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ABSTRACT
Signal temporal logic (STL) was introduced for monitoring tempo-

ral properties of continuous-time signals for continuous and hybrid

systems. Differential dynamic logic (dL) was introduced to reason

about the end states of a hybrid program. Over the past decade, STL

and its variants have significantly gained in popularity in the in-

dustry for monitoring purposes, while dL has gained in popularity

for verification of hybrid systems. In this paper, we bridge the gap

between the two different logics by introducing signal temporal

dynamic logic (STdL) – a dynamic logic that reasons about a subset

of STL specifications over executions of hybrid systems. Our work

demonstrates that STL can be used for deductive verification of

hybrid systems. STdL significantly augments the expressiveness of

dL by allowing reasoning about temporal properties in given time

intervals. We provide a semantics and a proof calculus for STdL,
along with a proof of soundness and relative completeness.
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1 INTRODUCTION
Recent technological advances have made our transportation, man-

ufacturing and communication facilities safer, cheaper, and more re-

liable. However, they have also increased our reliance on computer

systems modeling and controlling objects of our physical world.

Prime examples of such objects include cars on our roads, robots in

our manufacturing plants, and satellites orbiting our planet. Such

systems, referred to as cyber-physical systems (CPSs) [28], often
fall under the category of hybrid systems: their programmable con-

trollers typically exhibit discrete behavior, while the laws of physics

that the systems are restricted by are continuous in nature.

The prevalence of hybrid systems around us, coupled with our

increased reliance on these systems, has necessitated further ex-

ploration of reasoning about such systems. This process involves

reasoning about the states of the hybrid system. A state is consid-

ered safe if it does not violate any safety property of the system,

and considered live if the system can make some useful progress

from that state. Verifying a system guarantees safety and liveness

in the system. Signal temporal logic (STL) [16, 17] was introduced

to monitor properties over continuous-time signals of continuous

and hybrid systems in given time intervals, and has since been

used primarily for monitoring purposes. Dynamic logic [11] was

introduced as a formal system for reasoning about programs. Dif-

ferential dynamic logic (dL) [21] was built on top of dynamic logic

to reason about the end states of a hybrid program, to ensure that

the end state is a safe state. However, a hybrid system that is in a

safe state at the end of a program’s execution may not have been in
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a safe state throughout the program’s execution: it is possible for a

safety property to be violated during the execution of a program

and be held at the termination of the program. Therefore, it is vital

to verify that hybrid systems are safe during execution in addi-

tion to being safe upon termination. Differential temporal dynamic

logic (dTL) [22] and differential temporal dynamic logic with nested

temporalities (dTL
2
) [13, 14] use both dynamic logic – to reason

about all possible executions of a program – and a fragment linear

temporal logic (LTL) – to reason about intermediate states of each

execution – to tackle this challenge.

While dTL and dTL
2
are able to reason about intermediate states

of a hybrid system during program execution, the logics are still

unable to reason about intermediate states of a system in given

time intervals. This is a major limitation of the logics, since such

reasoning abilities can be crucial in ensuring safety of a hybrid

system (e.g., ensuring that a self-driving car applies its brakes within

𝑥 seconds of spotting a stop sign, as opposed to ensuring that the

car applies its brakes eventually after spotting a stop sign). STL

is able to prove properties about a system in given time intervals,

but the logic reasons about only one execution of a system, not all

possible executions. Therefore, using STL alone to reason about

safety in hybrid systems is not sufficient.

In this paper, we present signal temporal dynamic logic (STdL),
a logic that integrates a fragment of STL with differential dynamic

logic (dL) to reason both about the intermediate states of a hybrid

system in given time intervals, and about the final states of the

system. This reasoning is enabled by our use of STL, which natively

supports formulas of the form □[𝑎,𝑏 ]𝜙 (i.e., for all times between

𝑡 + 𝑎 and 𝑡 + 𝑏, where 𝑡 is the current time, the property 𝜙 is true)

and ♢[𝑎,𝑏 ]𝜙 (i.e., there exists a time between 𝑡 + 𝑎 and 𝑡 + 𝑏 such

that the property 𝜙 is true), but has historically been used mainly

for monitoring purposes. We show that STL can be used for full

deductive reasoning of hybrid systems.

The main contributions of this work are as follows:

– We introduce STdL– a logic that reasons about STL formulas

for the first time in the context of dL, bringing together

results from two different communities with little overlap

into a common framework.

– We introduce a notion of timing hybrid programs to bridge

the gap between dL and STL for verification purposes.

– We provide a semantics for STdL and sound proof calculus

for the logic, along with a proof of soundness and relative

completeness.

The rest of the paper is organized as follows. Section 2 motivates

STdL by introducing a running example of a use-case from the

industry highlighting the power of the logic. Section 3 introduces

the syntax and semantics of STdL. Section 4 motivates the concept



of normalization of trace formulas in STdL and presents the proof

system of STdL. Section 5 discusses future directions for STdL.
Section 6 outlines some related work, and Section 7 parts with

concluding thoughts.

2 MOTIVATION AND RUNNING EXAMPLE
Throughout this paper, we use a simplified example of a use-case

for STdL inspired by industry. As we note in Section 1, a major

limitation of the program logics preceding STdL is their inability

to reason about temporal properties in specified time intervals.

Such reasoning abilities can be crucial in verifying a hybrid system.

While STL is able to handle formulas specifying properties in given

time intervals, the logic is only able to prove properties about one
execution of a hybrid system, and not all possible executions; we

need to be able to reason about every execution of a hybrid system

to be able to claim with certainty correctness of the system. As such,

none of differential dynamic logic, differential temporal dynamic

logic, or signal temporal logic – or other variants of these logics

– alone is sufficient to reason about safety and liveness in hybrid

systems.

To see why, let us examine a simplified version of traction assist

from the automobile industry. Consider a car with some accelerator

input and braking force cruising on the road. The car has a signal

that streams a binary value corresponding to whether or not the

car’s sensors detect that the car is skidding or losing traction, and a

Boolean flag corresponding to whether or not the vehicle’s traction

control is engaged. For simplicity, assume the accelerator input can

have a positive or negative value corresponding to acceleration and

deceleration respectively, or a value of zero corresponding to no ac-

celeration. Assume further that the braking force is a non-negative

integer. Let the wheel rotation of the car’s wheels evolve according

to some differential equation. The car has a safety property requir-

ing that in the event that the car is skidding, a vehicle traction

assist program executes to help gain traction again and slow down

the wheel spin to stop the skidding, following which the car can

accelerate again. According to the safety property, after running

the traction assist program, the car’s traction control should turn

on and within 1 to 5 seconds, the car’s wheel rotation should fall to

under some threshold value (to help regain control).

As we introduce key concepts in the following sections, we also

present the differential equation, the hybrid program, and the safety

property for the car in STdL. We present a proof sketch of the safety

property using the STdL calculus. We note that safety properties

of this class (i.e., containing temporal references for specified time

intervals) are expressible directly in STdL (but, to the best of our

knowledge, not in any other logic preceding STdL), and remain

crucial in verifying correctness of hybrid systems.

3 SIGNAL TEMPORAL DYNAMIC LOGIC
This section formally defines the syntax and semantics of hybrid

programs and state and trace formulas in STdL. We take special

care to ensure that STdL is a conservative extension of dL, i.e. the
non-temporal aspects of the state semantics for STdL are equivalent

to the non-temporal transition semantics of dL (Definition 5 in

[21]).

3.1 Hybrid Programs
We use hybrid programs to model hybrid systems in our work. A

hybrid program 𝛼, 𝛽 could be a discrete assignment (𝑥 := \ ), a

test (?𝜒), an ordinary differential equation (𝑥 ′ = \ & 𝜒), a non-

deterministic choice (𝛼 ∪ 𝛽), a sequential composition (𝛼 ; 𝛽), or a

non-deterministic finite repetition (𝛼∗). As in dL, a term \ can be

any polynomial with a rational coefficient, and a condition 𝜒 can

be any first-order formula of real arithmetic.

The syntax of hybrid programs can be summarized as:

𝛼, 𝛽 ::= 𝑥 := \ | ?𝜒 | 𝑥 ′ = \ & 𝜒 | 𝛼 ∪ 𝛽 | 𝛼 ; 𝛽 | 𝛼∗

For the semantics of hybrid programs in STdL, the set of states
Sta is the set of functions from variables to R. A special state Λ ∉

Sta denotes a failure state for the hybrid system. The trace semantics
of a hybrid program 𝛼 assign a set of traces J𝛼K to the program. For

𝑣 ∈ Sta∪{Λ}, we express the function𝜎 : [0, 0] → {𝑣}, 0 ↦→ 𝑣 using

𝑣 , and 𝑣 is defined only on the singleton interval [0,0].2 A trace, then,

is a non-empty, finite sequence 𝜎 = (𝜎0, 𝜎1, . . . , 𝜎𝑛) of subtraces 𝜎𝑖 .
For 0 ≤ 𝑖 < 𝑛, the piece 𝜎𝑖 is a function 𝜎𝑖 : [𝑟𝑖−1, 𝑟𝑖 ] → Sta , with
the convention 𝑟−1 = 0, where 𝑟𝑖 − 𝑟𝑖−1 is the duration of this step

and 𝑟𝑖 ≥ 𝑟𝑖−1. Where 𝑖 = 𝑛, 𝜎𝑛 can be defined as:

– 𝜎𝑛 : [𝑟𝑛−1, 𝑟𝑛] → Sta , in which case we refer to 𝜎 as a

terminating trace;

– 𝜎𝑛 : [𝑟𝑛−1, +∞) → Sta , in which case we refer to 𝜎 as an

infinite trace;
– 𝜎𝑛 : [𝑟𝑛−1, 𝑟𝑛−1] → {Λ} with 𝜎 (𝑟𝑛−1) = Λ, for 𝑛 ≥ 1, in

which case we refer 𝜎 as an error trace. 𝑛 ≥ 1 ensures that

(Λ̂) is not considered as a trace.

For a trace 𝜎 = (𝜎0, . . . , 𝜎𝑛), we define a position of 𝜎 as a pair (𝑖, 𝑡)
such that 0 ≤ 𝑖 < 𝑛 and 𝑡 is in the domain of definition of 𝜎𝑖 . We

write 𝜎𝑖 (𝑡) to refer to the state of 𝜎 at (𝑖, 𝑡), i.e. 𝜎 (𝑖, 𝑡) = 𝜎𝑖 (𝑡), and
define the domain of 𝜎 as:

dom(𝜎) =
𝑛⋃
𝑖=0

©«
⋃

𝑡 ∈dom(𝜎i)
(𝑖, 𝑡)ª®¬

We can now define the lengths of traces of hybrid programs.

Definition 3.1 (Length of traces of hybrid programs). The length
of a trace 𝜎 = (𝜎0, 𝜎1, . . . , 𝜎𝑛) ∈ J𝛼K, denoted by |𝜎 | ∈ R+ ∪ {+∞},
is defined inductively as follows:

– |𝜎 | = 𝑟𝑛 if 𝜎𝑛 : [𝑟𝑛−1, 𝑟𝑛] → Sta ;
– |𝜎 | = +∞ if 𝜎𝑛 : [𝑟𝑛−1, +∞) → Sta ;
– |𝜎 | = 𝑟𝑛−1 if 𝜎𝑛 : [𝑟𝑛−1, 𝑟𝑛−1] → {Λ}.

The set of all traces of a hybrid program is referred to as Tra ,
and we collectively refer to infinite traces and error traces as non-

terminating traces. For a trace𝜎 , we refer to the state𝜎0 (0) as first𝜎 ,
and we often say that “𝜎 starts with 𝑣" if first𝜎 = 𝑣 . Likewise, for a

finite trace 𝜎 , if 𝜎 terminates in a non-error state, we refer to the

state 𝜎𝑛 (𝑟𝑛) as last𝜎 ; otherwise, we refer to the state Λ as last𝜎 .
Note that for any trace 𝜎 , first𝜎 is always well-defined, but last𝜎
may not be (since infinite traces have no last state). The value of

term \ in state 𝑣 is denoted by 𝑣𝑎𝑙 (𝑣, \ ), and the valuation assigning

variable 𝑥 to 𝑟 ∈ R while matching with 𝑣 on all other variables

is denoted by 𝑣 [𝑥 ↦→ 𝑟 ]. If a state 𝑣 satisfies some condition 𝜒 , we

2
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trace that executes in zero time.

2



write 𝑣 ⊨ 𝜒 ; if 𝑣 does not satisfy condition 𝜒 , we write 𝑣 ⊭ 𝜒 . Finally,
given a trace 𝜎 and an 𝑥 ∈ R, we use the notation dom(𝜎) ⊕ 𝑥 to

denote the domain of 𝜎 shifted by a value of +𝑥 . For example, if

dom(𝜎) = [𝑎, 𝑏], then dom(𝜎) ⊕ 𝑥 = [𝑎 + 𝑥, 𝑏 + 𝑥].

Definition 3.2 (Trace semantics of hybrid programs). The trace
semantics J𝛼K of a hybrid program 𝛼 is defined as follows:

– J𝑥 := \K = {(𝑣, �̂�) | 𝑤 = 𝑣 [𝑥 ↦→ 𝑣𝑎𝑙 (𝑣, \ )]};
– J𝑥 ′ = \ & 𝜒K = {(𝜎) : 𝜎 is a state flow of order 1 [21] defined

on [0, 𝑟 ] or [0, +∞) solution of 𝑥 ′ = \ , and for all 𝑡 in its

definition domain, 𝜎 (𝑡) ⊨ 𝜒} ∪ {(𝑣, Λ̂) | 𝑣 ⊭ 𝜒};
– J?𝜒K = {(𝑣) | 𝑣 ⊨ 𝜒} ∪ {(𝑣, Λ̂) | 𝑣 ⊭ 𝜒};
– J𝛼 ∪ 𝛽K = J𝛼K ∪ J𝛽K;
– J𝛼 ; 𝛽K = {𝜎 ◦ 𝜌 | 𝜎 ∈ J𝛼K, 𝜌 ∈ J𝛽K when 𝜎 ◦ 𝜌 is defined},
where the composition 𝜎 ◦ 𝜌 of 𝜎 = (𝜎0, . . . , 𝜎𝑛) and 𝜌 =

(𝜌0, . . . , 𝜌𝑚) is
– 𝜎◦𝜌 = (𝜎0, . . . , 𝜎𝑛, 𝜌0, . . . , 𝜌𝑚) if 𝜎 terminates and last𝜎 =

first 𝜌 , where 𝜌 = (𝜌0, . . . , 𝜌𝑚) is a trace with dom(𝜌) =
dom(𝜌) ⊕ |𝜎 | and for each 𝑖 ∈ {0 . . .𝑚}, for each 𝑡 ∈
dom(𝜌𝑖 ), 𝜌𝑖 (𝑡) = 𝜌𝑖 (𝑡 − |𝜎 |),3

– 𝜎 if 𝜎 does not terminate,

– undefined otherwise;

– J𝛼∗K =
⋃

𝑛∈NJ𝛼𝑛K,where 𝛼0
is defined as ?true, 𝛼1

is defined

as 𝛼 , and 𝛼𝑛+1 is defined as 𝛼𝑛 ;𝛼 for 𝑛 ≥ 1.

