execution; e.g. multithreaded execution.

4 Ensuring correctness
In this section we introduce three techniques, server-shim,

response-durability and spec-tame, which aim to address the

shortcomings of existing replication protocols and allow

services to be safely replicated in a multi-service setting.

4.1 Server shim
As we discussed in Section 2, one of the challenges—in fact,

the simplest one to address—raised by replicating a middle

service that may issue nested requests to a backend service

is that the middle service effectively functions as a replicated
client to the backend service. If the middle service uses active

replication, the backend will receive multiple copies of each

nested request and should avoid executing redundant copies.

Moreover, the backend should ensure that all replicas of the

middle service can access the results of previously executed

nested requests, if they need to.

Dealing with the complexities of a replicated client re-

quires modifications to the backend service. It becomes im-

perative, then, to implement this functionality as simply and

generically as possible, to avoid having to re-implement it

for every backend service.

We propose a simple abstraction, server-shim, that ab-

stracts away from the backend service the complexities of

dealing with a replicated client, while at the same time pro-

viding replicas of the middle service with all the information

they need. This idea mirrors the shim layer used in clients

of traditional replication systems to abstract away from the

client the complexities of dealing with a replicated server.

The server-shim code runs independently at each replica,

without any need for coordination. It is essentially a “filter”

that aims to abstract away from each replica the complexity

of dealing with a replicated client. The server-shim deals

with the following aspects of replicated clients:

Receiving requests The server-shim authenticates each

incoming request separately in order to ascertain the iden-

tity of the sender. It does not, however, forward all requests

to the replica for processing immediately. Instead, it waits

until it receives a quorum of matching requests from a repli-

cated client—much like the quorum of matching responses

required by a client of a replicated service. The size of the

quorum depends on the failure model. Once a quorum of

matching requests has been collected, the shim will forward

the request to the replica for processing and will ignore any

redundant copies sent by the remaining client replicas.

Sending responses When the backend service generates

a response to a nested request, the server-shim is responsi-

ble for broadcasting it to all replicas of the middle service

which sent the corresponding nested request. Merely send-

ing the request to all replicas, however, is not enough to

ensure that they all receive it, as messages may be lost in

the network. Similar to traditional replicated protocols, the

shim uses a per-client-thread reply cache to keep track of

the latest response and resends it if needed. Importantly, by

ensuring the durability of nested responses at the middle

service—discussed below—we ensure that the reply cache of

the backend only needs to store the latest response for each

execution thread at the middle service.

4.2 Durability of nested responses
In the client-server model, the only input to a replica’s state-

machine execution are the client requests. In a multi-service

setting, however, there is an additional source of input: the

responses to its nested requests—i.e., nested responses. Just as
traditional replication protocols must ensure that all inputs

are durably logged—e.g., in the form of the Paxos log—before

performing an output commit to the client, so must repli-

cation protocols in the multi-service setting ensure that all

inputs, including nested responses, are durably logged before

performing an output commit to the client or to a backend

service.

In Aegean, when a middle service replica receives a nested

response, it will forward an acknowledgment to all other

replicas. Only when receiving u + 1 such acknowledgments,

including its own, will a replica consider the nested response

durable and perform any corresponding output commits.

Unfortunately, this explicit acknowledgment phase results in

additional latency per request. In Section 6 we show how we

can leverage the backend service to get the same durability

guarantee while eliminating this additional latency.

4.2.1 Timeout actions
Some applications do not always wait to receive a nested

response, but may instead timeout. Consider for example a

replicated 2PC coordinator, like the one used in Spanner [19],

which sends a request to all participants. If some participants

have not responded within a certain timeout, the coordinator

will decide to abort the transaction. In these cases, the prob-

lem of durability of nested responses is transformed into a

problem of agreement on the nested responses. There is no

longer a single potential outcome to each nested request, but

two: either a nested response was accepted or the middle

service timed out.

To ensure that all replicas agree on the outcome of the

nested request, we upgrade our acknowledgement phase into

an instance of agreement (consensus). Once again, we don’t

actually have to run an explicit agreement in the common

case: we leverage the backend to perform this agreement

without incurring any additional latency (Section 6). We only

5

perform this agreement phase explicitly when the replicas

time out on the backend.

4.3 Taming speculation
Speculation is an approach for achieving high performance

in a replicated system. For example, Zyzzyva [40] specula-

tively executes requests before reaching agreement on their

order, while Eve [38] speculates not only on the order of

requests, but also on the result of a non-deterministic, multi-

threaded execution. As we discussed in Section 2, sending

nested requests based on speculative state is dangerous: if

speculation fails, we can employ a rollback mechanism to

revert the application state to a previous version; but we

cannot “unsend” the nested request, which may have already

caused visible changes to the state of the backend service.

Interestingly, this problem also applies to replication pro-

tocols that are not typically considered speculative, like

primary-backup [12, 22] and Rex [29]. Take primary-backup,

for example. The primary can execute requests in any order

and even in parallel. This execution is actually speculative,

since there is no prior agreement on which requests should

be executed, and how. In the client-server model this is fine

since the execution has no visible side-effects; if the primary

fails before updating the backup, the backup will take over

and execute its own requests. In the multi-service setting,

however, the primary’s execution does have side-effects—the
nested requests—which cause inconsistency.

The fundamental problem here is that speculation violates

the SCM abstraction, as it exposes speculative state to the

backend service. The brute-force approach to solving this

problem would be to make the backend service aware of

the existence of speculation. This would force the backend

service to implement a rollback mechanism, as well as an

isolation mechanism for preventing its other clients from

observing speculative state—essentially requiring full trans-

actional support. We consider this an impractical solution,

especially since, as we discussed in Section 1, services fre-

quently have to interact with multiple other services. This

brute-force approach would require all such backend ser-

vices to add transactional support; a significant undertaking

that would most likely be a show-stopper. Ideally we would

like to be able to enjoy the performance benefits of spec-

ulation at the middle service, without having to affect the

backend service.

To that end we introduce a new technique, spec-tame, that
allows replicated services to employ speculative execution,

while still providing the SCM abstraction to unmodified back-

end services. Spec-tame is based on the insight that nested

requests are a type of output commit to an external observer.

It is therefore possible to employ speculation within the ser-

vice, as long as the speculation is resolved before the output
commit happens. Essentially, spec-tame applies the idea of

“Rethink the sync” [51] to interacting replicated services.

