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4
the communication system from the modulator input to the demodulator output
as an I-user interference channel [Gam 80].

We assume that each receiver is able to hear the transmissions of each of the
I transmitters. Each receiver does not attempt to dehop and demodulate signals
other than its own. The signal of each user is, however, present in the front end
of each receiver and is a potential source of interference. An example of this is a
satellite multiple access broadcast system or a fully connected network. Thus the
interference traffic level will be the same at each receiver in the network, which
makes the component channels for all user pairs be identical. We thus assume
that exactly the same code is used for all user pairs in the network.

The users are assumed to transmit data in fixed-length packets, and the
packet may consist of several codewords. In this thesis we will assume that a
“packet” consists of exactly one codeword from the code. This provides us with
a natural definition of a “successfully transmitted packet”: A packet is declared
successfully transmitted if the number of errors and/or erasures occuring due to
multi-user interference is within the errors-and-erasures correcting capability of
the code.

In our model of a frequency-hop radio network, there is a band of ¢ frequency
slots available and each user pair has a frequency hopping pattern that randomly
hops among all ¢ frequency slots with probability 1/q for each slot independent
of previous hop frequencies (i.i.d. hopping). In each hopping time-slot, N, code
symbols are transmitted using a common type of modulation whose spectrum
falls within the specified frequency slot. In general, frequency hopping for the
terminals in the network can be either synchronous or asynchronous. The re-
quirement for synchronous frequency hopping is that the hop intervals from all of
the transmitters in the network must be aligned at each receiver in the network.

The term asynchronous frequency hopping is reserved for the situation where
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this requirement is not met. We also assume that packet time slotting is em-
ployed, that is, time is divided into intervals called packet (time) slots, and each
packet transmission must take place wholly within a packet slot. The conditions
required for slotted transmission are much less strict than the requirements for
synchronous frequency hopping: Because the packet slot size is typically one to
three orders of magnitude greater than the hop size (hop duration time), it is
considerably easier to implement a slotted packet transmission system than to
synchronize the frequency hopping among all of the terminals in the network.
In particular, a guard time of a few percent of the packet length is sufficient to
permit slotted operation in the Eacket radio network, and therefore represents a
small degree of added overhead.

Whenever two or more code symbols from different radios are transmitted
simultaneously in the same frequency slot, we say a “hit” occurs. Suppose two
packets are transmitted in the same packet slot on two different hopping patterns,
and consider a single symbol from one of them. The probability that the other
packet has symbol transmitted in the same frequency slot at any time during
the transmission interval for that symbol is called the probability of a hit and is

denoted by p,. It is known that p, can be calculated as [Ger 82]

[1 + 1.\1,_6(1 - %)] , asynchronous frequency hopping
Pr =

1
? (1.1)
ql, synchronous frequency hopping,

where N, is the number of code symbols per hop. If there are I simultaneous

transmissions, the probability of a particular symbol being hit is
pry=1-(1-py)L (1.2)

Since each receiver can hear the transmissions of all I transmitters, the proba-
bility of a particular symbol being hit will be the same at all receivers, namely

prr- We will assume that the background noise power is small compared with
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solved. Raychaudhuri [Ray 81) presented analytical techniques for performance
evaluation (such as steady-state throughput, delay) of slotted ALOHA CDMA

systems. In [Wie 83], [Wie 86] a distributed reservation scheme for SSMA chan-

nels has been introduced and analyzed.

1.4. Thesis Outline

In this section we briefly outline the remaining chapters of this thesis. In
chapter II, several performance measures of the multiple-access capability which
are to be discussed throughout this thesis are stated. Those are the channel ca-
pacity, the achievable region, and the throughput. In brief, the channel capacity
is the maximum average amount of information that can be transmitted over the
channel with the best possible code. The achievable region is the set of all code
rate, channel traffic pairs such that it is possible to have the packet (codeword)
error probability to be less than a desired error probability. The throughput is
the average number of successful transmissions that can take place within the
range of a given receiver.

Chapter III is concerned with the multiple-access capability of a frequency-
hop packet radio network which utilizes Reed-Solomon coding. Reed-Solomon
(RS) codes are employed to correct the errors and/or erasures occurring due to
multi-user interference. If the receiver can detect the presence of interference
in the same frequency slot in which the signal of interest is present (side infor-
mation) and erase the corrupted channel symbols, the unique erasure-correcting
capability of the RS codes can be exploited. In general, an (n,k) RS code can
correct up to e 2 n — k erasures out of n symbols or up to ¢ 2 |(n —k)/2] errors
out of n symbols: this is the best value of e and ¢ that can be achieved by any

code of the same block length and rate. This is often a strong justification for
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using RS codes. For both the perfect side information and no side information
cases, we derive the achievable regions of code rate and channel traffic, and the
optimal code rate and optimal channel traffic at which the normalized through-
put is maximized. From these optimum points we derive the maximum possible
throughputs, and compare them with the corresponding channel capacities. It
is found that for the perfect side information case, the maximum sum capacity
(defined in section 2.2) is achieved by the optimal rate RS code with bounded dis-
tance decoding. However it is shown that the maximum (normalized) throughput
achievable without side information is only 39.3% (worst case) of that achievable
with perfect side information. The loss in using Reed-Solomon codes in a no side
information environment is partially due to the use of a non maximum likelihood
decoder (i.e., bounded distance decoder).

In chapter IV, we investigate a technique for obtaining the side information.
This is done by partitioning the data stream into blocks, encoding each block
using an error-detecting code, and transmitting the encoded block (codeword)
during a single hop. On the basis of the received version of the codeword the
decoder makes a statistical decision about which of the channel states (Ait or
no hit) each codeword was transmitted over. Clearly, as the rate of the error-
detecting code decreases, the error detection capability increases, therefore the
reliability of side information obtained will increase. However, decreasing the
code rate implies a decrease in the efficient use of the channel. An interesting
question that arises from this discussion is “How does the reliability of the side
information change as the code rate changes?”, or “What is the maximum allow-
able code rate to obtain a certain reliability of the side information?”. In this
chapter we give the answer to the above question for both the synchronous and
asynchronous frequency-hopping systems.

The combination of encoder, channel, and decoder generates in general an
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there is on‘ly one intended receiver for each transmitter, nor is it a multiple ac-
cess channel because each receiver is only interested in what is beiﬂg sent by the
corresponding transmitter.

The I-user interference channel is characterized, in general, by (X; x X; x
o X X1, Py, Yz, ooayr | 21, 22,0, 20), Vix Vo x -- x Y;) consisting of 27
finite sets X, X,,--+, X1,Y1,Ys, -+, Y7 and a collection of conditional probability
distributions P(-,+,~-+,- | z;,23,---,2;) on Y} X ¥; X --- x ¥}, one for each
vector (z1,Za,+-,zr) where z; € X1,2; € X3,--+,z; € X;. Here z,,z,--, 21
are inputs to the channel and y;,y;,---,ys; are outputs from the channel (see
Figure 1.1). In our interference channel model, X; = X; = --- = X and
Yi=Y,=---=Y].

Using Sato’s terminology [Sat 77], if the marginal transition probabilities

P(y; | 1, %3, -+, zr), do not depend on z;, i # j, i.e.,
P(yj Izlaxb' ‘ ',II) = P(y) lr'j), J = 172,' * ':Iv (21)

then the interference channel is called “separated”. The interference channels
created by a specific frequency-hopping modulation will be characterized by the
marginal transition probabilities P(y; | z1, 22, -,21), 7 = 1,2,---,I. We will
show later how the marginal transition probabilities depend on the frequency-
hopping modulation (e.g. number of frequency slots, hopping pattern) and avail-
ability of side information. If the interference channel is separated, the individ-
ual channels characterized by P(y;|z;) are called “component” channels. In our

model the component channels for all user pairs are identical.

2.3 Capacity Region

In general, by the “capacity region” of any interference channel, one means the

set of all joint user rates such that it is possible to communicate with arbitrarily
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small error probability at any joint rate inside this set, but it is impossible to
do so at any joint rate outside this set. To define the capacity region for such
channels precisely, it is convenient to make use of the concept of the “achievable

rate”. An ((My,M,,---,M;), n) code for an I-user interference channel consists

of I sets of integers called the message set

Mj={1,2a"'3Mi}7 .7.:1:2""’]’ (22)

I encoding functions

and I decoding functions
g;: Y —-M;, 5=1,2,---,L (2.4)

Assuming an uniform distribution over the product message sets M; x M, x
-+» X M, i.e., that the messages are independent and equally likely, we define
the “average probability of error” for the jt* channel to be
1
P{V(e) = Mo > P(g;(yi) #mj | (m1, -+, my) sent),
1 I (my,ymr)€Mix-~xM;
(2.5)
where y; € Y.
We define the rate vector (ry,rs,- -+, rr) of an ((M,, M,,- -+, M), n) code by

log, M; .
r;= 3g-:7—i, i=1,2,---1. (2.6)

The rate vector (ry,rs,: - -,rr) is said to be achievable by an I-user interfer-
ence channel if, for any ¢ > 0 and for all n sufficiently large, there exists an

((My, My, -, M), n) code with
M, > 27 M, >2™3, .- [ Mp2>2™,

such that
Pl(")(e) < e, Pz(")(e) <€ ee, PI(")(e) < €.
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The capacity region of the I-user interference channel is defined as the set of all
achievable rate vectors in the (ry,rs,- - -, r;)-space.

Notice that the notions of achievable rates and capacity region depend only
on the marginal transition probabilities of the channel, P(y; | z,, z,- -+, z;), and
not directly on the joint conditional probability P(y1,y2,---,yr | z1, Z,- - yZr).
This is because the average probability of error PJ-(")(e) ( =1,2,---,1) depends
only on the corresponding marginal probability

Pi(y; | 1,22, ,z1) = E Py, vz, - ur | 1, 22, -+, 24). (2.7)
Ve k]
From this, we can conclude that the capacity region is the same for all I-user
channels that have the same marginal probabilities.

The capacity region for the interference channel is not, in general, known,

but various inner and outer bounds have been developed for it [Ahl 71}, [Sat 77].

However, if the channel is separated, i.e.,
Pi(y; | 21,22, -y z1) = Bi(y; 1 z5), 7=1,2,---,1, (2.8)

then using the properties given in [Sat 77] it can be shown that the inner bounds

and the outer bounds coincide, thus giving us the capacity region:
{(1’1,7'2,---,1'1) : OSTJ‘ <Cj(I)}’ (29)

where

Cy(1) = maxq,I(X;; Y;) (2.10)

is the capacity of the 7*» component channel which is described by (X, P(y;|z;), Y;).
This implies that the capacity regions of the separate interference channel are
determined by the individual channel parameters only. Reducing the rate of one
user is of no benefit to other users.

The sum capacity, Coum(I), is defined as the largest possible total rate that
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can be achieved by all users, and if the channel is separated

C,um(I) = male...Ql E§=1 I(XJ 3 Y;)
= ¥l.ymaxq I(X;;Y);) (2.11)
= 5:1 CJ(I)

2.4 Achievable Region

In the previous section we have considered the performance achievable with
the best possible codes, i.e., the capacity region. The coding theorem guarantees
the existence of codes, but does not provide any criteria for construction or
selection of such codes. The capacity region is a property of a channel. This
section and the next section are focused on a coding viewpoint. We assume that
all encoders have same rate and are identical. We first consider an achievable
region of a family of interference channels with a family of codes. The achievable
region is defined as the set of all code rate (r), channel traffic (I) pairs such
that there exists a code with rate r and codeword error probability less than
some desired value, PE, for I users (packet transmissions). The codeword error
probability is the probability of the number of errors and erasures occuring in the
received sequence being greater than the correcting capability of the code. The
set of all (r,I) such that the codeword (packet) error probability is less than Pg
is the “Pg achievable region”. The requirement for Pz on the individual links is
closely coupled to the system delay: a larger packet error probability implies that
a larger number of retransmissions will be required, and this implies increased
delay.

