

A Case Stud y of a Har dware-Mana ged TLB
in a Multi-T asking En vir onment

Chih-Chieh Lee, Richard A. Uhlig, and Trevor N. Mudge

Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, Michigan

{leecc, uhlig, tnm}@eecs.umich.edu

Abstract

There have been very few performance studies of hardware-managed translation look-aside buffers

(TLBs).The major reason is the lack of efficient and accurate analysis tools. Newer operating systems,

applications, and the popularity of the client-server model of computation place a greater burden than their

predecessors on memory system components such as TLBs. Thus it is becoming more important to measure

the performance of memory systems under such workloads. In this work, we implemented a trap-driven

simulator in an operating system to emulate a variety of TLBs. Using this tool, we were able to evaluate the

performance of a range of TLBs under these newer workloads. The results show that in order to improve the

TLB performance, we should carefully map pages into the TLB, append process identifiers to avoid flushing

the TLB contents frequently, or reserve part of the TLB for a particular server process.

1 / 27

1 Intr oduction

It is widely recognized that the selection of an optimal hardware system design, primarily the design of

the Central Process Unit (CPU) and the caches, is highly dependent on the software characteristics that the

hardware system is to support. For example, main frame systems are designed to support database

applications, while vector machines, or super computers, are designed for massive or intensive computing

workloads such as matrix computation. Each hardware system should be designed to support the primary

software running on and the hardware/software interface is perhaps one of the most crucial performance

factors a hardware designer should confront.

Typical laboratory evaluations of the hardware/software interface have understandably leaned toward

being efficient both in time and money, but may no longer be adequate. Hardware designers usually take a

single and short program as a test on the system they are developing and use the results of these simple

experiments to guide their design of future systems. As a consequence, their machines may perform well

only under some artificial circumstances yet perform questionably under a real environment. This is

especially true for the computer systems designed for general purposes, such as personal computers and

workstations. Meanwhile, these general purpose systems actually have dominated the computer market

because they are more widely used than are supercomputers in the distributed network environments, that

are typical of business, academic, and research environments. Therefore, the performance of the

hardware/software interface in today’s widely used computers, personal computers and workstations,

strongly demands sufficient, and—if possible—efficient examination.

The largest disparity between the simple but artificial working environment and the complicated but real

one is that the latter involves multi-tasking. A multi-tasking environment is a computing environment that

allows more than one process

i

 to simultaneously share a computer’s rare resources, such as the CPU and

caches. To allow processes to share the resources, some fair strategies must exist to arbitrate and switch the

active

ii

 process among the competitors. This function of switching processes can introduce unexpected

effects that may not be discovered in the traditionally experimental environment. Meanwhile, multi-tasking

is becoming increasingly popular, since the current trends in software design, such as object-oriented

programs, microkernel operating systems, and client-server models, can generate process switching more

frequently. Numerous preliminary studies have indicated that hardware performance can be degraded greatly

in the presence of multi-tasking [Nagle93, Chen94, Nagle94]. It is thus becoming important to reconsider

the hardware of modern computers in light of these trends.

Hardware designers may already realize the importance of testing machines by putting them under a more

realistic environment. However, the difficulty and expensive cost of the experimental methodology restrains

designers from doing it. To overcome this problem, an efficient method of evaluating the system

performance under a multi-tasking environment has been proposed by Uhlig,

et al.

, which is termed “

trap-

driven simulation”

 [Uhlig94a, Uhlig94b]. In this study, we extended this new method to a different but even

more popular hardware architecture and collected some interesting results.

In order to emphasize the multi-tasking environment, we incorporated the operating system (OS) because

the OS is primarily responsible for managing processes. We instrumented the OS and allowed more than one

process to run in the system at one time. While these processes were running, we collected some statistics

and also did simulations for hardware components of interest. With this experiment, we can examine various

hardware design options and suggest a better one for computer designers.

i. When a program is running, we call it a “process”.
ii. “active” refers to the process that is using the CPU at the moment.

