

Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report

Edward S. Tam
estam@eecs.umich.edu

Advisor: Edward S. Davidson
davidson@eecs.umich.edu

Department of Electrical Engineering and Computer Science
The University of Michigan

Ann Arbor, Michigan

September 9, 1996

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report i

Table of Contents

List of Figures iii

List of Tables iv

Abstract v

1.0 Introduction 1

2.0 Cache overview 3

2.1 Components of cache design 3

2.2 Terminology 6

3.0 Overview of cache simulation 8

3.1 Currently available behavioral cache simulators 8

3.2 The LE cache model 9

4.0 Implementing the LE cache model 17

4.1 DineroIII 17

4.2 Resource Conflict Methodology 17

4.3 Implementing LE on top of DineroIII 18

4.4 The LE cache model outside of DineroIII 19

4.4.1 Trailing edge effects 20

4.4.2 Bus width issues 23

4.4.3 Number of outstanding accesses 24

4.4.4 Port limitations 25

4.4.5 Flow chart diagramming the operation of the LE cache model 26

4.5 Using the RCM model to implement LE 29

5.0 Experimental results 29

5.1 Characterizing the RS/6000 cache 33

5.2 Comparing the simulator output to actual machine performance 37

5.2.1 Load/store kernel simulation performance 39

5.2.2 The Livermore Loop Kernels 43

5.3 Accuracy of the output 45

5.4 Analyzing the flexibility of the LE cache model 48

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report ii

5.4.1 Varying latencies 48

5.4.2 Varying the number of ports 50

5.4.3 Varying bus widths 50

5.4.4 Varying the number of outstanding accesses allowable 53

6.0 Execution times 57

7.0 LE output 58

8.0 Conclusion 60

9.0 Future work 62

10.0 Acknowledgments 63

11.0 References 63

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report iii

List of Figures

Figure 1: Program 1 9

Figure 2: One block-aligned portion of memory (blocksize = 64B) 10

Figure 3: Execution behavior of Program 1 according to unmodified DineroIII 10

Figure 4: Execution behavior of Program 1 for leading edge latency-augmented DineroIII 11

Figure 5: Execution of Program 1 when trailing edge effects are taken into account and 4 read

ports are available 12

Figure 6: Execution of Program 1 with words from memory returning in sequential cycles

with only 1 read port to the cache 13

Figure 7: Program 2 13

Figure 8: Another block-aligned portion of memory (blocksize = 64B) 14

Figure 9: Execution of Program 2 with words returning from memory in sequential cycles 14

Figure 10: Execution of Program 1 on a processor whose cache can only sustain two outstanding

accesses at a time with 1 read port to the cache 15

Figure 11: Program 3 16

Figure 12: Execution of Program 3 on a processor whose cache can only sustain two outstanding

accesses at a time 16

Figure 13: State of update_buffer when the access to address C is being evaluated 21

Figure 14: State of update_buffer after access to address C has been evaluated 22

Figure 15: Flow chart showing the operation of the LE cache model 27

Figure 16: A high-level picture of the overall processor/cache simulator, RCM_brisc+LE 31

Figure 17: Interaction between the processor simulator, RCM_brisc, and LE 32

Figure 18: Basic cache parameterization program 33

Figure 19: Example load kernel 34

Figure 20: Load kernel performance 34

Figure 21: Sample store kernel 35

Figure 22: Store kernel performance 35

Figure 23: Execution times of each of the load/store subkernels as simulated by RCM_brisc with

the 4 cache models and as measured on an actual RS/6000 39

Figure 24: Execution times of each of the load/store subkernels as simulated by RCM_brisc with

the 4 cache models and as measured on an actual RS/6000 40

Figure 25: The effect of varying the load miss latency on the number of stall cycles due to trailing

edge effects and the number of read delayed hits for the kernel loadtranstride4 49

Figure 26: The effect of varying the number of read ports and the cache-to-memory bus width on

the number of stall cycles due to port conflicts for kernel loadtranstride2 51

Figure 27: The effect of varying the number of read ports and the cache-to-memory bus width on

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report iv

the number of stall cycles due to bus width considerations for kernel loadtranstride2 54

Figure 28: The effect of varying the number of outstanding accesses allowable on the number of

stall cycles due to a blocked cache for kernel loadtranstride4 56

Figure 29: LE simulation output for Livermore Loop Kernel 3 59

List of Tables

Table 1: Inputs used to configure the LE cache simulator 31

Table 2: Cache characteristics used to model the RS/6000 Model 320H 37

Table 3: Comparison of relative execution times of each of the Livermore Loop Kernels as

simulated by the four simulators vs. the actual execution times 43

Table 4: Comparing the expected number of delayed hits with the actual number of delayed hits

seen from program simulation 47

Table 5: Relative simulator run time for the LE and LE-nominal cache models over RCM_brisc

alone 57

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report v

Abstract

Cache performance is a key component of a microprocessor's overall performance, as it is the

cache that buffers the high speed CPU from the much slower main memory. Behavioral cache

simulators indicate the performance of a given cache configuration in terms of the number of hits and

misses experienced when running a piece of code. One can attach a leading edge penalty or “effective”

penalty estimate to each miss to get a first order idea of run time. However, individual timing penalties

are not assessed within these models, nor are the various factors that can affect each memory access'

latency. Our Latency Effects (LE) cache model accounts for additional latencies due to trailing edge

effects, bus width considerations, the number of outstanding accesses allowable, and port limitations.

A tool implementing the LE cache model has been built on top of a behavioral cache simulator,

DineroIII, in the spirit of the Resource Conflict Methodology developed by J-D Wellman. The tool was

combined with Wellman's RCM_brisc processor simulator to provide a realistic interaction of the cache

with the processor (including the latency masking effects of processor activity) and to assess the

accuracy of the model when simulating the execution of actual programs. The combined tool accurately

mirrors the effects of changing a cache’s configuration for a given processor configuration running a

variety of programs. While the reported execution times do not exactly match the total execution times

of the same programs running on actual hardware, the tool provides enough useful information to guide

processor/cache designers early in the design cycle toward optimal configurations for target

applications. This addition of cache modeling to the RCM_brisc instruction-level processor simulator

with perfect cache increases simulation time by only 17% (less than 5% over a constant miss penalty

cache model), which is reasonable given the added benefits of using the LE cache model.

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 1

1.0 Introduction

Cache performance is a key component of a microprocessor's overall performance, as it is the

cache that buffers the high speed CPU from the much slower main memory. Behavioral cache

simulators indicate the performance of a given cache configuration in terms of the number of hits and

misses experienced when running a piece of code. Timing penalties are not assessed within these

models, giving a false perception of a cache's actual impact on a system. In a simple model, which can

be applied to the behavioral simulator output, each miss is simply assigned a minimum (leading edge)

penalty, or an effective (average) penalty. However, there are actually a variety of latency-adding

effects that depend upon such things as which words within a cache block are accessed (upon and soon

after a miss), the width of the busses between the CPU and cache and between the cache and next level

of memory, the number of outstanding accesses the cache can sustain, and the number of available ports

to the cache.