The effectiveness of a class of coding schemes on a given channel (i.e., given I)
can be measured by letting the code length become sufﬁciehtly large and compar-

ing the resulting maximum possible (maximized over all codes in a specific class)
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code rate for the codeword error probability to be less than an arbitrarily small
constant with the absolute maximum rate, i.e., the capacity. Many people have
been searching for practical realization of Shannon’s promises, but the search has
been difficult and only partially completed. In fact, the problem of finding an
explicitly constructable, practical sequence of codes for which the probability of

error approaches zero for all rates less than the capacity region remains open in

general.

2.5 Throughput

Throughput is a widely-accepted performance measure for a satellite packet
broadcasting system [Kle 76]. Basically, it is intended to be a measure of the
information flow in the neighborhood of an arbitrary terminal in the network. It
is defined as the average number of successful packet transmissions that can take
place simultaneously within the range of a given receiver. If the network is homo-
geneous in the sense that the interference traffic is the same at each receiver, the
codeword (packet) error probability given I simultaneous transmissions, Pg (1),
is the same for each packet, and the unnormalized throughput given I simulta-
neous transmissions, S(I), is the number of transmissions times the probability
of success; that is,

S(I)=1I-(1- Ps(I)). (2.12)

Notice that this throughput measure does not distinguish between packets ac-
cording to their destination. It is a measure of the multiple-access capability of
the modulation and coding technique which is divorced from the particular pro-
tocols being used in the network. A packet is correctly received if the number of
errors and erasures it encounters is within the correction capability of the code.

In order to make valid comparisons between frequency-hop and narrowband
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radio networks, it is necessary to normalize S(I) to give throughput per unit
bandwidth. If the code has rate r and the number of frequency slots is g, the

normalized throughput at traffic level I is

w(I) = rS(I)/q

(2.13)
= rlI(1- Pg(I))/q;

this is the total amount of information being reliably sent over the network
per unit time per unit bandwidth. As the code rate decreases, the amount of
bandwidth required (for fixed ¢ and information bit rate) increases so that the
normalization factor, r/q, decreases. However, the smaller the code rate the
greater the error and erasure correcting capability of the code. The larger error
and erasure correcting capability of the code tends to increase the unnormalized
throughput. These two competing factors cause there to be an optimum code
rate that maximizes the normalized throughput. Alternatively we can imagine
that for fixed ¢ as the number of transmitter-receiver pairs increase there will be
a decrease in the reliability of the information being transmitted. This is because
the chances of more than one user hopping to the same frequency slot, i.e. the
probability of a hit, are larger for larger I. On the other hand as the number
of user pairs increases, the total amount of information being transmitted is
increasing. From thisvdiscussion one is led to believe that for a fixed ¢ there
will be an optimum number of users simultaneously transmitting that maximizes
the normalized throughput. The values of I and r for which W(I) is maximized
is denoted by I, and r,, respectively. For frequency-hop radio networks with
error-control coding, the value of I,,; depends on the code and the bandwidth
used by the spread spectrum, but it is typically much larger than one. The
value of r,,; depends on the number of users simultaneously transmitting and
the bandwidth used by the spread spectrum. From these two optimum values

we can derive the maximum possible normalized throughput W,.,..
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maximum-distance-separable (MDS) code. Therefore, every RS code is an MDS
code and is optimum in the sense of the Singleton bound [Bla 83]. This means
that for fixed n and k, no code can have a larger minimum distance than a RS
code. This is often a strong justification for using RS codes. Furthermore, it
can be readily verified that shortening the block length of a RS code by omitting
information symbols can not reduce its minimum distance, and therefore any
shortened RS code is also an MDS code.

Another important property of a RS code is the fact that any k positions in
the codeword may be used as an information set. That is, given an (n, k) RS code
over GF (M), for any k symbol positions there will be one and only one codeword
corresponding to each of the M* assignments in those k positions. An important
and very useful consequence of this property is that it enables one to write down
the exact weight distribution for any RS code. The weight distribution {4;} for
a RS code or any MDS code defined over GF(M) having block length n and

minimum distance d,,;, is given by

j-dmin j —

=" -1 Y (-
J 1=0

: Mj—dmin"l, (3'2)

for dmin < 7 < n. Derivation of this weight distribution formula can be found in
Forney [For 66|, Berlekamp [Ber 68|, Peterson and Weldon [Pet 72].

From the above minimum distance property, an (n, k) RS code with bounded
distance decoding will correct up to e £ n — k erasures out of n symbols or up
tot 2 |(n — k)/2] errors out of n symbols. More generally, it will correct any

combination of ¢ erasures and 7 errors provided that 27 + ¢ does not exceed n—k.

3.2 Perfect Side Information

Since the RS code can correct twice as many erasures as errors, it can be
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expected that the multiple-access capability of frequency-hop packet radio net-
works is considerably enhanced if the receiver can determine which symbols in
the packet have been hit. This information, typically called side information,
is used in the demodulator and decoder to improve error control. The received
symbols that have been hit by other transmissions are erased in order to take
advantage of the powerful erasure correction capability of RS codes. An (n,k)
RS code can correct any pattern of n — k or fewer erasures.

We consider the spread-spectrum frequency-hopping model described in Chap-
ter I. If there are I users transmitting, we model it as an I user interference
channel. We assume that the background noise is negligible compared to the
signal power and perfect side information is available to the demodulator and
decoder. However, these assumptions will be relaxed in chapter V. The main pur-
pose of the present section is to examine the improved multiple-access capability

available through the use of frequency-hopping with perfect side information and

erasure correction.

3.2.1 Assumption 1: No Discrimination Against Partially Overlapping

Interference

We assume first that all symbols that have been hit, even if only partially over-
lapping in time (due to the asynchronous nature of frequency hopping process),
are detected and erased. When there are I simultaneous users the probability
that a particular symbol is hit is given by p, 1 (see {1.2)), The marginal transition

probability in this case is given by

1-pn1, Y5 =25
P(yjlzlv e P 731) =

Ph.Is yi =7
Since the 7** channel output does not depend on the symbols transmitted from

other users, the interference channnel is separated. The component channel
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» M-1

Figure 3.1: M-ary erasure channel.

model (seen by each user pair) will be an M-ary erasure channel with erasure

probability equal to pxs as shown in Figure 3.1.

Achievable Region

A given codeword (packet) is correctly received if the number of erasures
does not exceed the erasure-correction capability of the RS code. By the memo-
rylessness of the random hopping pattern, the hits at different hop durations are
conditionally independent given I. Thus the probability of correct codeword for

a bounded distance decoder given I simultaneous transmissions, P.(I), is given

by

n—k

P =% | " | s = par). (3.3)

=0\ g

Asymptotically, as n and k approach infinity while the code rate, r £ k/n, is
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held constant, it can be shown (see Appendix A) that

1, 1—-r> Dh1
Jim P(I)=1{ 05, 1—r=p,, (3.4)
0, l-r< Ph1I-

This implies that “error-free” communication is possible asymptotically provided

that the code rate is less than 1 — Phr, i€,

r<(1-pa), (3.5)
or equivalently
In(r)
I<1l4 ———, 3.6
In(1 — ps) (36)

This represents an asymptotic (n,k — oo0) achievable region of I and r for arbi-
trarily small error probability with perfect side information. The limiting value
for the asymptotic achievable region as both the number of users and the number

of frequency slots get large (i.e., I, g — oo with A = I/q held constant) is given

by

r<e ™, (3.7)
or
1. .1

A< ~In(=), 3.8
< Zin(}) (©5)

where

1, synchronous frequency hopping

n= (3.9)

1+ Nl;, asynchronous frequency hopping.
It can be easily shown that the capacity of the component channel shown in
Figure 3.1 is given by
C(I) = 1-pu;s
= (1-pa),
which is the same as the right hand side of (3.5). This implies that the capacity of
the channel with perfect side information can be achieved by the Reed-Solomon

code.
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this optimum code rate the optimum number of transmissions is given by

Lope = [In(1 = pn) "7, (3.20)

thus the limiting optimum value of the channel traffic per frequency slot, A 27 /4,
is

Aopt = 071, (3.21)

as ¢ — 00. At r,, and I, the maximum possible throughput, W,,,, becomes
Wimaz = 1/[ge(1 — pa) In(1 — ps)7Y, (3.22)

which approaches e~!/n for large enough ¢. This is also the asymptotic sum
capacity of the interference channel with perfect side information in information
symbols per channel use [Haj 83], [Heg 85]. Therefore it can be concluded that if
perfect side information is available, the asymptotic sum capacity is achieved by
the optimal rate Reed-Solomon code with bounded distance decoding. However,

this is not true if side information is not available as we will see in section 3.3.

Comparisions With Narrowband Slotted ALOHA System

For Poisson traffic model (the number of packet transmissions in a time slot
is given by a Poisson random variable) and slotted ALOHA [Tan 81} without
frequency hopping, the optimum average number of transmissions attempted
per time (packet) slot is 1. The throughput at this traffic level is e7!, and the
resulting packet error probability is 1—e~! which is approximately 0.632 [Abr 70],
[Tan 81].

For frequency-hop radio networks with error-control coding (RS code with

perfect side information) and Poission traffic, the normalized throughput can be
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derived as

w

i

I

n . . -
D v (1= (1= pa) (1 = p) )i €2

(3.23)

i

n . . -
RITEOTI | | (= (- V(1 - pa) ) S

ku sn-k | 7 -np\i(e—ns\n—j
™ h Zej=0 . (1 —€ )J(e 'w) 7,
J
as G,q — oo, while u = G/q is held constant. From (3.4), as n,k — oo while
A .
r = k/n is held constant, we can show that the summation term approaches 1 if

r < e”™, Therefore the normalized throughput becomes
W — pe ", (3.24)

as n,k,G,q — oo. The optimum traffic level can be shown to be n~! and the
throughput at this optimum traffic level is e~!/n: for synchronous frequency
hopping 7 = 1, and even for asynchronous frequency hopping 1 can be 1 asymp-
totically by forming each M-ary symbol from binary signals (e.g. BFSK) of
length log, M bits, and thus making N, = log, M in (3.9). Therefore, it can
be concluded that frequency-hop spread-spectrum modulation can be just as
bandwidth-efficient as narrowband modulation in the sense that for a given band-
width it can achieve the same throughput. However, for the narrowband ALOHA

! is achieved when the

system without frequency hopping the throughput of e~
packet error probability is 0.632 (which may be too large in practical system) and
with binary feedback, while for the spread-spectrum modulation it is achieved
with arbitrarily small packet error probability and without feedback. Error-

control coding can not improve the situation very much (if at all) in the nar-

rowband ALOHA system, because the symbol error probability is approximately
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more other users’ signals in the same tone position whose combined overlap at
the same or at opposite ends of the hop lasts for a fraction of a hop greater than
p. However, it is shown in Appendix B that as M becomes large, the probability
of the event that all users sharing the same frequency slot transmit distinct tones
approaches 1. Therefore if 7 denotes the amount of time overlap between the
tone of interest and that of an interferer, the probability of symbol erasure given

m hits, Pm, is given by

-~

P, = 1-[P(r<p)™
[P(r < p)] (3.25)
= 1-—p™.
Thus, by averaging over the number of hits we obtain the symbol erasure prob-

ability, p, s, given as

I-1 m I-1 m I-1-m
Pp1 = Zm.=l(]' - P ) Dh (1 - ph)
m (3.26)

= 1-(1-(1-p)pa)' 1.

The marginal transition probability in this case is given by

l=por, yj =z;

P(yj|zy, 22, 21) =
Py I, y; =7

- Since the 7** channel output does not depend on the symbols transmitted from

other users, the interference channnel is separated. The component channel

model is again M-ary erasure channel, but with erasure probability equal to p, ;.