The principle of taming speculation—i.e., using it inter-

nally, but resolving it before performing output commit—is

generally applicable to any replicated service that employs

speculation as part of its execution. We expect, however, that

the particular way in which this principle will be applied

depends on the particular protocol used to replicate the mid-

dle service. In the remainder of this section, we will show

how the spec-tame technique can be applied to tame the

speculative execution of Eve [38]. We chose to demonstrate

spec-tame on Eve because of its generality and the practical

significance of multithreaded execution. We also wanted to

demonstrate that spec-tame is applicable even to complex

execution schemes, like that of Eve.

4.3.1 Case study: taming Eve’s speculation
Eve [38] is a protocol for replicating multithreaded services.

Eve uses the execute-verify architecture, where replicas spec-

ulatively execute a set of requests, called a parallelBatch, in
parallel and then verify whether they reached the same state

and produced the same responses. Eve uses a Merkle tree

to compute a hash of the application state and its pending

responses. At the end of each batch of requests each replica

sends this hash to the verification stage to determine whether

replicas have diverged. If the verification stage detects that

the replicas have diverged, it will ask the replicas to roll back

the application state and temporarily employ sequential exe-

cution to ensure progress.

Essentially, Eve’s approach is to resolve the speculation at

the end of a batch, which serves as a deterministic point in

the execution at which replicas will check whether the spec-

ulation has succeeded. Of course, doing so in a multi-service

environment would be unsafe: the nested requests sent dur-

ing execution of the batch would be based on speculative—

and thus potentially inconsistent—state.

In Aegean, we refine Eve’s approach by applying the spec-

tame technique. In other words, we need to identify a deter-

ministic point in the execution that precedes the sending of

all nested requests sent by the execution threads of Eve. To

that end, we leverage the fact that the very point where the

original request needs to send a nested request is—by the fun-

damental assumption of state machines being deterministic

in SMR—a deterministic point in the execution.

At the high-level, then, multithreaded execution in Aegean

works as follows. When presented with a parallelBatch, repli-

cas will start executing requests in parallel, using one thread

per request, just like in Eve. Each thread will keep executing

until it reaches a natural stopping point, which we call a

barrier. The barrier is either the sending of a nested request—
more precisely, right before the nested request is sent—or

the end of the parallelBatch. When a thread hits the barrier,

it will wait until all other threads hit the barrier, as well. Es-

sentially, the barrier represents a deterministic point across

the execution of all threads, at which speculation can be

resolved. Figure 1(a) illustrates the concept of the barrier

6

Figure 1. The concept of a barrier and how threads use it to detect when speculation should be resolved. Figure (a) shows a parallelBatch of

twelve requests being executed by four threads. Some requests need to make a nested request, while some do not. We use three different

colors to indicate how the nested requests form two barriers that divide the execution into three parts. Figure (b) illustrates how the execution

would proceed in real time, where threads must wait until all other threads hit the barrier, before proceeding to resolve the speculation and

send their nested requests.

using a parallel execution with four threads and Figure 1(b)

illustrates how threads wait for each other during execution.

When all threads hit the barrier, the replica will resolve

the speculation similarly to Eve. It will compute a hash of the

application state and responses using the Merkle tree and

send the hash to the verification stage—which is identical

to Eve’s verification—to determine whether replicas have

diverged. In addition to the state and responses, however,

the hashwill also include the nested requests that the replicas

are about to send. Only if the verification stage determines

that the replicas have converged—i.e., the Merkle hashes

are identical—will the replicas mark their state as stable and

send the nested requests. If the verification stage detects

divergence, it will ask replicas to roll back to the latest stable

state and retry execution from that point—sequentially this

time, to ensure that replicas converge.

4.3.2 Subtleties of Aegean
The verification stage of Aegean is identical to that of Eve.

In particular, if it can identify a state produced by a correct

replica, it will ask replicas to commit their state. This will

happen if it receives a quorum of max (u, r) + 1 matching

Merkle hashes. Otherwise the verification stage will ask for

a rollback. Note that, even when a quorum is collected, some

replicas may have diverged, due to non-determinism in their

execution. These replicas will simply ask for a state transfer

from one of the replicas that committed, just like in Eve.

There are some aspects of Aegean, however, that require

special attention.

Fine-grain rollback In Eve, a rollback happens at the bound-

aries of a batch. If executing a batch led to divergence, each

replica uses a multi-version, copy-on-write mechanism to

revert the state to what it was at the beginning of the batch,

and resumes execution of the requests, albeit in a sequential

manner. In Aegean, however, rollback is more involved than

that.

Consider, for example, the execution in Figure 1(b). If the

replicas reach the first barrier without diverging, the verifi-

cation will allow them to mark that state as stable and send

the corresponding nested requests. If the replicas diverge

before hitting the second barrier, then the verification will

determine that a rollback is required. But what should the

state be rolled back to? Since the replicas have already sent

the nested requests at the first barrier, they cannot rollback

the state any farther back than that—that was the whole

point of taming speculation, after all. If they roll back the

state to the first barrier, however, this means that each thread

must resume the execution in the middle of the request. This

means the thread must not only rollback the application

state, but it must recreate the exact execution stack it was

using when it hit the barrier.

Section 6 describes how Aegean implements rollback with

this additional requirement. The important thing to note

is that the application developer does not need to worry

about the complexities of this new rollback mechanism; the

replication library of Aegean takes care of the rollback auto-

matically.

Late divergence Another subtlety that must be attended

to is that of late divergence. As we said above, Eve resolves

speculation by performing verification at the batch bound-

aries. In essence, it uses the verification stage to perform

agreement on (a) the contents of the batch and (b) the way

the batch was executed in a multithreaded manner. If agree-

ment is not reached, the state is rolled back and a new batch

is formed and executed sequentially. In Aegean, however,

verification can also be performed in the middle of a batch.

This creates the following complication.

Consider the case where the primary replica—the one re-

sponsible for forming batches—suffers from a commission

failure, so that it sends different batches to all replicas. In

particular, all requests in the batch are identical across repli-

cas, except one request, which is different across all replicas.

7

If that “trap” request lies towards the end of the batch, the

replicas may still succeed in converging all through the first

m barriers. Having committed the state for themth
barrier,

they then start executing the “trap” request. Since it is dif-

ferent for all replicas, the verification at them + 1th barrier

will fail. Note, however, that rolling back the application and

execution state to themth
barrier and resuming execution

sequentially is not an option, since replicas will still diverge,

since the “trap” request is different for all of them. And, as

we discussed above, rolling back to a state before themth

barrier is also not an option.