These semantics for hybrid programs are adopted from dTL
2
[13].

As in dTL
2
, an important property of the trace semantics of hybrid

programs is that for any hybrid program 𝛼 and state 𝑣 , there always

exists a trace 𝜎 ∈ J𝛼K such that first𝜎 = 𝑣 (even if 𝜎 is an error

trace). A key difference between the semantics of dTL
2
and our

work is that for a trace 𝜎 = (𝜎0, . . . , 𝜎𝑛), while the former define

the domain of each 𝜎𝑖 from 0 to 𝑟𝑖 , we define the domain of each 𝜎𝑖
from 𝑟𝑖−1 to 𝑟𝑖 , to enable easier reasoning about temporal formulas

in given time intervals. As such, our semantics for the composition

𝜎 ◦ 𝜌 between traces 𝜎 and 𝜌 requires trace 𝜌 to be shifted in time

by a value of +|𝜎 |.

3.1.1 Running Example: Traction Assist in Cars. Having introduced
the semantics of hybrid programs in STdL, we now formally specify

a simplified version of the differential equation cruise that varies
the car’s wheel rotation 𝜌 . For 𝜔 the acceleration of the car, 𝜑 the

braking force applied to each of the car’s wheels, and some positive

constants 𝑘 and 𝑗 , we have

cruise(𝜔,𝜑) ::= 𝜔 × 𝑘 − 𝜑 × 𝑗

Note that in practice, each of the car’s wheels could have a different

wheel rotation and braking force. For the sake of simplicity, and to

avoid presenting four separate proofs for this example, we assume

that each wheel has the same rotation and braking force.

A very simple version of the hybrid program traction_assist can
then take the form

traction_assist ::= (?(no_traction); (1)

traction_control := 1; (2)

𝜔 := −1; 𝜑 := 10; 𝜌 ′ = cruise(𝜔,𝜑)); (3)

where the signal no_traction is a binary value of true or false cor-
responding to whether or not the car’s sensors detect that the car

3
Informally, 𝜌 is merely the trace 𝜌 shifted to the right by a value of +|𝜎 |.

is losing traction and the Boolean flag traction_control keeps track
of whether or not the vehicle’s traction control is engaged.
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Several properties of hybrid programs are present in the pro-

gram traction_assist. (1) denotes a test to check whether the car

has lost traction; (2) represents an assignment statement setting

traction_control to on; and (3) shows an evolving ordinary differ-

ential equation that changes the wheel rotation of the car. The

sequential composition operator joins the individual statements

together to form a single hybrid program.

3.2 State and Trace Formulas
State and trace formulas are used to reason about hybrid programs.

A state formula is used to express properties about a state, whereas

a trace formula is used to express properties about a trace. The

syntax of state and trace formulas in STdL can then be summarized

as:

𝜙,𝜓 ::= \1 ≥ \2 | ¬𝜙 | 𝜙 ∧𝜓 | ∀𝑥 .𝜙 | [𝛼]𝜋
𝜋 ::= 𝜙 | ¬𝜋 | □[𝑎,𝑏 ]𝜙

𝑎,𝑏 ::= \ | max(\1, \2) | min(\1, \2) | 𝑎 + 𝑏 | 𝑎 − 𝑏
A state formula 𝜙 or𝜓 could express a comparison of two terms

(\1 ≥ \2), a negation of a state formula (¬𝜙), a conjunction of two

state formulas (𝜙 ∧𝜓 ), a universally quantified (∀𝑥 .𝜙) state formula

over a variable 𝑥 ∈ R, or a program necessity ([𝛼]𝜋 ) indicating
that all traces of program 𝛼 starting from the current state satisfy

𝜋 . For a disjunction of two state formulas (𝜙 ∨ 𝜓 ), we define as

an abbreviation 𝜙 ∨𝜓 ≡ ¬(𝜙 ∧𝜓 ); for an existentially quantified

(∃𝑥 .𝜙) over a variable 𝑥 ∈ R, we define ∃𝑥 .𝜙 ≡ ¬∀𝑥 .¬𝜙 ; and for a

program possibility (⟨𝛼⟩𝜋 ) over a trace formula 𝜋 indicating that

there exists a trace of program 𝛼 starting from the current state

that satisfies 𝜋 , we define ⟨𝛼⟩𝜋 ≡ ¬[𝛼]¬𝜋 .
A trace formula 𝜋 can express a state formula (𝜙), a negation of a

trace formula (¬𝜋 ), or a temporal necessity (□[𝑎,𝑏 ]𝜙) indicating that
given the current time 𝑡 , every trace starting in the current state

satisfies 𝜙 from time 𝑡 +𝑎 and 𝑡 +𝑏. A temporal possibility (♢[𝑎,𝑏 ]𝜙)
indicating that every trace starting in the current state satisfies 𝜙

at some point between time 𝑡 + 𝑎 and time 𝑡 + 𝑏 is defined as the

abbreviation ♢[𝑎,𝑏 ]𝜙 ≡ ¬□[𝑎,𝑏 ]¬𝜙 . For time intervals of the form

[𝑎, 𝑏], 𝑎 and 𝑏 are terms in the hybrid program evaluated in the first

state of a trace (which is always well-defined, see Definition 3.5), or

the min or max of two terms in the hybrid program. We allow for

𝑎 and 𝑏 to be terms in the hybrid program, and not mere constants,

since we need to allow for a program variable to appear as the

lower or upper bound of an interval [𝑎, 𝑏] (see Section 3.5, where

the timing variable 𝑞 is introduced to appear inside the temporal

intervals of an STdL formula for interval shifting).

3.3 Length of Traces and Trace Formulas
Previous works supporting temporal operators within the context

of dL did not need to reason about the length of a trace or a trace

formula, due to their use of linear temporal logic operators that do

not support reasoning about formulas in time intervals. However,

since STdL involves verifying a trace over specified time intervals,

we need to incorporate reasoning about lengths of traces and trace

4
The variable 𝜑 is set to an arbitrary non-negative integer for the purposes of this

example.
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formulas to determine the satisfaction of formulas over traces of

hybrid programs. More specifically, we require that for a hybrid

program 𝛼 , a trace 𝜎 ∈ J𝛼K needs to be sufficiently long to deter-

mine the satisfaction of the program necessities and possibilities.

This requirement is inspired by that of STL with respect to signal

lengths [16, 17], and is similarly justified for STdL since it is intu-

itively nonsensical to verify the satisfaction of a trace formula of

length 𝜑 against a trace of length 𝜑0 < 𝜑 .

Definition 3.3 (Minimum length of trace formulas). The necessary
length associated with trace formula 𝜋 , written as ∥𝜋 ∥, to determine

the satisfaction of a program necessity or possibility is defined

inductively as follows:

∥𝜙 ∥ = 0

∥¬𝜋 ∥ = ∥𝜋 ∥
∥□[𝑎,𝑏 ]𝜙 ∥ = 𝑏

3.4 Satisfaction of State and Trace Formulas
The satisfaction of state and trace formulas in STdL is defined as

follows:

Definition 3.4 (Satisfaction of state formulas). For a state formula

𝜙 and state 𝑣 ∈ Sta , we say 𝑣 ⊨ 𝜙 if 𝑣 satisfies 𝜙 . Satisfaction of

state formulas with respect to state 𝑣 is then defined inductively as

follows:

– 𝑣 ⊨ \1 ≥ \2 if and only if 𝑣𝑎𝑙 (𝑣, \1) ≥ 𝑣𝑎𝑙 (𝑣, \2);
– 𝑣 ⊨ ¬𝜙 if and only if 𝑣 ⊭ 𝜙 ;
– 𝑣 ⊨ 𝜙 ∧𝜓 if and only if 𝑣 ⊨ 𝜙 and 𝑣 ⊨ 𝜓 ;
– 𝑣 ⊨ ∀𝑥 .𝜙 if and only if 𝑣 [𝑥 ↦→ 𝑑] ⊨ 𝜙 for all 𝑑 ∈ R;
– For 𝜙 a state formula, 𝑣 ⊨ [𝛼]𝜙 if and only if for every trace

𝜎 ∈ J𝛼K such that first𝜎 = 𝑣 , if 𝜎 terminates, then last𝜎 ⊨ 𝜙 ;
– For 𝜋 a trace formula, 𝑣 ⊨ [𝛼]𝜋 if and only if for every trace

𝜎 ∈ J𝛼K such that first𝜎 = 𝑣 , if |𝜎 | ≥ 𝑣𝑎𝑙 (first𝜎, ∥𝜋 ∥), then
we also have that 𝜎 ⊨ 𝜋 ;

Definition 3.4 defines the satisfaction of formulas of the form

[𝛼]𝜋 , for 𝜋 a trace formula, as: “𝑣 ⊨ [𝛼]𝜋 iff for each trace 𝜎 ∈ J𝛼K
such that first𝜎 = 𝑣 , if |𝜎 | ≥ 𝑣𝑎𝑙 (first𝜎, ∥𝜋 ∥), we also have that

𝜎 ⊨ 𝜋 ." The choice behind this definition for the semantics is not

an obvious one, and as such, is explained here for further clarity.

Since STdL supports full negation of state formulas, we had

take special care to ensure that the property for duals for program

modalities is not violated in the logic. One of our utmost concerns

was to ensure that for all hybrid programs 𝛼 and all trace formulas

𝜋 , it is always the case that [𝛼]𝜋 ≡ ¬⟨𝛼⟩¬𝜋 . As such, we had three

possible choices for the definition of the semantics for formulas of

this form.

(i) 𝑣 ⊨ [𝛼]𝜋 iff for each trace 𝜎 ∈ J𝛼K such that first𝜎 = 𝑣 , we

have that 𝜎 ⊨ 𝜋 .
To ensure that property for duals holds in this case, we would

have to define the dual as:

𝑣 ⊨ ⟨𝛼⟩𝜋 iff there exists a trace 𝜎 ∈ J𝛼K such that first𝜎 = 𝑣

and 𝜎 ⊨ 𝜋 .
(ii) 𝑣 ⊨ [𝛼]𝜋 iff for each trace 𝜎 ∈ J𝛼K such that first𝜎 = 𝑣 , if

|𝜎 | ≥ 𝑣𝑎𝑙 (first𝜎, ∥𝜋 ∥), we also have that 𝜎 ⊨ 𝜋 .
We would then have to define the dual as:

𝑣 ⊨ ⟨𝛼⟩𝜋 iff there exists a trace 𝜎 ∈ J𝛼K such that first𝜎 = 𝑣 ,

and we have that |𝜎 | ≥ 𝑣𝑎𝑙 (first𝜎, ∥𝜋 ∥) and 𝜎 ⊨ 𝜋
(iii) 𝑣 ⊨ [𝛼]𝜋 iff for each trace 𝜎 ∈ J𝛼K such that first𝜎 = 𝑣 , we

have that |𝜎 | ≥ 𝑣𝑎𝑙 (first𝜎, ∥𝜋 ∥) and 𝜎 ⊨ 𝜋 .
We would then have to define the dual as:

𝑣 ⊨ ⟨𝛼⟩𝜋 iff there exists a trace 𝜎 ∈ J𝛼K such that first𝜎 = 𝑣 ,

and if |𝜎 | ≥ 𝑣𝑎𝑙 (first𝜎, ∥𝜋 ∥), we also have that 𝜎 ⊨ 𝜋 .

Option (i) is the least complicated and arguably the most intuitive

one. However, it has one major limitation: it fails to specify the

behavior of the logic when the trace being considered is simply

not long enough to determine the satisfaction of a trace formula.

Consider the simple hybrid program that 𝑥 := 5. We could have a

property that checks this program: [𝑥 := 5]□[0,10] (𝑥 = 5). However,
recall that a (discrete) trace of assignment terminates in zero time.

As such, we are left with the following question: what does it mean

for a trace to satisfy a property 10 seconds after it has already

terminated? Clearly, we need to consider the length of the trace

that the property has to be proven over, and ensure that the trace

is of necessary length. This idea is not novel: [16] uses the same

approach for defining satisfaction of formulas over signals.

With option (i) eliminated, we are left with options (ii) and (iii)

as the most obvious candidates for the definition of trace semantics

of STdL. Having one of the definitions be an implication and the

dual be a conjunction is the only way to ensure that the property

for duals holds – it is not possible to have both definitions be

implications or conjunctions. With that in mind, we first look at

(iii). It is fairly easy to notice that the definition provided in (iii)

make it virtually impossible for [𝛼]𝜋 to be true: it requires every
trace 𝜎 ∈ J𝛼K to be of the required length – a trait that is simply

not likely in practice. Similarly, it makes it too easy for ⟨𝛼⟩𝜋 to be

true: any trace 𝜎 ∈ J𝛼K with length |𝜎 | < ∥𝜋 ∥ can trivially satisfy

the formula. This leaves option (ii), which provides a definition

that makes most sense intuitively. For the [𝛼] case, it might not be

reasonable to require that all traces have the required length. But

for the ⟨𝛼⟩ case, since the presence of just one satisfying trace is

sufficient, it should be the case that that one trace is of the required

length. This behavior is captured in the definition in (ii), and we

employ that definition in the state and trace semantics of STdL.