2 / 27

In particular, we studied a hardware component that is most likely to be affected by the multi-tasking

environment: the translation look-aside buffer (TLB). The purpose of the TLB is to speed up the virtual-to-

physical address translation for the virtual memory system by storing the most recently used translation

information for a process. Because accessing information from this TLB usually takes one clock cycle, if

this buffer can capture the majority of the translation information most of the time, the performance of the

system will be greatly enhanced. However, since, as indicated above, the hardware designers configure their

TLBs according to single-process experiment, the TLBs may not be able to function well as expected in a

multi-tasking environment.

The architecture we are working on in this study is the Intel i486 microprocessor, which has an on-chip

32-entry TLB, organized in 4-way set associative [Intel92]. The i486 microprocessor is unique because its

TLB is managed by hardware instead of software, as is the case with previous study [Uhlig 94a]. In addition,

the Intel i486 based machine has shared a significant portion of personal computer market, where there are a

large amount of software available, including multi-tasking programs, such as Linux and Window 95.

Therefore, this work explores the performance of the i486's TLB in supporting the address translation

under a multi-tasking environment we built. To measure performance, we implemented a trap-driven TLB

simulator in Mach 3.0, a microkernel operating system, on an i486-based personal computer. Moreover, to

magnify the importance of address translation, we did not use simple test programs, such as SPEC92, which

are usually used to evaluate system performance. Instead, we developed client-server style workloads that

stress the TLB by switching between several tasks frequently. This report discusses the implementation of

the TLB simulator and presents the results from these test workloads.

The organization of the remainder of this report is as follows: Section 2 outlines related work. Section 3

describes the design of the trap-driven simulator. Section 4 presents the preliminary results and analyses of

our experiments. Section 5 presents some concluding remarks and proposes of our future work.

2 Related Work

Because this work is an evaluation of hardware performance under a multi-tasking environment, previous

similar studies focusing on hardware performance under such environments deserve review. In addition,

because the experimental method used in this work is critical to the success of this kind of evaluation,

previous studies involving similar methods are also reviewed here.

2.1 Similar Multi-tasking Ev aluations

Only in the last ten years have researchers begun to study hardware performance under multi-tasking

environments or comparable software structures. In these recent studies, two kinds of software structures are

commonly investigated: (1) a new-generation operating system, such as a microkernel OS and (2) a new

application, such as X window and multi-media applications. In these studies, furthermore, the evaluation of

hardware performance is primarily focused on memory system performance.

Studies of a microkernel OS, such as Mach 3.0, have consistently demonstrated that cache and TLB

misses occur more frequently with the microkernel OS than with traditional OS structures [Chen93a,

Nagle93, Nagle94]. A miss is, simply, an event which caches or TLBs do not contain the data requested by

central process unit (CPU), and therefore CPU has to spend more clock cycles to get the data from main

memory. The more misses are, the worse the cache and TLB performance is degraded because the purpose

of the cache and TLB design is to satisfy most of the CPU’s data requests to avoid expensive main memory

3 / 27

accesses. As an example of TLB performance studies, Nagle found that this higher frequency of misses is

primarily due to the division of the microkernel OS into more subsets-or, more address spaces-than are

found in traditional OS structures. As a result, the path of invoking an OS service becomes longer, which, in

turn, stresses the cache and TLB more than does the traditional OS structure.

Studies of both X window and multi-media applications showed that these multi-tasking workloads

degrade TLB performance considerably [Chen93b, Chen94]. This degradation occurs because these new

applications consult servers or OS services more frequently than do the traditional benchmarks. Meanwhile,

switching process contents between the applications and the servers prompts a purging of the TLB content,

to ensure the address translation valid. This purging will disallow the TLB to be fully utilized.