Achievable Region

By following the same procedure as in subsection 3.2.1, we can show that
“error-free” communication is possible asymptotically provided that the code

rate is less than 1 — p,, i.e.,

r<(1-(1-p)p) (3.27)
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or equivalently,
In(r)

I<1+ )
In(1—(1-p)ps)

(3.28)

Throughput

By following the same procedure as in subsection 3.2.1, the asymptotic nor-

malized throughput as n and k approach infinity while r £k /n is held constant

can be shown to be

nk—o0 q 1—-(1-p)ps)

By optimizing over r, we get the optimum code rate, Topts Biven by

umlv=5(r+m( In(r) ). (3.29)

Topt = € (1 — (1 - p)pa) 7%, (3.30)

which for reasonable values of g is very close to e~!. At this optimum code rate

the optimum number of transmissions is given by
Iopt = [ln(l - (1 - p)ph)—ll—ls (3'31)

thus the limiting (I, ¢ — oo with A &7 /q held constant) optimum traffic intensity

per frequency slot, A,p, is given by
At = 1/[n(1 = 9)} (3.32)
At rop and I, the asymptotic maximum possible throughput, W,,.., becomes
Wiz = 1/[ge(1 = (1 — p)pa) In(1 = (1 = p)pa) 7Y, (3.33)

which approaches e™!/[n(1 — p)] for large enough ¢g. This is also the asymptotic
sum capacity of the interference channel as modeled by M-ary erasure component
channels with erasure probability, p, r, given in (3.26). We see that the ability to
discriminate against interfering signals results in dramatic increase in throughput

by the factor of 1/(1-p).
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3.3 No Side Information

We now assume that side information is not available at the demodulator,
thus it does not produce any erasure symbol, but instead makes an estimate
(hard decision) on the received signal. The demodulated symbols are fed into an
error-correction decoder. As long as there are no more than ["—;H errors, the

(n,k) RS code can correct them, where |z| denotes the integer part of z.

3.3.1 Demodulator Model 1: Worst Case

We assume that if a received symbol is hit by one or more symbols, then the
demodulator output is equally likely one of the M possible symbols, and if there
is no hit it is correctly received. That is, the conditional probability of symbol
error given hit is given by 1—1/M, and it is O given no hit. Thus the probability
that a received symbol is in error given I simultaneous transmissions, p.r, is
given by

Per=(1-1/M)(1 - (1 -py)' ). (3.34)

This is the worst case assumption in the sense of minimizing the capacity: The
minimum of the capacity of an M-ary channel is obtained when all the transition
probabilities are equal to 1/M, and the resulting minimum capacity can be shown
to be zero. Therefore, the resulting achievable regions and throughputs are
pessimistic results.

The marginal transition probability in this case is given by

1 = DPe I, Yj = I
P(yjlzla Ty azf) =

Pel> Yy; # ;.
Since the j** channel output does not depend on the symbols transmitted from

other users, the interference channnel is separated. The component channel
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Figure 3.5: M-ary symmetric channel.

model will be an M-ary symmetric channel with crossing probability De as

shown in Figure 3.5.

Achievable Region

When an (n,k) Reed-Solomon code is employed to correct the errors, the
probability of correctly decoding a codeword (packet) given I simultaneous trans-
missions, P.(I), with bounded distance decoding is given by

ln=k)/2] [

P()= X | |eh-pa). (3.35)
=0 J

Asymptotically, as n and k approach infinity while the code rate, r £ k/n, is
held constant, it can be shown that
1, 1-r>2p.;
lim P(I)=1{ 05, 1—-r=2p.; (3.36)

0, 1-r<2p.r.
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Throughput -

The asymptotic normalized throughput can be obtained from (3.17) and
(3.38) as
limp o W = I (1+ 5LE002))

In(1=pa) (3.45)

— Iin(%),

for large enough ¢. By optimizing over r we get the optimal code rate, rop
Topt = 0.4597. (3.46)

This asymptotic optimal code rate also seems to give a very good approximation
for finite length codes, even the length 32 codes. We can see from Figures 3.7 and
3.8 that the maximum normalized throughput is obtained by the (32,14) code and
(256,118) code: the optimum values of k obtained from the asymptotic optimum
code rate, 0.4597, are 32 x 0.4597 = 14.71 and 256 x 0.4597 = 117.68, which are
very close to the exact optimum values of k, namely 14 and 118 respectively.
At this optimum code rate the optimum channel traffic per frequency slot, Aopts
is

Aopt = 0.3148/7, (3.47)
which is also a good approximation for finite n and ¢q. At ro, and A, the

asymptotic maximum possible throughput, W,,,., becomes

Wonaz = 0.1448 /7, (3.48)

which is only 39.3% of that achievable with perfect side information.

We can also show that the asymptotic (I,g — oo0) maximum sum capacity
without side information approaches e™!/n as M — oo. The loss in using Reed-
Solomon codes is partially due to the use of a non maximum likelihood decoder
(i.e., bounded distance decoder). However, we will show in chapter IV that the

normalized throughput achievable with perfect side information can be achieved
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through the use of concatenated coding scheme, even though the channel provides

no side information.
3.3.2 Demodulator Model 2: Realistic Case

Notice that in the previous model we have not distinguished one hit from
more than one hit in the calculation of Pes- This can be taken into account as
follows. If two users hop to the same frequency slot at the same time, i.e. one hit,
the probability of symbol error is 1/2 if the two users have different symbol and
0 if they have the same symbol. If three users collide, i.e. two hits, the symbol
error probability is 2/3 if all three users transmit different symbols, and 1/2 if
two of the users transmit the same symbol but the third transmits a different
symbol, and O if they have the same symbol. This modeling is valid for the M-
orthogonal signaling, such as MFSK. Notice that the 7** channel output depends
on the symbols transmitted from other users. Therefore, the interference channel
in this case is not separated.

If each symbol is transmitted with equal probability, i.e., 1/M, then the
probability of symbol error for this situation with m hits, P,, can be derived as

(see Appendix B)

— 1 1 1y .1 -1
Py = Oy +3(1—-3) =:(57)
. 1 13(M~1 2 (M-1)(M-2) __ 4M3*-3M-1
P, =" 0 + 3300 + JRREY = 00y
3_2 2_M
Py = QM_mMS__
—  24M-15M3-10M3+1 3.49
Py = 30M* ( )
P = 10M3—6M4-—5M3+M
5 = 12M5 :

As M becomes larger, P,, becomes

Pp=m/(m+1). (3.50)
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to be
. = I[2=2(1-pp)f
= 1-emy -,

. A . o ..
as I,q — oo while A = I/q is held constant. By optimizing over )\ we get the

optimum channel traffic, A,

Aopt = In(2)/n = 0.6931/n, (3.54)

and the optimum code rate, Topt

= 2(1—eMopt)
ot = T T (3.55)
= In(e/2)/1n(2) = 0.4427,
and the asymptotic maximum possible throughput, Wp,,.
Waz = In(e/2) /n = 0.3069/1. (3.56)

However, the capacity region with this model is not known, because the channel
is not separated. Figure 3.10 shows the asymptotic normalized throughputs for

the perfect side information and no side information cases.
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CHAPTER IV

CONCATENATED CODES

4.1. Introduction

It has been shown in Section 3.3 that the maximum throughput achievable
without side information is only 39.3% (worst case) of that achievable with perfect
side information. This gives us a quantitative measure of the importance of side
information in improving the multiple-access capability of frequency-hop packet
radio networks.

One technique for obtaining the side information is to partition the data
stream into blocks of K digits and to encode each block into a codeword of
length N(> K) and to transmit the codeword during a single hop. On the basis
of the received version of the codeword the decoder attempts to detect errors in
the received sequence: if there are errors then at least one code symbol must have
been hit. However, not all error patterns are detectable, so there is a nonzero
probability of undetected error. If an error is detected then symbols transmitted
on that hop are erased, and if the error is undetected it results in an error.

A similar technique has been suggested by McEliece and Stark [McE 84] using
a test pattern. It is however a special example of the class of error detecting
codes considered in this chapter, and the underlying assumption in [McE 84] is

46
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that interference occurs in a whole block if it occurs: that is, the interference
during a hop remains the same throughout the hop. This assumption is very
restrictive, and certainly many real channels such as asynchronous frequency-
hopping multi-user systems do not have constant interference in the block. In
general, interference occurs partially during a hop.

One can expect that as the code rate decreases, the probability of undetected
error decreases and the probability of detected error increases because of the
increased minimum distance among the codewords. That is, the reliability of the
side information obtained from the code increases. However, decreasing the code
rate implies a decrease in the efficient use of the channel. An interesting question
that arises from this discussion is “How does the reliability of the side information
change as the code rate changes?” , or “What is the maximum allowable code rate
to obtain a certain reliability of the side information?”. In this chapter we give
the answer to the above question for both the constant and partial interference
cases.

The combination of encoder, channel, and decoder generates in general an
errors-and-erasures channel. The above encoder and decoder will be called later
an tnner encoder and inner decoder respectively. We employ an outer code to
correct the errors (caused by undetected errors) and the erasures (caused by de-
tected errors). In this way the inner decoder informs the outer decoder which
symbols (inner codewords) in the received packet have been hit by symbols from
other packets in the same time slot. We find that the normalized throughput
achievable with perfect side information can be achieved through the use of this
concatenated coding scheme, even though the channel provides no side informa-
tion. This chapter ends by evaluating the performance of diversity / RS code as

an example of the concatenated coding schemes.
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4.2. Concatenated Coding

The basi§ concept of concatenated codes for two levels of coding is illustrated
in Figure 4.1. This figure provides the general outline of a powerful class of codes
which were introduced by Forney in 1966 [For 66]. Information to be transmitted
is first encoded with an (n, k) outer code. The symbols from the outer encoder
are further encoded with an (N, K) inner code. Clearly, if the symbol alphabets
of the inner and outer codes are not the same, it is necessary to reformat the
data between the encoders for the inner and outer codes. At the receive side, the
demodulated data is first decoded with the inner decoder, and the symbols from
the inner decoder are then decoded with the outer decoder. The combination
of inner encoder, channel, and inner decoder is referred to as the super channel.
The alphabet sizes of the inner code and outer code are denoted as M; and M,
respectively.

Several characteristics of concatenated codes are evident from Figure 4.1.
First, the resulting concatenated code has overall length of nN channel symbols
(M;-ary) with kK information symbols per overall codeword and with code rate
rR = kK/nN, where R = K/N and r = k/n. Although the overall length
of the code is nN, the structure imposed by the concatenation concept allows
decoding operation to be performed by two decoders for codes of length N and
n, respectively. This allows a significant reduction in complexity over that which
would be required to provide the same overall error rate with a single level of
coding. The most natural choice for outer codes are the RS codes. This is
because the RS codes, being maximum-distance-separable codes, make highly
efficient use of redundancy, and block lengths and symbol sizes can be readily
adjusted to accomodate a wide range of message sizes.

The concatenated scheme we consider uses an inner code to correct or detect
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Achievable Region

Since an (n,k) RS outer code can correct t errors and e erasures provided
e+2t < n — k, for a memoryless channel of Figure 4.2 the probability of correctly
decoding a codeword (packet) is given by [Ber 80)

n !
P(I)= 3 Py PR(1— Py — Py)" -, (4.1)
+2m<n—k l, m
where

n A n!

Lm | Umlln—T—m)l
Asymptotically as both n and k approach infinity while the outer code rate

r& k/n is held constant, it can be shown (see Appendix C) that

1, r<l-—P;-— 2P,
Jdim P(I)=14 05, r=1-P,—2P, (4.2)

0, r>1-—P;—2P,,.