Detailed circuit level simulators (timers) do characterize these additional effects, but these

simulators are specific to a given machine. As opposed to behavioral simulators, which sacrifice detail

for configurability, circuit level simulators target a specific machine and simulate its actual operation.

Typically, circuit level simulators can only be created after the cache design is near its final, detailed

implementation. A simulator that achieves a compromise between behavioral simulators and timers

would be very useful for assessing the benefits of using a particular cache configuration in a given

processor. Such a simulator could be employed much earlier in the design cycle than a traditional timer

and could run at comparable speeds, or much faster, while producing results that adequately reflect the

execution of a given program running on actual hardware. Furthermore, it would retain the flexibility of

a behavioral simulator, allowing many configurations to be evaluated in a reasonable time while

producing a much more realistic performance assessment. If the tool adequately models a majority of

the effects that would be seen in normal execution, the performance estimate should be quite accurate,

helping designers to identify the changes that are needed to obtain high performance at a reasonable

cost.

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 2

We have implemented such a configurable cache simulator that is more realistic, and thus more

accurate, than a behavioral simulator, yet is more paramaterizeable than a machine-specific timer. The

tool uses an experimentally developed Latency Effects (LE) cache model for a machine of interest and

some parameterized extensions to determine the access latency for each memory access in a trace. The

access latency depends not only upon whether the access is a hit or miss, but on its relationship to other

accesses in process, the width of the memory busses, the number of outstanding accesses that the cache

can sustain, and the number of ports to the cache. Specific latency-adding effects are derived from the

experimental model as a function of the specific reference patterns in the trace.

As a first step in assessing the correctness of the LE cache model, the cache simulator has been

combined with J-D Wellman's RCM_brisc tool [Wellman95], which is based upon his Resource

Conflict Methodology (detailed in Section 4.2). Together, the combined tool, RCM_brisc+LE,

simulates an RS/6000-like (POWER) microprocessor with cache. Our simulation results show that for

memory stressing codes, the output of the resulting simulator, RCM_brisc+LE, closely follows the

trends seen by the same programs running on actual hardware. Furthermore, detailed analysis of those

programs and the resulting output of the simulator show that the output corresponds closely to the results

we would expect to see on a corresponding processor/cache configuration running those programs. In

addition, a variety of useful statistics are provided by the new tool which serve to aid computer

architects and programmers in the design and use of caches for target applications. These added benefits

are provided with a maximum increase in simulation time of 17% over a processor-only simulator that

assumes a perfect cache, and only 4.5% over a combined simulator that assumes a constant miss penalty.

Before we discuss the LE cache model and its implementation, we present an overview of caches

and cache simulation in Sections 2.0 and 3.0, respectively. Then, the implementation of the LE cache

model is presented in Section 4.0, followed in Section 5.0 by experimental results from the LE cache

model implementation and an assessment of their accuracy. The cost of using the LE cache model is

presented in Section 6.0, followed by a description of the simulator’s output in Section 7.0. Conclusions

are drawn in Section 8.0 and future work is discussed in Section 9.0.

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 3

2.0 Cache overview

A cache is a small, fast memory that is managed so that it contains recently accessed blocks of

memory. The first level of the memory hierarchy encountered once the address leaves the CPU is

generally a cache [Hennessy96]. The use of caches is based on the principle of locality, which says that

most programs do not access all code or data uniformly. Instead, code or data is accessed in groups

(spatial locality) or it is accessed repeatedly in a short period of time (temporal locality). To make use

of locality, this small, fast memory is placed between the CPU and the slower, larger next level of

memory. In general, several levels of cache may be used and separate caches at the same level may be

used for instructions and data. The level of hierarchy targeted in this paper is the first level of data

cache, known as the L1 data cache.

The L1 data cache (herein referred to simply as cache) is the smallest, fastest memory that the

CPU can access. It can service memory requests at or near the CPU’s execution frequency, but may

incur longer latencies when requested information is not present in the cache. When an access is made

to data not already allocated in the cache, the data must be obtained from the next level of the memory

hierarchy. This process is called servicing a cache miss, and usually takes many more cycles to satisfy

than a cache hit. Requests that reference data that is allocated in the cache return the desired data in less

time than the full miss latency and are called hits to the cache. As we will see in Section 2.2, there are

actually several types of hits with various access delays that they may suffer; for Section 2.1, the simple

concept that a hit returns data immediately to the CPU will suffice.

2.1 Components of cache design

There are many well-known components to cache design. The cache is broken into chunks

called blocks (also referred to as lines). A block is a collection of contiguous data that is treated as a

single entity of cache storage. Blocks often consist of multiple words, with the typical word size being

32 or 64 bits for today’s microprocessors. Larger blocks (e.g. blocks consisting of a greater number of

words) take more advantage of spatial locality, as more data close to recently accessed data is stored in

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 4

the cache within one atomic cache allocation unit. However, blocks that are too large sacrifice temporal

locality, as having larger blocks for a fixed size cache reduces the number of different blocks that can be

stored in the cache at once. Furthermore, using larger blocks can increase the miss latency, as a greater

number of cycles may be required to fill a cache block with data from the next level of memory for a

fixed size cache-to-memory bus. Larger blocks can also increase cache pollution because superfluous

data may be brought into the cache within the referenced blocks. Blocks that are too small sacrifice

spatial locality, as data close to, but not in the same block as recently requested data already present in

the cache may have to be fetched from the next level of memory when it is requested. Typically, block

sizes in today’s caches range from 32 to 128 bytes.

Each block maps into a single set in the cache. A set is a group of blocks in the cache; in a k-

way associative cache, a set can simultaneously hold any k of the blocks that map to it. Higher

associativity provides more flexibility as to which blocks may simultaneously reside in a fixed size

cache, and hence generally results in a higher hit ratio (the fraction of memory accesses found in the

cache). However, increasing the associativity of a cache increases the number of tags that must be

checked to see if the referenced data is in the cache. Thus, the time to access requested data in a highly

associative cache grows due to the increased time required to perform and resolve the increased number

of comparisons within a set to find the desired data. Due to its faster access and simpler

implementation, the associativity of caches is kept low in most cache designs. Typically, today’s caches

are direct mapped, two-, or four-way set associative.

Every time memory is accessed, a check must be made to see if the referenced data is in the

cache. If the data is in the cache, the reference is a cache hit, and the data is returned directly from the

cache. If the desired data is not in the cache, the reference is a miss and the transaction must access a

higher level of the memory hierarchy. In detail, a miss may be handled in different ways, depending

upon the configuration and management policies of the cache and whether the access is a read or a write.

When a read miss occurs, a block in the cache is replaced with the desired data. There are

several methods to determine which block should be replaced (Least Recently Used, random, and

optimal, among others) [Hennessy96]. Some approximation of the LRU replacement algorithm is

usually used in today’s caches. Random replacement is sometimes used in large caches to reduce the

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 5

implementation cost. Our simulations assume LRU replacement, but other strategies can be selected.