The problem in this case arises because, by committing the

first barrier of the batch, the replicas have implicitly forced to

execute the entire batch, without having reached agreement

on the contents of the batch. In Eve, that is acceptable, since

replicas do not commit anything during the batch. Since

Aegean needs to commit during the batch, however, the

agreement on the batch contents must be made explicit. To

that end, in Aegean replicas include the batch contents in

the hash computation for the first barrier of each batch. This

ensures that, if verification succeeds and the replicas mark

that state as stable, the batch contents are guaranteed to be

identical across all replicas.

5 The woes of sequential execution
Most replication protocols [11, 13, 15, 40, 42, 44, 47, 52] rely

on the agree-execute architecture [63], where replicas first

agree on the order of client requests and then execute them

sequentially in that order. This approach has been the cor-

nerstone of building replicated services, as it ensures replica

consistency; i.e., it ensures that all replicas will go through

the same state transitions and will produce the same output.

In a multi-service environment, however, sequential ex-

ecution has undesirable consequences. Figure 2 illustrates

a simple example where service A needs to make a nested

request to a backend service B for every request it processes.

If A is bound by sequential execution, it has no choice but to

remain idle while its nested requests are being transmitted

and processed. If, for example, the processing time at the

backend service is approximately equal to that of the middle

service, then service A will remain idle 50% of the time, lead-

ing to an inefficient implementation. This inefficiency can

be further exacerbated when the message round-trip time is

significant, as in geo-distributed deployments, or when more

services are involved in the chain of nested requests; e.g., ser-

vice B must also make a nested request to another service C .
As the complexity of modern distributed systems increases,

so does this chain of nested requests become longer, leading

to even more inefficient implementations.

Figure 2. Sequential execution of requests in amulti-service setting.

Bound by sequential execution, service Amust remain idle while

its nested requests are being processed at service B.

Figure 3. This figure shows how request pipelining increases effi-

ciency, by allowing service A to keep executing requests while its

nested requests are being processed at service B. This example uses

a pipeline of depth 4.

5.1 Request pipelining
The insight that lets us overcome this problem is that, while

sequential execution is sufficient to guarantee replica consis-

tency, it is not necessary. In fact, any deterministic schedule
of execution is enough to guarantee replica consistency.

With this in mind, we introduce request pipelining, a de-
terministic schedule of execution that is better suited to the

multi-service environment and is free of the inefficiencies

of sequential execution. The idea behind request pipelining

is to allow a service to keep executing requests while its

nested requests are being transmitted and processed. With

request pipelining, requests are still being executed one at a

time. When a request r1 needs to make a nested request to

another service, however, the replica does not remain idle

waiting for the response. Instead, it starts executing the next

request r2 according to the agreed upon order of requests.

Request r2 will be executed either to completion or until that

request needs to make a nested request, too. This process

will be repeated k times, effectively creating a pipeline of

depth k . When rk finishes executing—partially or fully—the

replica will resume the execution of r1. At this point, it is still
possible that the replica will have to wait for the response

to the nested request of r1 to arrive. If the pipeline is deep

enough, the replica should be kept busy until the response

arrives.

Even if the response to the nested request of r1 arrives
before it is time for r1 to execute again, the replica will not

resume the execution of r1 prematurely. This is crucial to

ensure that all replicas execute requests in a deterministic

manner, as the response to the nested request of r1 is not
guaranteed to reach all replicas of A at the same time. Fig-

ure 3 illustrates an example where service A issues nested

8

requests to service B using a pipeline of depth 4. Note that

the response to the nested request of r1 arrives before r3 has
finished executing. While it would be possible for the replica

to prematurely end the pipeline and resume execution of

r1 at that point, it would be dangerous to do so, as it is not

guaranteed that other replicas of service A will also receive

the response at that time. Instead, request pipelining decides

the order of execution based on a deterministic round-robin

schedule, keeping it independent of the arrival of responses.

Finally, we ensure that nested requests execute at the back-

end service in the order they were issued by assigning a

sequence number to each nested request.

The only assumption we make in order to ensure that

the schedule is deterministic is that the nested request be

performed at a deterministic point during the execution of

the original request. Note, however, that this should always

be true for any service that is replicated using State Machine

Replication, as a fundamental assumption of SMR is that

the state machine executed at each replica be determinis-

tic [56]. Similar to traditional replication protocols, we ac-

count for sources of non-determinism such as calls to rand()
and gettimeofday() by having the primary assign a seed and

a timestamp to each batch of requests [13, 15].

Performance benefit The performance benefit of request

pipelining comes from allowing the middle service to keep

processing requests, without having to wait for the responses

to its nested requests. In other words, if the pipeline is deep

enough, the middle service can decouple the latency of its

nested requests from its throughput. As long as neither the

middle service nor the backend service is saturated, increas-

ing the depth of the pipeline will yield a performance in-

crease. In Section 7 we describe a set of experiments that

quantify the benefit of request pipelining in various settings.

5.1.1 Implementing linearizability; or not
As we discussed in Section 3, this work aims to decouple lin-

earizability from replication. The purpose of State Machine

Replication is to provide the SCM abstraction and therefore a

replication protocol should provide indistinguishability from

a single correct server. If that server is not executing requests

sequentially, it would be too restrictive to require that the

replication protocol enforce a linearizable schedule.
Request pipelining is a first attempt at freeing the replica-

tion library from the obligation to provide overly restrictive

guarantees, and reaping the corresponding performance ben-

efits. Note that the use of request pipelining does not prevent
the service from providing linearizability. We merely apply

the end-to-end argument [55] and let the application decide

what kind of consistency-performance tradeoff it wants to

make. The application can, for example, have its requests ac-

quire a global lock to ensure a linearizable execution—while,

of course, forfeiting the performance benefits of request

pipelining. In Section 6 we elaborate on some implementa-

tion challenges raised by such lock acquisitions.

5.2 Parallel pipelining
Request pipelining is a way to prevent a middle service from

remaining idle while its nested requests are being processed

by the backend service. While request pipelining is a natural

optimization over sequential execution, its benefits are not

limited to sequential executions. Any time a service would

wait for its nested requests to be serviced, we have an oppor-

tunity to optimize its efficiency by starting to execute other

requests instead. In Figure 1(b), for example, the execution

remains idle while verification is being performed and while

the backend service processes the nested requests.

To address this inefficiency, we generalize the idea of re-

quest pipelining to parallel executions that use spec-tame.