2.2 Similar Experimental Methods

To evaluate hardware performance under multi-tasking environments, we need tools that are capable of

monitoring system activities with minimal disturbance to the system under analysis. The most common

monitoring tools are code annotation systems such as

pixie

 [Smith91]. These are purely software-based

because they work by inserting monitoring code directly into executable images of programs. This process

of inserting code is called “annotation.” When the annotated program is executed, the inserted code can

record program activities into a predetermined file for post-analysis.

 In addition to purely software-based tools, hardware-assisted tools for monitoring system activities also

exist. For example, Nagle

et al.

 [Nagle92] have developed a monitoring tool by combining a logic analyzer,

which is a hardware item, with an instrumented OS kernel, which is a software item. This monitoring tool

probes the system bus and records the system statistics in its own buffer. Because it directly probes the

system bus, this tool is capable of collecting system activities completely. However, once the tool’s buffer

becomes full, the system under investigation needs to be stalled so that the buffer contents can be “dumped”

to files. This dumping is necessary, on the one hand, because otherwise the system statistics cannot be

collected. On the other hand, the stall is detrimental to the experiment because it discontinues the system

execution and therefore distorts the system behavior. Unfortunately, the tool’s buffer is usually small,

compared to the amount of system statistics collected during program execution; thus, stalls occur frequently

and the system under measurement is distorted by the experiment.

The tools mentioned above, both those purely software-based and those that are hardware-assisted, have

some important shortcomings. Although it monitors applications adequately, pixie only works well in

monitoring single process activity and cannot capture events produced in an OS, because it is very hard to

annotate the operating system. Nagle’s tool requires both a large buffer in the monitoring tool and a method

of stalling the system completely and correctly. These are serious shortcomings if multi-tasking

environments are to be studied. To study the multi-tasking environment, we must be able to both monitor OS

activities and keep the system functioning undisturbed (not stalled) as much as possible. A limited sized

buffer and, therefore, the necessity of frequent system stalls inevitably changes the system behavior.

To overcome these shortcomings, Uhlig et al. [Uhlig94b] developed a trap-driven simulator, called

Tapeworm

, that can capture events during operating system activity efficiently and correctly. Furthermore,

these events can be processed on-the-fly, thereby avoiding the need for buffering and stalling. Tapeworm,

moreover, is purely software-based. It does simulation by setting traps on all memory locations in the

workload's address space that correspond to the events under study. Therefore, each time any of those

memory regions being trapped is accessed, Tapeworm can be aware of it because a trap occurs. Within each

trap, Tapeworm may set or clear traps again on the accessed memory place to control the progress of the

4 / 27

experiment. Because Tapeworm is capable of capturing multi-tasking and OS kernel activities, we modified

it into the monitoring tool for our work.

This work extends previous work using Tapeworm. In the work of Uhlig et al., Tapeworm was used to

study instruction caches and software-managed TLBs in MIPS R3000-based systems. Implementing

Tapeworm on i486-based machines, which employ hardware-managed TLBs, represents a new area of study

that will also (1) demonstrate the portability of the Tapeworm and (2) allow us to compare the performance

of Tapeworms on different underlying hardware platforms. In addition to that, as the most popular general

purpose machine, i486-based machines support more intensively interactive workloads than do MIPS

R3000-based machines. These workloads are requiring more operating system services because they do

more input/output activities, but the performance of these workloads on the i486 machines are still unknown.

An third contribution of this study, therefore, is to give initial performance evaluation for these interesting

and frequently more popular workloads.

3 Experimental Method

We tested our trap-driven, Tapeworm-based TLB simulator on a Gateway 2000 i486-based personal

computer with a Mach 3.0 operating system. Using this trap-driven TLB simulator, we can count the number

of TLB misses and hence evaluate the TLB performance and design trade-offs in TLB structures under a

multi-tasking environment.