The optimal algorithm may be used to determine an upper bound on cache performance; however, it is

not implementable as it requires knowledge of the future in order to make its replacement decisions.

For all write accesses, be they hits or misses, the next level of memory must eventually be

updated with the new changes. Two write policies are commonly used: write through and write back.

In the write through policy, the information written to the cache is written to the next level of memory at

the same time or soon thereafter. In write back, the information is initially written only to the cache; the

modified cache block is written to the next level of memory only when it is replaced. For uniprocessors,

the write back policy is normally used. In many cases, the data in a block may be changed multiple

times before the block is replaced and then written out to the next level of memory. By delaying the

update, multiple writes to a block can be grouped into one update, which generally results in higher

performance.

When a write miss occurs, the referenced block need not be loaded into the cache. In write

allocate caches, the block is loaded on a write miss; a block replacement process similar to that for read

misses is then used, followed by the update of the block in the cache. In no-write allocate caches,

however, the referenced block is modified directly in the next level of memory and is not loaded into the

cache. Write back caches generally use write allocate, hoping that subsequent writes to that block will

be captured by the cache. Write through caches often use no-write allocate, since subsequent writes to

that block will still have to go to memory.

The width of the busses between the CPU and cache and between the cache and the next level of

memory can affect the latencies of the memory accesses. Most accesses are word-sized, a word

typically being 32 or 64 bits (4 or 8 bytes) in size. The busses between the levels of the memory

hierarchy are usually some multiple of the word size, though they are rarely as wide as the size of an

entire cache block. As a result, portions of the block, called subblocks, are filled on consecutive bus

cycles by data returning from the next level of memory when satisfying a cache miss. For instance, if

the cache-to-next-level-of-memory bus width is 1/4 of the size of a block, it will take four bus cycles to

fill the entire cache block. The subblock containing the desired word is normally returned first; in this

case, the block starts “filling” at the desired subblock and wraps around to the beginning of the block to

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 6

complete the block fill. While this minimizes the time to access the desired (missing) word, the other

words in the cache block must wait additional cycles before they are present in the cache; this additional

wait can adversely affect the latency of future memory accesses, as we will see in Section 3.2.

Since the advent of pipelining, multiple memory accesses are often in flight at once. In a

blocking cache, an access that follows a miss must wait to begin execution until the miss completes its

access. A cache allowing hit-under-miss, on the other hand, would allow hits to complete while a miss

is outstanding; a new miss would still have to wait until the earlier miss completes. A cache capable of

sustaining more than one outstanding miss is called a non-blocking cache. The number of allowable

outstanding accesses is defined as the maximum number of uncompleted misses that the cache can

support while still allowing new memory requests to begin execution. Once this threshold is crossed, all

future accesses, be they hits or misses, must wait until at least one of the outstanding misses completes

before they can begin execution.

The number of ports to the cache also affects cache performance. A port is a point of access to

the cache – it can either be a read port, write port, or both. Transactions can take place only when a port

of the desired transaction type is available. If a read (load) is requested and no read ports are available,

the access must wait until a read port becomes free; in most cases, the port becomes free the very next

cycle, as a port is normally used for only one cycle per transaction. However, if a transaction uses the

port for multiple cycles or there are older (pending) accesses waiting to use the desired port, the new

access may have to wait additional cycles to obtain the use of the port. Increasing the number of ports to

the cache can alleviate this problem, though this approach is usually avoided due to its high cost.

Today's caches often have two ports so that potentially two accesses can be completed in each cycle.

2.2 Terminology

In this section, we review some of the terminology that will be used throughout this paper:

Cache hit – an access to the cache that requests data that is presently in the cache. For

reads, the desired data is returned in CACHE_HIT_LATENCY cycles.

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 7

Latency-adding effects –effects a memory access may experience that add to its nominal execution

time, e.g. trailing edge effects, bus width considerations, the number of

outstanding accesses allowable, and port limitations.

Delayed hit – a hit that experiences latency-adding effects. These are called hits because

they do not incur the full read or write miss latency; furthermore, they do not

generate any additional miss traffic.

Miss – an access to the cache that incurs the full read or write miss latency. (Misses

are further categorized below).

Cold-start miss – a miss access to the cache that occurs because the block that contains the

desired data has never been accessed before. Also known as a compulsory

miss.

Capacity miss – a miss access to the cache that is not a cold-start miss, but occurs because the

entire working set of the program cannot simultaneously reside in the cache.

The number of capacity plus cold-start misses is the total number of misses

that would occur in a fully associative cache of the same size and block size

with optimal replacement.

Conflict miss – all other miss accesses to the cache, which occur because more than k blocks

of the working set map to the same set of a k-way associative cache, and

additional misses that may be due to the nonoptimality of the replacement

policy, thereby causing some data to be replaced during execution.

Read miss latency – the nominal time to satisfy a read (load) request that misses in the cache, e.g.

the time to return the desired data from the next level of memory to the cache

under ideal circumstances.

Write miss latency – the same as read miss latency, except for write (store) requests.

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 8

3.0 Overview of cache simulation

Cache simulation is widely used to determine the performance of a given cache configuration for

the execution of a target application. This evaluation can be done using behavioral cache simulators,

circuit level simulators (timers), and via the measurement of actual systems (using hardware monitors).

Behavioral cache simulators are highly paramaterizeable, but they do not represent the access latencies

of a target machine accurately. Circuit level simulators, on the other hand, are extremely accurate for a

single machine, but are not paramaterized to evaluate a variety of dissimilar machine implementations.

Finally, the measurement of an actual system, while useful in gauging performance, requires a

completely implemented, fully operational system, and even then may not give designers or

programmers a good idea of the underlying causes of the measured performance. The Latency Effects

(LE) cache model and its implementation improves upon these techniques by incorporating more of the

effects that a memory access can experience than a behavioral cache simulator does while providing the

flexibility to change the configuration of the target cache for each simulation run. Furthermore, the

statistics output by the LE tool aid the designers and programmers in determining the bottlenecks and

underutilized resources of the configuration.

3.1 Currently available behavioral cache simulators

Many behavioral cache simulators are currently available, including DineroIII [Hill85], ACS

[PARL95], Fast-Cache [Lebeck95], and others. These simulators take cache design parameters, such as

cache size, block size, and associativity, together with a sequence of memory accesses as input and

determine the number of cache hits and misses that would occur if the code were run on a processor with

a cache of the corresponding parameters. Each memory access is analyzed individually, and its result

(whether it is a hit or miss to the cache) is dependent upon the state of the cache at the time of the

access. The job of the simulator is thus to maintain the cache state and decide whether each successive

reference is a hit or a miss. After each access is evaluated, its effect on the cache is immediate, e.g. if a

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 9

block of data is loaded into the cache by one access, all of that data is considered to be present and

immediately accessible in the cache when the very next access arrives.

3.2 The LE cache model

While knowledge of the number of cache hits and misses is useful, knowing the effects of those

hits and misses on a program’s execution is essential for guiding the design process. One way to add

this functionality to existing cache simulators is to attach a latency to each access. This addition enables

us to determine the number of cycles required to execute a given sequence of memory accesses.