The resulting execution, which we call parallel pipelining,

works as follows. When a parallelBatch of requests hits the

barrier and is waiting for an external action, such as verifi-

cation or backend processing, we yield execution to another

parallelBatch, just as a request in request pipelining would

yield execution to another request. Similar to request pipelin-

ing, the pipeline can be made k levels deep, as long as there

exist enough parallelBatches in the current batch.

6 Implementation
We have implemented a prototype of Aegean, a replication

library that implements all techniques put forth in this pa-

per: server-shim, response-durability, spec-tame, and request
pipelining. We implemented Aegean in Java, built upon the

codebases of UpRight [15] and Eve [38], and we therefore

support both the agree-execute and the execute-verify ar-

chitecture. In this section we describe some important opti-

mizations and an interesting challenge we faced during our

implementation. Table 1 summarizes these techniques.

Technique Description

Implicit agreement

Leverage the backend service to implic-

itly perform agreement on behalf of the

middle service.

Optimize Eve

When checking for divergence in a CFT

setting, ignore replica states and only com-

pare replica outputs.

Avoid deadlocks in

request pipelining

To avoid introducing deadlocks in re-

quest pipelining, synchronization opera-

tions cause a thread to yield the pipeline.

Table 1. Summary of the implementation techniques used

in the Aegean prototype.

6.1 Implicit agreement
In a multi-service setting, we can leverage the backend ser-

vice to implicitly perform various agreement tasks. The idea

here is that the backend will refuse to act on a nested request

until it has made sure that all previous nested responses are

agreed upon and durable.

9

Consider, for example, the additional phase we introduced

in Section 4.2 to ensure the durability of nested responses.

Instead of introducing this additional phase, we: a) augment

the nested requests with a recursive hash of all previous

nested responses and b) require that the backend service

only respond to a nested request after gathering a quorum

ofmax (u, r) + 1 matching copies
3
of that request. This en-

sures that there are at least u + 1 replicas that have received
the same sequence of nested responses before sending this

nested request, thus ensuring the durability of nested re-

sponses.

We also leverage the backend service to perform Eve’s ver-

ification implicitly. When a multithreaded execution reaches

a barrier that includes sending nested requests, we don’t

actually send an explicit verification request to the verifier

replicas. Instead, we piggyback that verification request on

our nested requests and modify the backend to only act on

these nested requests when it receivesmax (u, r)+1matching

copies. The only time we use an explicit verification phase

is at the end of a batch or if the backend tells us that it failed

to gather a quorum in a timely manner.

6.2 Optimizing Eve
Our prototype implements a simple—and yet impactful—

novel optimization for Eve in the crash fault tolerant (CFT)

setting. The original implementation of Eve maintains a

Merkle tree with all application objects and calculates the

root of the tree at the end of each batch, in order to reach

agreement on the replicas’ states. This results in a large

hashing overhead: all responses, modified application ob-

jects, as well as all affected internal Merkle tree nodes must

be hashed.

Our observation is simple: in a CFT setting, we do not need

to reach agreement on the application states of the replicas; it

is enough to agree on the output of the application—i.e., the

outgoing nested requests and the responses to the clients. Ex-

cluding the application states from our hashing computation

reduces overhead significantly, but introduces the problem

of latent divergence. This can occur if, after executing a set

of requests in parallel, all replicas reach different states but

their output is still identical. Unlike Eve, we do not rollback

in this case. Instead, we mark the state as committed and per-

form the corresponding output commit—either to the client

or to another service. If later the state divergence manifests

as differences in the replicas’ outputs, we can simply ask the

replicas to repair the divergence by performing state trans-

fer off of an arbitrarily selected replica. This optimization

only works in the CFT setting, of course; in the presence

of Byzantine replicas it would not be safe to perform state

transfer from another replica without assurances that its

state is correct.

3max (u, r) + 1: at least u + 1 to ensure durability and at least r + 1 to avoid
acting only on the nested requests of malicious replicas.

Algorithm 1 Pseudocode for acquire

1: procedure acqire(x)
2: while !x .trylock() do
3: yield() // Hit the barrier or yield pipeline

4: waitForMyTurn()

5: end while
6: end procedure

6.3 Avoiding deadlocks
Request pipelining enforces a deterministic round-robin sche-

dule among requests: a request yields to the next request in

line when it needs to send a nested request. An undesirable

side-effect of enforcing this round-robin schedule among

half-finished requests is that it raises the possibility of in-

troducing artificial deadlocks if a request holds resources—

e.g., exclusive locks—when it yields. Consider the case where

request r1 acquires lock x and then yields to the thread exe-

cuting request r2. If r2 needs to acquire lock x , as well, this
leads to a deadlock: r1 will keep waiting for r2 to yield, while
r2 will be waiting for r1 to release the lock.

To address this side-effect, we introduce an intermedi-

ate layer of control over thread synchronization operations.

This layer implements a simple principle: instead of block-

ing on a synchronization operation, a thread will yield the

pipeline instead. We have implemented this principle for

lock acquisitions, but the idea is similar for other synchro-

nization primitives—e.g., condition variables, semaphores,

ad-hoc synchronization.

In our implementation we replace the lock(x) calls with

calls to acquire(x). Algorithm 1 shows the pseudocode

for acquire, which makes use of Java’s atomic trylock()
operation, which acquires the lock and returns true if the

lock is available; otherwise it returns false without waiting

to acquire the lock.

The use of acquire prevents deadlocks from being intro-

duced by ensuring that, if a lock is already acquired, no other

request will be blocked waiting for that lock to be released.

Instead, that request will immediately yield control of the

execution to the next request.

In our current implementation we manually replace the

calls to lock with calls to acquire, as it requires minimal

effort for the applications we are considering. We are also

considering implementing a small module that would auto-

matically instrument the application, to eliminate the pro-

grammer effort involved.

Similar deadlocks are possible in parallel executions of

Aegean, too, if requests are holding exclusive locks while

performing nested requests. In that case, an unsuccessful

acquire will cause the thread to hit the barrier.

7 Evaluation
Aegean’s primary goal is to ensure the correctness of replica-

tion protocols in the presence of service interactions. Beyond

10

correctness, however, we are also interested in the perfor-

mance of the resulting replicated systems. In this section

we aim to quantify the performance of Aegean-replicated

services. Throughout our evaluation we will compare with

the performance of existing replication protocols, to illus-

trate the performance benefits and overhead of Aegean. We

will refer to existing replication protocols with the prefix

original—e.g., original-Eve. Keep in mind that these proto-

cols are actually incorrect in a multi-service setting; in our

implementation we simply disregard their potential inconsis-

tencies and report their performance as a point of reference.