That is, “error-free” communication is possible asymptotically provided
r<1-—P;—2P,. (4.3)

This is the requirement on the outer code rate to have error-free communications.
To get the requirement on the overall code rate we have to multiply by the inner
code rate K/N. Thus the resulting asymptotic normalized achievable rate is
given by

rR < %(1 - P; - 2Pud)- (4.4)

For the case of finite block length codes, we can derive an approximation to
the maximum channel traffic and the maximum code rate for the packet error

probability to be less than Pg. It is shown in Appendix C that

VAl —r — Py — 2P,) )
\/Pd — sz + 4P, — 4P3¢ — 4P;P,q

P(I)= F ( (4.5)



52

By combining (4.5) with the constraint, Pg(I) 21~ P.(I) < Pg, we obtain

r<1—Py—2Pu—o/(Pi— P} + 4P,y — 4P%, — 4P;Py)/n,  (4.6)

where « is defined in (3.12). This is the constraint on the outer code rate for the
packet error probability to be less than Pg for a given inner code and the channel

(number of simultaneous transmissions). Thus the normalized achievable region

is given by

N

rR< J—V—[ —-Pd—2Pd——a\/ Pd—Pd +4Pud“4P24—4PdPud)/n]- (4.7)

Throughput

The normalized throughput with the concatenated coding scheme is defined

by

(4.8)

As both n and k approach infinity while r £ k/n is held constant, from (4.3) and

(4.8) the asymptotic normalized throughput is given by

im wo K IQ=Pi—2P)

n,k—oo N q

(4.9)

P; and P,y are determined by the inner code and the channel. Note that the
achievable regions and the throughput derived in this section are general enough

to be applied to any combinations of inner block codes and RS outer codes.

4.3. Error Detecting Code / RS Code

In this section we assume that the receiver does not have side information

concerning the presence of hit. However we try to get the side information by
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Figure 4.3: Component channel for a simple interference channel.

frequency of the signal affects the performmance. We assume that the hopping
pattern is essentially random, which makes the multi-user interference during a
hop be independent of the interference at other hop intervals.

In each hop we have two possibilities: hit or no hit. When the signal is hit
we have fixed bit error probability of 1/2 for all bits in the hop. When the signal
is not hit the entire bits in the hop are error-free. In both cases the channel
is modeled by a binary symmetric channel (BSC) with crossing probabilities
1/2 and O for the hit and no hit channel respectively. The interference channel
is separated, because the j** channel output does not depend on the symbols
transmitted from other users. The component channel model is shown in Figure
4.3.

When error detection is being used the decoder will make a mistake and
accept a codeword which is not the one transmitted if and only if the error
pattern (vector) is a nonzero codeword. If Py ; is the probability of a particular

J bit error pattern in N bits, where N is the length of the inner code, and A, is
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hit

no hit

as N,I,q — oo with A 2 I/q held constant. Notice that the asymptotic normal-

ized achievable region and the normalized throughput derived are the same as

those that can be obtained with perfect side information (refer to (3.7)), even

though the channel provides no side information.

4.3.2. Asynchronous Frequency-Hopping System

Now we relax the assumption that the multi-user interference level remains

constant throughout the hop. We consider a multi-user communication system

where the signals from each user are asynchronous to other signals. Then the

signal of interest will be partially overlapped by other signals as indicated in

Figure 4.8.
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If the signal of interest is hit by m bits, i.e., it is overlapped by other signals for

the m bit intervals, (m = 1,2,---, N), there will be H,, such m bit hit patterns,

where

m+1l m=1,2... N-1
H, = (4.25)
1, m = N.

The probability of undetected error in this case is given by
N
Pus =) Pugm- P(m bit hit), (4.26)
m=1

where P,y denotes the probability of undetected error given that the signal is
hit by m bits, and P(m bit hit) is the probability that the signal is hit by m bits.
The total number of hit patterns can be obtained from (4.25) as

Lle = 1+Zﬁi;i(m+1)
= N(N+1)

3 .

(4.27)

If we assume that every hit pattern is equs-probable, then

";“‘;k’lh!, m= 1727"'aN_ 1

P(m bit hit) = 2 (4.28)

Ph.I -
N(N+1)? m = N,
3

where
1

1 1

Phr= 1= (1= {1+ HL- N,

since there are NV bits per hop [Ger 82]. o |

To get P,um let us consider an m bit hit pattern as shown in Figure 4.9.

Notice that only the error patterns belonging to group B can occur from the

above m bit hit pattern. Thus the probability that a particular j bit error

pattern in group B occurs given the above m bit hit pattern, denoted P, g, is
given by

Pims = ()(1—}m

= 2™,

(4.29)

To get the average number of codewords of weight j in group B, denoted A; , p,

let us consider the following random coding arguments: we choose 2¥ codewords,
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Figure 4.12: The maximum allowable code rate to satisfy P,y < P,
(asynchronous frequency-hopping, ¢ = 100, I = 50).
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each being chosen at random with equal probability among 2V sequences and
independently of the other codewords', and then choose one of the codewords
with equal probability among 2¥ codewords (callit ¢). Then the probability that

¢ has weight j and is in group B is given by
P(weight(c) =j, c€ B) = P(weight(c) =7 |c€ B)-P(ce B)
= 2-m . gwm
m
7

Since there are 2X codewords, the average number of codewords of weight 7 in

— 2—N

group B, A; n B, is thus given by

g-(N-K) | T

Ajmp = (4.31)

j
Notice that the probability of a j bit error pattern is the same (i.e., 2~™) for all
m bit hit patterns, and the average number of codewords of weight j that can
be accepted (by a mistake) as a transmitted codeword is the same for given m.
Therefore, the probability of undetected error given that the signal is hit by m
bits is given by

Pud,m = E;’;l Aj,m,BPj,m.,B

i

m

T, 2= 2= (4.32)
i

= 2-(N=K)(1 —2-m),

for all m bit hit patterns. Therefore, the probability of undetected error is given

! This emsemble of codes will include some very poor codes, i.e., those

for which not all codewords are distinct. Nevertheless, this technique provides
some very useful insights into the fundamental behavior of coding schemes.



66

Py = TN _ P.im- P(m bit hit)

- —(N - m+1 -
= T2 W - o) Al 4 (VoK) (1 o) ek

2= (N-K-1ip, 4

SRRV +1)27N - N2mNH 9N 40 5(N — 1)(N +2) - 2].
(4.33)

Notice that since this is the average performance of all possible codes, there must

exist specific codes which will do even better.

The probability of detected error P; is given by
P; =1 — P(no error) — Py, (4.34)

since 1 — P(no error) is the probability of at least one error. The probability of

no error is given by

P(noerror) = ¥ N_, P(no error | m bit hit) - P(m bit hit)

= (1=pu1)+Tm: 12‘"‘% + Z‘Nj—v-z(l’l\;‘+—’1)

= 1= pas+ gl [N27VH — (N +1)27V42 427V 4 3),
(4.35)

Therefore the probability of detected error is given by
P; = pnrll - 5,(—,3;:'1-)—{N2’N“ —(N+1)27N+2 4 2-N 1 3}
— e (N +1)27N+2 = N2=N+1 _ =N 4 05(N — 1)(N +2) — 2}].

(4.36)

Figures 4.10 and 4.11 show the variations of the reliability of side information,
i.e., variations of P,; and P,, as a function of the inner code length N for several
values of K.

The requirement on the inner code rate for the reliability of side information

to be above a certain threshold, i.e., Py < P, and P, > P, for some P,; and
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By, can be obtained from (4.33) and (4.36) as follows:

Py < Py
= K < log, (;?tf(N+1)2°N+2—N2]—v“(’fr—lgi1:’:0-5(1‘f—1)(N+2)‘2) (4.37)
=R < ylog, (;ﬁ:f(N+1)2‘N"”—NZ‘E”S'}X‘*‘—I;Z‘:’:O.S(N—1)(N+2)—2 |
2 Ru,
and
Py > P
= K < log, (prmirii s )
=> R < xlog, ((N+1})\;(i112)3§—21.(31fi/2’_";«’l'3i’{iﬁf&iz)-z) 3%
£ Ra
Therefore,
R < min(Rug, Ra)
_ ) Rua Put Pu<pag(1 - 32 (4.39)
Ry, Pu+ B> par(l — 1—3(27“':-1—"’5’21;_%)

Figures 4.12 and 4.13 show the maximum allowable code rate to satisfy the
requirement P,y < Pud and P; > f-’d respectively. By comparing Figures 4.4 - 4.7
and 4.10 - 4.13 it can be observed that the reliability of the side information for
the asynchronous frequency-hopping system is slightly lower than that for the
synchronous frequency-hopping system, but as the inner block length increases
the difference between them decreases and approaches to zero.

If the number of redundancy bits of the inner code, N — K, is of length log, N,

then the code rate R is given by

R — N—logz N
= N
(4.40)
— 1,
and the probability of undetected error is given by
Py = N%[(N +1)27N+2 — N27N+1 _2-N L 0.5(N - 1)(N +2) — 2]

— 0,

(4.41)
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and the probability of detected error is given by

Py

ph,I[l _ —N(%f-_f)-{Nz—N*_l —

(N+1)2—N+2 +2-—N+3}

~ e UV + 1)27V — N27N+1 _ 9=N 4 0.5(N — 1)(N +2) - 2}]

—  DPhI,

(4.42)

as N — oo. This shows that as in synchronous frequency-hopping systems perfect

side information can be obtained from the inner code without any loss in the inner

code rate as N — oo.

Therefore, the asymptotic normalized achievable region and the normalized

throughput are the same as those that can be obtained with perfect side infor-

mation, That is,

rR <
—
—
and
W =
.
-
since
Pn =

as N — oo.

4.4. Diversity / RS code

(1—pa)'? (4.43)
e,
Ni(l1— Py—2Pu)
L0 gy (149
e,

J1Hv(=3)]

1
q?

The simplest type of block code allowing a variable amount of redundancy

is the repetition code, often called diversity. With this code a single informa-

tion symbol is encoded into a block of L identical symbols, producing an (L, 1)
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code. Each symbol is transmitted during a single hop, so that L diversities are
transmitted over the L hops. When diversity and perfect side information are
employed, the inner decoder (diversity decoder) can ignore the diversity recep-
tions that have been hit and it can extract the data from the interference-free
diversity receptions. If all the diversity receptions of a symbol are hit, they are
erased. The RS outer code will correct the erasures if the number of erasures
produced by the inner code is within the erasure correction capability. When
there is no side information, the inner decoder (a maximum likelihood decoder)
counts the number of times each symbol was received and chooses the one that
had the largest count, as the transmitted symbol. The RS outer code in this case
will correct the errors produced by the inner decoder if the number of them is

within the error correction capability.

4.4.1. Perfect Side Information

If the perfect side information is available at the receiver, a given symbol will
be erased if all of its L diversity transmissions are hit: otherwise, the symbol is
correctly received. In this case the probability of symbol erasure given I users,

denoted Py p, is given by
Prp=[1-(1-pn) Yt (4.45)

The induced super channel is an M-ary erasure channel with transition proba-

bility P;r and M = M; = M,. See Figure 4.14.

Achievable Region

Since the input symbol to the (n, k) RS outer decoder is erasure with probabil-

ity Py and the erasures at different hop durations are conditionally independent
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Figure 4.14: M-ary erasure channel, L diversity, perfect side infor-
mation.

given I, the probability of correctly decoding a codeword (packet), P.(I), is given
by

n—k n . X
P.(I)=>" P} (1—Prp)" . (4.46)
=0\ j
As n,k — oo while r 4 k/n is held constant, it can be shown (see Appendix A)

that P.(I) will remain 1 as long as

r < 1-Prp
(4.47)
= 1-[1-(1-py)1E.
Thus the asymptotic normalized achievable region of overall code rate and chan-

nel traffic is given by

1-[1-(1-py) 1"
rR < VA (4.48)
- l=(1—emmh)f )

L b
as I,q — oo with A 271 /q held constant. Figure 4.15 shows the asymptotic
normalized achievable regions for various diversity levels. We can see that the

optimum diversity level that maximizes the asymptotic normalized achievable
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region is 1 for all channel traffic. Figure 4.16 show the variations of the normalized
achievable regions as ¢ increases. We can see that the asymptotic formula (¢ =
o0) gives a very close approximation even for small values of q.
Solving (4.47) in terms of I we can obtain the maximum number of simulta-

neous transmissions given by

In(1-(1-1r)1)

I<1+
ln(l - ph)

(4.49)

As g approaches infinity, the asymptotic maximum number of simultaneous trans-

missions per frequency slot, A 27 /4, becomes

(5]

A<%mu—0—ﬁ)*. (4.50)

For the case of finite n, an approximate achievable region of channel traffic

and outer code rate for P.(I) > 1~ Ppis given by

r<l-PFPrL —a\/PI,L(l-—PI,L)/n, (4.51)

which is obtained from the Gaussian approximation of P.(I) given in (4.46). The

normalized achievable region can be obtained by dividing by L.