However, this approach assumes that all memory accesses are independent and decoupled, i.e.

once the earlier access to the cache line is evaluated, the requested data is immediately present in the

cache until it is replaced. In actuality, if an earlier access has not fully completed before a new access to

the same cache line occurs, a trailing edge effect may be seen. The new access to the cache line will

then require more than CACHE_HIT_LATENCY cycles to complete because the referenced data, although

allocated, is not yet actually present in the cache yet. However, since an earlier access to the cache line

is already in flight, this new access will not incur the full read or write miss penalty. Furthermore,

performing this new access to the cache line does not generate any additional miss traffic, as the desired

data is already in transit from the next level of memory to satisfy the earlier request. Current general

simulators do not address trailing edge effects, as they assume that after an access is made to a cache

line, all subsequent accesses to that line are cache hits (until the line is replaced). We call such a

reference that experiences trailing edge effects (and other hits that experience other latency-adding

effects) a delayed hit. Thus we divide accesses into cache hits, delayed hits, and misses.

Trailing edge effects can have an enormous effect on a program’s actual execution time. The

greatest impact is made when there is a series of memory accesses as in Program 1:

1 LDF A

2 LDF B

3 LDF C

4 LDF D

Figure 1: Program 1

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 10

Suppose that the data in memory is laid out as follows:

A B C D E F G H

0 8 16 24 32 40 48 56Byte Offset:

Data:

Figure 2: One block-aligned portion of memory (blocksize = 64B)

For simplicity, suppose that access requests are sent to the cache in the first Execute stage of the

processor pipeline and that loads complete in the same cycle that the data returns from the cache.

Assuming that the access to address A is the first access to that cache line, the LDF (floating-point load)

at line 1 will always miss (it is a cold-start miss). In a cache with a block size of 64 bytes, the three

subsequent LDFs will be recorded as hits to the cache in a cache simulator such as DineroIII, since each

load requests 8 bytes of data and all the desired data is in the same block. This situation is shown below

in Figure 3:

Cy IX--------W
1) A
2) BA------->A (miss)
3) CB------->B (hit)
4) DC------->C (hit)
5) D------->D (hit)

Figure 3: Execution behavior of Program 1 according to unmodified DineroIII

In the figure above, Cy indicates the cycle number, I indicates the issue stage of the pipeline, X shows

the start of the execution phase, and W is the writeback stage.1 Without any modification, DineroIII

would indicate that all the accesses complete in the same cycle that they begin execution, regardless of

whether they hit or miss. The information about whether the access actually hits or misses in the cache

is recorded for statistical purposes. If DineroIII were used to model memory accesses in conjunction

with a processor simulator, all Execute and Writeback stages for these loads would be merged into one

cycle, and this sequence of instructions would require five cycles to execute.

1 The target machine in this example is a uniprocessor with a single load/store execution unit that can handle one memory

request per cycle. This machine model will be used throughout this study to simplify the analysis; the following
examples can easily be extended to execute on a machine allowing multiple memory accesses per cycle.

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 11

The first step to improving this model would be to add leading edge latencies to each memory

access. These latencies would describe the time that the access spends in the Execution and Writeback

stages of the pipeline, with the Writeback stage usually requiring a single cycle. For instance, the access

latency for a load miss could be 10 cycles (9 cycles for Execute and 1 cycle for Writeback), whereas a

load hit would only require 2 cycles (1 cycle each for Execute and Writeback). The simulation of

Program 1 with DineroIII augmented with these latencies is shown in Figure 4.

Cy IX--------W
1) A
2) BA
3) CBA
4) DC A B
5) D A 		C
6) A				D			 			 		
7) A
8) A
9) A
10) A
11) A

Figure 4: Execution behavior of Program 1 for

leading edge latency-augmented DineroIII

Here, the program execution is more realistic in terms of overall execution latency (11 cycles total).

However, the accesses to B, C, and D cannot complete before the access to A, since A, B, C, and D all

reside in the same block of memory and the earliest datum to return to the cache is A! At the earliest,

the accesses to B, C, and D can return to the processor in cycle 11 along with the access to A;

completing any earlier would not be possible because the data would not be in the cache yet!

As introduced earlier, the accesses to B, C, and D suffer from trailing edge effects caused by A:

since the block brought in by the access to A is not available when B, C, or D execute, and since all four

accesses reside in the same cache block, B, C, and D must wait additional cycles to complete. If trailing

edge effects were incorporated into the cache model, the execution of Program 1 would look like:

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 12

Cy IX--------Wbck
1) A
2) BA
3) CBA
4) DCBA
5) DCBA
6) DCBA
7) DCBA
8) DCBA
9) DCBA
10) DCBA
11) ABCD

Figure 5: Execution of Program 1 when trailing edge effects

are taken into account and 4 read ports are available

Here, we see that all four accesses complete in cycle 11. This makes sense because it is possible that all

the data in the cache line is available at cycle 11 and the data can be returned to the desired functional

units in the same cycle (e.g. there are four available read ports to the cache for that cycle). The time to

wait for the desired data is represented in the additional stages of Execute that those accesses must

experience. As shown in Figure 5, the Execute and Writeback stages represent the miss pipeline in the

cache subsystem. Different machines may handle the actual misses in this pipeline differently, but the

end result is the same: the desired data is not available until the required latency has passed. Thus, this

representation of the access’ execution shall suffice for understanding the movement of different

memory accesses through the cache subsystem.

The accesses to B, C, and D are all delayed hits, since they do not incur the full miss latency, yet

they do not complete in the time required for a cache hit. Also, these accesses do not generate any

additional miss traffic, as the required data is already in transit to satisfy the earlier request to A.

While a machine could be built to load an entire cache block in one bus cycle, it is likely that the

cache block is loaded from main memory in multiple bus cycles (e.g. one word per cycle, with the

requested word returning from memory first). Thus, in addition to trailing edge effects, a memory

access can experience increased execution times due to bus width considerations. If successive data

words of the block are returned to the cache in successive cycles, the program execution would look

like:

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 13

Cy IX--------W
1) A
2) BA
3) CBA
4) DCBA
5) DCBA
6) DCBA
7) DCBA
8) DCBA
9) DCBA
10) DCBA
11) DCBA
12) DCB
13) DC
14) D

Figure 6: Execution of Program 1 with words from memory returning

in sequential cycles or with only 1 read port to the cache

There may also be port limitations that affect an access’ latency – in the program execution of

Figure 5, four read ports from the cache are assumed to be available at once. Typically, processors

today have one read/write port to the cache; some have more than one port and in such cases, some ports

may be read-only or write-only. If the target processor has one read port to the cache, regardless of

whether data is returned from memory simultaneously or sequentially, Program 1 would execute as

shown in Figure 6, above. Since there is only one read port, only one of the words can be returned to the

processor from the cache in each cycle. In this example, subsequent requests must wait for earlier ones

to complete before a port is freed and the desired word can be transferred from the cache to the

processor.