Our evaluation tries to answer the following questions:

• How does the performance of Aegean-replicated ser-

vices compare to existing replication protocols in a

multi-service environment?

• How do various techniques and workload characteris-

tics affect the performance of Aegean?

We answer these questions by evaluating the performance

of Aegean using the TPC-W benchmark [58, 59], an estab-

lished benchmark whose call pattern closely resembles that

of real-world applications, such as online stores, microser-

vices, etc. We also evaluate the performance of Aegean on

a microbenchmark including two interacting replicated ser-

vices. Clients send their requests to an externally facing repli-

cated service which executes them, and half-way through

execution makes a nested request to a backend replicated

service. We use this setting to test how various workload

characteristics affect the performance of Aegean and to de-

termine the benefit of each of our individual techniques. The

amount of computation incurred by each request in each

service is configurable, with a default of 1ms.

To demonstrate the generality of our approach, we have

implemented and evaluated Aegean in a set of diverse set-

tings. The first is a synchronous primary-backup protocol,

with two replicas that use active replication andmultithreaded

execution. We denote the original, incorrect version of this

protocol as original-PB and our correct and optimized ver-

sion as Aegean-PB.
The second setting is an asynchronous replication set-

ting in the agree-execute architecture—i.e., using sequential

execution—representing Paxos and PBFT. The performance

of the original, incorrect Paxos and PBFT is almost identical,

so we represent themwith a common line, denoted original-
sequential. Our correct and optimized version is denoted

Aegean-CFT-singlethreaded—again, the BFT results are

almost identical and therefore omitted.

Our final setting is that of asynchronous multithreaded

replication, representing Eve. Both CFT (crash fault tolerant)

and BFT (Byzantine fault tolerant) modes of the original,

incorrect Eve are similar and are denoted original-Eve. Our

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

unreplicated

Aegean-PB

Aegean-CFT-multithreaded

original-PB

original-Eve

Aegean-BFT-multithreaded

Aegean-CFT-singlethreaded

original-sequential

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
)

execution threads

TPC-W throughput (browsing workload)

Figure 4. The performance of Aegean running the TPC-W bench-

mark.

correct and optimized versions are denoted Aegean-CFT-
multithreaded andAegean-BFT-multithreaded; the per-
formance of these two versions is actually different due to

our optimizations (see Section 6.2).

We run our experiments on a cluster of 20 nodes: 6x 16-

core Intel Xeon E5-2667 v4 @3.20GHz and 14x 4-core Intel

Xeon CPU E5-1620 v4 @3.50GHz, connected with a 10Gb

Ethernet. We use the 6 16-core machines to host our middle

and backend service execution replicas. Each middle ser-

vice uses a configuration that tolerates one failure—either

crash or Byzantine, depending on the protocol—in each of

its stages (execution, verification, or agreement) and thus

has u + max (u, r) + 1 execution and 2u + r + 1 verifica-

tion/agreement replicas [15, 38]. The only exception is our

active primary-backupmode, which always uses two replicas.

Unless otherwise noted, the backend service is unreplicated.

7.1 Performance of TPC-W
Figure 4 shows the results of our first experiment, which eval-

uates the performance of Aegean on the browsing workload

of the TPC-W benchmark. This benchmark emulates a num-

ber of clients issuing requests to an application server (mid-

dle service). These requests affect the application server’s

internal state and also issue between one and three nested

requests to a backend database and between zero and one

nested requests to a backend payment service. We use the

H2 Database Engine [30] as our database.

Figure 4 compares the throughput of various modes of

Aegean with their original, incorrect counterparts. We also

compare against the performance of an unreplicated appli-

cation server and database, both using parallel execution.

The first thing to note is that almost all Aegean modes

have a clear benefit over their original counterparts thanks

to request pipelining, which manages to keep both services

busy most of the time, incurring a speedup of up to 2.5x.

The only exception is our Aegean-BFT-multithreaded mode,

which achieves almost the same throughput as original-Eve.

11

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Aegean-PB

Aegean-CFT-
multithreaded

original-PB

original-Eve

Aegean-BFT-multithreaded

Aegean-CFT-singlethreaded
original-sequential

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
)

execution threads

Performance of Aegean with large requests (10ms)

(a) Request duration = 10ms.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Aegean-PB

Aegean-CFT-multithreaded

original-PB

original-Eve

Aegean-BFT-multithreaded

Aegean-CFT-singlethreaded

original-sequential

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
)

execution threads

Performance of Aegean with medium requests (1ms)

(b) Request duration = 1ms.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Aegean-PB

Aegean-CFT-multithreaded

original-PB

original-Eve

Aegean-BFT-multithreaded

Aegean-CFT-singlethreaded

original-sequential

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
)

execution threads

Performance of Aegean with small requests (0.1ms)

(c) Request duration = 0.1ms.

Figure 5. The performance of Aegean running our chained services with various request durations.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0.1 0.2 0.5 1 2 5 10

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
)

Backend ratio

Impact of backend ratio

Aegean-singlethreaded (w/o pipelining)
Aegean-singlethreaded (w/ pipelining)
Aegean-multithreaded (w/o pipelining)

Aegean-multithreaded (w/ pipelining)

Figure 6. The effect of the processing ratio between the middle

and backend service on the performance of Aegean.

Here, the benefits of pipelining are counteracted by the over-

head of having to resolve speculation—and thus perform

hashing—more often than original-Eve and of having some

threads wait until all threads hit the barrier. Our Aegean-CFT-

multithreaded mode, on the other hand, uses our hashing

optimization to drastically reduce that overhead.

Taking a step back, we want to highlight the practical

importance of spec-tame: it allows Aegean to safely employ

multithreaded, speculative execution, drastically improving

its performance compared to sequential execution. Despite

the overhead of having to resolve speculation frequently,

the Aegean-CFT-multithreaded mode achieves a throughput

5.6x that of sequential execution, which compares favorably

with the upper bound of 6.9x achieved in the unreplicated

setting.

7.2 Effect of request size
In this section, we use our chained services to evaluate

the performance of Aegean as the computation per request

changes. Figure 5 shows the performance of Aegean when

requests execute for 10ms, 1ms, and 0.1ms, respectively, at

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0 1 2 random(0,1,2)

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
)

nested requests per request

Impact of # nested requests

Aegean-singlethreaded (w/o pipelining)
Aegean-singlethreaded (w/ pipelining)
Aegean-multithreaded (w/o pipelining)

Aegean-multithreaded (w/ pipelining)

Figure 7. The performance of Aegean under various numbers of

nested requests per request.

both the middle and the backend service. Similar to our TPC-

W experiment, pipelining leads to a 2x speedup in almost

all modes compared to their original versions. As expected,

Aegean achieves higher speedups with heavy requests since

its overhead is better amortized. In most modes, however,

the difference between large and small requests is not drastic.