Throughput

From (4.8) and (4.49) the asymptotic normalized throughput is given by

W = r1 P (I)

Lq
= 1Ig [1+ ull'l(l—}?h) } (4.52)

r In{1-(1-r) f)“‘
nL ’

—
as ¢ — oo. Figure 4.17 shows the asymptotic normalized throughputs in terms of

the outer code rate r for various values of L. We can see that the overall optimum

diversity level that maximizes the normalized throughput is 1, but the optimum
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Figure 4.15: Achievable region of (r/L,I/q) for various values of di-

versity levels L, asynchronous frequency-hopping, per-
fect side information. '
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W
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Figure 4.17: Plot of W vs. r for various values of L, asynchronous
frequency-hopping, perfect side information.
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deversity level is changed for different ranges of outer code rate. Figure 4.17 will
be useful when decoding complexity should be considered in designing a system,
because the decoding complexity of a code of rate r is proportional to (1 — r)Z,
and in some high performance applications the extreme decoding complexity may
make the system impractical to build. For example, for the coding system used

for deep space communication by NASA ((255,223) RS code), we can see that

the optimum diversity level is 3.
4.4.2. No Side Information

When there is no side information the demodulator makes an estimate (hard
decision) on the received signal, and the inner decoder (a maximum likelihood
decoder) counts the number of times each symbol was received and chooses the
one that had the largest count, as the transmitted symbol. In this way the
inner decoder corrects some errors and passes its output to the outer decoder.
However, not all errors can be corrected by the inner decoder, so there is a nonzero
probability of uncorrected error. The probability of (uncorrected) error with
diversity L, PL., on the M-ary symmetric channel with transition probability
P.1/(M — 1) is derived in [Sta 85] by assuming that the conditional probability
of symbol error given hit is 1 — 1/M. If we let p £ Per and D 21— Pe,1, then for

large enough M, P, is given by

Pl.e =D

P, = p

Py, = 1-p°—3p’p— pp?

Py, = 1-p*—4p°p—6p*p® — pp° (4.53)

P;, = 1-p°—5p*p—10p°p® — 10p*p°® — pp*
Ps, = 1-p°—6p°p— 15p*p® — 20p°p® — 155%p* — pp°
P;. = 1-p" —7p°p — 215°p* — 35p%p® — 35p°p* — 215%p° — pp®.
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Figure 4.18: M-ary symmetric channel, L diversity, no side informa-
tion. ‘

The induced super channel is an M-ary symmetric channel with transition prob-

ability P, ./(M — 1) and M = M; = M,. See Figure 4.18.

Achievable Region

Since the input symbol to the RS outer decoder is in error with probability
Pr ., the probability of correctly decoding a codeword (packet) given I simulta-

neous transmissions P,(I) is given by

n=k)/2) [ | .
P.(I)= > | PL.(1—Pr)m. (4.54)
j=0 7

As n,k — oo while r £ k /n is held constant, it can be shown that P.(I) will
remain 1 as long as

r<1-2P.. (4.55)
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r/ L

Figure 4.19: Achievable region of (r/L,I/q) for various values of di-
versity levels L, asynchronous frequency-hopping, no
side information.
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CHAPTER V

PARALLEL DECODING FOR IMPERFECT SIDE
INFORMATION

5.1. Introduction

In section 3.2 we have considered the achievable regions and throughputs of
frequency-hopping (FH) multiple-access systems for which perfect side informa-
tion is available at the receiver. In practice, however, the assumption regarding
the perfect side information is only approximately true. In this chapter this as-
sumption is relaxed, and we consider the performance of the FH multiple-access
systems which has imperfect side information at the receiver.

The purpose of the side information is to determine which received symbols
are to be erased. The side information regarding the presence of hit is extracted
from the dehopper and demodulator. However, there is a chance that some
symbols with interference will be missed (miss) and other symbols which have
no interference will be erased (false alarm). We define Pr as the probability that
the demodulator produces the erasure symbol given the symbol was “not hit”
and Pps as the probability that the demodulator does not produce the erasure
symbol given the symbol was “hit”. Then Pys and Pr give us a measure of the
“imperfectness” of the side information: for example, Pys = Pr = 0 corresponds

84
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to the perfect side information case, and Py = 1,Pr = 0 corresponds to the
no side information case, because the demodulator never produces the erasure
symbol when there is no side information. Thus, perfect side information and no
side information are a special case of the imperfect side information.

In this chapter we assume that only imperfect side information is available at
the demodulator. The demodulator decides first whether to erase the received
signal or not based on the side information given to it. If the received signal is
not erased, it is further processed to get the estimate of the transmitted signal.
We will consider two different models for the demodulator.

The demodulator output is, in general, a sequence of errors, erasures, and
correct symbols. In order to correct the errors and erasures we employ a Reed-
Solomon code, and consider two different decoders for it: one is the errors-and-
erasures decoder and the other is a parallel decoder.

The remainder of this chapter is organized as follows. In section 5.2 we intro-
duce two demodulator models and derive the probabilities of error and erasure in
terms of channel traffic for both demodulator models. In section 5.3 we compute
the capacity of the component channel resulting from one demodulator model,
and discuss an idea for improving the capacity. In section 5.4 we consider an
errors-and-erasures decoder, and evaluate the performance of it over the imper-
fect side information channel. Based on the ideas given in section 5.3 and 5.4 we
suggest a parallel decoding scheme and evaluate the performance of it over the

imperfect side information channel. These are discussed in section 5.5.

5.2. Demodulator Models

In the first model (we call it “demodulator model 1: worst case”), if a received

signal is hit, and not erased, it is demodulated to one of the M equally likely
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1-B, erasure
hit 1-1/M
= error
Rz B, no erasure
a received 1/M no error
symbol
1-R4 ' Pe erasure
no hit <: 0 . error
1-B no erasure <
no error

1

Figure 5.1: Demodulating procedures, demodulator model 1.

symbols so that the probability of symbol error is 1 — 1 /M, independent of the
number of hits and which symbols transmitted from the interferers. If it is
not hit and not erased, it is demodulated correctly. The resulting interfercnce
channel is classified as a “separated” channel by its definition given in (2.1).
Demodulating procedures for demodulator model 1 are summarized in Figure 5.1,
and the component channel model is shown in Figure 5.3. Thus the probability

of erasure is given by

Pers = P(erasure | I users)

= P(erasure | hit, I) P(hit | I) + P(erasure | no hit, I) P(no hit

I}
= (1= Pa)pnr+ Pr(1 - pry),
(5.1)
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1-Pn erasure
14-m

(I,:) P:‘("‘D m hits

Fn or
(m=1,2,... 4 err
Py no erasure
a received 1-p no error

m
symbol

- Py erasure
no hit < 0 error
1-P no erasure <
1

—

F no error

Figure 5.2: Demodulating procedures, demodulator model 2.

I-1 I-1 m 1 1 m I-1~m
= 0-(1=Pp)(1—pa)t+ T 2Py PR (1 — pn)

m=1l m+1

Ipy

= Py [1 - t==eel]
(5.4)
In both models, the demodulator output is a sequence of errors, erasures, and
correct symbols. Thus the component channel with imperfect side information
is modeled by an M-ary errors-and-erasures channel with certain erasure proba-
bility p.,; and certain error probability Pe1, which depend on Pas, Pr, and the
number of simultaneous packet transmissions in a time slot. This component

channel model is shown in Figure 5.3.

5.3. Component Channel Capacity

The channel capacity of an M-ary errors-and-erasures channel in information



89

Figure 5.3: Imperfect side information channel model.

symbols per channel use is given by

M(1 - er,] — Pe M .
C(I) = (1=per,1—pe,1) logy, ( ( Perg — P 'I))-H)e,z log), (( Pet ) .

(1 - per,I) M — 1)(1 - per,])
(5.5)
Notice that for Pas = Pr = 0 (perfect side information),

c(I) = 1-p,

(1) 1 (5.6)
= (1 - ph)I-la
and for Py = 1, Pr = 0 (no side information),
_ Mpe,I

C(I) = (1 = pe.r) logar(M(L = p 1)) + pe,r logpy( ). (5.7)

M-1
As mentioned in Section 5.2, since the channel resulting from demodulator model

is not separated, only the channel resulting from demodulator model 1 will be

considered in this section. For model 1, by applying (5.1) and (5.2) into (5.4) we
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obtain

CI) = (Pupat/M+(1- Pp)(1 — pr1)) logy, (P“p"""'M(l-P")(l"”“’))

Pprepn s+ (1=Pp)(1=ps )

M-1 Paspp,
+(Pum M Ph,I) logy, (PMPh,I"'(x‘;FI)(l‘Ph,I)) :

(5.8)
Figure 5.4 shows the component channel capacity in terms of the channel traffic,
A = I/q, for several values of P,y and Pr. We notice that there is a threshold in
channel traffic, A4, such that for A < A, the channel capacity can be increased by
ignoring the imperfect side information (thus do not erase) and making a hard
decision demodulation of the received signals. This implies that for the lower
traffic it is advantageous to make a hard decision demodulation rather than to
try to make an (erroneous) erasure based on the imperfect side information. We
also notice that the threshold ), increases as Py, and Pr increase, that is, as
the side information becomes less reliable. On the other hand, as the alphabet
set size becomes large, it can be shown from (5.4) that the component channel

capacity approaches

i

limM...oo C(I) 1- Per,] — Per
= (1= Pp)(1—py)'? (5.9)

— (1= Pp)e™,

as I,qg — oo while A £ /q is held constant. This implies that for large enough
M, the component channel capacity can be increased by ignoring the imperfect
side information (thus Pr = 0) and making a hard decision demodulation of
the received signals for all channel traffics. Notice that the resulting component
channel capacity e™"* is the same as that obtainable from perfect side informa-
tion. It can be also noticed from (5.8) that the limiting (M — oo) value of the
component channel capacity depends only on Pr (independent of Pyrr). This can
be explained as follows. If a received signal is hit it results in either error with

probability Pps (because 1 —1/M — 1) or erasure with probability 1 — Py, (see



wramnnen

—~

91

—————— perfect side infor.

—-—--nc side infor.

imperfect side infor.

0.8

O.6

0.4

O.0

Figure 5.4: Component channel capacities vs. channel traffic.
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Incomplete RS decoder

Demodulator Errors-and-erasures

Figure 5.5: Receiver model.

Figure 5.1). However, the events of error and erasure give the same effect on
the component channel capacity in the sense of information loss. Therefore, the
component channel capacity is independent of Py;. On the other hand, when the
signal is not hit, it results in erasure (i.e., information loss) with probability Pg.

Therefore, the component channel capacity is a function of Pr.

5.4. Errors-and-Erasures Decoding Scheme

The block diagram of the receiver to be considered is shown in Figure 5.5. The
incomplete demodulator output has an alphabet set of {0,1,...,M — 1,7}, and is
a sequence of errors, erasures, and correct symbols. As before, let p.,r and p. s
denote the probability of symbol erasure and error given I users respectively. The
RS decoder corrects the errors and erasures if the sum of the number of erasures
and twice the number of errors is less than or equal to n — k. Therefore, the

probability of correctly decoding a codeword given I simultaneous transmissions,
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P.(I), is given by

n

Pc(I) = Z pler,Ip:',LI(]- = Per, I — pe,I)n‘l—m- (510)
I+2m<n—k \ |.m

Asymptotically as n and k approach infinity while the code rate r 2 k /n is held

constant, it can be shown (see Appendix C) that

17 r<l-— Per, 1 — 2pc,I
Iim Pc(I) == 0.5, r = 1 -— ptf’,I — zpc,! (5-11)
0, r>1- DPer, 1 — 2pe,!-

That is, “error-free” communication is possible asymptotically provided

r<l-— Per 1 — 2pe,]. (5.12)

5.4.1. Demodulator Model 1: Worst Case

From (5.1), (5.2), and (5.11) the asymptotic achievable region of code rate

and channel traffic for arbitrarily small error probability is given by

r < (1+PM—PF)(1—ph)I‘1—PM

(5.13)
— (14 Par — Pr)e™"* — Py,
or equivalently,
1 14 Py~ PF)
ol — 5.14
,\<nln< ) (5.14)

as I,q — oo while A 2 I/q is held constant.