Words in memory are often accessed nonsequentially. For instance, if we run Program 2 with

the memory layout shown in Figure 8,

1 LDF I

2 LDF J

3 LDF K

4 LDF L

Figure 7: Program 2

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 14

I K L J M N O P

0 8 16 24 32 40 48 56Byte Offset:

Data:

Figure 8: Another block-aligned portion of memory (blocksize = 64B)

the program’s execution might look like:

Cy IX--------W
1) I
2) JI
3) KJI

 4) LKJI
 5) LKJI

6) LKJI
7) LKJI
8) LKJI
9) LKJI
10) LKJI
11) LKJI
12) LJK
13) JL
14) J

Figure 9: Execution of Program 2 with words returning from

memory in sequential cycles

While the overall program execution time remains the same as Program 1’s execution time (14

cycles), the desired data returns in a different order; this is entirely a function of the location of the

requested words of data in memory. For Program 1, the data returned in the order it was requested. In

Program 2, the data returned in the order that the data was retrieved from memory (first I, then K, L, and

J). Typically, caches fill their blocks from the next level of memory in the order that the data is found in

memory, not the order the data is requested. Thus, instead of returning one cycle after I, the access to J

returns three cycles after I returns since it is the last word of the four in the block to be returned when

word I is requested first. The increased latency required to complete the access to J is shown by the

increased time that J spends in the Execute stage; the accesses to I, K, and L complete as their desired

data is loaded into the cache block. This effect is not very apparent in a simple program consisting of

only memory accesses; however, if there were a fixed- or floating-point operation that depended upon

the data at address J, that dependent instruction would have to wait three additional cycles: one cycle

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 15

due to the cache being unable to load the entire cache block in one cycle and two more cycles due to the

placement of J within memory.

There is one more effect that we must consider. Most caches cannot continue accepting requests

if there are a number of misses that have yet to be satisfied (these misses are termed “outstanding

accesses”). Once the threshold of outstanding accesses is reached, subsequent accesses may be delayed

until the earlier accesses complete; until at least on of these outstanding accesses completes, the cache is

said to be blocked. If Program 1 were run on a processor whose cache could only sustain two

outstanding accesses at a time, its program execution would look like:

Cy IX--------W
1) A
2) BA
3) CBA
4) C BA
5) C BA
6) C BA
7) C BA
8) C BA
9) C BA
10)C BA
11)DC BA
12) DC B
13) D C
14) D

Figure 10: Execution of Program 1 on a processor whose cache can

only sustain two outstanding accesses at a time with 1 read port to the cache

Since neither A nor B are complete when C tries to enter the Execute stage, C must wait because the

cache is blocked. C does not enter Execute until the first outstanding access, A, exits Execute in cycle

11. Since C was blocked in the Issue stage, D does not get to enter Issue until C exits that stage. (In

more complex processor configurations, C and D would be blocked together in a processor buffer

somewhere outside of the Execute stage).

Once C enters Execute, it finds that the data it wants is already in the cache, thanks to the earlier

miss to the block by A. Thus, C finishes one cycle after B (due to port conflicts) and D completes one

cycle after that. Since all the accesses were to the same block of the cache, the blocked cache does not

adversely affect the execution time of Program 1, as its execution time remains 14 cycles.

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 16

If we were to execute Program 3 on the same (two outstanding accesses sustainable) processor

and cache with the memory layouts shown in Figures 2 and 8, the program execution would look

different:

1 LDF A

2 LDF B

3 LDF I

4 LDF K

Figure 11: Program 3

Cy IX--------W
1) A
2) BA
3) IBA
4) I BA
5) I BA
6) I BA
7) I BA
8) I BA
9) I BA
10)I BA
11)KI BA
12) KI B
13) KI
14) KI
15) KI
16) KI
17) KI
18) KI
19) KI
20) KI
21) K

Figure 12: Execution of Program 3 on a processor whose cache can

only sustain two outstanding accesses at a time

In Program 3, the misses to A and I are to different blocks in the cache. I must wait until A completes

before it enters execute, since A and B are outstanding when I enters the issue stage. But, once I enters

execute, it finds that it, too, is a miss, and must wait 10 cycles before completion. K, being a trailing

edge access to the same block as I, must wait 10 cycles to complete as well. Thus, Program 3 requires

21 cycles to execute, as opposed to 14 cycles for Program 2 running on a similar machine.

The Latency Effects (LE) cache model accounts for the nominal hit and miss times, plus the

added delays due to each of the aforementioned effects of prior accesses on the timing of the next access

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 17

(trailing edge effects, bus width and port limitations, and the number of outstanding accesses allowable).

By using the LE cache model instead of a currently available behavioral cache simulator like DineroIII,

a more accurate simulation of the execution of memory accessing instructions can be obtained.

4.0 Implementing the LE cache model

In order to test the correctness of the LE cache model, a cache simulator incorporating this model

was built. Instead of writing a basic cache simulator from scratch, DineroIII was used as a basis, as it is

a widely-used and highly paramaterizeable behavioral cache simulator. While there are many ways that

the delays associated with the LE cache model can be realized, an approach based on the Resource

Conflict Methodology was used. DineroIII and the Resource Conflict Methodology are described in the

next two sections, followed by the implementation of the LE cache model.

4.1 DineroIII

DineroIII [Hill85] is a parameterizeable, trace-driven cache simulator developed by Mark Hill.

DineroIII takes a trace of memory accesses as input and determines, for each access, whether the access

hits or misses based on the state of the cache at the time of the access. The cache that is simulated can

be modified based on associativity, cache block size, overall cache size, and update policy, among other

parameters. Statistics reported at the end of the simulation include the number of read and write hits and

misses to the cache, the number of words transferred, and the total number of memory accesses.

4.2 Resource Conflict Methodology

The Resource Conflict Methodology (RCM) [Wellman95] was proposed by J-D Wellman as a

technique for modeling and simulating computer systems early in the design cycle. Each element of the

simulated processor is viewed as a resource that may be unavailable at a given time. For instance, an

RCM model analyzes the effect of each instruction’s execution on a given machine’s resources. Each

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 18

instruction requires a certain set of resources to execute. As the instructions are executed, the

availability of each resource that is used is updated, delaying the times at which those resources are

available to subsequent instructions. Given the resource constraints, the execution time of a program

can thus be determined by keeping track of when instructions are allowed to execute and when they

complete.

4.3 Implementing LE on top of DineroIII

DineroIII keeps the current state of the cache in memory during simulation. The cache is

“updated” when each new access is made: If the access is a hit, the data is already in the cache, but it

may be marked to reflect that it is the most recently accessed datum (for a replacement policy such as

LRU). If the access is a miss, any block replacement that is required is performed and the desired data is

placed in the cache immediately. Any subsequent accesses to that data block (until it is replaced) are

thus recorded as hits, since according to DineroIII’s cache state, the data for that block is in the cache.

However, due to leading and trailing edge effects, data does not return to the cache from the next

level of memory immediately. These effects can easily be incorporated into DineroIII by controlling

when DineroIII’s state is updated, i.e. when DineroIII “sees” a memory access. Given the cycle in

which the access begins execution, we can determine the effects that it sees during execution and when

it completes – and thus when DineroIII’s state should be updated.

