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CHAPTER 1

INTRODUCTION

1.1 The Essence of Coding

A communication system connects a data source to a data user (receiver)
through a channel such as a microwave link, optical fiber, or a magnetic tape.
A communication engineer designs a system to process the information to be sent:
to match the channel characteristics and processes the output of the channel to
determine the transmitted information. Because the channel is subject to various
types of noise, distortion, and interference, the channel output might be different
than the channel input. One way to combat noise and interference is through
the use of error control coding techniques. Data is first processed by the encoder
which transforms a sequence of (information) data symbols into another (typically)
longer sequence called the channel codeword. The set of all possible codewords
form a code. The transformation consists of introducing redundant symbols into
the original data sequence. Next a modulator converts each codeword symbol into
a corresponding analog waveform, from a set of possible analog waveformé, which
is transmitted through the physical channel. The demodulator converts each re-
ceived channel output signal into another discrete-time analog symbol upon which

a decision about the transmitted code symbol can be made. The decoder uses the



redundancy in the transmitted codeword to correct as many errors as possible and
puts out its best estimate. One very important measure of the reliability of commu-
nication is the probability of the decoder not putting out the transmitted codeword,
referred to as the probability of error. Without coding it is well known that in the
presence of Rayleigh fading or worst case finite power interference the bit error
probability is an inverse linear function to the received signal energy-to-noise ratio,
as opposed to an exponentially decreasing function for broadband additive noise.
This can cause an increase of 30-40 dB in required bit energy-to-noise ratio when
a probability of bit error of 10~° is desired. Coding techniques for unintentional as

well as hostile interference are discussed extensively in the literature.

Coding theory had effectively started in 1948 by Shannon [29]. Shannon showed,
by the coding theorem, that associated with a channel there is a nonnegative:
number C, measured in bits per second, with the following significance. If the
transmission rate R in bits per second is less than C, it is possible to design a
communication system using error-control codes that results in as small an error

probability as desired.

The prime motivation for coding research since 1948 has been Shannon’s cod-
ing theorem. Although our understanding of the coding theorem has been refined,
it still does not give satisfactory answers from a practical viewpoint. This is be-
cause the codjng theorem is, from a practical viewpoint, an existence theorem. It
demonstrates that a certain performance can be obtained by unstructured coding
schemes, but fails to specify a particular code which achieves this performance
and/or an encoding and decoding methods with reasonable complexity. The two

main contributions to complexity are usually taken to be the maximum number












as a model for an orthogonal signaling modulator with coherent demodulation.
This channel, however, is not applicable to the noncoherent channel (i.e., the case
when code symbois are noncoherently demodulated). For a noncoherent receiver

. the vector channel disturbs the signal in a nonlinear fashion.

The second class of channel models are the Discrete Memoryless Channels
(DMC). Such a channel is characterized by a finite input alphabet X of , say,
M symbols, finite output alphabet Y, and a set of transition probabilities p(y|z),
defined for each z € X and y € Y as the probability that the output of the channel
is y if the input to the channel is z. When a finite level quantizer is placed at the
output of the demodulator, e.g. the output space of the additive channel model
described above is partitioned, the communication channel between the input to
the modulator and the output of the quantizer is discrete, resulting in a DMC:

Below we describe two special cases of the DMC.

In many of the applications, the sizes of t“= input and output alphabets are
equal, say to M. Also, in many situations of interest, if a symbol is in error, i.e.
the output symbol is not the same as the corresponding input symbol, it is equally
likely to be any symbol excluding the transmitted one, and the probability the
output of the cham.lel is the same as the input to the channel is the same for all
symbols in the alphabet. In such a situation the channel is said to be symmetric.

Formally,

T YVFEET
ply|z) =
l-p, y=2z,

for all y € Y and £ € X. These assumptions gives rise to the M-ary symmetric
channel shown in Figure 1.3. Decoders for this channel are called hard decision

decoders. Also it is convenient to represent both the input and the output alphabets
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Figure 1.4: M-ary Symmetric-Erasure Channel.



by the integer values {0,1,...,M — 1}.

An M-ary symmetric channel can also be represented as an adder channel: If
ce{0,1,..., M —1} is the transmitted code symbol, then the corresponding received
symbol y € {0,1,...,M — 1} at the output of the channel is given by y = ¢ + ¢,
where e € {0,1,...,M — 1} is an error symbol added by the channel, and addition
is performed modulo M. A code symbol is received in error if and only if e # 0

which occurs with probability p.