The asymptotic normalized throughput can be obtained from (5.12) as
W = oI P.(I)
- ;I'(]- — Per I — 2Pc,I) ‘
= 2l(1+ Pa — Pr)(1 = pn)""' = Py
— A[(1+PM—PF)C—’7A—PM].

(5.15)
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Figures 5.6 and 5.7 show the achievable regions and the normalized throughputs
for various values of Py; and Pr. We notice that as in the channel capacity
case, the achievable region and the throughput can be increased by making a
hard decision demodulation and error-correction decoding for the lower channel
traffic.
Also, it can be shown from (5.14) that
ow

= —Xe~™ 5.
3P, Ae” ™, (5.16)
and
121%%
e — — =M
3P, A1 — e, (5.17)
so that
ow ow 1
A A > = .
3P, 2 3P, for )\_nan, (5.18)
and
ow  aw 1 '
EP_F < 5—’; for A < ’—7-1n 2. (5.19)

These imply that for A > %ln2 the throughput decreases faster along the Py,
axis than along the Pr axis, and for \ < %In2 the opposite happens. The ways

in which the throughput decreases as a function of Py and P is shown in Figure

5.8.

Optimum code rate, optimum traffic, and maximum normalized throughput

To get the optimum channel traffic at which the normalized throughput W is
maximized, we take the derivative of W w.r.t. \, and set it to zero. This results

in the following nonlinear equation:

Prr

=N = T

(5.20)

This equation will have a unique solution, because RHS is a constant between 0

and 1, and LHS is a strictly decreasing (at least from 1 to 0) function of X as
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Figure 5.6: Achievable regions of code rate and channel traffic,

errors-and-erasures decoding, demodulator model 1.
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and-erasures decoding, demodulator model 1.
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Ae"l'\( 1-12)

Figure 5.9: Plot of e™™(1 — ) vs. A.

shown in Figure 5.9. Also, by taking second derivative of W w.r.t. A, we get
W
oA?

=1(1+ Pr — Pr)e™™(n) — 2).

From Figure 5.9 we can see that the solution of (5.19), call it Aopt, has the

property A, < 1/n. Thus

*w
W S 0 at A = Aopt-

Therefore there should exist a unique optimum channel traffic where the nor-
malized throughput is maximized. Thus the optimum channel traffic Aopt can be

found from (5.19), and at ),,; the optimum code rate is obtained from (5.12)

and (5.19) as
Topt = (14 Ppgr— PpleMert — Py,
o = ) (5.21)
— nPMAagc
- l‘nAopt ?
and at A, and r,p;, the maximum normalized throughput is given by
Py )2
Wy = - M%opt (5.22)
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Table 5.1:
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0.140
c.1l22
0.108
0.097
0.088
0.081
0.075
0.070
0.065
0.061

0.054
0.051

0.129
0.104
0.088
0.077
0.068
0.061
0.055
0.051
0.047
0.043
0.040

0.110
0.087
0.072
0.062
0.054
0.048
0.043
0.040
0.036
0.034
0.031

0.092
0.069
0.056
0.047
0.041
0.036
0.032
0.029
0.027
0.025
0.023

modulator model 1, n=2.
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0.012
0.011
0.010
0.009

0.037
0.021
0.014
0.011
0.009
0.bos
0.007
0.006
0.005
0.005
0.004

0.018
0.007
0.005
0.003
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Aopts Topty and W,..., errors-and-erasures decoding, de-

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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5.4.2. Demodulator Model 2: Realistic Case

By applying (5.1) and (5.3) into (5.11), the asymptotic achievable region of

code rate and channel traffic can be obtained as

r < 1-— per,I - 2pe,I

= (1= Py = P)(1—p) "t By (BB 1) (5.26)

= (1= Py — Pr)e™™ + Py (2(2=52) — 1),

as I,g — oo while A = /q is held constant. Thus the asymptotic normalized

throughput is obtained from (5.25) as
W = IIP(I)

—* ql(l = Der,r — 2P=,I)

£{(1 = Pa = Pe)(1 = pa)™t o+ Py (2ol

Ipp

- A [(1 ~ Py~ Pp)e™™ + Py (2(3=52) - 1)] :

n

(5.27)

1)]

Figures 5.10 and 5.11 show the achievable regions and the normalized through-

puts for various values of Py; and Pr. We can see again that the performance

can be improved by making a hard decision demodulation and error-correction

decoding for the lower traffic. In Figures 5.12 and 5.13 we compare the perfor-

mances obtained from the two demodulator models.

From (5.26) it can be shown that

oW
—_— = )\ ™
3Ps Ae™ ™,
and
w 2
— e X 0A ol — p=mAY _ A
3P, Ae™™ + 77(1 e ") = A,
so that
ow ow
— > ——  for A > 1.594 y
3P = 3B, [oF A2 1.8%4/n
and
Ll < W for A < 1.594/n.

OPr  OPy

(5.28)

(5.29)

(5.30)

(5.31)
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Figure 5.10: Achievable regions of code rate and channel traffic,
errors-and-erasures decoding, demodulator model 2.
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Figure 5.11: Normalized throughputs vs. channel traffic, errors-and-

erasures decoding, demodulator model 2.
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Figure 5.12: Comparison of the achievable regions obtained from the

two demodulator models, errors-and-erasures decoding.



-

NroOUS T O L

NOoOrma.i

1.

).

O

Q.

a.

O

O

Q

A

O

<2000

1T&010)

1600

11400

1200

1000

000

0600

0400

0200

0O000

105

—————— perfoct, side infor.

— — — no side infor.

imperfect side infor.

Demodulator
Model 2

Demodulator
Model 1

Figure 5.13: Comparison of the normalized throughputs obtained

from the two demodulator models, errors-and-erasures
decoding.
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Figure 5.14: Plot of the normalized throughput vs. (Pas, Pr), errors-
and-erasures decoding, demodulator model 2.

These imply that for A > 1.594/n the throughput decreases faster along the Py
axis than along the Pr axis, and for A < 1.594/7 the opposite happens. The
ways in which the throughput decreases as a function of Pys and Pr is shown in

Figure 5.14.

Optimum code rate, optimum traffic, and maximum normalized throughput

To get the optimum channel traffic at which the normalized throughput W is
maximized, we take the derivative of W w.r.t. X, and set it to zero. This results

in the following nonlinear equation:
(1+ Par— Pp) = n(1 = Pag — Pp)X = Ppe™. (5.32)

From Figure 5.15 we can see that there exist a unique solution because LHS and

RHS meet at exactly one point. Also, by taking second derivative of W w.r.t. X,
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Figure 5.15: Plot of Ppe™ and (1+ Pas— Pr) — (1 — Pp — Pp)) vs.
A.

we get
o'W
aA?

— —-ne_"A{Z(l — PF) - 17(1 — Py — PF)A]'

For 1 — Ppy — Pp < 0 case, it is obvious %?f < 0. For 1 — Ppy — Pr > O case,

the solution of (5.31), call it Ay, has the property Ay < (1+ Par — Pr)/[n(1 —
PM - PF)] Thus

*w
a)‘z S 0 at A = Aopt-

Therefore the unique optimum channel traffic A, can be found from (5.31), and

at A,pe the optimum code rate is obtained from (5.25) as

2 1 — e~ Mlopt
ropt = (1 — Pag — Pr)e™ ™o 4 Py (;(1——5————) - 1) , (5.33)
opt

and at Aopt and ropt, the maximum normalized throughput is obtained from (5.26)

and (5.31) as

Wonae = T1(1 = Bag = B)e™ + Py(1 = 2hop)]. (5.34)
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Aopt

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 c.8 0.9 1.0

0.0 0.500 0.500 0.500 0,500 0.500 0.500 0.500 0.500 0.500 0.500 0.000
0.1 0.470 0.467 0.463 0.459 0.453 0.446 0.436 0.421 0.397 0.347 0.000
0.2 0.446 0.441 0.436 0.429 0.421 0.410 0.397 0.377 0.347 0.292 0.000
0.3 0.427 0.421 0.414 0.406 0.397 0.384 0.369 0.347 0.315 0.259 0.000
0.4 0.410 0.404 0.397 0.388 0.377 0.364 0.347 0.325 0.292 0.237 0.000
0.5 0.397 0.390 0.382 0.372 0.361 0,347 0.330 0.307 0.274 0.220 0.000
0.6 0.384 0.377 0.369 0.359 0.347 0.333 0.315 0.292 0.259 0.207 0.000
0.7 0.374 0.366 0.357 0.347 0.335 0.321 0.303 0.280 0.247 0.196 0.000
0.8 0.364 0.356 0.347 0.337 0.325 0,310 0.292 0.269 0.237 0.186 0.000
0.9 0.355 0.347 0.338 0,327 0.315 0.301 0.283 0.259 0.228 0.178 0.000
1.0 0.347 0.339 0.330 0.319 0.307 0.292 0.274 0.251 0.220 0.172 0.000
N p ra.pt
é>f 0.0 0.1 0.2 0.3 0.4 .5 0.6 0.7 0.8 0.9 1.0
> N\
0.0 0.368 0.331 0.294 0.258 0.221 0.184 0.147 0.110 0.074 0.037 0.000
0.1 0.381 0.344 0.308 0.270 0.234 0,196 0.159 0.121 0.083 0.044 0.000
0.2 0.393 0.356 0.318 0.281 0.243 0.205 0.166 0.128 0.088 0.047 0.000
0.3 0.401 0.364 0.326 0.288 0.250 0.212 0.172 0.133 0.092 0.049 0.000
0.4 0.410 0.372 0.333 0.295 0.256 0.217 0.177 0.136 0.094 0.050 0.000
0.5 0.416 0.378 0.339 0,300 0.261 0.221 0.180 0.139 0.096 0.051 0.000
0.6 0.423 0.384 0.344 0.305 0.265 0.225 0.184 0.142 0.098 0.052 0.000
0.7 0.428 0,389 0.350 0.310 0.269 0.228 0.186 0.143 0.100 0.053 0.000
0.8 0.433 0.394 0.354 0,313 0.272 0.231 0.189 0.145 0.101 0.054 0.000
0.9 0.438 0,398 0.357 0.317 0.276 0.233 0.191 0.147 0.102 0.054 0.000
1.0 0.442 0.402 0.361 0.320 0.278 0.236 0.193 0.149 0.103 0.054 0.000
\ \ﬁ/max
P!% 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
2,
0.0 0.184 0.166 0.147 0.129 0.110 0,092 0.074 0.055 0,037 0.018 0.000
0.1 0.179 0.160 0.142 0.124 0.106 0.087 0.069 0.051 0.033 0.015 0.000
0.2 0.175 0.157 0.138 0.120 0.102 0.084 0,066 0.048 0.031 0.014 0.000
0.3 0.171 0.153 0.135 0.117 0.099 0,081 0.063 0.046 0.029 0.013 0.000
0.4 0.168 0.150 0.132 0.114 0.096 0.079 0.061 0.044 0.027 0.012 0.000
0.5 0.165 0.147 0.129 0.112 0.094 0.076 0.059 0.042 0.026 0.011 0.000
0.6 0.162 0.144 0.126 0.109 0.092 0.075 0.058 0.041 0.025 0.011 0.000
0.7 0.159 0.142 0.125 0.107 0.090 0.073 0.056 0.040 0.025 0.010 0.000
0.8 0.157 0.140 ©0.122 0.105 0.088 0.071 0.055 0.039 0.024 0.010 0.000
0.9 0.155 0.138 0.120 0.104 0.087 0.070 0.053 0.038 0.023 0.010 0.000
1.0 0.153 0.136 0.118 0.102 0.085 0,069 0.053 0.037 0.022 0.00% 0.000

Table 5.2: A, Top, and W,,,,, errors-and-erasures decoding, de-
modulator model 2, n=2.
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Incomplete X RS Decoder
o Demodulator Brrors-and-erasures
4
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4
Complete y RS Decoder
"1 pemodulator . Errors-only

Figure 5.16: Parallel decoding system.