In this section, we describe our Tapeworm-based experimental method in detail. First, we describe the

software environment of our experiments, which is composed of several user-level programs and the

underlying operating system, Mach 3.0. Because Mach 3.0 is the very program which makes the multi-

tasking environment in our experiment sophisticated, we focus on explaining its structure in the section

below. In particular, we describe its module and data structure that we used for our experiments, namely

PMAP and

pv_list

. Second, we discuss the hardware environment of our experiments. We focus primarily on

the memory management unit (MMU) of the i486 microprocessor. In particular, we discuss the i486’s two-

level page table structure and hardware-managed TLB.

After having described our software and hardware experimental environments, we explain the Tapeworm

algorithm in detail. Lastly, we mention some problems we encountered when we were implementing

Tapeworm on our i486 machine and propose some solutions.

3.1 Mach 3.0 Micr okernel

Mach 3.0 represents a new generation of OS, which is called “microkernel,” as opposed to the traditional

monolithic OS, such as UNIX BSD. In this section, we first describe the structure of a microkernel OS by

using Mach 3.0 as an example. Then we describe those module and data structure in Mach 3.0 which we

used for our experiment, the PMAP module and the

pv_list

 data structure.

3.1.1 Monolithic vs. Micr okernel

In the traditional operating system design, all the OS related codes are implemented in a single address

space. This way of implementation is rather straight-forward and allows programmers to easily begin writing

the codes. However, as the OS is required to provide more and more functions and services, the OS code

grows huger and may contain several times the amount of code it initially may have had. This growth makes

5 / 27

the OS hard to maintain. Thus, the need for a new implementation of OS codes has become paramount to

programmers.

To solve this maintenance problem, OS programmers have tried to make the OS system more structural.

One of these attempts is the microkernel operating system. Microkernel not only provides the benefit of

lower-cost maintenance of huge operating systems, but it also provides a more powerful protection

mechanism and is more suitable for distributed computing environments. However, the related issues of

constructing OS in a microkernel is beyond the concern of this work, so we would like to refer readers to

some relevant reports rather than to give detailed discussion here. [Rashid 89]

A typical example of the microkernel is Mach 3.0 [Rashid 89]. Mach 3.0 exports and implements a small

number of “essential” abstractions that include inter-process communication (IPC), threads, and virtual

memory. Mach 3.0 moves higher-level operating system services, like the UNIX server and the MDOS

server, to separated address spaces, usually user address spaces. Under this OS structure, a user program

running under Mach 3.0 may contact the UNIX server, which is in another user address space, through the

Mach kernel's IPC facility.

3.1.2 The module f or handling ph ysical mapping—PMAP

To allow for wide use with as many different computer architectures as possible, Mach 3.0’s virtual

memory system is partitioned into machine-independent and machine-dependent layers. Most of the virtual

memory modules are implemented in the machine-independent layer so that they do not need to be modified

while being implemented on different machines. This easy portability makes the OS more marketable, as it

can easily be adapted to various hardware architectures.

In contrast, the dependent layer is machine-specific. The dependent layer of the virtual memory system is

contained in the PMAP module, which handles all virtual-to-physical address translations [Rashid88]. The

PMAP module creates a unique

pmap

 data structure for each task

i

. Every

pmap

 data structure also has its

own unique handle number, which—if it can be detected—can be used to determine the active task address

space. The

pmap

 data structure carries the virtual-to-physical address translation information for the

corresponding task. To manipulate the address translation information, the PMAP module provides the

interfaces

pmap_create, pmap_destroy,

and

pmap_enter

.

Pmap_enter

is the only interface through which the

page table entries (PTE) can be changed, and all PTE modifications can be intercepted at this interface. In

our work, Tapeworm is a separate code module hooked on to

pmap_enter.

3.1.3

pv-list

 data structure

The PMAP module also provides another useful data structure for Tapeworm,

pv_list

, which records the

inverse address translations, namely, the mappings of physical-to-virtual pages. By going through

pv_list

,

Tapeworm can easily find all valid PTEs and then set traps on these physical pages.