Definition 3.5 (Satisfaction of trace formulas). For a trace formula

𝜋 and trace 𝜎 = (𝜎0, . . . , 𝜎𝑛) ∈ Tra , we say (𝜎, (𝑖, 𝑡)) ⊨ 𝜋 if 𝜎

satisfies 𝜋 starting from subtrace 𝜎𝑖 at time 𝑡 . We use 𝜎 ⊨ 𝜋 to say

that (𝜎, (0, 0)) ⊨ 𝜋 . Satisfaction of trace formulas with respect to a

trace 𝜎 is then defined inductively as follows:

– For 𝜙 a state formula, (𝜎, (𝑖, 𝑡)) ⊨ 𝜙 if and only if |𝜎 | ≥ 𝑡 and

𝜎𝑖 (𝑡) ⊨ 𝜙 ;
– (𝜎, (𝑖, 𝑡)) ⊨ ¬𝜋 if and only if (𝜎, (𝑖, 𝑡)) ⊭ 𝜋 ;
– (𝜎, (𝑖, 𝑡)) ⊨ □[𝑎,𝑏 ]𝜙 if and only if for every 𝑡 ′ ∈ [𝑡+𝑣𝑎𝑙 (first𝜎,
𝑎), 𝑡+𝑣𝑎𝑙 (first𝜎,𝑏)] and for every 𝑖 such that (𝑖, 𝑡 ′) ∈ dom(𝜎),
it follows that (𝜎, (𝑖, 𝑡 ′)) ⊨ 𝜙 .

Since we define duals as abbreviations, we can build on Defini-

tions 3.4 and 3.5 to say that:

– 𝑣 ⊨ 𝜙 ∨𝜓 if and only if 𝑣 ⊨ 𝜙 or 𝑣 ⊨ 𝜓 ;
– 𝑣 ⊨ ∃𝑥 .𝜙 if and only if 𝑣 [𝑥 ↦→ 𝑑] ⊨ 𝜙 for some 𝑑 ∈ R;
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– For 𝜙 a state formula, 𝑣 ⊨ ⟨𝛼⟩𝜙 if and only if there exists a

trace 𝜎 ∈ J𝛼K such that 𝜎 terminates with first𝜎 = 𝑣 and

last𝜎 ⊨ 𝜙 ;
– For 𝜋 a trace formula, 𝑣 ⊨ ⟨𝛼⟩𝜋 if and only if there exists a

trace 𝜎 ∈ J𝛼K such that |𝜎 | ≥ 𝑣𝑎𝑙 (first𝜎, ∥𝜋 ∥) and first𝜎 = 𝑣

and 𝜎 ⊨ 𝜋 ;
– (𝜎, (𝑖, 𝑡)) ⊨ ♢[𝑎,𝑏 ]𝜙 if and only if there exists some 𝑡 ′ ∈
[𝑡 + 𝑣𝑎𝑙 (first𝜎, 𝑎), 𝑡 + 𝑣𝑎𝑙 (first𝜎,𝑏)] and there exists some 𝑖

such that (𝑖, 𝑡 ′) ∈ dom(𝜎) and (𝜎, (𝑖, 𝑡 ′)) ⊨ 𝜙 .
Given a trace 𝜎 and an interval [𝑎, 𝑏] such that 𝑣𝑎𝑙 (first𝜎,𝑏) <

𝑣𝑎𝑙 (first𝜎, 𝑎), we define the interval to be an empty set. As such,

formulas such as □[𝑎,𝑏 ]𝜙 and ♢[𝑎,𝑏 ]𝜙 are defined to be trivially

true and trivially false respectively over this empty interval. This

choice deviates from the norm set by STL: formulas like □[𝑎,𝑏 ]𝜙 and

♢[𝑎,𝑏 ]𝜙 in STL require that for constants 𝑎 and 𝑏, we have 𝑎 ≥ 0 and

𝑏 ≥ 𝑎. This requirement is more difficult to impose in STdL, since
time interval shifting due to sequential composition (see Section 3.5)

could result in a formula where 𝑣𝑎𝑙 (first𝜎,𝑏) < 𝑣𝑎𝑙 (first𝜎, 𝑎), and
we need the semantics of STdL to handle such cases appropriately.

In the rest of the paper, given a trace𝜎 and an interval [𝑎, 𝑏], we refer
to 𝑣𝑎𝑙 (first𝜎, 𝑎) and 𝑣𝑎𝑙 (first𝜎,𝑏) as simply 𝑎 and 𝑏 respectively

for easier readability.

3.5 Timing Hybrid Programs
A major technical difficulty arising from our integration of STL

with dL is the fact that we now need to reason about not only the

time intervals where a certain temporal property holds, but also

about how the length of a trace of a hybrid program affects the time

intervals under consideration. This problem surfaces immediately

for the sequential composition of two programs 𝛼 and 𝛽 , but is in

fact a general challenge with the integration of continuous traces

from dL and temporal operators from STL.

Let us consider a trace 𝜎 = 𝜎𝛼 ◦ 𝜎𝛽 ∈ J𝛼 ; 𝛽K such that 𝜎𝛼 ∈
J𝛼K terminates at time 𝑐 , following which 𝜎𝛽 ∈ J𝛽K begins. For

simplicity, let us also assume that 𝑎 < 𝑐 < 𝑏 in determining the

satisfiability of □[𝑎,𝑏 ]𝜓 by 𝜎 . Note that 𝜎 ⊨ □[𝑎,𝑏 ]𝜓 if and only if

𝜎𝛼 ⊨ □[𝑎,𝑐 ]𝜓 and 𝜎𝛽 ⊨ □[0,𝑏−𝑐 ]𝜓 . Intuitively, this means that 𝛼

runs first until time 𝑐 and 𝜎𝛼 satisfies 𝜓 from time 𝑡 + 𝑎 to time

𝑡 + 𝑐 (where 𝑡 is the current time), following which 𝛽 runs and

𝜎𝛽 satisfies 𝜓 from the time it starts to the time 𝑡 + (𝑏 − 𝑐) (due
to a shifting of the time interval, since part of the interval [𝑎, 𝑏]
was already satisfied by 𝜎𝛼 ). A key property that this rule relies

on is the termination of program 𝛼 at time 𝑐 . The value of 𝑐 is not

known by a programmer in advance (since a program can have non-

deterministic properties), although a programmer could annotate

the code to enforce the termination of a program at a certain time. A

more elegant solution, however, is to measure the time it takes for a

program 𝛼 to run, and use the measured value for the time offset for

any subsequent temporal operators that may need interval shifting.

Definition 3.6 (Timing of hybrid programs). Given hybrid pro-

grams 𝛼 and 𝛽 , and a variable 𝑞 fresh in 𝛼 and 𝛽 , the timing of

hybrid programs is defined inductively as follows:

– 𝑡𝑖𝑚𝑒 (𝑥 := \ ) ≜ 𝑥 := \

– 𝑡𝑖𝑚𝑒 (𝑥 ′ = \ & 𝜒) ≜ {𝑥 ′ = \, 𝑞′ = 1 & 𝜒}
– 𝑡𝑖𝑚𝑒 (?𝜒) ≜ ?𝜒

– 𝑡𝑖𝑚𝑒 (𝛼 ∪ 𝛽) ≜ 𝑡𝑖𝑚𝑒 (𝛼) ∪ 𝑡𝑖𝑚𝑒 (𝛽)

– 𝑡𝑖𝑚𝑒 (𝛼 ; 𝛽) ≜ 𝑡𝑖𝑚𝑒 (𝛼); 𝑡𝑖𝑚𝑒 (𝛽)
– 𝑡𝑖𝑚𝑒 (𝛼∗) ≜ (𝑡𝑖𝑚𝑒 (𝛼))∗

The time taken 𝑞 by a hybrid program 𝛼 is then given by the pro-

gram:

𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞) ≡ 𝑞 := 0; 𝑡𝑖𝑚𝑒 (𝛼)

Recall that a trace 𝜎 is a function that maps a pair (𝑖, 𝑡) to a state
𝑣 ∈ Sta , whereas a state 𝑣 is a function from the set of variables Var
toR. For 𝜎𝛼 ∈ J𝛼K, we write 𝜎𝛼 |𝑆 to refer to 𝜎 restricted to variables

in the set 𝑆 ⊆ Var . Mathematically,𝜎𝛼 |𝑆 : (R×N) → 𝑆 → R, where
(𝑖, 𝑡) ↦→ 𝜎𝛼 (𝑖, 𝑡) |𝑆 . We can then define an equality between timed

and untimed hybrid programs as follows:

Lemma 3.7 (Eqality of timed and untimed hybrid pro-

grams). Given a hybrid program 𝛼 , the following set equality always
holds:

{𝜎𝛼 |Var−{𝑞 } : 𝜎𝛼 ∈ J𝛼K} =
{𝜎𝑡𝑖𝑚𝑒𝑑 (𝛼,𝑞) |Var−{𝑞 } : 𝜎𝑡𝑖𝑚𝑒𝑑 (𝛼,𝑞) ∈ J𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞)K}

Proof. The proof of Lemma 3.7 is true by Definition 3.6, keeping

in mind the fact that 𝑞 is fresh in 𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞). □

Intuitively, Lemma 3.7 expresses that for a trace𝜎𝛼 ∈ J𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞)K,
there always exists a corresponding trace 𝜎 ′𝛼 ∈ J𝛼K, and vice versa,

such that 𝜎𝛼 and 𝜎 ′𝛼 are identical with respect to every variable

except the fresh variable 𝑞 introduced by 𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞). We rely on

this lemma for the proof of soundness of the STdL calculus.

4 PROOF CALCULUS
In this section, we outline a proof calculus for STdL, and present

a proof of soundness for the rules in the schemata of the proof

calculus.

4.1 Normalization of Trace Formulas
Sequential composition of two traces is a major challenge in a

calculus handling alternating program and temporal modalities.

To see why, let us consider a state formula ⟨𝛼 ; 𝛽⟩□[𝑎,𝑏 ]𝜙 limited

to terminating traces only for simplicity. This formula states that

there exists a trace 𝜎𝛼 ∈ J𝛼K followed by the trace 𝜎𝛽 ∈ J𝛽K such
that sequential composition of the traces satisfies □[𝑎,𝑏 ]𝜙 . Let us
assume further for simplicity that all traces 𝜎𝛼 ∈ J𝛼K terminate

between time 𝑎 and 𝑏. A first attempt at writing a rule for this state

formula could take the form:

⟨𝛼⟩□[𝑎,𝑏 ]𝜙 ∧ ⟨𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞)⟩⟨𝛽⟩□[0,𝑏−𝑞 ]𝜙
⟨𝛼 ; 𝛽⟩□[𝑎,𝑏 ]𝜙

Unfortunately, this rule is intuitive but not sound, since the choice

of 𝜎𝛼 and 𝜎𝛽 could be non-deterministic. The premise says that

there exists a trace 𝜎𝛼 ∈ J𝛼K in which □[𝑎,𝑏 ]𝜙 is true, and a trace

trace 𝜎 ′𝛼 ∈ J𝛼K followed by 𝜎𝛽 in which □[0,𝑏−𝑞 ]𝜙 is true, but 𝜎𝛼

and 𝜎 ′𝛼 need not necessarily be the same trace. To capture the fact

that 𝜎𝛼 and 𝜎 ′𝛼 are indeed the same traces, we need a premise

resembling:

⟨𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞)⟩(□[𝑎,𝑏 ]𝜙 ∧ ⟨𝛽⟩□[0,𝑏−𝑞 ]𝜙)
The rule is not in the syntax of STdL, since it involves a conjunction
between a state formula and a trace formula. We could choose to

add this conjunction to the syntax of the logic, but we would still
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need to reason about the meaning of this conjunction if the trace

𝜎𝛼 is non-terminating.

To circumvent this problem cleanly, we need a conjunction oper-

ator that reasons about properties like 𝜙 that are true at the end of a

trace and properties like □[𝑎,𝑏 ]𝜙 that are true during a trace. dTL
2

introduces a notion of normalized trace formulas to achieve the

expressibility needed for sequential composition for LTL formulas

within the context of hybrid systems by introducing a conjunction

operator ⊓ and a disjunction operator ⊔ [13]. We extend STdL
with a similar normalization of trace formulas to reason about time-

bounded trace properties during the execution of a trace and state

properties at the end of a trace. We augment the syntax of state

formulas to accept normalized trace formulas, and define the syntax

of a normalized trace formula b as:

𝜙,𝜓 ::= . . . | [𝛼]b | ⟨𝛼⟩b
b ::= 𝜙 ⊓ □[𝑎,𝑏 ]𝜓 | 𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓

Definition 4.1 (Semantics of normalized trace formulas). For a
normalized trace formula b and trace 𝜎 = (𝜎0, . . . , 𝜎𝑛) ∈ Tra , we
say (𝜎, (𝑖, 𝑡)) ⊨ b if 𝜎 satisfies b starting from subtrace 𝜎𝑖 at time 𝑡 .

We say that 𝜎 ⊨ b if (𝜎, (0, 0)) ⊨ b . Satisfaction of normalized trace

formulas with respect to a trace 𝜎 is then defined inductively as

follows:

– 𝜎 ⊨ 𝜙 ⊓ □[𝑎,𝑏 ]𝜓 if and only if

– last𝜎 ⊨ 𝜙 and 𝜎 ⊨ □[𝑎,𝑏 ]𝜓 , if 𝜎 terminates,

– 𝜎 ⊨ □[𝑎,𝑏 ]𝜓 otherwise;

– 𝜎 ⊨ 𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 if and only if

– last𝜎 ⊨ 𝜙 or 𝜎 ⊨ ♢[𝑎,𝑏 ]𝜓 , if 𝜎 terminates,

– 𝜎 ⊨ ♢[𝑎,𝑏 ]𝜓 otherwise.

Given a normalized state formula b , we use the notation b𝑠𝑡𝑎 to

refer to the state formula in b , and we use the notation b𝑡𝑟𝑎 to refer

to the trace formula in b . For example, (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 )𝑠𝑡𝑎 = 𝜙 , and

(𝜙 ⊓ □[𝑎,𝑏 ]𝜓 )𝑡𝑟𝑎 = □[𝑎,𝑏 ]𝜓 .
We define the minimum length of normalized trace formulas

required to determine the satisfaction of program necessities and

possibilities as follows:

Definition 4.2 (Minimum length of normalized trace formulas).
The minimum length associated with a normalized trace formula b ,

denoted by ∥b ∥, to determine the satisfaction of a program necessity

or possibility is defined as follows:

∥𝜙 ⊓ □[𝑎,𝑏 ]𝜓 ∥ = 𝑏

∥𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 ∥ = 𝑏

We build on Definition 3.4 for state formulas as follows:

– 𝑣 ⊨ [𝛼]b if and only if for each trace 𝜎 ∈ J𝛼K such that

first𝜎 = 𝑣 and if 𝜎 terminates then last𝜎 ⊨ b𝑠𝑡𝑎 , and if

|𝜎 | ≥ 𝑣𝑎𝑙 (first𝜎, ∥b ∥), we also have that 𝜎 ⊨ b ;
– 𝑣 ⊨ ⟨𝛼⟩b if and only if there exists trace 𝜎 ∈ J𝛼K such that

first𝜎 = 𝑣 and if 𝜎 terminates then last𝜎 ⊨ b𝑠𝑡𝑎 , and |𝜎 | ≥
𝑣𝑎𝑙 (first𝜎, ∥b ∥) and 𝜎 ⊨ b .