Each memory access is evaluated in turn, since we assume only a single memory access is

permitted per cycle.2 First, the DineroIII cache is checked to determine whether the access is a hit or a

miss. If DineroIII says that the access is to data currently in the cache, the access is tentatively marked a

cache hit. This access must wait CACHE_HIT_LATENCY cycles before the data is available for the

requesting functional unit. Usually, data is returned in same cycle that it is requested when a cache hit

occurs, so the CACHE_HIT_LATENCY is normally equal to one. Thus, the cache hit completes in the same

2 The single memory access per cycle limitation is due to the target machine we chose to emulate in this study. However,

due to its implementation based on the RCM model, the LE cache model can inherently handle multiple accesses per
cycle.

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 19

cycle in which it begins execution and the data is available for use in the processor in the very next

cycle.

If an access is tentatively marked as a hit and a dependency of the second type is found (e.g. the

requested data will be replaced by a currently outstanding miss access), the access is then handled as a

cache miss, as explained in Section 4.4.5. If no dependencies are found, the access is indeed a cache hit,

and the DineroIII cache state is updated to reflect that that block is the most recently accessed reference.

If an access is tentatively marked a cache miss, the access is not necessarily a miss that would

incur the full read or write miss latency. The access may be a delayed hit, as an outstanding miss access

may already have requested the desired block. Thus, a check is made to see if the new access is

dependent on any currently outstanding accesses. If the access does depend on a currently outstanding

access, the access is a delayed hit, which to DineroIII seems like a miss, as the desired data is not

present in DineroIII’s cache due to the delayed update that we have imposed on the DineroIII cache

state. However, since the desired block is already in transit from the next level of memory (due to the

earlier dependent miss to that block), the new access should not automatically incur the full read or write

miss latency. This is the beginning of the implementation of the LE cache model outside of DineroIII.

Once the access has been completely evaluated by the LE cache model, the completion cycle for

that access is known. The effects of the access on the state of the DineroIII cache are enacted (i.e. the

cache is updated) when the cycle of the simulation is greater than or equal to the completion cycle of the

access. The update of the DineroIII cache state is deferred for each access until the data is actually

resident in the cache. This way, if an access is determined to be resident in the DineroIII cache state at

any given time, the data will be available immediately (except in the case where a dependency of the

second type is discovered) as a cache hit; otherwise, the access is a delayed hit or cache miss. The

updating of the DineroIII cache state will be explained in greater detail in Section 4.4.5.

4.4 The LE cache model outside of DineroIII

As discussed in Section 3.2, there are four main sources of additional delay for a memory access:

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 20

• Trailing edge effects

• Bus width considerations

• Number of allowable outstanding accesses

• Port limitations

Each one of these effects potentially affects the completion time of an access to the cache (and the

subsequent access to the next level of memory for cache misses). Each effect and its implementation is

now discussed in turn.

4.4.1 Trailing edge effects

In order to quantify the trailing edge effects experienced by a cache access, the status of each

outstanding access to the cache must be retained. Cache hits, on the other hand, can be evaluated as they

occur, as they can only be affected by previous instructions. A cache hit can only be affected by prior

delayed hits or misses because of its port requirements (discussed in Section 4.4.4). For instance, if a

cache hit is issued in cycle X, it will complete in two cycles (using the example latencies from Section

3.2), i.e. in cycle X+2. For our model machine, the earliest time that a new memory accessing

instruction can be issued is in the very next cycle, cycle X+1. If the new access is also a cache hit, it

will complete in cycle X+3, and will not depend in any way on the earlier cache hit. If the new access is

a delayed hit or a miss, the access will complete in cycle X+N, where N ≥ 4. However, the first cache

hit will complete in cycle X+2, which is earlier than any subsequent access (be it a hit, miss, or delayed

hit) can complete. As a result, the cache hit will not be affected by any accesses that issue after the

cache hit is issued, regardless of the outcome of the subsequent accesses. However, we will see in

Section 4.4.4 that cache hits can be affected by prior delayed hits or misses whose latencies are greater

than the latency of a cache hit.

Misses can affect the completion times of many subsequent accesses. The number of future

accesses affected increases in proportion to the duration of the full miss latency. To determine these

effects, the status of a cache miss is kept until the access is satisfied, i.e. until the requested data is

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 21

finally resident in the cache. All outstanding accesses are ordered chronologically in a linked list called

the update_buffer. When an instruction accesses data not currently in the cache, the update_buffer

is checked to see whether the desired data is currently in transit from the next level of memory to the

cache. A dependency is found if one of two situations occur: 1) the desired data coincides with a cache

block that is currently being brought into the cache from the next level of memory or 2) the desired data

is currently being replaced by an outstanding access. For dependencies of the first type, instead of

incurring the full miss latency of the cache, the new access will be satisfied in some shorter period of

time related to the remaining time to satisfy the earlier outstanding access to the same cache block.

Dependencies of the second type will require the nominal miss latency for that access type to complete,

as the desired data will need to be fetched from the next level of memory to satisfy the access. As we

will see in subsequent sections, this is only the first part of determining the completion time of a delayed

hit or miss; once the earliest time to completion is determined (when the earlier conflicting miss

completes), bus width considerations, the number of allowable outstanding accesses, and port conflicts

must be taken into account. These will be discussed in detail in Sections 4.4.2, 4.4.3, and 4.4.4,

respectively.

The update_buffer corresponding to the execution of Program 1 at cycle 4 is shown in Figure

13. At this point in time, the access to C is beginning execution. We see that the first entry in the

update_buffer linked list is the load from address A. The next entry in the linked list, which

corresponds to the next outstanding access to complete, is the load from address B.

address: A
accesstype: load
completes: 11

address: B
accesstype: load
completes: 11

update_buffer:

NULL

address: C
accesstype: load
completes: ??

new access:

Figure 13: State of update_buffer when the access to address C

is being evaluated

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 22

The load from address C will check the update_buffer and find that its desired data will be present in

the cache at cycle 11, thanks to the earlier request to that cache block by the access to A. Since it is only

cycle 4, this access will also be placed in the update_buffer, as it will complete in a later cycle and

may affect the access time of a future memory accessing instruction. Assuming there are enough ports

to satisfy three read requests from the cache in one cycle and the bus between the cache and the next

level of memory is wide enough to return all three access to the cache in the same cycle, the load from

address C will also complete in cycle 11. The updated update_buffer is shown in Figure 14.

address: A
accesstype: load
completes: 11

address: B
accesstype: load
completes: 11

update_buffer:

NULL
address: C
accesstype: load
completes: 11

Figure 14: State of update_buffer after access to address C

has been evaluated

Every delayed hit and miss goes through this process and eventually ends up in the

update_buffer. If the access is a miss, i.e. the desired cache block is not present in the DineroIII cache

state, no dependencies will be found with the entries currently in the update_buffer. Dependencies of

the second type cause hits or delayed hits to become misses, as the desired data will be replaced by an

outstanding access. These accesses will incur the full miss latency for its type (read or write), plus any

additional cycles due to port conflicts (see Section 4.4.4). An entry is made for the new access and it is

placed in the update_buffer so that future accesses can check against this new outstanding access as

well.