3.2 Intel i486 Memor y Management Unit

Intel’s i486 microprocessor is already a very popular microprocessor used in numerous personal

computer models. The i486’s design goal is to easily accommodate single-user, multi-processing computing

environments at compatible performance levels. For this goal, it has a built-in memory management unit

(MMU) to effectively support the virtual memory system of the OS. In this section, we explain the

i. In Mach 3.0, “task” is synonymous with “process.”

6 / 27

mechanism the i486 provides for virtual memory system, which is called “two-level page table.” Also, we

describe an additional microprocessor component the i486’s MMU uses to speed up this mechanism, which

is the on-chip, translation-look-aside buffer (TLB).

3.2.1 Two-level pa ge table

The i486 provides a paging mechanism to support virtual memory multi-tasking operating systems. The

i486 uses a page table to translate virtual addresses to physical addresses. This page table is hierarchically

composed of three components: the

page directory

, the

page tables

, and the

page frames

. Every virtual

address requires two-level translation to get its corresponding physical address, i.e. from the

page directory

to the

page subdirectories

 and from the

page tables

 to the

page frames

. Therefore, this page table is

considered two-level page table. (Figure 3.1) All memory-resident elements of this page table are the same

size, 4k bytes.

3.2.2 Hardware-mana ged TLB

To speed up the virtual-to-physical address translation, the i486’s MMU employs a hardware-managed

TLB to cache the address translation for the most recently accessed pages. This TLB has 32 entries that are

organized as 8 sets with 4-way set associativity. The i486’s TLB does not distinguish code and data address

translations; it does not reserve special room for kernel address space; and it does not use process identifiers

(PID) to distinguish address spaces. If a TLB miss occurs, the central process unit (CPU) will search for the

corresponding mapping entry in the page table and place it directly in the TLB without informing the OS.

The OS, however, may modify a page table associated with an active process as result of either swapping

pages, writing pages, or changing page protections. If the OS modifies a page table, it has to flush the TLB to

maintain consistency between the TLB and the page table. To flush the TLB, the OS needs to reload a

process’ page directory base address into a control register in the CPU (Fig 3.1) to invalidate all TLB entries.

Because the OS may modify the page table frequently, this flushing TLB can occur many times during a

program execution in the i486.

3.3 The Trap-Driven TLB Sim ulator—T apeworm

Since the i486’s TLB is managed by hardware, all TLB misses are viewed as hardware events that are

transparent to software. In spite of this, some operations, such as a page fault, can help expose TLB misses

to the OS. The basic idea with Tapeworm is to force a page fault happen on each TLB miss so that all TLB

misses are visible to the OS kernel. To do this, all pages are first marked invalid except those pages whose

PTEs are held in a specific kernel-controlled data structure. We use this specific data structure to simulate the

TLB, and can vary the size, set associativity, etc., of this emulated TLB structure for different study

purposes.

The i486’s page table entry (PTE) is a one-word item (32 bits) and is organized as shown on Fig. 3.2. The

lowest bit of the PTE is the Present (P) bit, which indicates whether this PTE is valid or not. When a TLB

miss occurs, hardware automatically searches the page table for the PTE corresponding to this missing

virtual address. To recall, a miss is an event which the TLB does not hold the data requested by CPU. If the

P bit of this PTE is 1, this PTE is valid, the hardware simply stores this PTE into the TLB and resumes

normal execution. All of these actions are invisible to the OS. If the P bit is 0, the PTE is not valid, which

indicates the page pointed by this PTE is not residing in the physical memory and a page fault exception

needs to be generated. In a page fault exception, the OS is responsible for bringing in the faulting page from

7 / 27

the “backing storage,” which is usually a disk, and setting the P bit of the corresponding PTE to 1. OS may

also be required to evict a page to make room for the incoming page. In a word, the P bit serves as a

coordinating point for the hardware and the operating system in the management of the virtual memory

system. (Fig. 3.3)