Given the semantics of normalized trace formulas in STdL, we
derive rules to transform any trace formula in STdL into a nor-

malized trace formula. The rules for normalization are shown in

Figure 1. The relation { allows us to only consider normalized

𝜙 { 𝜙 ({ 𝜙)
□[𝑎,𝑏 ]𝜙 { true ⊓ □[𝑎,𝑏 ]𝜙 ({ □𝐼 )
♢[𝑎,𝑏 ]𝜙 { false ⊔ ♢[𝑎,𝑏 ]𝜙 ({ ♢𝐼 )

Figure 1: Normalization of trace formulas in STdL.

trace formulas for the rules of the proof calculus of STdL, thereby
simplifying the proof system greatly.

Lemma 4.3 (Soundness of normalized trace formulas). If
𝜋 { b , then for all traces 𝜎 , it follows that 𝜎 ⊨ 𝜋 if and only if 𝜎 ⊨ b .

Proof. Soundness of rule ({ 𝜙) is trivial. Soundness of rules
({ □𝐼 ), ({ ♢𝐼 ) is true by the semantics in Definition 4.1. □

Lemma 4.4 (Existence of a normalized trace formula). For
any trace formula 𝜋 , there exists a state formula 𝜙 such that 𝜋 { 𝜙 ,
or a normalized trace formula b such that 𝜋 { b .

Proof. This lemma is a consequent of the{ relation presented

in Figure 1. □

Lemma 4.4 allows the proof system of STdL to just focus on

axiomatizing only formulas that use normalized traces, and inherit

non-temporal rules from dL [21, 23, 24]. This results in a cleaner,

simpler proof calculus for STdL.

4.1.1 Running Example: Traction Assist in Cars. Recall that our
running example introduced a safety property, 𝜙 , that required

a skidding car’s traction assist to reduce the wheel rotation 𝜌 of

the car to some constant, 𝜌0, within 1 to 5 seconds to help regain

traction. This property can be expressed as a normalized STdL
formula as follows:

𝜙 ::= [traction_assist]
(
¬no_traction ⊔ ♢[1,5] (𝜌 < 𝜌0)

)
For ease of understanding, the normalized disjunction¬no_traction
⊔ ♢[1,5] (𝜌 < 𝜌0) can be thought of as the implication no_traction
⇒ ♢[1,5] (𝜌 < 𝜌0) (although this implication is not directly sup-

ported in the sytax of STdL). We provide a proof sketch of this

property in Section 4.2.3.

4.2 Proof Calculus
This section presents the proof calculus of STdL. As in dL, the
rules in the proof calculus of STdL typically follow a symbolic

decomposition pattern whereby hybrid programs may be decom-

posed syntactically as needed. The proof calculus transforms STL

formulas into temporal-free formulas to leverage the non-temporal

rules of dL. As such, the proof system inherits its non-temporal

rules from dL [21, 23, 24], and adds its own temporal rules to allow

for expressing temporal formulas for given time intervals. All rules

should be used in the same way as in the dL proof calculus.

Note that with the exceptions of rules (ind ⊔𝑡 ) and (con ⊓𝑡 ) (see
Figure 2), all rules are actually equivalences between the premise

and the conclusion. In other words, each rule has a dual such that

the negation of both the premise and the conclusion is also true.

Therefore, when we write rule

𝜌

𝜙
, the following two rules are both
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true:
𝜌

𝜙

¬𝜌
¬𝜙

Such duals for the rules contain the proof rules for ⟨𝛼⟩ when the

original rule contains the proof rules for [𝛼], and vice versa (again,

except for rules (ind ⊔𝑡 ) and (con ⊓𝑡 )).

4.2.1 Inheritance of Non-Temporal and Temporal Rules. In addition

to the temporal rules introduced in Figure 2, STdL also uses the

proof system of dL. Indeed, the goal of the proof calculus intro-
duced here is to leverage the non-temporal rules of dL to reason

about temporal properties of formulas. Since we build STdL to

conservatively extend dL, it is sound to inherit the proof calculus

of dL.

4.2.2 Introduction of New Temporal Rules. This subsection intro-

duces the temporal rules, grouped by program construct for hybrid

programs, for the proof calculus of STdL. A detailed rule schemata

for the proof calculus is included in Figure 2.

Rules ( [ ] {) and (⟨⟩ {) lift normalization of trace formulas

to program necessities and possibilities respectively.

For assignment rule ([:=] ⊓𝑡 ), the first disjunct expresses that
for the time interval [0, 0], 𝜓 must hold initially, and after the

execution of the program, must continue to hold in addition to 𝜙 ,

as summarized in clause𝜓 ∧ [𝑥 := \ ] (𝜙 ∧𝜓 ). The second disjunct

expresses that for any interval [𝑎, 𝑏] where 𝑎 > 0 and 𝑏 ≥ 𝑎, only 𝜙

needs to be true after execution of the assignment, since assignment

occurs in zero time, and as such, the trace of 𝑥 := \ would not be

long enough to determine the satisfiability of □[𝑎,𝑏 ]𝜓 for 𝑎 > 0.

Similar reasoning is used for rule ([:=] ⊔𝑡 ).
For the rules for test, as a reminder, a test trace only terminates if

the test passes, and is a trace of the error state if the test fails. Rule

([?] ⊓𝑡 ) encapsulates the fact that a trace of ?𝜒 satisfies 𝜙 ⊓□[𝑎,𝑏 ]𝜓
if and only if

– for 𝑎 = 0 and 𝑏 = 0, its initial state satisfies 𝜙 ∧𝜓 if the test

passes, or satisfies only𝜓 if the test fails;

– for 𝑎 > 0 and 𝑏 ≥ 𝑎, its initial state satisfies just 𝜙 if the test

passes.

Note that there is no satisfaction requirement on the trace of a

failing test (i.e., ¬𝜒 is true) when 𝑎 > 0 and 𝑏 ≥ 𝑎, since the test

also occurs in zero time, and as such, the trace of ?𝜒 would not be

long enough to determine the satisfiability of □[𝑎,𝑏 ]𝜓 in this case.

Similar reasoning is used for rule ([?] ⊔𝑡 ).
Rules for ordinary differential equations (ODEs) look complex at

first glance, but can be broken down in slightly simpler sub-rules.

It is first important to remember that ODEs could have terminating

traces or error traces, and the rules for ODEs need to account of

both possibilities. With that in mind, we conclude that an error

trace of 𝑥 ′ = \ & 𝜒 satisfies 𝜙 ⊓ □[𝑎,𝑏 ]𝜓 if and only if 𝑎 = 0 and

𝑏 ≥ 𝑎 implies 𝜓 , as the second disjunct in rule ([′] ⊓𝑡 ). For non-
error traces of 𝑥 ′ = \ & 𝜒 , we first transform the program into a

program of the form 𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)
and {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑏)} to enforce that the differential

equation first runs from time 𝑡 = 0 to time 𝑡 = 𝑎 without any

satisfaction requirements on𝜓 , followed by running the equation

from time 𝑡 = 𝑎 to 𝑡 = 𝑏, during which𝜓 must be true. In addition

to this, 𝜙 must be true after running the program 𝑥 ′ = \ & 𝜒 , to deal

with the case where the execution exits the differential equation

Normalization of Trace Formulas
𝜋 { b [𝛼]b
[𝛼]𝜋 ( [ ] {) 𝜋 { b ⟨𝛼⟩b

⟨𝛼⟩𝜋 (⟨⟩ {)

Assignment(
(𝑎 = 0 ∧ 𝑏 = 0) ∧ (𝜓 ∧ [𝑥 := \ ] (𝜙 ∧𝜓 )) ∨

((𝑎 > 0 ∧ 𝑏 ≥ 𝑎) ∧ [𝑥 := \ ]𝜙)

)
[𝑥 := \ ] (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 )

( [:=] ⊓𝑡 )(
(𝑎 = 0 ∧ 𝑏 = 0) ∧ (𝜓 ∨ [𝑥 := \ ] (𝜙 ∨𝜓 )) ∨

((𝑎 > 0 ∧ 𝑏 ≥ 𝑎) ∧ [𝑥 := \ ]𝜙)

)
[𝑥 := \ ] (𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 )

( [:=] ⊔𝑡 )(
(((𝑎 = 0 ∧ 𝑏 = 0) ∧ (𝜓 ∨ ⟨𝑥 := \⟩(𝜙 ∨𝜓 )) ∨

((𝑎 > 0 ∧ 𝑏 ≥ 𝑎) ∧ ⟨𝑥 := \⟩𝜙

)
⟨𝑥 := \⟩(𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 )

(⟨:=⟩ ⊔𝑡 )(
((𝑎 = 0 ∧ 𝑏 = 0) ∧ (𝜓 ∧ ⟨𝑥 := \⟩(𝜙 ∧𝜓 )) ∨

((𝑎 > 0 ∧ 𝑏 ≥ 𝑎) ∧ ⟨𝑥 := \⟩𝜙)

)
⟨𝑥 := \⟩(𝜙 ⊓ □[𝑎,𝑏 ]𝜓 )

(⟨:=⟩ ⊓𝑡 )

Test(
((𝑎 = 0 ∧ 𝑏 = 0) ∧ ((𝜒 ∧ (𝜙 ∧𝜓 )) ∨ (¬𝜒 ∧𝜓 )) ∨

((𝑎 > 0 ∧ 𝑏 ≥ 𝑎) ∧ (¬𝜒 ∨ (𝜒 ∧ 𝜙)))

)
[?𝜒] (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 )

( [?] ⊓𝑡 )(
((𝑎 = 0 ∧ 𝑏 = 0) ∧ ((𝜒 ∧ (𝜙 ∨𝜓 )) ∨ (¬𝜒 ∧𝜓 )) ∨

((𝑎 > 0 ∧ 𝑏 ≥ 𝑎) ∧ (¬𝜒 ∨ (𝜒 ∧ 𝜙)))

)
[?𝜒] (𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 )

( [?] ⊔𝑡 )(
((𝑎 = 0 ∧ 𝑏 = 0) ∧ ((𝜒 ∧ (𝜙 ∨𝜓 )) ∨ (¬𝜒 ∧𝜓 )) ∨

((𝑎 > 0 ∧ 𝑏 ≥ 𝑎) ∧ (¬𝜒 ∨ (𝜒 ∧ 𝜙)))

)
⟨?𝜒⟩(𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 )

(⟨?⟩ ⊔𝑡 )(
((𝑎 = 0 ∧ 𝑏 = 0) ∧ ((𝜒 ∧ (𝜙 ∧𝜓 )) ∨ (¬𝜒 ∧𝜓 )) ∨

((𝑎 > 0 ∧ 𝑏 ≥ 𝑎) ∧ (¬𝜒 ∨ (𝜒 ∧ 𝜙)))

)
⟨?𝜒⟩(𝜙 ⊓ □[𝑎,𝑏 ]𝜓 )

(⟨?⟩ ⊓𝑡 )

Non-deterministic Choice
[𝛼]b ∧ [𝛽]b
[𝛼 ∪ 𝛽]b ( [∪] b) ⟨𝛼⟩b ∨ ⟨𝛽⟩b

⟨𝛼 ∪ 𝛽⟩b (⟨∪⟩ b)

Sequential Composition
[𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞)] ( [𝛽] (𝜙 ⊓ □[max(0,𝑎−𝑞),𝑏−𝑞 ]𝜓 ) ⊓ □[𝑎,min(𝑏,𝑞) ]𝜓 )

[𝛼 ; 𝛽] (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 )
( [; ]⊓𝑡 )

[𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞)] ( [𝛽] (𝜙 ⊔ ♢[max(0,𝑎−𝑞),𝑏−𝑞 ]𝜓 ) ⊔ ♢[𝑎,min(𝑏,𝑞) ]𝜓 )
[𝛼 ; 𝛽] (𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 )

( [; ]⊔𝑡 )

⟨𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞)⟩(⟨𝛽⟩(𝜙 ⊔ ♢[max(0,𝑎−𝑞),𝑏−𝑞 ]𝜓 ) ⊔ ♢[𝑎,min(𝑏,𝑞) ]𝜓 )
⟨𝛼 ; 𝛽⟩(𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 )

(⟨; ⟩⊔𝑡 )

⟨𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞)⟩(⟨𝛽⟩(𝜙 ⊓ □[max(0,𝑎−𝑞),𝑏−𝑞 ]𝜓 ) ⊓ □[𝑎,min(𝑏,𝑞) ]𝜓 )
⟨𝛼 ; 𝛽⟩(𝜙 ⊓ □[𝑎,𝑏 ]𝜓 )

(⟨; ⟩⊓𝑡 )

Figure 2: Rule schemata of the proof calculus for STdL.

before time 𝑎. This is summarized in the third disjunct of the rule

([′] ⊓𝑡 ). Note that the first disjunct of the rule deals with the case

where 𝑏 < 𝑎, so □[𝑎,𝑏 ]𝜓 is defined to be trivially true, and any trace

of 𝑥 ′ = \ & 𝜒 need only satisfy 𝜙 . Rule ([′] ⊔𝑡 ) expresses that a
7



Ordinary Differential Equation

©«
(𝑏 < 𝑎 ∧ [𝑥 ′ = \ & 𝜒]𝜙) ∨

(¬𝜒 ∧ (¬(𝑎 = 0 ∧ 𝑏 ≥ 𝑎) ∨𝜓 )) ∨
([𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]
[{𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑏)}]𝜓 ∧ [𝑥 ′ = \ & 𝜒]𝜙)

ª®®®¬
[𝑥 ′ = \ & 𝜒] (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 )

([′] ⊓𝑡 )

©«
(𝑏 < 𝑎 ∧ [𝑥 ′ = \ & 𝜒]𝜙) ∨

((𝜒 ∨ [𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]𝜓 ) ∧
[𝑥 ′ = \ & (𝜒 ∧ ¬𝜓 )]𝜙 ∧

[𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]
⟨{𝑥 ′ = \, 𝑡 ′ = 1 & (𝑡 ≤ 𝑏)}⟩(¬𝜒 ∨𝜓 ))