The mode that is mostly affected is again the Aegean-BFT-

multithreaded mode, which has a high hashing overhead

and thus benefits the most from overhead amortization.

Once again, the importance of supporting and optimizing

multithreaded execution—through spec-tame and parallel

pipelining—is evident: even for small requests, our Aegean-

CFT-multithreaded mode achieves a 17x speedup compared

to sequential execution; with large requests, this speedup

increases to 25x.

7.3 Microbenchmarks
In this section, we run a set of experiments on our chained

services to evaluate the impact of various workload charac-

teristics on the performance of Aegean. In these experiments,

parallel executions—pipelined or not—use 16 threads, unless

otherwise noted; all services run in the CFT setting; and

12

the default execution time is 1ms. The backend service uses

parallel execution and we vary the number of threads and

use of pipelining in the middle service.

Backend ratio Figure 6 shows the results of the first exper-

iment, which evaluates how the backend ratio—i.e., the ratio
of computation per request at the backend service over the

computation per request at the middle service—affects the

performance of Aegean. The backend ratio is particularly rel-

evant to the performance benefit of pipelining. In sequential

execution a large ratio means that the middle service spends

most of its time waiting for a response from the backend and

thus pipelining is of particular use.

Note also that as the backend ratio increases, the single-

threaded execution benefits more from pipelining than multi-

threaded execution. This is because a single-threaded execu-

tion at the middle service finds it harder to reach saturation

and match the throughput of the backend service. When

execution at the backend is 10 times heavier than the mid-

dle, for example, pipelining yields a throughput that is 9

times higher than that achievable in traditional sequential

execution.

Number of nested requests Figure 7 shows the results

of the second experiment, which evaluates how the perfor-

mance of Aegean is affected by the number of nested requests

for every request at the middle service. We use four configu-

rations: no nested requests; one nested request per request;

two nested requests per request, and one where requests

issue anywhere between zero and two nested requests. In all

settings, the total computation time for a request (including

all nested requests) is 2ms, split equally among the involved

services.

Observe that the impact of number of nested requests

per request is significant for parallel execution. This is be-

cause the execution can hit multiple barriers in every batch,

depending on how many threads execute in parallel. In con-

trast, when no nested requests exist, speculation need only

be resolved once, at the end of the batch. As expected, in the

absence of nested requests, pipelining has no effect. Adding a

second nested request per request reduces the peak through-

put slightly, as the overhead associated with nested requests

increases. In the final configuration, where requests make

a random—but still deterministic across replicas—number

of nested requests, the peak throughput drops a bit further,

despite the fact that the average number of nested requests

is reduced compared to the previous configuration. This hap-

pens because the variability among requests is increased,

causing them to hit the barrier at different times, and thus in-

creases the time that threads wait on each other. In all these

cases, however, the peak throughput of Aegean is between

14x and 18x that of sequential execution.

Longer chain Figure 8 shows the results of our final ex-

periment, which adds a third level to our chain of services.

In these experiments the second-level service is replicated

and sends nested requests to the third-level service. Observe

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

2 3

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
)

chained nested requests

Impact of chain length

Aegean-singlethreaded (w/o pipelining)
Aegean-singlethreaded (w/ pipelining)
Aegean-multithreaded (w/o pipelining)

Aegean-multithreaded (w/ pipelining)

Figure 8. The performance of Aegean with longer chains of nested

requests.

that the original two-level system obtains a 2.3x through-

put increase over sequential execution by using pipelining.

Parallel execution does not get as much of a benefit from

pipelining, because it is harder to keep the pipeline full when

both services have 16 threads. When we add a third layer,

pipelining yields evenmore benefit: request pipelining is 3.15

times faster than sequential execution. In our parallel modes,

we issue nested requests at the beginning of requests, to

make it easier to keep all services saturated and thus demon-

strate the full potential of pipelining: a 2.5x performance

improvement over non-pipelined parallel execution and a

26x improvement over sequential execution.

8 Related work
In this section we review previous work on service interac-

tion and comment on the relation to Aegean.

Replicated Remote Procedure Call Some early works

provide the functionality of a replicated Remote Procedure

Call [17, 18, 62]. These approaches provide mechanisms to

detect and disregard duplicate copies of nested RPC calls,

but do not consider complications arising from asynchrony

or unreliable delivery. Most importantly, these approaches

predate most replication protocols and therefore do not con-

sider the consequences of those protocols’ design choices. In

particular, they do not address the performance limitations of

sequential execution, and they do not consider the possibility

that the RPC of one service might be based on speculative

state that should not be exposed to other services.

Optimizing procedure calls among servicesMore recent-

ly, Song et al. proposed RPC Chains [57], a technique that

allows a number of interacting services to optimize complex

patterns of RPCs, by composing multiple such remote calls

into a single path that weaves its way through all the re-

quired services. This technique aims to reduce latency by

eliminating the requirement that an RPC always returns to

the caller before the next RPC is called. Although operating

13

in a similar setting, where multiple services interact to pro-

vide some high-level functionality, Aegean and RPC Chains

have very different goals. Aegean’s main goal is to allow

such interactions for replicated services, while RPC Chains

targets singleton services.

Replicating interacting servicesWhen an interacting ser-

vice needs to be replicated, currently one has to design a

custom protocol tailored to this particular instance. For exam-

ple, previous work proposed a custom protocol to replicate

the 2PC coordinator to avoid blocking [28, 49]. In Salus [61]

a replicated region server needs to issue requests to a repli-

cated storage layer and the authors introduce a custom proto-

col to enable such interactions. Similarly in Farsite [3] groups

of replicated nodes can issue requests to other such groups.

To simplify these interactions, Farsite groups communicate

through message passing and avoid using nested calls alto-

gether. As such, it does not address the complications most

services would face in such settings. Aegean, instead, tries

to provide a general solution that transparently allows each

layer to provide the SCM abstraction, thereby facilitating the

interaction between replicated services.

9 Conclusion
In a world of large-scale systems and microservices, it be-

comes imperative to rethink our replication protocols to

allow for interactions between multiple components. This

paper puts forth a number of techniques that allow interact-

ing services to be replicated both safely and efficiently in

this brave new world.