By assigning differing latencies for each access depending upon its time of execution, we can

more accurately predict the time to execute a series of memory access instructions. Using its first cycle

of execution as the starting point for each access, the completion time for that memory access can be

determined by looking at the outstanding accesses to the cache, combined with the knowledge of the

read and write miss latencies for the given cache. Using varying latencies is the first step toward a more

realistic cache performance estimate.

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 23

4.4.2 Bus width issues

Another parameter that affects when an access completes is the bus width between the cache and

the next level of memory. The data bus of a port between the CPU and the cache is normally at least the

width of one access (typically a 32-bit word or a 64-bit doubleword), so requests will complete without

being affected by this bus width. However, the bus width between the cache and the next level of

memory is normally smaller than the block size of the cache. For instance, in the RS/6000 Model 320H

[Hardell90], the block size is 64 bytes, but the cache-to-memory bus is only 8 bytes wide, causing a

block of data to return to the cache in multiple cycles.

Typically, machines are designed to return the requested word within the cache block first, with

subsequent subblocks (a subblock being the width of the cache-to-memory bus) arriving in subsequent

cycles to the cache. The other alternative is to always return the first subblock of the block first, forcing

all but the first subblock in the block to wait additional cycles for a miss access to them to be satisfied.

Since most of today’s machines use the former technique, the following discussion will concentrate on

that method; the analysis can easily be modified to use the second cache fill policy.

Given the requested-word-first cache fill policy, the first miss to a cache block will take the

required full read or write latency to complete. A subsequent miss to the same cache block that occurs

while the earlier miss is in flight may or may not be satisfied in the same cycle as the earlier miss. If the

subsequent miss is to the same subblock as the earlier miss, both accesses will complete in the same

cycle (ignoring port conflicts for now). If the subsequent miss is to a different subblock, that access will

have to wait additional cycles to be satisfied. Since the cache block is filled in a wrap-around fashion,

the later access will have to wait at most an additional [(block size in bytes)/(cache-to-memory bus

width in bytes) - 1] cycles to complete. If the later access is in the subblock to return immediately after

the first requested subblock, the later access will complete one cycle later than the earlier access,

pending port conflicts. If the later access returns in the third subblock, it will wait two additional cycles,

etc. An example of bus width issues affecting memory access latencies was shown in Figure 9 with the

execution of Program 2.

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 24

Given a cache’s block size and cache-to-memory bus width, we can easily determine these

additional delays given when the accesses occur relative to one another. The additional cycles are

simply added on to the completion cycle that was determined for this access in the initial trailing edge

analysis. These additional cycles will not and should not affect any earlier access’ completion times, but

will affect the completion times of the current and future accesses. The completion cycle of the access

is stored in the access’ update_buffer entry so that future accesses can determine when this

outstanding access completes.

4.4.3 Number of outstanding accesses

The number of outstanding accesses that a cache can sustain affects the completion time of any

memory access. Caches that do not support hit-under-miss will stall whenever there is a miss in the

cache. This means that any subsequent memory accesses, even if they were to access data that was

present in the cache at that time, would be stalled until the outstanding access completed. Obviously,

future misses to currently absent data would also be stalled, though the delay due to the blocked cache

would likely remove some of the trailing edge effects. (For an example of this situation, see Figure 10,

which shows delayed hits turning into cache hits due to the blocked cache). When the cache becomes

unblocked, the first waiting access begins execution. Since there are no outstanding accesses when this

new access executes, it will not experience any latency adjustments due to trailing edge effects. While

this case is handled by the LE model, the case where hit-under-miss is allowed is much more interesting.

The case where a miss occurs while the cache is blocked was shown earlier in Figure 12 with the

execution of Program 3.

There can be a varying “number of outstanding accesses” (NOA) when hit-under-miss is

allowed. If hits are allowed when only one miss is outstanding, the NOA is equal to one. This means

that we can have one miss access to the cache outstanding at a time, but we can still service hits to the

cache. If another miss occurs while an earlier miss access is outstanding, the processor stalls all

memory accesses until the earlier miss is satisfied. After the first miss is completed, there is once again

only one miss access outstanding, and hits can once again be handled if they occur. Increasing the NOA

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 25

increases the number of memory accesses that can be in flight at one time, giving a corresponding

increase in the number of accesses that could potentially be affected by trailing edge effects. Still, once

the threshold is crossed, all accesses, be they hits or misses, must wait until at least one earlier miss is

satisfied before they can execute.

To account for NOA, we simply need to check to see how many misses are outstanding when we

evaluate a new memory access miss. If the number of outstanding misses is less than the NOA

threshold, the current access’ completion time is wholly dependent upon trailing edge effects, bus width

effects, and port limitations. If the number of outstanding accesses is greater than the NOA threshold,

this access must wait until enough misses are satisfied to reduce the number of outstanding accesses to

less than the NOA threshold. If the new access depends on an outstanding access, the new access will

complete CACHE_HIT_LATENCY cycles after it is allowed to execute, as the data would be in the cache by

the time the request is actually made to the cache. If the new access does not depend on any outstanding

access and is simply delayed due to the blocked cache, the normal trailing edge and bus width effects

analysis will be applied, once the cache is no longer blocked and the access is allowed to begin

execution.

If the new access is a miss, the new access would have to incur the full miss latency before it

would complete. This latency would be added on to the cycle that the access was finally determined to

execute to determine its completion time. As above, the new access would execute when enough misses

are satisfied to reduce the number of outstanding accesses to less than the NOA threshold.

4.4.4 Port limitations

The final element to consider when determining an access’ completion time is the availability of

an appropriate port to the cache. After the completion cycle of an access is determined by considering

trailing edge and bus width effects, and the number of outstanding accesses, we must check to see if the

desired port for the transaction (read or write) is available in the desired completion cycle. If an

appropriate port is available, the completion cycle remains unchanged and we have found the actual

completion time of the access. If an appropriate port is not available, we must check subsequent cycles

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 26

to see when an appropriate port does become available. This is done by scanning through subsequent

cycle times, starting at the access’ completion cycle + 1. The search is continued until an appropriate

port is found and that cycle count is returned as the actual completion time. Thus, the access completes

as soon as it possibly can, considering the trailing edge and bus width effects, the location of the word in

memory, the number of outstanding accesses sustainable, and the port limitations.

Port conflicts affect hits to the cache as well. If there are earlier misses to the cache that

complete in the same cycle as the new hit and there are not enough ports available to satisfy the hit to

the cache, the hit must wait for one or more additional cycles. The same method described above for

misses is used to find the hit’s completion time.

Obviously, increasing the number of ports will reduce the likelihood that port conflicts occur.