ª®®®®¬
[𝑥 ′ = \ & 𝜒] (𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 )

([′] ⊔𝑡 )

©«
(𝑏 < 𝑎 ∧ [𝑥 ′ = \ & 𝜒]𝜙) ∨

(¬𝜒 ∧ (¬(𝑎 = 0 ∧ 𝑏 ≥ 𝑎) ∨𝜓 )) ∨
([𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]
[{𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑏)}]𝜓 ∧ [𝑥 ′ = \ & 𝜒]𝜙)

ª®®®¬
[𝑥 ′ = \ & 𝜒] (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 )

([′] ⊓𝑡 )

©«
(𝑏 < 𝑎 ∧ [𝑥 ′ = \ & 𝜒]𝜙) ∨

((𝜒 ∨ [𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]𝜓 ) ∧
[𝑥 ′ = \ & (𝜒 ∧ ¬𝜓 )]𝜙 ∧

[𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]
⟨{𝑥 ′ = \, 𝑡 ′ = 1 & (𝑡 ≤ 𝑏)}⟩(¬𝜒 ∨𝜓 ))

ª®®®®¬
[𝑥 ′ = \ & 𝜒] (𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 )

([′] ⊔𝑡 )

Non-deterministic Finite Repetition(
(𝜙 ∧ (¬(𝑎 = 0 ∧ 𝑏 = 0) ∨𝜓 )) ∧

[𝑡𝑖𝑚𝑒𝑑 (𝛼∗, 𝑞)] [𝛼] (𝜙 ⊓ □[𝑚𝑎𝑥 (0,𝑎−𝑞),𝑏−𝑞 ]𝜓 )

)
[𝛼∗] (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 )

([*] ⊓𝑡 )

(𝜓 ∧ (𝑎 = 0 ∧ 𝑏 ≥ 𝑎)) ∨ (𝜙 ∧ [𝛼∗;𝛼] (𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 ))
[𝛼∗] (𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 )

([
∗𝑛
] ⊔𝑡 )

𝜙 =⇒ [𝛼] (𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 )
∀𝛼 (𝜙 =⇒ [𝛼∗] (𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 ))

(ind ⊔𝑡 )

∀𝛼∀𝑟 > 0 (𝜑 (𝑟 ) =⇒ ⟨𝛼⟩(𝜑 (𝑟 − 1) ⊓ □[𝑎,𝑏 ]𝜓 ))
(∃𝑟 .𝜑 (𝑟 )) ∧𝜓 =⇒ ⟨𝛼∗⟩((∃𝑟 .𝑟 ≤ 0 ∧ 𝜑 (𝑟 )) ⊓ □[𝑎,𝑏 ]𝜓 )

(con ⊓𝑡 )(
(𝜓 ∧ (𝑎 = 0 ∧ 𝑏 ≥ 𝑎)) ∨

⟨𝑡𝑖𝑚𝑒𝑑 (𝛼∗, 𝑞)⟩⟨𝛼⟩(𝜙 ⊔ ♢[𝑚𝑎𝑥 (0,𝑎−𝑞),𝑏−𝑞 ]𝜓 )

)
⟨𝛼∗⟩(𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 )

(⟨∗⟩⊔𝑡 )(
(𝜙 ∧ (¬(𝑎 = 0 ∧ 𝑏 = 0) ∨𝜓 )) ∧
(𝜙 ∨ ⟨𝛼∗;𝛼⟩(𝜙 ⊓ □[𝑎,𝑏 ]𝜓 ))

)
⟨𝛼∗⟩(𝜙 ⊓ □[𝑎,𝑏 ]𝜓 )

(⟨∗𝑛⟩ ⊓𝑡 )

Figure 2 (continued): Rule schemata of the proof calculus for
STdL.

trace of 𝑥 ′ = \ & 𝜒 satisfies 𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 if and only if either 𝑏 < 𝑎

and the trace satisfies 𝜙 upon termination, or

– the differential equation can evolve or has satisfied𝜓 at time

𝑡 = 𝑎 (as in the first conjunct of the rule),

– if no trace of the differential equation can satisfy𝜓 , all traces

must satisfy 𝜙 instead (as in the second conjunct of the rule),

– either there does not exist a non-terminating trace of the

differential equation – transformed to a program as in rule

([′] ⊓𝑡 ) – or such a trace satisfies𝜓 between times 𝑎 and 𝑏.

Rule ( [∪] b) for non-deterministic choice is lifted directly from

the corresponding rule [∪]□ in dL.
The rules for sequential composition were one of the most chal-

lenging aspects of STdL. Indeed, sequential composition is the

sole reason why we use normalized trace formulas in STdL (see

Section 4.1), and a primary reason why introduce the notion of

recording the amount of time it takes for a hybrid program 𝛼 to ex-

ecute (see Section 3.5). As a reminder here, for a hybrid program 𝛼 ,

executing 𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞) is equivalent to executing 𝛼 while recording

the amount of time the program takes to execute, following which

the timed value is output as a fresh variable 𝑞. With that in mind, a

trace of 𝛼 ; 𝛽 satisfies 𝜙 ⊓ □[𝑎,𝑏 ]𝜓 if and only if

– for 𝑎 ≤ 𝑞 ≤ 𝑏, all traces of 𝛼 satisfy □[𝑎,𝑞 ]𝜓 , and for traces

of 𝛼 that terminate at time 𝑞, all following traces of 𝛽 satisfy

𝜙 ⊓ □[0,𝑏−𝑞 ]𝜓 ,
– for 𝑎 ≤ 𝑏 ≤ 𝑞, all traces of 𝛼 satisfy □[𝑎,𝑏 ]𝜓 , and for traces

of 𝛼 that terminate at time 𝑞, all following traces of 𝛽 satisfy

𝜙 ,

– for 𝑞 ≤ 𝑎 ≤ 𝑏, for traces of 𝛼 that terminate at time 𝑞, all

following traces of 𝛽 satisfy 𝜙 ⊓ □[𝑎−𝑞,𝑏−𝑞 ]𝜓 .
These properties for the cases of the relative ordering of 𝑎, 𝑏 and 𝑞

are captured succinctly in rule ([;] ⊓𝑡 ) using min and max. Rule ([;]
⊔𝑡 ) is similar.

For the rules for non-deterministic finite repetition, let us first

remember that as long as a trace 𝛼 is finite, its finite repetition 𝛼∗

will also be finite. In general, the rules attempt to reduce temporal

properties of loops into either non-temporal properties of loops,

or slightly more complex temporal properties on a program but

without any loops. The idea here is to make the rules provable by

ordinary, non-temporal induction. The key intuition behind rule

([*] ⊔𝑡 ) comes from a very useful rule for repetition from dL, which
says that for a given trace formula 𝜋 , the following is true:

[?𝑡𝑟𝑢𝑒]𝜋 ∧ [𝛼∗;𝛼]𝜋
[𝛼∗]𝜋 [;]

Rule ([*] ⊓𝑡 ) captures the fact that a trace of 𝛼∗ satisfies 𝜙 ⊓□[𝑎,𝑏 ]𝜓
if and only if when 𝛼 repeats zero times, 𝜙 is true, and if 𝑎 = 0

and 𝑏 = 0 then 𝜓 is true as well, or 𝛼∗ runs first followed by 𝛼 ,

during which 𝜙 ⊓ □[𝑎,𝑏 ]𝜓 with time interval shifting (similar to

that for the sequential composition rules) holds. In rule ([*] ⊔𝑡 ),
the first disjunct expresses that ♢[𝑎,𝑏 ]𝜓 holds without repeating 𝛼

if 𝑎 = 0 and 𝑏 ≥ 𝑎 and 𝜓 is true initially; the first conjunct of the

second disjunct deals with the case where 𝛼 repeats zero times and

𝜓 is false initially, while the second conjunct requires a sequential

composition of 𝛼∗;𝛼 to satisfy 𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 according to the rule

([;]) from dL mentioned above. Note that for rule ([*] ⊔𝑡 ), the use
of 𝛼∗;𝛼 is equivalent to the use of 𝛼 ;𝛼∗, and either variant of the

sequential composition may be used. The rules (ind ⊔𝑡 ) and (con

⊓𝑡 ) extend the rules of induction (ind) and convergence (con) from

dL to normalized trace formulas. Consistent with the rules from

dL, the rules (ind ⊔𝑡 ) and (con ⊓𝑡 ) are not equivalence relations
(i.e., they do not have dual counterparts such that the negation of

the premise and the conclusion is also a rule). The notation ∀𝛼 from
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. . .

[𝑡𝑖𝑚𝑒𝑑 (𝛼1, 𝑞1)] ( [𝑡𝑖𝑚𝑒𝑑 (𝛼2, 𝑞2)] (𝜓3 ⊔ ♢[max(0,1−𝑞1),min(5−𝑞1,𝑞2) ] ) ⊔ ♢[1,min(5,𝑞1) ]𝜓2)
[′]⊔𝑡[𝑡𝑖𝑚𝑒𝑑 (𝛼1, 𝑞1)] ( [𝑡𝑖𝑚𝑒𝑑 (𝛼2, 𝑞2)] ( [𝛼3] (𝜓1 ⊔ ♢[max(0,max(0,1−𝑞1)−𝑞2),5−𝑞1−𝑞2 ]𝜓2) ⊔ ♢[max(0,1−𝑞1),min(5−𝑞1,𝑞2) ] ) ⊔ ♢[1,min(5,𝑞1) ]𝜓2)
[; ]⊔𝑡[𝑡𝑖𝑚𝑒𝑑 (𝛼1, 𝑞1)] ( [𝛼2;𝛼3] (𝜓1 ⊔ ♢[max(0,1−𝑞1),5−𝑞1 ]𝜓2) ⊔ ♢[1,min(5,𝑞1) ]𝜓2)

[; ]⊔𝑡[𝛼] (𝜓1 ⊔ ♢[1,5]𝜓2)

Figure 3: Proof sketch of our running example. The state formula𝜓3 can be further proven using rules from dL.

dL is a quantification over all variables that could be assigned by

a hybrid program 𝛼 in assignments or differential equations. Rule

(ind ⊔) expresses that 𝜙 is inductive with exit clause ♢[𝑎,𝑏 ]𝜓 (i.e., 𝜙

is true after all traces 𝜎 ∈ J𝛼K where first𝜎 ⊨ 𝜙 , except when𝜓 was

true at some point in the interval 𝐼 during the execution of 𝜎), while

rule (con ⊓) shows that 𝜑 is a variant of some trace 𝜎 ∈ J𝛼K (as in,
its level 𝑟 decreases) during which 𝜓 is always true, and starting

from an initial 𝑟 , for an 𝑟 for which 𝜑 (𝑟 ) holds, it will ultimately

be the case that 𝑟 ≤ 0 without𝜓 being false if we repeat 𝛼∗ often
enough [14].

4.2.3 Running Example: Traction Assist in Cars. In this subsection,

we present a proof sketch of the safety property for our example,

highlighting how the property expressed in STdL is reduced to

an equivalent dL formula to leverage the dL calculus. For ease of

understanding of the proof sketch, we only consider the second half

of the hybrid program traction_assist (referred to as 𝛼) – though the
application of the STdL proof rules to the first half of the program is

also fairly straightforward. We refer to the sequential composition

components 𝜔 := −1, 𝜑 := 10 and 𝜌 ′ = cruise(𝜔)) in 𝛼 as 𝛼1,

𝛼2, and 𝛼3 respectively. We then refer to the safety property 𝜙 as

[𝛼] (𝜓1 ⊔ ♢[1,5]𝜓2), where𝜓1 ≡ ¬no_traction and𝜓2 ≡ (𝜌 < 𝜌0).
For 𝛼 ≡ (𝛼1; (𝛼2;𝛼3)), using the STdL proof calculus, we get a

proof tree of the form presented in Figure 3, where𝜓3 is obtained

by applying rule [′] ⊔𝑡 with 𝑎 = max(0,max(0, 1 − 𝑞1) − 𝑞2) and
𝑏 = 5 − 𝑞1 − 𝑞2 as follows:

𝜓3 ≡ [𝛼3]
©«

(𝑏 < 𝑎 ∧ [𝜌 ′ = 𝜔 × 𝑘 − 𝜑 × 𝑗]𝜓1) ∨
(([𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]𝜓2) ∧

[𝜌 ′ = 𝜔 × 𝑘 − 𝜑 × 𝑗 & (¬𝜓2)]𝜓1 ∧
[𝑡 := 0; {𝜌 ′ = 𝜔 × 𝑘 − 𝜑 × 𝑗, 𝑡 ′ = 1 & (𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]

⟨{𝜌 ′ = 𝜔 × 𝑘 − 𝜑 × 𝑗, 𝑡 ′ = 1 & (𝑡 ≤ 𝑏)}⟩𝜓2)

ª®®®®¬
The STdL state formula𝜓3 can be proven further using solely the

non-temporal rules from dL.

4.3 Soundness and Completeness of the STdL
Proof Calculus

Theorem 4.5. The proof calculus for STdL is sound.

Since STdL conservatively extends dL, the soundness of the
proof calculus of dL applies to STdL as well. We present the proof

of soundness for the rules introduced by the STdL calculus.

Proof. We prove the soundness of individual rules. By induc-

tion on the proof trees, soundness of the entire proof system is a

corollary.

( [:=] ⊓𝑡 ): For any state 𝑣 , there is a unique terminating trace 𝜎 ∈
J𝑥 := \K such that first𝜎 = 𝑣 . From the trace semantics of hybrid

programs, we know that 𝜎 = (𝑣, �̂�) with 𝑤 = [𝑥 ↦→ 𝑣𝑎𝑙 (𝑣, \ )].
Therefore, 𝑣 ⊨ [𝑥 := \ ] (𝜙 ⊓ □𝐼𝜓 ) if and only if

– for 𝐼𝑠 = 0 and 𝐼𝑒 = 0,𝑤 ⊨ 𝜙 , 𝑣 ⊨ 𝜓 , and𝑤 ⊨ 𝜓 , which is true

if and only if 𝑣 ⊨ 𝜓 ∧ [𝑥 := \ ] (𝜙 ∧𝜓 );
– for 𝐼𝑠 > 0 and 𝐼𝑒 ≥ 𝐼𝑠 , 𝑤 ⊨ 𝜙 , which is true if and only if

𝑣 ⊨ [𝑥 := \ ]𝜙 .