Acknowledgements
A number of people provided feedback in the early stages of

this work. We want to thank Lorenzo Alvisi and Yang Wang

for their insights and David Wetterau, Jim Given, Ji Hong

and Andy Ren for their contributions to earlier versions of

the Aegean codebase. We also want to thank our meticulous

shepherd, Lidong Zhou, and the anonymous SOSP reviewers

for their detailed feedback and numerous suggestions for

improving the paper. This project was funded in part by the

National Science Foundation under award CSR-1814507 and

by a Google Faculty Award.

References
[1] Personal communication with Google engineers, 2018.

[2] Abd-El-Malek, M., Ganger, G., Goodson, G., Reiter, M., andWylie,

J. Fault-scalable Byzantine fault-tolerant services. In SOSP (Oct. 2005).

[3] Adya, A., Bolosky, W., Castro, M., Chaiken, R., Cermak, G.,

Douceur, J., Howell, J., Lorch, J., Theimer, M., and Wattenhofer,

R. FARSITE: Federated, available, and reliable storage for an incom-

pletely trusted environment. In OSDI ’02.
[4] Amazon. The amazon online store. http://www.amazon.com.

[5] Amazon. Amazon sns. https://aws.amazon.com/sns/.

[6] Amazon. Amazon sqs. https://aws.amazon.com/sqs/.

[7] Amazon. What are microservices? https://aws.amazon.com/

microservices/.

[8] Ananthanarayanan, R., Basker, V., Das, S., Gupta, A., Jiang, H.,

Qiu, T., Reznichenko, A., Ryabkov, D., Singh, M., and Venkatara-

man, S. Photon: Fault-tolerant and scalable joining of continuous data

streams. In SIGMOD ’13.
[9] Baker, J., Bond, C., Corbett, J. C., Furman, J., Khorlin, A., Larson, J.,

Leon, J.-M., Li, Y., Lloyd, A., and Yushprakh, V. Megastore: Providing

scalable, highly available storage for interactive services. In Proceedings
of the Conference on Innovative Data system Research (CIDR) (2011),
pp. 223–234.

[10] Balakrishnan, M., Malkhi, D., Davis, J. D., Prabhakaran, V., Wei,

M., and Wobber, T. Corfu: A distributed shared log. ACM Trans.
Comput. Syst. 31, 4 (Dec. 2013), 10:1–10:24.

[11] Balakrishnan, M., Malkhi, D., Prabhakaran, V., Wobber, T., Wei,

M., and Davis, J. D. Corfu: A shared log design for flash clusters. In

Proceedings of the 9th USENIX Conference on Networked Systems De-
sign and Implementation (Berkeley, CA, USA, 2012), NSDI’12, USENIX

Association, pp. 1–1.

[12] Budhiraja, N., Marzullo, K., Schneider, F. B., and Toueg, S.

Primary-backup protocols: Lower bounds and optimal implementa-

tions. In CDCCA (1992).

[13] Castro, M., and Liskov, B. Practical Byzantine fault tolerance and

proactive recovery. ACM Trans. Comput. Syst. (2002).
[14] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A.,

Burrows, M., Chandra, T., Fikes, A., and Gruber, R. E. Bigtable: a

distributed storage system for structured data. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation -
Volume 7 (Berkeley, CA, USA, 2006), OSDI ’06, USENIX Association.

[15] Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M.,

and Riche, T. UpRight cluster services. In SOSP (2009).

[16] Clement, A., Marchetti, M., Wong, E., Alvisi, L., and Dahlin, M.

Making Byzantine fault tolerant systems tolerate Byzantine faults. In

NSDI (2009).
[17] Cooper, E. C. Replicated procedure call. In Proceedings of the Third

Annual ACM Symposium on Principles of Distributed Computing (New

York, NY, USA, 1984), PODC ’84, ACM, pp. 220–232.

[18] Cooper, E. C. Replicated distributed programs. In Proceedings of the
Tenth ACM Symposium on Operating Systems Principles (New York, NY,

USA, 1985), SOSP ’85, ACM, pp. 63–78.

[19] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman,

J. J., Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh,

W., Kanthak, S., Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura,

D., Nagle, D., Quinlan, S., Rao, R., Rolig, L., Saito, Y., Szymaniak,

M., Taylor, C., Wang, R., and Woodford, D. Spanner: Google’s

globally distributed database. ACM Trans. Comput. Syst. 31, 3 (Aug.
2013), 8:1–8:22.

[20] Cowling, J., Myers, D., Liskov, B., Rodrigues, R., and Shrira, L. HQ

replication: A hybrid quorum protocol for Byzantine fault tolerance.

In OSDI (2006).
[21] Cui, H., Gu, R., Liu, C., Chen, T., and Yang, J. Paxos made transparent.

In Proceedings of the 25th Symposium on Operating Systems Principles
(New York, NY, USA, 2015), SOSP ’15, ACM, pp. 105–120.

[22] Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N.,

and Warfield, A. Remus: High availability via asynchronous virtual

machine replication. In NSDI (2008).
[23] Dean, J., and Ghemawat, S. Mapreduce: Simplified data processing

on large clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113.
[24] Decandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Laksh-

man, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels,

W. Dynamo: Amazon’s highly available key-value store. In SOSP
(2007).

[25] Expedia. The expedia travel metasearch engine.

http://www.expedia.com.

[26] Gafni, E., and Lamport, L. Disk paxos. Distrib. Comput. 16, 1 (Feb.
2003), 1–20.

14

https://aws.amazon.com/sns/
https://aws.amazon.com/sqs/
https://aws.amazon.com/microservices/
https://aws.amazon.com/microservices/

[27] Google. Microservices architecture on google app engine.

https://cloud.google.com/appengine/docs/standard/python/

microservices-on-app-engine.

[28] Gray, J., and Lamport, L. Consensus on transaction commit. ACM
Trans. Database Syst. 31, 1 (Mar. 2006), 133–160.

[29] Guo, Z., Hong, C., Yang, M., Zhou, D., Zhou, L., and Zhuang, L.

Rex: Replication at the speed of multi-core. In Proceedings of the Ninth
European Conference on Computer Systems (New York, NY, USA, 2014),

EuroSys ’14, ACM, pp. 11:1–11:14.

[30] H2. The H2 home page. http://www.h2database.com.

[31] Hadoop. Hadoop. http://hadoop.apache.org/core/.

[32] HBase. The hBase homepage. http://www.hbase.org.