Level-1

Level-2

Virtual
Address

DIRECTORY PAGE TABLE OFFSET

+

+

+ ADDRESS

CONTROL REG

DIRECTORY

PAGE TABLE

0

31

10

0

31

10

031

0

31

12

12

22

PHYSICAL MEM

BASE ADDRESS
of the PAGE DIRECTORY of a PROCESS

CPU

PAGE FRAME

Fig. 3.1 The i486 tw o-level pa ging mec hanism

P
R

W

U

S

P
W
T

P
C
D

AD0OS
RESERVEDPAGE FRAME ADDRESS 31..12 0

012345678910111231

P: Present 	 	 	 	 	 PWT: Page Write Through
R/W: Read/Write Protection	 	 	 PCD: Page Cache Disable
U/S: User/System Protection	 	 	 A: Access	 D: Dirty

NOTE: The Bit 9 is used as the TapeWorm (TW) Bit

Fig. 3.2 The i486’s page table entr y (PTE) format

8 / 27

To implement Tapeworm, however, we need two bits in the PTE for coordination because three entities

work together now, which are the hardware, OS, and Tapeworm. P bit is one of these two coordinating bits;

the other one can be obtained from one of the three OS reserved bits as shown in Figure. 3.2. We will refer to

it as the TW bit in this work.

The P bit is now used to indicate if the PTE is valid in the emulated TLB, while the TW bit is used to

indicate if the PTE is valid in OS. Table 1 is a summary of all the possible statuses of a PTE and its page. In

TW
Bit P Bit Status Description

0 0 Invalid PTE is invalid both in Tapeworm and in the OS. Its page is in the backing storage, and not
present in physical memory

0 1 Forbidden This PTE is not allowed because its page is in the emulated TLB but not present in physical
memory, which is not realistic.

1 0 OS_valid PTE is invalid in the Tapeworm, but it is valid in the OS. Its page is in physical memory, but
not present in the emulated TLB

1 1 TW_valid PTE is valid both in Tapeworm and in the OS. Its page is both in the emulated TLB and in
physical memory

Table 1: Page status in Tapeworm

Hardware TLB Physical Memory Disks

P

1

Virtual
Address

H/W TLB miss
Page Fault

Trap into
OS & Tapeworm

P=1 P=0

PTE

PTEs

PTEs

1

0

Fig. 3.3 The i486’s suppor t for vir tual memor y

9 / 27

such a scheme, when a miss occurs in the hardware TLB, i486 hardware controller will fi rst examine the

emulated TLB for the missing PTE. If this PTE is absent in the emulated TLB, its P bit must be 0. It means

this page status must be Invalid or OS_valid. Since P is 0, this missing PTE will cause a page fault exception

into OS. Tapeworm will be invoked at this moment and check the TW bit of the missing PTE. If its TW bit is

1, it means the page status is OS_valid, and Tapeworm can bring this PTE into the emulated TLB directly

from the physical memory and do some replacement if necessary. Otherwise Tapeworm passes this faulting

event to the OS kernel for handling because it is a true page fault. (Fig. 3.4)

When implementing Tapeworm, it is necessary to keep track of the number of TW_valid PTEs in the

entire system for the emulated TLB. As mentioned in Section 3.1, we can achieve this by monitoring

pmap_enter

 activities. If

pmap_enter

 validates a new PTE, Tapeworm must put this new PTE in the

emulated TLB and possibly replace some other TW_valid PTE, if this is necessary to create space.

3.4 Some Pr oblems with Implementing Tapeworm on i486 Mac hines

We encountered three problems listed below when we implemented Tapeworm on an i486 machine. We

solved some of these problems, and have some suggestions for solving those remaining.