In either case, it follows that 𝑣 ⊨ [𝑥 := \ ] (𝜙 ⊓ □𝐼𝜓 ) if and only if

𝑣 ⊨ ((𝐼𝑠 = 0 ∧ 𝐼𝑒 = 0) ∧ (𝜓 ∧ [𝑥 := \ ] (𝜙 ∧𝜓 )) ∨ ((𝐼𝑠 > 0 ∧ 𝐼𝑒 ≥
𝐼𝑠 ) ∧ [𝑥 := \ ]𝜙).

( [:=] ⊔𝑡 ): Similar to the proof of soundness of ( [:=] ⊓𝑡 ).

([?] ⊓𝑡 ): (→) Let 𝑣 ⊨ ((𝑎 = 0 ∧ 𝑏 = 0) ∧ ((𝜒 ∧ (𝜙 ∨𝜓 )) ∨ (¬𝜒 ∧
𝜓 )) ∨ ((𝑎 > 0 ∧ 𝑏 ≥ 𝑎) ∧ (¬𝜒 ∨ (𝜒 ∧ 𝜙))), and let 𝜎 ∈ J?𝜒K with
first𝜎 = 𝑣 . If 𝑣 ⊨ ¬𝜒 , then 𝜎 = (𝑣, Λ̂) (i.e., 𝜎 is the error trace). If

𝑎 = 0 and 𝑏 = 0, by our assumption, it follows that 𝑣 ⊨ 𝜓 (otherwise

𝑣 does not satisfy anything). Since 𝜎 is a trace that occurs in zero

time, it follows that 𝜎 ⊨ (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 ). If, however, 𝑣 ⊨ 𝜒 , then

𝜎 = (𝑣), and by our assumption, if 𝑎 > 0 and 𝑏 ≥ 𝑎, then 𝑣 ⊨ 𝜙
only (since the length of 𝜎 is not long enough to determine the

satisfiability of □[𝑎,𝑏 ]𝜓 ). Therefore, 𝜎 ⊨ (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 ) in this case

as well.

(←) Conversely, assume that 𝑣 ⊨ [?𝜒] (𝜙 ⊓□[𝑎,𝑏 ]𝜓 ). Now, if 𝑣 ⊨ ¬𝜒 ,
then 𝜎 = (𝑣, Λ̂) (which is a non-terminating state), and 𝑣 ⊨ 𝜓 only

when 𝑎 = 0 and 𝑏 = 0. Otherwise, 𝑣 ⊨ 𝜒 and 𝜎 = (𝑣), and therefore

𝑣 ⊨ (𝜙∧𝜓 ) when 𝑎 = 0 and 𝑏 = 0, or 𝑣 ⊨ 𝜙 when 𝑎 > 0 and 𝑏 ≥ 𝑎. In

either case, 𝑣 ⊨ ((𝑎 = 0∧𝑏 = 0) ∧ ((𝜒∧ (𝜙∨𝜓 )) ∨ (¬𝜒∧𝜓 )) ∨ ((𝑎 >

0 ∧ 𝑏 ≥ 𝑎) ∧ (¬𝜒 ∨ (𝜒 ∧ 𝜙))).

([?] ⊔𝑡 ): Similar to the proof of soundness of [?] ⊓𝑡 .

([’] ⊓𝑡 ): (→) Let 𝑣 ⊨ (𝑏 < 𝑎 ∧ [𝑥 ′ = \ & 𝜒]𝜙) ∨ (¬𝜒 ∧ (¬(𝑎 =

0 ∧ 𝑏 ≥ 𝑎) ∨𝜓 )) ∨ ([𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 =
𝑎)] [{𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑏)}]𝜓 ∧ [𝑥 ′ = \ & 𝜒]𝜙), and let

𝜎 ∈ J𝑥 ′ = \ & 𝜒K such that first𝜎 = 𝑣 . If 𝑏 < 𝑎, it is only required

that 𝜎 ⊨ 𝜙 (since □[𝑎,𝑏 ]𝜓 is trivially true in this case). If 𝑣 ⊨ ¬𝜒 ,
then 𝜎 is the non-terminating error trace (𝑣, Λ̂) and 𝜎 ⊨ □[𝑎,𝑏 ]𝜓
(since𝜓 is true when 𝑎 = 0 and 𝑏 ≤ 𝑎). Therefore, 𝜎 ⊨ (𝜙 ⊓□[𝑎,𝑏 ]𝜓 ).
If 𝑣 ⊨ 𝜒 , however, then 𝜎 = {𝑓 } for a real function 𝑓 defined on

𝐷 = [0, 𝑟 ] solution of 𝑥 ′ = \ , which satisfies 𝜒 on its domain of

definition. Since 𝑣 ⊨ [𝑥 ′ = \ & 𝜒]𝜙 , for any 𝜎 that terminates,

𝜎 ⊨ 𝜙 . For a 𝜎 that does not terminate, 𝑣 ⊨ [𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ =
1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)] [{𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑏)}]𝜓 , and
therefore 𝜎 ⊨ □[𝑎,𝑏 ]𝜓 . In either case, 𝜎 ⊨ (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 ).
(←) Conversely, assume 𝑣 ⊨ [𝑥 ′ = \ & 𝜒] (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 ). By defi-

nition, there exists at least one trace 𝜎 ∈ J𝑥 ′ = \ & 𝜒K such that
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first𝜎 = 𝑣 and 𝜎 ⊨ □[𝑎,𝑏 ]𝜓 . Now, if 𝑣 ⊨ ¬𝜒 , then 𝑣 ⊨ 𝜓 if 𝑎 = 0 and

𝑏 ≥ 𝑎. Otherwise, for non-error traces of 𝑥 ′ = \ & 𝜒 ,

– for a terminating trace 𝜎 ∈ J𝑥 ′ = \ & 𝜒K, we have that

𝜎 ⊨ 𝜙 ⊓ □[𝑎,𝑏 ]𝜓 , and in particular, we have that 𝜎 ⊨ 𝜙
– for any trace 𝜎 ∈ J𝑥 ′ = \ & 𝜒K (terminating or otherwise),

since 𝜎 ⊨ 𝜙 ⊓□[𝑎,𝑏 ]𝜓 , in particular we have that 𝜎 ⊨ □[𝑎,𝑏 ]𝜓 ,
and hence, 𝜎 ⊨ [𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 =
𝑎)] [{𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑏)}]𝜓 .

Therefore, 𝑣 ⊨ (𝑏 < 𝑎 ∧ [𝑥 ′ = \ & 𝜒]𝜙) ∨ (¬𝜒 ∧ (¬(𝑎 = 0 ∧ 𝑏 ≥
𝑎) ∨𝜓 )) ∨ ([𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)] [{𝑥 ′ =
\, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑏)}]𝜓 ∧ [𝑥 ′ = \ & 𝜒]𝜙).

([’] ⊔𝑡 ): (→) Assume 𝑣 ⊨ (𝑏 < 𝑎 ∧ [𝑥 ′ = \ & 𝜒]𝜙) ∨ ((𝜒 ∨ [𝑡 :=

0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]𝜓 ) ∧ [𝑥 ′ = \ & (𝜒 ∧
¬𝜓 )]𝜙 ∧ [𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]⟨{𝑥 ′ =
\, 𝑡 ′ = 1 & (𝑡 ≤ 𝑏)}⟩(¬𝜒 ∨𝜓 )) and let 𝜎 ∈ J𝑥 ′ = \ & 𝜒K such that

first𝜎 = 𝑣 . If 𝑏 < 𝑎, then 𝑣 ⊨ [𝑥 ′ = \ & 𝜒]𝜙 . If 𝑣 ⊨ ¬𝜒 , then 𝜎 is

the non-terminating trace (𝑣, Λ̂) such that 𝜎 ⊨ ♢[𝑎,𝑏 ]𝜓 . Therefore,
𝜎 ⊨ 𝜙⊔♢[𝑎,𝑏 ]𝜓 . If 𝑣 ⊨ 𝜒 , however, then 𝜎 = {𝑓 } for a real function 𝑓

defined on 𝐷 = [0, 𝑟 ] solution of 𝑥 ′ = \ , which satisfies 𝜒 on its do-

main of definition. If 𝜎 ⊨ ♢[𝑎,𝑏 ]𝜓 , then by definition, 𝜎 ⊨ 𝜙⊔♢[𝑎,𝑏 ]𝜓 .
Otherwise, if 𝜎 is terminating and no state of 𝜎 satisfies𝜓 , we have

that 𝜎 ∈ J𝑥 ′ = \ & (𝜒 ∧ ¬𝜓K. From our assumption, we have that

𝜎 ⊨ 𝜙 , and as such, 𝜎 ⊨ 𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 . Lastly, for the case case where
𝜎 ⊭ ♢[𝑎,𝑏 ]𝜓 , we cannot have a non-terminating 𝜎 . This is because

such a 𝜎 would verify 𝜒∧¬𝜓 in all states, and could follow any trace

𝜎𝛼 ∈ J𝑥 ′ = \K, contradicting 𝑣 ⊨ [𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤
𝑎)}; ?(𝑡 = 𝑎)]⟨{𝑥 ′ = \, 𝑡 ′ = 1 & (𝑡 ≤ 𝑏)}⟩(¬𝜒 ∨𝜓 ) in the process.

(←) Conversely, let 𝑣 ⊨ [𝑥 ′ = \ & 𝜒] (𝜙⊔♢[𝑎,𝑏 ]𝜓 ), and let 𝜎 ∈ J𝑥 ′ =
\ & 𝜒K such that first𝜎 = 𝑣 . First, if 𝑏 < 𝑎, the ♢[𝑎,𝑏 ]𝜓 is vacuously

false, and since 𝜎 ⊨ (𝜙⊔♢[𝑎,𝑏 ]𝜓 ), it must be the case that 𝜎 ⊨ 𝜙 . Oth-
erwise, if 𝑣 ⊨ ¬𝜒 , the only trace of J𝑥 ′ = \ & 𝜒K such that first𝜎 = 𝑣

is the trace (𝑣, Λ̂). Since this trace satisfies ♢[𝑎,𝑏 ]𝜓 , we have that
𝑣 ⊨ [𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]𝜓 . Therefore,
in all cases, we have 𝑣 ⊨ 𝜒 ∨ [𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤
𝑎)}; ?(𝑡 = 𝑎)]𝜓 . To prove that 𝑣 ⊨ [𝑥 ′ = \ & (𝜒 ∧ ¬𝜓 )]𝜙 , we need
only consider terminating tracing. Let 𝜎 be a terminating trace

of J𝑥 ′ = \ & (𝜒 ∧ ¬𝜓 )K. Then, in particular, 𝜎 ∈ J𝑥 ′ = \ & 𝜒K,
and as such, 𝜎 ⊨ 𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 . Since 𝜎 also has ¬𝜓 as domain con-

straint, it follows that 𝜎 ⊭ ♢[𝑎,𝑏 ]𝜓 , and as such, 𝜎 ⊨ 𝜙 . Finally, to
prove the third conjunct of the rule, let us first consider the case

where 𝑣 ⊨ [𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]⟨{𝑥 ′ =
\, 𝑡 ′ = 1 & (𝑡 ≤ 𝑏)}⟩¬𝜒 . In this case, there is no non-terminating

trace 𝜎 ∈ J𝑥 ′ = \ & 𝜒K such that first𝜎 = 𝑣 . For the case where

𝑣 ⊨ [𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]⟨{𝑥 ′ =

\, 𝑡 ′ = 1 & (𝑡 ≤ 𝑏)}⟩𝜓 , there exists a unique non-terminating trace

𝜎 ∈ J𝑥 ′ = \ & 𝜒K such that first𝜎 = 𝑣 . By our assumption, we have

that 𝜎 ⊨ ♢[𝑎,𝑏 ]𝜓 . This means that 𝜓 has to be true in some state

that is reached by trace 𝜎 , and this notion is logically equivalent

to [𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]⟨{𝑥 ′ = \, 𝑡 ′ =
1 & (𝑡 ≤ 𝑏)}⟩𝜓 . From both of the cases mentioned above, we get

𝑣 ⊨ [𝑡 := 0; {𝑥 ′ = \, 𝑡 ′ = 1 & (𝜒 ∧ 𝑡 ≤ 𝑎)}; ?(𝑡 = 𝑎)]⟨{𝑥 ′ = \, 𝑡 ′ =
1 & (𝑡 ≤ 𝑏)}⟩(¬𝜒 ∨𝜓 ).

( [ ] {), (⟨⟩ {): Soundness of rules ( [ ] {) and (⟨⟩ {) is a
corollary of Lemma 4.3.

( [∪] b): For any state 𝑣 , we have 𝑣 ⊨ [𝛼]b ∧ [𝛽]b if and only if

for all traces 𝜎𝛼 ∈ J𝛼K such that first𝜎𝛼 = 𝑣 , it follows that 𝜎𝛼 ⊨ b ,
and for all traces 𝜎𝛽 ∈ J𝛽K such that first𝜎𝛽 = 𝑣 , it follows that

𝜎𝛽 ⊨ b . This is true if and only if for all traces 𝜎 ∈ J𝛼 ∪ 𝛽K such that

first𝜎 = 𝑣 , it follows that 𝜎 ⊨ b , which in turn is true if and only if

𝑣 ⊨ [𝛼 ∪ 𝛽]b .

Before we can prove soundness for the rules for sequential com-

position, we need the following lemma describing the relationship

between 𝑞 and |𝜎 | for 𝜎 ∈ J𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞)K:

Lemma 4.6 (Timing and the lengths of traces of hybrid

programs). Given a hybrid program𝛼 and a trace𝜎 ∈ J𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞)K
that the execution of 𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞) follows, the time taken to execute
the program is equal to the length of 𝜎 (i.e., 𝑞 = |𝜎 |).

Proof. Lemma 4.6 is a direct consequent of Definition 3.1 and

Definition 3.6, keeping in mind the semantics of hybrid programs

from Definition 3.2. □

We can now continue with the proof of soundness of the STdL
calculus.