In Table 5.2 we list W,,,., Topts and Agp fo; various values of Pys and Pp.
For finite block length codes, the achievable regions for P,(I) > 1 — PE is

approximately given by (5.24) with p.r and p,,r given in (5.3) and (5.1) respec-
tively.

5.5. Parallel Decoding Scheme

We have observed in sections 5.3 and 5.4 that there is a threshold in channel
traffic such that for the lower traffic it is advantageous to ignore the imperfect
(unreliable) side information and make a hard decision demodulation of the re-
ceived signals, and for the higher traffic to try to erase the unreliable symbols.
This suggests the following parallel decoding scheme whose block diagram is
shown in Figure 5.16. The output of the demodulator is a pair (z,y): the first
component is the input to the errqrs-and—erasures decoder and the second com-

ponent is the input to the errors-only decoder. The output of the incomplete
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demodulator, z, is either a symbol estimate or an erasure, and it is in the al-
phabet set of {0,1,...,M —1,?}. On the other hand, the complete demodulator
makes a hard decision demodulation of the symbol transmitted, and its output,
Y, is in the alphabet set of {0,1,....M — 1}. If z is not an erasure, then z and v
are identical. We will assume throughout that RS decoder never errors (produces
the wrong codeword) but always fails (gives up) when the number of errors and
erasures exceeds the capability of the code. In fact, if a Reed-Solomon code is
being used and the decoder is attempting to correct t errors, the probability of
a decoding failure is approximately t! times the probability of a decoding error
[Ber 80]: asn — oo, t = n(13f) = o© = t! = co = P(decoding error) — 0.
Therefore a codeword (packet) error occurs if both decoders fail and at least one
symbol out of the complete demodulator is in error.

Previous studies on parallel decoder begin with [Pur 82], in which the use of a
parallel combination of erasures-decoding and errors-decoding for Reed-Solomon
codes was introduced. Soon after, it is applied in [Pur 83] and [McC 83] to
increase the jamming margin against a partial-band jammer. In all of those
works, the perfect side information was assumed to be available at the receiver.
For the partial-band jamming, no side information environment, Castor [Cas 86]
analyzed a parallel combination of diversity decoder /errors-and-erasures decoder
and diversity decoder/errors-only decoder. In this section we will evaluate the
performance of the suggested parallel decoding scheme under the multiple-access,

imperfect side information environment.
5.5.1. Achievable Region and Throughput

Let us first define the following random variables:

7 £ the number of symbols in the received packet for which
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with mean zero and variance one. That is, as n — o0,

Fg(u) - ¢ < Fy, (u) < Fg(‘U) + €5, (5.42)

and
FG(‘U) — € < FV,, (v) < FG(U) + €9, (5.43)

for arbitrarily small positive €; and e, where

>

FU,, (u)
Fv,_ (v)
FG (u)

P(U, < u)
P(V, < v) (5.44)

>

>

[% Fzetds,

Thus, as n,k — oo while r = k/n is held constant

Pe(1) P(U, > av/n, V, > by/n)

P(U, > a/n)

1 - Fy, (a/n) (5.45)
1- Fg(ayn) + &

0,

IA

]

IA

!

if a > 0. Similarly,
Pg(I)

IA

P(V, > by/n)
1 - Fy,(by/n)
1 — Fg(by/n) + €2

— 0,

(5.46)

IA

if b > 0. Therefore, the codeword (packet) error probability Pg(I) approaches
zero asymptotically if

a>0or b>0, (5.47)
< r<l—p—2pp—ps or r<1—2p;, —2p, (5.48)

<= r <max {1—p; —2p; — ps, 1—2p; — 2p,}. (5.49)
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Also, it can be shown that as n — oo,
PE(I) — 1,

ifa<0Oand b<0,ie,r>max{l—p, —2p; —ps, 1—2p, —2p,}:

Pg(I)

P(Un > ay/n N V, > by/n)
I—P(Unsa\/ﬁUVnSb\/ﬁ)
2 1"'P(Un.<_.a\/ﬁ)"‘lp(vnsb\/;;)l

0, if a<0 —0, if b<0

Il

— 1,

as n — 0o. Therefore, (5.48) represents the asymptotic achievable regions of code
rate and channel traffic for arbitrarily small error probability. The asymptotic

normalized throughput is thus given by

W — rI!l-—.PE!I“
g (5.50)
= {max{l—p —2p;—ps, 1 - 2p; — 2p,}.

The remaining problem is to find the probabilities p;, p;, and p; in terms of the

number of packet transmissions.
5.5.2. Demodulator Model 1: Worst Case

In computing (5.48) and (5.49) we need only the probabilities p, + ps, p; + D3

and p,, which can be derived as follows:

p1+pz = Pl(erasure, error | I users)
+P(no erasure, error | I users)

= P(error | I transmissions)

= P(error | hit, I) P(hit | I) (5.51)
=1:/M
+ P(error | no hit, I) P(no hit | I)
=0

(1 - l/M)ph,I’
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p1+ps = P(erasure, error | I)
+P (erasure, no error | I)
= P(erasure | I)
(5.52)
= P(erasure | hit, I)P(hit | I)
+P (erasure | no hit, I)P(no hit | I)

= (1~ Pum)pny + Pr(1 = pny),

p2 = P(no erasure, error | I)
= P(error | no erasure, I)P(no erasure | I)
= P(error | no erasure, hit, I)P(no erasure | hit, T )P(hit | I)

+ P(error | no erasure, no hit, I ) P(no erasure | no hit, I)P(no hit | I)

=0

= P(error | no erasure, hit, I)Par pa -
(5.53)

Since both the complete demodulator and the incomplete demodulator produce
identical symbols if the symbol produced by the latter is not an erasure, the
probability of symbol error at the complete demodulator output given no erasure
at the incomplete demodulator output is the same as that at the incomplete

demodulator output given no erasure. That is,

P(error[comp] | no €rasurefincomp, hit, I) = P(error[imomp] | no erasure(incomp), hit, J)
= 1-1/M.
Thus p, is given by
pr=(1- l/M)PMph'I. (5.54)
Therefore,
1-2py—2p; =1-2py, (5.55)
and

1—p1-—2p2—p3=I—PF—(1+PM—PF)ph'I. (5.56)
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The resulting asymptotic achievable regions for arbitrarily small error probability

is given by
r < max {1 —_ 2ph,j, 1-— PF —_ (1 -+ PM —_ Pp)ph']},

and the asymptotic normalized throughput is given by

W = mHPU
- q
= % max {1 —2pny, 1 — Pp — (1 + Py — PF)ph.[}
= 5 max {2(1 — ph)'l_1 -1, (1 + Py — PF)(]. - ph)l_l —_ PM}
Since
1—2pnsr 21— Pp~ (1+ Py — Pr)pny,
for
I < 1 In( =t )
= + In(1-py)
é Itln
the achievable regions are
{
21— pu)71 -1, I< Iy
r < «
> (1 + Py — PF)(I — ph)I_l —~ Py, I > Iy,
2e7™ —1, A< dm
—
(1+ Ppr— Pr)e™ — Pag, A > A,

where
1— Py + Pp)

al
z\,h—nln( —

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

as I,q — oo while A 27 /q is held constant. Similarly the asymptotic normalized

throughput is given by

W = frr P.(I)

_ Jﬂﬂl—my*—u, I<1Iu
1+ P — Pe)(1 = pa)""Y — Pyg), I> L,
A(2e7m — 1), A< A

- 4
/\[(1 + Py — .PF)C'_"A - PM], A > A

(5.63)
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We can see that for lower traffic (A< Aen) it is advantageous to select the “errors-
only” decoder, and for higher traffic (A > Ag) it is advantageous to select the
“errors-and-erasures” decoder. This implies that the parallel decoder adapts to
the level of channel traffic by switching between two decoding modes. Figures
5.17 and 5.18 show the achievable regions and the normalized throughputs for
various values of Pys and Pr respectively. The shaded area in the lower traf-
fic region indicates the performance improvement over the errors-and-erasures
decoding scheme. Notice that the performance improvement becomes more sig-
nificant as the side information is less reliable, i.e., higher Py, and Pp.

On the other hand, the requirement on (P, Pr) pair for the errors-only
decoder to perform better than the errors-and-erasures decoder can be obtained

from (5.58) as

1-—
Pu + (——Ef'—’) Pr>1, (5.64)
Phr1

and as I,q — oo while A £ /4 is held constant it becomes

e~

Pac+ (

I_—?n?) Pr > 1. (5.65)
Figure 5.19 indicates regions of (Par, Pr) pair where one decoding scheme per-
forms better than the other for given A. Notice that as the channel traffic in-
creases, the errors-and-erasures decoder performs better even for less reliable

side information, and as the channel traffic decreases, the errors-only decoder

performs better even for more reliable side information.

Optimum code rate, optimum traffic, and maximum normalized throughput

In Figure 5.20 we show the typical form of the normalized throughput, where
A1 and A,; denote the optimum channel traffic at which A(2e™™ — 1) and
A[(1 + Ps — Pr)e "™ — Pag] are maximized respectively, and W,; and W,q are

the maximum values at A,; and A,; respectively. It has been shown in (3.47) and
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paraliel decoding

—————— errors-and-erasures decoding

Figure 5.17: Achievable regions of code rate and channel traffic, par-
allel decoding, demodulator model 1.
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Figure 5.18: Normalized throughputs vs. channel traffic, parallel de-
coding, demodulator model 1.
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Figure 5.19: Regions of preferences, demodulator model 1.

Figure 5.20: Typical form of the normalized throughput of parallel
decoding system.



121
(3.48) that

X1 = 0.3148/n, and W,; = 0.1448/7. (5.66)

To get W3, we take the derivative of A[(1 + Py — Pr)e™™ — Pp] and set it to

Z€ero:

55 (A1 + Psr — Pp)e™ — Pyy]} = (1+ Py — Pp)e™ (1 — n)) — Py
=0

Py

-nA _ -—M
=> e7"(1 — nl) 15 Py — P,

(5.67)

The above nonlinear equation will have a unique solution, which is Ayq, by the

arguments given in subsection 5.4.1. Therefore W,, is obtained from (5.62) and

(5.66) as
Wo2 = 1\02[(1 -+ PM - PF)C—"A“ - PM] (5 68)
ﬂPMAzz )
1-nds °
From (5.65) and (5.67) it can be shown that W,; > W,, if
—0.1448+/(0.1448)2+0.5792P),
hr 2 2nFa (5.69)
£
Therefore we get the following results:
(
Wiomaz = 0.1448 /7
if Xz < AT, § rope = 0.4611
Aopt = 0.314/7,
(W P, (5.70)
mazxr

1-nlo2

ro, = TBMmAe2
opt = 1-nlo2

ionZ > ’\T’ .