• Simulating the replacement policy

• Invalidating kernel address pages

• Counting the total instructions executed

Hardware TLB
Emulated TLB
(part of Physical Mem)

Physical Memory Disks

P
T
W

11
1 1

01

1 0
Virtual
Address H/W TLB miss

Emulated TLB
 miss

Page Fault

Trap into
OS & Tapeworm

P=1 P=0

TW=1 TW=0

PTE

PTEs

PTEs

00

Fig. 3.4 Tapeworm on the i486

10 / 27

3.4.1 Simulating the replacement polic y

By using underlying hardware, Tapeworm filters out hits in the emulated TLB and processes only the miss

events. Because of this filtering capability, Tapeworm is much faster than other approaches [Uhlig94b].

However, because Tapeworm records only the miss events, its record of workloads (tasks processed in the

TLB) is incomplete. Thus, it cannot simulate those replacement policies which depend on the full history of

references, such as the least-recently-used (LRU) algorithm. Fortunately, most modern microprocessors’

TLB designs do not depend on the LRU algorithm but on a pseudo-LRU replacement policy, which

Tapeworm can simulate. This replacement policy is simpler and much less expensive for implementation

because it does not need the full reference history. Furthermore, this pseudo-LRU policy can still perform

well because it does not throw away the most recently used entry.

The i486 adopts the pseudo-LRU as the replacement policy for its TLB and on-chip cache. Specifically,

for each set of the TLB it uses only three bits to identify the most recently used entry and the entry to be

likely replaced out (Fig. 3.5). (in contrast to an LRU policy, which uses six bits).

To simulate this pseudo-LRU policy in Tapeworm, we chose one of the members in each set as the not-

most-recently-used (NMRU) candidate for that set. We labeled this selected member “victim.” As long as we

guaranteed the victim is a NMRU, we could replace it whenever an entry slot of the emulated TLB needs to

be reclaimed. To ensure that the victim was NMRU, we set a trap on the victim. When the victim was

referenced, we caught this reference by a fault exception, and then cleared its trap and selected another entry

from the same set as the new victim. For example, suppose the emulated TLB is N-way set associativity, one

entry of each set is set a trap on while others are not. If a fault occurs on the victim, we exchange any one of

Fig. 3.5 The i486’s pseudo LR U replacement polic y

Are all four PTEs in the set valid? Replace non-valid PTE
No

Yes

Bit0 = 0 ?

Bit1 = 0 ? Bit2 = 0 ?

Yes YesNo No

Replace
PTE #0

Replace
PTE #1

Replace
PTE #2

Replace
PTE #3

NOTE: The TLB is 4-way set associativity

Yes No

11 / 27

the N-1 entries of the same set with that victim. Through this way, we can guarantee that next time when a

new PTE is claiming a slot, the victim entry is absolutely not the NMRU (Fig. 3.6).

Another way to emulate the pseudo-LRU replacement policy is as follows. Every valid PTE of the i486

has an Access (A) bit. Whenever the CPU accesses a PTE, it will set the A bit of that PTE. Tapeworm could

periodically clear the A bits of all PTEs in the emulated TLB by using the clock interrupts. By determining

an appropriate length for the interrupt period, Tapeworm can keep sufficient history of references. Then it

can tell which entries of the emulated TLB were not referred during the last period, and, hence, can

determine which entry should be replaced out. This method, compared to the one mentioned just above, has

fewer fault exceptions because all of the emulated TLB entries are not set traps on. However, it may

introduce another overhead, periodically clearing the A bits of all the emulated TLB entries. Moreover, this

method may not be applicable for the Tapeworm-based cache simulator if the emulated cache data structure

does not provide such an Access bit.

3.4.2 Invalidating the kernel pa ges

When Tapeworm was implemented, furthermore, some faulting memory addresses were not restartable.

Hence some kernel pages cannot be set traps on. At each time when Tapeworm begins, all the page frames in

the physical memory should be invalidated first in order that the emulated TLB can work c