([;] ⊓𝑡 ): (→) Assume that for some state 𝑣 , it is true that 𝑣 ⊨
[𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞)] ( [𝛽] (𝜙 ⊓ □[max(0,𝑎−𝑞),𝑏−𝑞 ]𝜓 ) ⊓ □[𝑎,min(𝑏,𝑞) ]𝜓 ), and
let 𝜎 |Var−{𝑞 } ∈ J𝛼 ; 𝛽K such that 𝑣 = first𝜎 . If 𝜎 |Var−{𝑞 } ∈ J𝛼K is an
infinite trace, then by Lemma 3.7, 𝜎 |Var−{𝑞 } ∈ J𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞)K and by
the assumption,𝜎 |Var−{𝑞 } ⊨ □[𝑎,min(𝑏,+∞) ]𝜓 ≡ □[𝑎,𝑏 ]𝜓 . Otherwise,
there exists a terminating trace 𝜎𝛼 ∈ J𝛼K such that |𝜎𝛼 | = 𝑞 (by

Lemma 4.6) and a trace (infinite or otherwise) 𝜎𝛽 ∈ J𝛽K such that

𝜎 = 𝜎𝛼 ◦ 𝜎𝛽 . By the assumption, 𝜎𝛼 |Var−{𝑞 } ⊨ □[𝑎,min(𝑏,𝑞) ]𝜓 and

𝜎𝛽 ⊨ (𝜙 ⊓ □[max(0,𝑎−𝑞),𝑏−𝑞 ]𝜓 . Now, depending on the value of 𝑞,

there are three possible orders of 𝑎, 𝑏, and 𝑞: 𝑎 ≤ 𝑞 ≤ 𝑏, 𝑞 ≤ 𝑎 ≤ 𝑏,

and 𝑎 ≤ 𝑏 ≤ 𝑞. Keeping in mind the fact that for 𝑏 < 𝑎, □[𝑎,𝑏 ]𝜓 is

vacuously true while ♢[𝑎,𝑏 ]𝜓 is vacuously false, we can see that

– for 𝑎 ≤ 𝑞 ≤ 𝑏, 𝜎𝛼 ⊨ □[𝑎,𝑞 ]𝜓 and 𝜎𝛽 ⊨ (𝜙 ⊓ □[0,𝑏−𝑞 ]𝜓 );
– for 𝑞 ≤ 𝑎 ≤ 𝑏, 𝜎𝛽 ⊨ (𝜙 ⊓ □[𝑎−𝑞,𝑏−𝑞 ]𝜓 );
– for 𝑎 ≤ 𝑏 ≤ 𝑞, 𝜎𝛼 ⊨ □[𝑎,𝑏 ]𝜓 and 𝜎𝛽 ⊨ 𝜙 .

In all cases, 𝜎𝛼 |Var−{𝑞 } ◦𝜎𝛽 ⊨ (𝜙 ⊓□[𝑎,𝑏 ]𝜓 ). By Lemma 3.7, we get

𝜎𝛼 |Var−{𝑞 } ◦ 𝜎𝛽 ≡ 𝜎 . Therefore, 𝜎 ⊨ (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 ).
(←) Conversely, let 𝑣 ⊨ [𝛼 ; 𝛽] (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 ). Let 𝜎𝛼 ∈ J𝛼K such

that 𝑣 = first𝜎𝛼 . If 𝜎𝛼 is infinite, then 𝜎𝛼 ∈ J𝛼 ; 𝛽K, and as such,

𝜎𝛼 ⊨ □[𝑎,𝑏 ]𝜓 . Otherwise, let 𝜎𝛽 ∈ J𝛽K such that 𝜎𝛼 ◦ 𝜎𝛽 is well-

defined. Again, since |𝛼 | = 𝑞 (by Lemma 4.6), there are three

possible orders of 𝑎, 𝑏, and 𝑞. It is easy to see that for any rela-

tive ordering of 𝑎, 𝑏, and 𝑞, 𝜎𝛼 ⊨ □[𝑎,min(𝑏,𝑞) ]𝜓 , and 𝜎𝛽 ⊨ (𝜙 ⊓
□[max(0,𝑎−𝑞),𝑏−𝑞 ]𝜓 ). There is a universal quantifier on 𝜎𝛽 , so 𝜎𝛼 ⊨
[𝛽] (𝜙 ⊓ □[max(0,𝑎−𝑞),𝑏−𝑞 ]𝜓 ). Keeping in mind that the choice of

𝜎𝛼 was arbitrary, and by using Lemma 3.7, it follows that 𝑣 ⊨
[𝑡𝑖𝑚𝑒𝑑 (𝛼, 𝑞)] ( [𝛽] (𝜙 ⊓ □[max(0,𝑎−𝑞),𝑏−𝑞 ]𝜓 ) ⊓ □[𝑎,min(𝑏,𝑞) ]𝜓 ).

([;] ⊔𝑡 ): Similar to the proof of soundness of [;] ⊓𝑡 .
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([*] ⊓𝑡 ): (→) Assume 𝑣 ⊨ (𝜙 ∧ (¬(𝑎 = 0 ∧ 𝑏 = 0) ∨ 𝜓 )) ∧
[𝑡𝑖𝑚𝑒𝑑 (𝛼∗, 𝑞)] [𝛼] (𝜙 ⊓ □[𝑚𝑎𝑥 (0,𝑎−𝑞),𝑏−𝑞 ]𝜓 ) and let 𝜎 ∈ J𝛼∗K. If
𝜎 ∈ J𝛼0K = J?true K, then 𝜎 = (𝑣). Since we have 𝑣 ⊨ 𝜙 and

𝑣 ⊨ [𝑡𝑖𝑚𝑒𝑑 (𝛼0, 𝑞)] [𝛼]𝜙 ⊓ □[𝑎,𝑏 ]𝜓 (note that for 𝑡𝑖𝑚𝑒𝑑 (𝛼0, 𝑞), we
have 𝑞 = 0, and such a trace satisfies 𝜓 only if 𝑎 = 0 and 𝑏 = 0),

it follows that 𝜎 ⊨ (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 ). Otherwise, there exits 𝑛 ≥ 1

such that 𝜎 = 𝜎1 ◦ · · · ◦ 𝜎𝑛 , where 𝜎𝑖 ∈ J𝛼K for any 𝑖 ∈ {1, . . . , 𝑛}.
Then, 𝜎1 ◦ · · · ◦ 𝜎𝑛−1 ∈ J𝛼∗K and 𝜎𝑛 ∈ J𝛼K. By our assumption,

𝜎𝑛 ⊨ □[𝑚𝑎𝑥 (0,𝑎−𝑞),𝑏−𝑞 ]𝜓 , and as such, 𝜎 ⊨ □[𝑎,𝑏 ]𝜓 . Furthermore, if

𝜎 terminates, then 𝜎𝑛 terminates, and as such, we get 𝜎𝑛 ⊨ 𝜙 from

our assumption. Therefore, we have 𝜎 ⊨ 𝜙 ⊓ □[𝑎,𝑏 ]𝜓 .
(←) Conversely, if 𝑣 ⊨ [𝛼∗] (𝜙 ⊓ □[𝑎,𝑏 ]𝜓 ), then in particular, we

have (𝑣) ⊨ (𝜙⊓□[𝑎,𝑏 ]𝜓 ). This implies that 𝑣 ⊨ 𝜙 . Now, let 𝜎𝛼 ∈ J𝛼∗K
such that first𝜎𝛼 = 𝑣 and 𝜎𝛼 terminates, and let 𝜎𝛽 ∈ J𝛼K such

that first𝜎𝛽 = last𝜎𝛼 . Then, 𝜎𝛼 ◦ 𝜎𝛽 ∈ J𝛼∗K. Therefore, by our

assumption, we get 𝜎𝛼 ◦ 𝜎𝛽 ⊨ 𝜙 ⊓ □[𝑎,𝑏 ]𝜓 . In particular, for a

value of 𝑞 returned from 𝑡𝑖𝑚𝑒𝑑 (𝛼∗, 𝑞) for 𝜎𝛼 , we get 𝜎𝛽 ⊨ 𝜙 ⊓
□[𝑚𝑎𝑥 (0,𝑎−𝑞),𝑏−𝑞 ]𝜓 . Therefore, it follows that 𝑣 ⊨ (𝜙 ∧ (¬(𝑎 =

0 ∧ 𝑏 = 0) ∨𝜓 )) ∧ [𝑡𝑖𝑚𝑒𝑑 (𝛼∗, 𝑞)] [𝛼] (𝜙 ⊓ □[𝑚𝑎𝑥 (0,𝑎−𝑞),𝑏−𝑞 ]𝜓 ).

([
∗𝑛
] ⊔𝑡 ): From the semantics of hybrid programs, we know that

J𝛼∗K = J?true ∪𝛼∗;𝛼K. Therefore, 𝑣 ⊨ J𝛼∗K(𝜙 ⊔♢[𝑎,𝑏 ]𝜓 ) if and only
if 𝑣 ⊨ J?true ∪ 𝛼∗;𝛼K(𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 ). By rule ( [∪] b), this is true if
and only if 𝑣 ⊨ J?true K(𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 ) and 𝑣 ⊨ J𝛼∗;𝛼K(𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 ).
By rule ( [?] ⊔𝑡 ), 𝑣 ⊨ J?true K(𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 ) is itself equivalent to
𝑣 ⊨ ((𝑎 = 0 ∧ 𝑏 = 0) ∧ (𝜙 ∨𝜓 )) ∨ ((𝑎 > 0 ∧ 𝑏 ≥ 𝑎) ∧ 𝜙). There-
fore, 𝑣 ⊨ J𝛼∗K(𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 ) if and only if 𝑣 ⊨ ((𝑎 = 0 ∧ 𝑏 =

0) ∧ (𝜙 ∨ 𝜓 )) ∨ ((𝑎 > 0 ∧ 𝑏 ≥ 𝑎) ∧ 𝜙) ∧ J𝛼∗;𝛼K(𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 ).
However, 𝑣 ⊨ ((𝑎 = 0∧𝑏 ≥ 𝑎) ∧𝜓 ) implies 𝑣 ⊨ J𝛼∗;𝛼K(𝜙 ⊔♢[𝑎,𝑏 ]𝜓 ).
As such, we get 𝑣 ⊨ J𝛼∗K(𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 ) if and only if 𝑣 ⊨ (𝜓 ∧ (𝑎 =

0 ∧ 𝑏 ≥ 𝑎)) ∨ (𝜙 ∧ [𝛼∗;𝛼] (𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 ).

(ind ⊔𝑡 ): Assume 𝑣 ⊨ (𝜙 =⇒ [𝛼] (𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 )) and 𝑣 ⊨ 𝜙 .

Let 𝜎 ∈ J𝛼∗K. The proof is trivial for the case where 𝜎 = (𝑣).
For any other 𝜎 , there exists 𝑛 ≥ 1 such that 𝜎 = 𝜎1 ◦ · · · ◦ 𝜎𝑛 .
If there exists a 𝜎𝑖 such that 𝜎𝑖 ⊨ ♢[𝑎,𝑏 ]𝜓 , as is always the case

where 𝜎 is non-terminating, we get that 𝜎 ⊨ ♢[𝑎,𝑏 ]𝜓 . Otherwise, for
any 𝑖 ∈ {1, . . . , 𝑛}, since 𝜎𝑖 ∈ J𝛼K, instantiating the premise using

the universal ∀𝛼 (this is necessary since the premise may behave

differently for different states otherwise), if first𝜎𝑖 ⊨ 𝜙 , we get

𝜎𝑖 ⊨ 𝜙 ⊔ ♢[𝑎,𝑏 ]𝜓 . However, since 𝜎𝑖 ⊭ ♢[𝑎,𝑏 ]𝜓 , we have last𝜎𝑖 ⊨ 𝜙 .
Since 𝑣 ⊨ 𝜙 , by induction on 𝑖 , we get 𝜎 ⊨ 𝜙 , which leads to the

conclusion of the rule.

(con ⊓𝑡 ): Assume 𝑣 ⊨ ∀𝛼∀𝑟 > 0 (𝜑 (𝑟 ) =⇒ ⟨𝛼⟩(𝜑 (𝑟 − 1) ⊓
□[𝑎,𝑏 ]𝜓 )) and 𝑣 ⊨ (∃𝑟 .𝜑 (𝑟 ))∧𝜓 . Then, there exists a𝑑 ∈ R such that
𝑣 ⊨ 𝜑 (𝑑). We prove the rule using well-founded induction on 𝑑 . If

𝑑 ≤ 0, we have (𝑣) ⊨ ((∃𝑟 .𝑟 ≤ 0∧𝜑 (𝑟 ))⊓□[𝑎,𝑏 ]𝜓 ), where (𝑣) ∈ J𝛼∗K
for the case where 𝛼 repeats zero times. If, however, 𝑑 > 0, we know

that 𝑣 ⊨ 𝜑 (𝑑) and 𝑣 ⊨ 𝜑 (𝑑) =⇒ ⟨𝛼⟩(𝜑 (𝑑−1)⊓□[𝑎,𝑏 ]𝜓 ). Therefore,
there exists an trace 𝜎1 ∈ J𝛼K such that 𝜎1 ⊨ (𝜑 (𝑑 − 1) ⊓ □[𝑎,𝑏 ]𝜓 ).
Since last𝜎1 ⊨ 𝜑 (𝑑 − 1), if 𝑑 − 1 ≤ 0, we are done with the proof;

otherwise, we can construct a similar 𝜎2 such that 𝜎2 ⊨ (𝜑 (𝑑 −
2) ⊓ □[𝑎,𝑏 ]𝜓 ). We can continue until 𝑑 ≤ 0, and this induction is

well-founded because 𝑑 decrease by 1 for each step. We have thus

constructed 𝜎 = 𝜎1 ◦ · · · ◦ 𝜎𝑛 ∈ J𝛼∗K such that each 𝜎𝑖 ⊨ □[𝑎,𝑏 ]𝜓

– and thus 𝜎 ⊨ □[𝑎,𝑏 ]𝜓 – and last𝜎𝑛 = last𝜎 ⊨ (∃𝑟 .𝑟 ≤ 0 ∧ 𝜑 (𝑟 )).
Therefore, we have 𝜎 ⊨ (∃𝑟 .𝑟 ≤ 0 ∧ 𝜑 (𝑟 )) ⊓ □[𝑎,𝑏 ]𝜓 . □

Theorem 4.7. STdL is non-axiomatizable.

Proof. Discrete and continuous fragments of dL were proved to

not be axiomatizable in [21, 24]. Since STdL extends dL, discrete
and continuous fragments of STdL are also non-axiomatizable.

Therefore, in general, STdL is non-axiomatizable. □

Even though STdL is non-axiomatizable in general, its proof

system restricted programs without repetitions is complete rela-

tive to first-order logic of differential equations (i.e., first-order

real arithmetic augmented with formulas expressing properties of

differential equations) [21, 24], as was shown to be the case for dL.

Theorem 4.8. The proof calculus for STdL restricted to programs
without non-deterministic finite repetitions is complete relative to
first-order logic of differential equations.