[33] Herlihy, M. P., and Wing, J. M. Linearizability: a correctness con-

dition for concurrent objects. ACM Trans. Program. Lang. Syst. 12, 3
(1990), 463–492.

[34] Hoff, T. Deep lessons from google and ebay on building ecosys-

tems of microservices. http://highscalability.com/blog/2015/12/1/

deep-lessons-from-google-and-ebay-on-building-ecosystems-of.

html.

[35] Hoff, T. Lessons learned from scaling uber to

2000 engineers, 1000 services, and 8000 git repos-

itories. http://highscalability.com/blog/2016/10/12/

lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.

html.

[36] Howard, H., Malkhi, D., and Spiegelman, A. Flexible paxos: Quorum

intersection revisited. In OPODIS (2016).
[37] Junqeira, F. P., Kelly, I., and Reed, B. Durability with bookkeeper.

SIGOPS Oper. Syst. Rev. 47, 1 (Jan. 2013), 9–15.
[38] Kapritsos, M., Wang, Y., Quema, V., Clement, A., Alvisi, L., and

Dahlin, M. All about eve: Execute-Verify replication for Multi-Core

servers. In Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation (2012).

[39] Kayak. The kayak travel metasearch engine. http://www.kayak.com.

[40] Kotla, R., Clement, A.,Wong, E., Alvisi, L., andDahlin,M. Zyzzyva:

Speculative byzantine fault tolerance. Commun. ACM 51, 11 (Nov. 2008),
86–95.

[41] Kreps, J., Narkhede, N., and Rao, J. Kafka: a distributed messaging

system for log processing. In Proceedings of the 6th International
Workshop on Networking Meets Databases (NetDB) (2011).

[42] Lamport, L. The part-time parliament. ACM Trans. Comput. Syst.
(1998).

[43] Lamport, L. Paxos made simple. ACM SIGACT News (Distributed
Computing Column) 32, 4 (Dec. 2001), 51–58.

[44] Lamport, L. Fast paxos. Distributed Computing 19, 2 (Oct 2006),

79–103.

[45] Lamport, L., and Masa, M. Cheap paxos. In Proc. DSN-2004 (June
2004), pp. 307–314.

[46] Liskov, B., and Cowling, J. Viewstamped replication revisited. Tech.

Rep. MIT-CSAIL-TR-2012-021, MIT, July 2012.

[47] Liu, S., Viotti, P., Cachin, C., Quéma, V., and Vukolic, M. Xft:

Practical fault tolerance beyond crashes. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2016), OSDI’16, USENIX Association, pp. 485–500.

[48] Mao, Y., Junqeira, F. P., and Marzullo, K. Mencius: building effi-

cient replicated state machines for WANs. In OSDI (2008).
[49] Mohan, C., Strong, R., and Finkelstein, S. Method for distributed

transaction commit and recovery using byzantine agreement within

clusters of processors. In Proceedings of the Second Annual ACM Sym-
posium on Principles of Distributed Computing (New York, NY, USA,

1983), PODC ’83, ACM, pp. 89–103.

[50] Moraru, I., Andersen, D. G., and Kaminsky, M. There is more

consensus in egalitarian parliaments. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (New York,

NY, USA, 2013), SOSP ’13, ACM, pp. 358–372.

[51] Nightingale, E. B., Veeraraghavan, K., Chen, P. M., and Flinn, J.

Rethink the sync. In Proc. 7th OSDI (Nov. 2006).
[52] Ongaro, D., and Ousterhout, J. In search of an understandable

consensus algorithm. In Proceedings of the 2014 USENIX Conference
on USENIX Annual Technical Conference (Berkeley, CA, USA, 2014),
USENIX ATC’14, USENIX Association, pp. 305–320.

[53] Reinhold, E. Rewriting uber engineering: The opportunities microser-

vices provide. https://eng.uber.com/building-tincup/.

[54] Riady, Y. Distributed sagas for microservices. https://yos.io/2017/10/

30/distributed-sagas/.

[55] Saltzer, J., Reed, D., and Clark, D. End-to-end arguments in system

design. ACM Trans. Comput. Syst. 2, 4 (1984), 277–288.
[56] Schneider, F. B. Implementing fault–tolerant services using the state

machine approach: A tutorial. Computing Surveys 1990.
[57] Song, Y. J., Aguilera, M. K., Kotla, R., and Malkhi, D. Rpc chains:

Efficient client-server communication in geodistributed systems. In

Proceedings of the 6th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’09).

[58] TPC-W. Open-source TPC-W implementation.

http://pharm.ece.wisc.edu/tpcw.shtml.

[59] Transaction Processing Performance Council. The TPC-W home

page. http://www.tpc.org/tpcw.

[60] Wang, Y., Alvisi, L., and Dahlin, M. Gnothi: Separating data and

metadata for efficient and available storage replication. In USENIX
ATC (2012).

[61] Wang, Y., Kapritsos, M., Ren, Z. A., Mahajan, P., Kirubanandam,

J., Alvisi, L., and Dahlin, M. Robustness in the salus scalable block

store. In Proceedings of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’13) (2013).

[62] Yap, K. S., Jalote, P., and Tripathi, S. Fault tolerant remote procedure

call. In Proceedings of the 8th International Conference on Distributed
Computing Systems (Jun 1988), pp. 48–54.

[63] Yin, J., Martin, J.-P., Venkataramani, A., Alvisi, L., and Dahlin,

M. Separating agreement from execution for Byzantine fault tolerant

services. In SOSP (2003).

15

https://cloud.google.com/appengine/docs/standard/python/microservices-on-app-engine
https://cloud.google.com/appengine/docs/standard/python/microservices-on-app-engine
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.html
http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.html
http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.html
https://eng.uber.com/building-tincup/
https://yos.io/2017/10/30/distributed-sagas/
https://yos.io/2017/10/30/distributed-sagas/

	1 Introduction
	2 The consequences of interactions
	2.1 Putting it all together
	2.2 black Alternative designs

	3 System model
	4 Ensuring correctness
	4.1 Server shim
	4.2 Durability of nested responses
	4.3 Taming speculation

	5 The woes of sequential execution
	5.1 Request pipelining
	5.2 Parallel pipelining

	6 Implementation
	6.1 Implicit agreement
	6.2 Optimizing Eve
	6.3 Avoiding deadlocks

	7 Evaluation
	7.1 Performance of TPC-W
	7.2 Effect of request size
	7.3 Microbenchmarks

	8 Related work
	9 Conclusion
	References