With a greater number of ports available, more requests to the cache can be returned to the processor

each cycle. On a related note, if the number of outstanding accesses allowed is less than the number of

ports to the cache, port limitations will only affect hits to the cache. This occurs because we would

never have more misses outstanding than there are available cache ports, so the only time there will be

contention for cache ports is when there are hits to the cache that complete in the same cycle that a

pending miss completes. Memory accesses are evaluated sequentially in time, so older accesses reserve

their use of a port before newer accesses do. Thus, even though an access may be a cache hit, if all the

ports for the cycle in which the hit should complete are reserved for prior accesses, the hit must wait at

least one additional cycle to obtain an available port and complete its memory access.

4.4.5 Flow chart diagramming the operation of the LE cache model

All memory accessing instructions go through the same steps of evaluation in the LE model.

Once a completion cycle has been determined, that cycle, minus the cycle that execution of the

instruction started, is returned as the latency of the instruction. The flow chart of the operation of LE is

shown in Figure 15. At each of the "endpoints" of the flow chart, the completion time for the current

access is finalized and that value is returned to the calling program.

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 27

Check to see if address of new
access matches that of any

ongoing access.

Address match?
Available

ports?
Y

Tag and set
match?

N

Check against next
outstanding access.

N

More pending
accesses?

No conflicting acceses, so
set up new timing model

for this access.

N

New access fits in
same cache block?

Y

Unaligned access.N

Memory bus narrower
than cache block width?

Y

Access can return in the
same cycle as the

conflicting access if ports
are available.

N

Cache block will be filled
in more than one cycle.

Y

Requested
word first?

Return completion cycle of
older access; new access will

return same cycle.

Y

Search for next cycle
with available port and

return that cycle.

N

Access will incur full
miss latency for that
type. Calculate and
return completion

cycle.

First requested word in
block will return first;
requested word must

wait at least one
additional cycle if it is
not the first requested
word. Calculate and
return completion

cycle.

First word in block
will return first;

requested word must
wait at least one

additional cycle if it is
not in first subblock.
Calculate and return

completion cycle.

Y N

Check for accesses that
complete this cycle and update

cache's state.

Check against the next
pending access.

Y

Figure 15: Flow chart showing the operation of the LE cache model

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 28

The state of the DineroIII cache is not updated until the cycle count of the currently evaluated

memory accessing instruction is greater than or equal to the completion cycle of an outstanding access in

the update_buffer. Delaying the update of the cache state until a new access occurs presents no

problems, as the state of the cache is “corrected” to reflect the recently completed transactions before a

new access is evaluated in LE. If the new access begins execution after an older, outstanding access

completes, the new access should not depend upon that older access, and indeed it does not, since all

outstanding accesses in the update_buffer are removed from update_buffer when they are completed

and the cache’s state is updated before each new access is evaluated. Since only memory accessing

instructions can affect the state of the cache, delaying these updates reduces simulation time, especially

during long stretches of compute-only code, as no checks need to be made on the cache unless a new

instruction accesses memory. If the new access begins execution before some currently outstanding

access completes, the new access may experience latency-adding effects caused by the outstanding

access(es). Since the outstanding access is still in the update_buffer, a dependency may be found with

the new access, causing the LE cache model to adjust the new access’ completion time accordingly.

Currently, unaligned accesses are simply flagged in LE; special mechanisms by which to

evaluate unaligned accesses have not been implemented. This case was not considered for two reasons:

First, unaligned accesses are rare, undesirable, and avoidable, so not incorporating them into our model

should not have a great impact on the model's performance. Secondly, there are many different methods

used to handle unaligned accesses, so many so that incorporating a specific handling method would

sacrifice the general purpose nature of the LE cache model. If a relatively simple, parameterizeable

method for handling unaligned accesses can be derived, it will be incorporated into LE in the future.

4.5 Using the RCM model to implement LE

With regard to instruction execution, the LE cache is modeled as single resource. Memory

accessing instructions check the cache (LE) resource to determine when execution can begin and when

execution completes. The start and end times of each instruction’s execution are determined by

checking the various effects that an access can encounter, as detailed in Section 4.4. Given when a

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 29

memory accessing instruction completes, dependent instructions are delayed accordingly in the

corresponding portions of the RCM simulator (e.g. dependent memory accessing instructions delay their

issue times with respect to the cache and dependent execute instructions delay their issue time to the

functional units). Since LE is modeled as a single resource, it can easily be joined to an RCM-based

processor model to simulate the execution of code on a processor with cache.

Within the LE cache model itself, the cache blocks, busses to and from the cache, the ports, and

the cache itself are viewed as resources. If a desired cache block is not available, the requesting

instruction must wait a at least a nominal number of cycles until the data is returned to the cache. If the

bus to the cache from the next level of memory is currently used to return an earlier requested word, the

newer requested word from same cache block must wait additional cycles. Transfers between the cache

and the processor are taken care of by the port resources; if a machine has a certain number of ports to

the cache, there will be a corresponding number of simultaneously available busses between the cache

and the processor. If a port of the desired transaction type is not available, the instruction must again

wait additional cycles before it can complete execution. Also, if the cache itself is blocked, all further

accesses must wait until some earlier miss completes before execution can continue. Thus, the LE cache

model is implemented using the RCM methodology by modeling each effect accounted for in the LE

cache model as determined by the availability of some resource.

5.0 Experimental results

In order to test the validity of the new cache model, a tool was built to simulate the memory

access performance of a given program. The tool was written in the spirit of J-D Wellman’s Resource

Conflict Methodology, where instructions take differing amounts of time to execute depending upon

resource availability. With regard to memory accesses, resources within the LE model include the ports,

the cache (available unless blocked), and data (which becomes available when each access to it

completes and remains available until the next access to it begins execution in the cache).

The processor and cache simulator combines J-D Wellman’s RCM_brisc tool, which simulates

an RS/6000-like [Bakoglu90] machine, with the LE cache model. Based on the REAP tool, RCM_brisc

 Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report 30

simulates the execution of instructions fed to it in the form of a trace of the program’s execution on an

actual machine, which in this study is an RS/6000. The RCM_brisc tool by itself simulates the

execution of all instructions, but assumes a perfect cache model, where all data from memory is

available in a fixed, predetermined amount of time. However, the perfect cache model is an unrealistic

estimate of program performance in today's processor/cache designs; cache and memory effects must be

included in any processor simulation if it is to realistically evaluate a program's performance on a system

under consideration.

The LE cache model, in its current implementation, could easily have been combined with any

other currently available instruction-level simulators such as Talisman [Bedichek95], SimICS

[Magnusson95], and others. This is possible because this implementation of the LE cache model

maintains the state of the caches itself and does not take into account virtual memory or TLB effects. It

models the first level of data cache and assumes a perfect memory thereafter, regardless of the number

of level of caches beyond that. This simplification still provides accurate pictures of program execution,

as we will see later in this section. The RCM_brisc tool was chosen since the LE cache model was

implemented in the same spirit using the RCM model, and, more importantly, the creator of the

RCM_brisc tool was readily accessible (his desk is next to mine).

The combination of the LE cache model implementation with the RCM_brisc processor

simulator involved several pre-existing simulators, namely RCM_brisc for core processor simulation

and DineroIII for behavioral cache simulation. The LE cache model impl