Proof. If we restrict STdL to programs without repetition, the

proof calculus for STdL reduces temporal properties to non-temporal

properties to leverage the calculus of dL, which is proven to be com-

plete relative to first-order logic of differential equations [21, 22, 24].

More specifically, any temporal rule in the STdL calculus trans-

forms a normalized trace formula to a simpler normalized trace

formula either without a temporal operator or with a temporal

operator following a simpler, decomposed program. Every proof

rule is an equivalence relation (i.e., the premise is equivalent to the

conclusion), and Lemma 4.4 ensures that every trace formula in the

syntax of STdL can be converted into a normalized trace formula

able to be handled by the STdL calculus. Therefore, the relative

completeness result of dL extends to STdL limited to programs

without repetition. □

Indeed, we conjecture that the STdL proof calculus is complete

relative to first-order logic of differential equations for all STdL
programs. We leave a formal proof of full relative completeness as

future work.

5 FUTUREWORK
We plan on working on the following improvements to STdL as

future work:

– Proving full relative completeness of STdL: While we prove

that the calculus presented in STdL restricted to programs

without non-deterministic repetition is complete relative to

first-order logic of differential equations, we conjecture that

the calculus is indeed complete relative to first-order logic of

differential equations for all programs. We have yet to prove

this conjecture formally.

– Allowing for nested temporal operators in STdL: The frag-

ment of STL currently supported by our work does not in-

clude properties with nested temporal operators, such as

□[𝑎,𝑏 ]♢[𝑐,𝑑 ]𝜙 , to simplify the proof system. We do not con-

sider this to be a significant drawback, since the fragment of

STL considered is sufficient to cover a large amount of prop-

erties of interest expressed in previous case studies involving

STL [3, 8, 15, 29, 30]. Nevertheless, we hope to remove this
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restriction in the future to further increase the expressive

power of STdL.
– Implementing the rules for STdL: We hope to implement the

rules for the STdL proof system into a theorem prover for

hybrid systems such as KeYmaera [9, 25].

6 RELATEDWORK
In this section, we explore works related to reasoning about proper-

ties of hybrid systems and using STL for monitoring and verfication

purposes.

STL [16, 17] was introduced for monitoring properties over con-

tinuous signals, and has since been studied widely, e.g., in Desh-

mukh et al. [6], Donzé and Maler [7], Maler et al. [18]. Most uses of

STL have been mainly for monitoring purposes. However, there has

been some work done on studying temporal properties of hybrid

systems in the context of model checking. Mysore et al. [19] ex-

amine model checking of semi-algebraic hybrid systems for Timed

Computation Tree Logic properties. Their work focuses on bounded

model checking for differential equations with polynomial solutions

only, while we allow for more general polynomial differential equa-

tions. Roehm et al. [31] define a new reachset temporal logic (RTL)

and transform STL properties to RTL properties to perform model

checking of continuous and hybrid systems. More recently, Bae and

Lee [3] explore a bounded model checking of signal temporal logic

properties using syntactic separation of STL. For both [3] and [19],

the applications presented focus on bounded safety verification,

while our work allows unbounded safety verification. Better still,

our proof system enables proving strong liveness properties for

hybrid systems, a trait not present in works like [3], [31], and [19].

Process logic [10, 20, 27] originally used Pnueli’s temporal logic [26]

in the context of Harel et al.’s dynamic logic [11] for temporal rea-

soning of hybrid systems. However, it is restricted to discrete pro-

grams and only considers an abstract notion of atomic programs,

without supporting explicit assignments and tests. Platzer [21, 23,

24] introduce differential dynamic logic (dL) to reason about the

end states of a hybrid program, later followed by differential tem-

poral dynamic logic (dTL) [22] to reason about intermediate states

of hybrid programs throughout the execution of the program us-

ing some temporal operators of linear temporal logic. Jeannin and

Platzer [13] present dTL
2
, a logic that extends dTL and allows for al-

ternating program and temporal modalities. While our work draws

on the technical machinery from dTL
2
, the logic has a significant

drawback compared to STdL in that it does not support reasoning

about properties in given time intervals. This nature of reason-

ing not only is often crucial to proving safety of hybrid systems,

but also allows for expressing a significantly richer set of liveness

properties.

Sogokon et al. present a proof method for proving eventual-

ity properties [32] and persistence properties [33] in hybrid sys-

tems. Their methods focus on properties of the form ♢[0,𝑡 ]□[0,∞)𝑃 ,
whereas our formalism is more general but does not support alter-

nating temporal modalities – the properties that the two results

focus on are complementary to each other. Note, however, that

their formalism operates on the level of hybrid automata [2, 12],

which unlike hybrid programs, do not enjoy the property of having

a compositional semantics that can be used to verify systems by

verifying properties of their parts in a theorem prover. Tan and

Platzer [34] present an axiomatic approach for deductive verifica-

tion of existence and liveness for ordinary differential equations

with dL, but their approach only focuses on liveness for differential

equations, and not entire hybrid systems. They also only work on

formulas of the form ⟨𝛼⟩𝑃 , which is a fairly limited form of liveness.

Zhou et al. [4] present a duration calculus for hybrid real-time

systems extended by mathematical expressions with derivatives

of state variables. The system that they present requires external

mathematical reasoning about continuity and derivatives. Davoren

and Nerode [5] study hybrid systems in the context of the propo-

sitional `-calculus. They provide a calculus to prove formulas in

their systems, but with a propositional system (and not a first-order

one). Furthermore, they do not provide specific rules in their proof

system to handle ordinary differential equations.

7 CONCLUSION
In this work, we introduce signal temporal dynamic logic (STdL),
a logic that extends and combines differential dynamic logic (dL)
with a fragment of signal temporal logic (STL). STdL is a conser-

vative extension of dL and allows reasoning not only about the

final states of a hybrid system, but also the intermediate states of

a hybrid system in given time intervals. While STL was originally

intended to be a logic for monitoring systems, and has widely been

used for exactly that purpose, we show that STL can very well be

used for deductive verification of hybrid systems. STdL allows us to

prove a greater set of both safety and liveness properties than was

possible with logics preceding STdL. We provide a semantics and

a sound proof calculus for STdL, along with proofs of soundness

and relative completeness.

Acknowledgements
The authors would like to thank Nikos Aréchiga for insightful

discussions. Toyota Research Institute (“TRI”) provided funds to

assist the authors with their research, but this article solely reflects

the opinions and conclusions of its authors and not TRI or any

other Toyota entity.

REFERENCES
[1] Hammad Ahmad and Jean-Baptiste Jeannin. 2021. A Program Logic to Verify

Signal Temporal Logic Specifications of Hybrid Systems. In Proceedings of the
24th International Conference on Hybrid Systems: Computation and Control.

[2] Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin Ho. 1992.

Hybrid automata: An algorithmic approach to the specification and verification

of hybrid systems. In Hybrid systems. Springer, 209–229.
[3] Kyungmin Bae and Jia Lee. 2019. Bounded Model Checking of Signal Temporal

Logic Properties Using Syntactic Separation. Proc. ACM Program. Lang. 3, POPL,
Article 51 (Jan. 2019), 30 pages. https://doi.org/10.1145/3290364

[4] Zhou Chaochen, Anders P Ravn, and Michael R Hansen. 1992. An extended

duration calculus for hybrid real-time systems. In Hybrid Systems. Springer,
36–59.

[5] Jennifer Mary Davoren and Anil Nerode. 2000. Logics for hybrid systems. Proc.
IEEE 88, 7 (2000), 985–1010.

[6] Jyotirmoy VDeshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin, Garvit

Juniwal, and Sanjit A Seshia. 2017. Robust online monitoring of signal temporal

logic. Formal Methods in System Design 51, 1 (2017), 5–30.

[7] Alexandre Donzé and Oded Maler. 2010. Robust satisfaction of temporal logic

over real-valued signals. In International Conference on Formal Modeling and
Analysis of Timed Systems. Springer, 92–106.

[8] Alexandre Donzé, Oded Maler, Ezio Bartocci, Dejan Nickovic, Radu Grosu, and

Scott Smolka. 2012. On temporal logic and signal processing. In International
Symposium on Automated Technology for Verification and Analysis. Springer, 92–
106.

12

https://doi.org/10.1145/3290364


[9] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer.

2015. KeYmaera X: An axiomatic tactical theorem prover for hybrid systems. In

International Conference on Automated Deduction. Springer, 527–538.
[10] David Harel, Dexter Kozen, and Rohit Parikh. 1982. Process logic: Expressiveness,

decidability, completeness. Journal of computer and system sciences 25, 2 (1982),
144–170.

[11] David Harel, Dexter Kozen, and Jerzy Tiuryn. 2001. Dynamic logic. In Handbook
of philosophical logic. Springer, 99–217.

[12] Thomas A Henzinger. 2000. The theory of hybrid automata. In Verification of
digital and hybrid systems. Springer, 265–292.

[13] Jean-Baptiste Jeannin and André Platzer. 2014. dTL2: Differential temporal

dynamic logic with nested temporalities for hybrid systems. In International Joint
Conference on Automated Reasoning. Springer, 292–306.

[14] Jean-Baptiste Jeannin and André Platzer. 2014. dTL2 : Differential Temporal Dy-
namic Logic with Nested Temporalities for Hybrid Systems. Technical Report

CMU-CS-14-109. School of Computer Science, Carnegie Mellon University, Pitts-

burgh, PA, 15213. http://reports-archive.adm.cs.cmu.edu/anon/2013/abstracts/14-

109.html

[15] Susmit Jha, Ashish Tiwari, Sanjit A Seshia, Tuhin Sahai, and Natarajan Shankar.

2019. TeLEx: learning signal temporal logic from positive examples using tight-

ness metric. Formal Methods in System Design 54, 3 (2019), 364–387.

[16] Oded Maler and Dejan Nickovic. 2004. Monitoring temporal properties of con-

tinuous signals. In Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems. Springer, 152–166.

[17] Oded Maler and Dejan Ničković. 2013. Monitoring properties of analog and

mixed-signal circuits. International Journal on Software Tools for Technology
Transfer 15, 3 (2013), 247–268.

[18] Oded Maler, Dejan Nickovic, and Amir Pnueli. 2008. Checking temporal proper-

ties of discrete, timed and continuous behaviors. In Pillars of computer science.
Springer, 475–505.

[19] Venkatesh Mysore, Carla Piazza, and Bud Mishra. 2005. Algorithmic algebraic

model checking II: Decidability of semi-algebraic model checking and its applica-

tions to systems biology. In International Symposium on Automated Technology
for Verification and Analysis. Springer, 217–233.

[20] Hirokazu Nishimura. 1980. Descriptively complete process logic. Acta Informatica
14, 4 (1980), 359–369.

[21] André Platzer. 2008. Differential dynamic logic for hybrid systems. Journal of
Automated Reasoning 41, 2 (2008), 143–189.

[22] André Platzer. 2010. Differential Temporal Dynamic Logic dTL. Springer Berlin
Heidelberg, Berlin, Heidelberg, 203–230. https://doi.org/10.1007/978-3-642-

14509-4_4

[23] André Platzer. 2010. Logical analysis of hybrid systems: proving theorems for
complex dynamics. Springer Science & Business Media.

[24] André Platzer. 2012. Logics of dynamical systems. In Proceedings of the 2012
27th Annual IEEE/ACM Symposium on Logic in Computer Science. IEEE Computer

Society, 13–24.

[25] André Platzer and Jan-David Quesel. 2008. KeYmaera: A hybrid theorem prover

for hybrid systems (system description). In International Joint Conference on
Automated Reasoning. Springer, 171–178.

[26] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). IEEE, 46–57.

[27] V. R. Pratt. 1979. Process Logic: Preliminary Report. In Proceedings of the 6th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (San
Antonio, Texas) (POPL ’79). Association for Computing Machinery, New York,

NY, USA, 93–100. https://doi.org/10.1145/567752.567761

[28] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. 2010. Cyber-

physical systems: the next computing revolution. In Design automation conference.
IEEE, 731–736.

[29] Vasumathi Raman, Alexandre Donzé, Mehdi Maasoumy, Richard M Murray,

Alberto Sangiovanni-Vincentelli, and Sanjit A Seshia. 2014. Model predictive

control with signal temporal logic specifications. In 53rd IEEE Conference on
Decision and Control. IEEE, 81–87.

[30] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M Murray, and

Sanjit A Seshia. 2015. Reactive synthesis from signal temporal logic specifications.

In Proceedings of the 18th international conference on hybrid systems: Computation
and control. 239–248.

[31] Hendrik Roehm, Jens Oehlerking, Thomas Heinz, and Matthias Althoff. 2016. STL

Model Checking of Continuous and Hybrid Systems. In Automated Technology
for Verification and Analysis, Cyrille Artho, Axel Legay, and Doron Peled (Eds.).

Springer International Publishing, Cham, 412–427.

[32] Andrew Sogokon and Paul B Jackson. 2015. Direct formal verification of live-

ness properties in continuous and hybrid dynamical systems. In International
Symposium on Formal Methods. Springer, 514–531.

[33] Andrew Sogokon, Paul B Jackson, and Taylor T Johnson. 2017. Verifying safety

and persistence properties of hybrid systems using flowpipes and continuous

invariants. In NASA Formal Methods Symposium. Springer, 194–211.

[34] Yong Kiam Tan and André Platzer. 2020. An Axiomatic Approach to Existence

and Liveness for Differential Equations. arXiv:2004.14561 [cs.LO]

13

http://reports-archive.adm.cs.cmu.edu/anon/2013/abstracts/14-109.html
http://reports-archive.adm.cs.cmu.edu/anon/2013/abstracts/14-109.html
https://doi.org/10.1007/978-3-642-14509-4_4
https://doi.org/10.1007/978-3-642-14509-4_4
https://doi.org/10.1145/567752.567761
https://arxiv.org/abs/2004.14561

	Abstract
	1 Introduction
	2 Motivation and Running Example
	3 Signal Temporal Dynamic Logic
	3.1 Hybrid Programs
	3.2 State and Trace Formulas
	3.3 Length of Traces and Trace Formulas
	3.4 Satisfaction of State and Trace Formulas
	3.5 Timing Hybrid Programs

	4 Proof Calculus
	4.1 Normalization of Trace Formulas
	4.2 Proof Calculus
	4.3 Soundness and Completeness of the STdL Proof Calculus

	5 Future Work
	6 Related Work
	7 Conclusion
	References