Aopt = A::02'
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Therefore, the resulting asymptotic achievable regions for arbitrarily small error

probability is given by
r < max {—-;)—2"2 1opa)l _ 1, (1- Py — Pe)(1 ~ pn) "+ Py (__L__)_z—z 1-pu)’ _ 1)}

Ipn Ipy

— ma.]-({%l——t\—."i -1, (1 —PM—PF)C—"'\‘i-PM (%-l:e'\;”i - 1)} ,

(5.76)

and the asymptotic normalized throughput is given by

W = max{ﬂl_—ﬂbli — §’ (1 — Py — PF)%(]- _ ph)I—l + Py (2—2‘1—22)1 _ l)}

qPh qPh q
— max {22 ) (1 - Py — Pp)de™™ + Py (=22 - 2}

)

(5.77)
as I,qg — oo while A = I/q is held constant. It can be easily shown that
2 —2e —2emM
——76—- ~A> (1= Py - Pp)de™™ 4+ Py, (2-—7276—-— - ,\) , (5.78)
if
2e™ — 2 1—-Py—P
T ms M F
pyY e 2 —— 2y (5.79)
Let
2e™ — 2
NE — ™ :
eI (5.50)
Then it can be shown for both n=1 and 2 that
Fl) = Bple™ — (n°AT/2+nA —1
() = Bl - (3 ) 1

< 0,
for all A > 0. This implies that f()) is a decreasing function of A, whose max-
imum is 1. But, since the RHS of (5.78) is a constant between (—o0,1], there
exists a unique threshold in channel traffic, denoted A},, such that the achievable

region and the asymptotic normalized throughput are given by

4

2—2e~nA '
red moTh ) S X (5.82)
| (1~ Pp—Pr)e™™ + Py (B2 — 1), A> N,
and
([ 3-2em - < X
wel 7 % : , S A (5.83)
(1= Ppr— Pr)Ae™ + Py (32222~ 2), A > A,
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The achievable regions and the asymptotic normalized throughputs are plotted
in Figures 5.21 and 5.22 for various values of Pys and P respectively. The shaded
area in the lower traffic region indicates the performance improvement over the
errors-and-erasures decoding scheme. As in subsection 5.5.2, the performance
improvement becomes more significant as the side information becomes less re-
liable, i.e., higher Pys and Pr. By comparing Figures 5.17, 5.18, 5.21, and 5.22,
one can also observe that the performance improvement in the lower traffic re- '
gion is even higher with the demodulator model 2 (realistic model) than with
the demodulator model 1 (worst case).

The requirement on (Pp, Pr) pair for the errors-only decoder to perform

better than the errors-and-erasures decoder can be obtained from (5.77) as

2 em™ -1

o1
1+e™—2 £
[1+e 77( 5y

) Pr+ Pr>1+e™ — -72;( ). (5.84)

Figure 5.23 indicates regions of (Pys, Pr) pair where one decoding scheme per-
forms better than the other for given A\. We can see similar phenomenon as in

demodulator model 1.

Optimum code rate, optimum traffic, and maximum normalized throughput

Let W1 and W2 be the maximum values of (2 —2e™") /n — X and (1 — Py —
Pr)Xe™™ + Ppl(2 — 2e~"*)/n — A] respectively, and A,; and A,; be the channel
traffics at which W,; and W,, are achieved respectively. It has been shown in

(3.53) and (3.55) that
Ao1 = 0.6931/n and W,; = 0.3069/7. (5.85)

In section 5.4.2 it has been shown that X, is the (unique) solution of (5.31).
Thus,
Wo2 =

|

[(1 — Pag — Pp)e™™2 4 Ppr(1 — 2),5))- (5.86)
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parallel decoding

—————— errors-and-erasures decoding

Figure 5.21: Achievable regions of code rate and channel traffic, par-
allel decoding, demodulator model 2.
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CHAPTER VI

CONCLUSIONS

In this thesis we have examined the multiple-access capability of frequency-
hop packet radio networks from a coding point of view. The achievable region
of code rate and channel traffic and the normalized throughput were considered
as performance measures. We modeled the communication system from the
modulator input to the demodulator output as an I-user interference channel,
and evaluated the performance of several codes for the interference channels with
perfect side information, no side information, and imperfect side information.

For channels with perfect side information, we have considered the perfor-
mance of Reed-Solomon codes with erasures-correction. The achievable region of
code rate and channel traffic, and the optimal code rate, optimal channel traffic
at which the normalized throughput is maximized have been derived. It is found
that the maximum sum capacity is achieved by the optimal rate Reed-Scﬂomon
code with bounded distance decoding. Also, it is shown that the maximum
normalized throughput obtained with frequency-hopped spread-spectrum mod-
ulation and Reed-Solomon coding is the same as that with narrowband ALOHA
system without frequency-hopping. This implies that frequency-hopped spread-
spectrum modulation can be just as bandwidth-efficient as narrowband modula-
tion in the sense that for a given bandwidth it can achieve the same throughput.
However, for the narrowband ALOHA system without frequency-hopping the
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throughput of ™! is achieved when the packet error probability is 0.632 (which
is too large in practical sense) and with binary feedback, while for the frequency-
hopped spread-spectrum modulation it is achieved with arbitrarily small packet
error probability and without feedback.

Next we considered the performance of Reed-Solomon codes for channels
with no side information. It is found that the maximum normalized throughput
achievable without side information is only 39.3 % (worst case) of that achiev-
able with perfect side information. This gives us a quantitative measure of the
importance of side information in improving the multiple-access capability of
frequency-hop packet radio networks.

We investigated a technique for obtaining the side information. This is done
by partitioning the data stream into blocks and encoding each block by an error-
detecting code, and transmitting the encoded block (codeword) during a single
hop. On the basis of the received version of the codeword the decoder makes a
statistical decision about which of the channel states (hit or no hit) each codeword
was transmitted over. Clearly, as the code rate decreases, the error detection ca-
pability increases, therefore the reliability of the side information obtained will
increase. However, decreasing the code rate implies a decrease in the efficient
use of the channel. With this notion in mind, the relationship between the relia-
bility of side information and code rate has been investigated, and the maximum
allowable code rate to obtain a certain reliability of side information has been
derived for both synchronous and asynchronous frequency-hopping systems.

The above combination of (inner) encoder, channel, and (inner) decoder gen-
erates in general an errors-and-erasures channel. To correct the errors (caused
by undetected errors) and the erasures (caused by detected errors) we employed
an outer code (Reed-Solomon code). In this way the inner decoder informs the

outer decoder which symbols (inner codewords) in the received packet have been
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hit by symbols from other packets. It is shown that asymptotically perfect side
information can be generated from the inner code without any loss in code rate
for both synchronous and asynchronous frequency-hopping systems, so that the
normalized throughput achievable with perfect side information can be achieved
through the use of this concatenated coding scheme, even though the channel
provides no side information.

Finally, we considered a parallel decoding scheme for channels with imperfect
side information. In fact, perfect side information and no side information are
special cases of imperfect side information. When imperfect side information
is available at the demodulator its output is, in general, a sequence of errors,
erasures, and correct symbols. In order to correct the errors and erasures we
employed a Reed-Solomon code, and considered two different decoding schemes
for it: one is the errors-and-erasures decoding and the other is a parallel decoding.

We first evaluated the performance of errors-and-erasures decoder, and found
that there is a threshold in channel traffic such that for the lower traffic region the
performance can be increased by making a hard decision demodulation and em-
ploying errors-only decoding, rather than trying to make an (erroneous) erasure
based on the imperfect (unreliable) side information and employing errors-and-
erasures decoding.

Based on this observation we suggested a parallel decoding scheme, and
analyzed the performance of it for channels with imperfect side information.
We found that the parallel decoder gives better performances than errors-and-
erasures decoder, and the performance improvement becomes more significant as

the side information becomes less reliable.



APPENDICES

131



132
APPENDIX A

Proof of (3.4)

Proof of
1, 1—-r>pus
n-kl n . .
nlk:lgloo > Pril=pa))" =14 05, 1-r= Phr (A.1)
1 J'= j
0, 1=r<pyy,
where r £ k/n.
Let
Pry = P(erasure)
X. £ number of erasures in a codeword (A.2)
Y. & X./n
Then

n . ,
ice Phil=pnr)*? = PO X,<n—k)
7 (A.3)

= PO<Y,<1-r).

From the weak law of large numbers [Dav 70,

lim P(lY,-, - Ph,ll > E) = Q, (A.4)

n—oco

for any € > 0. This implies

1, 1-r2prr+esl—r>p,r
lim PO<Y,<1~1)= § (A.5)

mik—00 0, 1-r<ppr—€e&1l—r<p,.
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APPENDIX B

Derivation of P,..

Let N, ; denote the number of distinct tone positions in the frequency slot,
each containing exactly j signals given m hits (i.e., m + 1 signals in the same fre-
quency slot). Then the tone position occupancy distribution within a frequency
slot can be represented by [Nm 1, Nm,z2, -, Npm+1). For example, consider the
case of m=3: [2,1,0,0] corresponds to a situation in which one tone position is oc-
cupied by two users and two tone positions are singly occupied. Consiaer another
example, m=5 case: [3,0,1,0,0,0] corresponds to a situation in which one tone
position is occupied by three users and three tone positions are singly occupied.

Using this notation we can derive P,, as follows.

P, = 0 P(two users transmit the same symbol)
+3P(two users transmit different symbols)
= 0 P([0,1]) + 3 P([2,0])
= 0 +1u-2)

- 108,
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Py
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0 P(three users transmit the same symbol)

+1 P(two users transmit same symbol, the third user
transmit a different symbol)

+2P(all three users transmit different symbols)

0 P([0,0,1]) + 3P([1,1,0]) + 2P([3,0,0])

A 13(M-1) | 2 (M-1)(M-2)
0M2+2 M?2 +3 M3
4M2.3M—-1

6M3

0P([0,0,0,1]) + }P([1,0,1,0]) + 1 P([0,2,0,0]) + 2P([2,1,0,0])
+3P([4,0,0,0])

Ok + U ¢ {05 g, gt ey

SM3—2M3-M
403 °

0P([0,0,0,0,1]) + 3 P([1,0,0,1,0]) + 1 P([0,1,1,0,0]) + 2p([2,0,1,0,0))
+3P([1,2,0,0,0]) + $P([3,1,0,0,0]) + £P([5,0,0,0,0])

1 15(M-1) 1 10(M-1) 2 10(M-1)}(M~2)
O+ 373 t 3w + 3554
2 15(M-1)(M~-2) 3 10(M-1)(M-2){M-3) 4 (M-1)(M-2}(M-3)(M-4)
+3 M+ + 3 M+ +3 M¥<
24M4—15M3~10M 341
30M+* .

0£([0,0,0,0,0,1]) + ;P([1,0,0,0,1,0}) + 1 P([0,1,0,1,0,0])
+3P((2,0,0,1,0,0]) + 1 P([0,0,2,0,0,0]) + 2p([1,1,1,0,0,0])
+3P([3,0,1,0,0,0]) + 2P([0,3,0,0,0,0]) + £P([2,2,0,0,0,0])

+$P([4,1,0,0,0,0]) + £P([6,0,0,0,0,0])
OF}? + %641\;[:1) + %15(3:1) + §15(M—1:!)5(M-2)

- - ~ - - - M=1)(M—
+%10(£Ir{s 1) + §GO(M Al{)s(M 2) + %2_01M 1)(;\;!5 2)(M~3) + %15( 1\'1{)5( 2)

345(M-1)(M-2)(M-3) | 415(M—1)(M—2)(M-3)(M-4) 5 (M—1)(M=2)(M-3)(M—4)(M~5)
+i1 M3 +3 M5 + 5 MF

10MS—6M4—5M3+ M
12MS .
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Notice that in general as M becomes large, P,, is dominated by the last term,

Le., ;25 P([m+1,0,---,0]), because

P( [m + 1’ 0, e ,O] ) = (M_l)(MA';i‘)(M—m)

- 1,

for large enough M. Therefore, P,, = g for large enough M.
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APPENDIX C

Proof of (4.2)

Proof of

1, 1-r>2P4+ Py
nlg_f?wPC(I) = 0'5a l—r= ZP'-‘d + Pd

0, 1—'T<2Pud+Pd,‘

where r £ k /n.
Let random variables X, V,, and Z, be defined as

0, if the received symbol is correct

Xi =1 1, if the received symbol is erased

2, if the received symbol is in error, 1= 1,2,---

and
g Yn é Z Xia
=1
and

Y, = E(Y,)

v/ Var(Y,,) ’

>

Zn

7n7

(C.1)

(C.2)

(C.3)

where E(Y,) and Var(Y,) are the mean and the variance of Y, respectively.

Then Y, is the total number of erasures and twice the number of errors in

the received packet (codeword). Therefore the probability of correctly decoding

a packet P,(I) is given by

P.(I) = P(Y, <n—k).

(C.4)
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