There is another DMC with one more output than that of an M-ary symmetric
channel that is of considerable interest. This DMC is called an M-ary symmetric
errors-and-erasures channel with M inputs and M + 1 outputs, and is shown in
Figure 1.4 with ¢ being the probability 2 received symbol will be erased. The
input alphabet of this channel is X = {0,1,...,M — 1}, and the output alphabet -is:
Y = {0,1,...,M — 1,7}. This channel is characterized by the following transition
probabilities:

i » w#zrw#?

plw|z)={ 1-p-q, w==z

q w=?.

\

The additional symbol, called an “erasure” (denoted “?”), may reflect symbols
which the demodulator determines are very noisy, or those for which an estimate
based on the received symbol is unreliable. This is often done using information,
called side information, about the channel during the reception of a code symbol.
Side information, has been used extensively in the literature when the channel is
jammed [6]-[26] or or when hits occur in multiple access communication (see [25]

and (18]), and it can be generated from a number of different sources, some of
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which are described in [24]; briefly these include predetection and postdetection
methods. The predetection methods are based on power measurements applied
to the received signal on a symbol-by-symbol basis. This can be accomplished
via an automatic gain control (AGC) device. Usually predetection methods are
the least reliable due to their high sensitivity to various fluctuations of the signal
amplitude. Postdetection methods are based on certain statistics obtained from
the output of the demodulator. Examples of this include Viterbi’s ratio threshold
technique (see [33] and [8]) which was proven to be very useful in a partial-band
interference environment. An errors-and-erasures decoding algorithm takes this
additional symbol into account. We shall demonstrate how converting an M-ary
symmetric channel to a one that includes erasures can improve the performance of

a communication system.

1.3 The Decoding Problem for Linear Block Codes

In this section we discuss block codes, particularly decoding for linear codes,
for the g-ary symmetric channels and the additive channels. In particular we
describe standard encoding and decoding algorithms for block codes and discuss
the complexity of these algorithms on various chanﬁeh. We begin with standard

definitions.

For a g-ary (discrete-time) input channel, an [M,n| block code C of length n
over GF(q) (a field of g elements) is a collection of M vectors called codewords
each of the form (ey,¢3, ...,¢2) With components in GF(g). An (n,k) linear code
over GF(g) is a [¢*, n] block code for which the codewords with symbols in GF(q)

form a k-dimensional linear subspace of the n-dimensional space. Any such a code
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is uniquely defined by a set of k-linearly independent codewords, which form a
generating set. Equivalently any (n,k) code can be defined to be the set of those

n-tuples (e;,...,¢,) satisfying a set of n — k linearly independent linear equations

n
Doeihij =0, j=1,2,.,n—k (1.1)

1=1
where h;; € GF(qg) are entries in a (n— k) X n matrix called the parity check matrix

of the code.

Encoding for a g-ary input, discrete time channel using a code over GF(q)
consists of a one-to-one mapping 7 from the k-dimensional message space to the

set C of codewords. That is
F:x*—c,
where X' = {0,1,...,g—1} and € C X™. Decoding for any of the channels described:

earlier, with output alphabet Y, consists of a composition of two functions D; and

D, such that
D:Yy"—¢
Dy=F1:C— X*,
where Y*" C Y™. The reason for restricting the domain of D; to be a subset of the
output space will be clear later. When a g-ary code is used on a g-ary symmetric

channel ¥ = X. When this code is used on a g-ary errors-and-erasures channel

Y = X U{?}. When this code is used on an additive channel ¥ = R.

The Hamming distance d(z,y) between two g-ary sequences z and y of length
n is the number of places in which they differ. The minimum distance of a code
is defined to be the minimum Hamming distance between any distinct pair of

codewords. An (n, k) linear code with minimum Hamming distance d is sometimes
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referred to as an (n,k,d) code. When used on a g-ary symmetric channel a code
with minimum distance d can correct any pattern of e errors provided 2¢ + 1 < d
[5] and e is said to be the error correcting capability of the code. When used on an
g-ary symmetric errors-and-erasures channel the code can correct all patterns of e

errors and r erasures simultaneously if 2¢ + 7 < d -~ 1.

When dealing with additive channels it will sometimes be useful to treat the
codewords of a code as real valued vectors. The real valued vectors are obtained
from vectors with symbols in {0,...,M — 1} via the transformations F and h dis-
cussed in the previous section. It will be clear to the reader which form is being
used and should not cause any ambiguity. For example, in the simplest case of an-
tipodal signaling (i.e., the additive channel), the one-dimensional transformation
consists of the function h(.) defined earlier. Then the Euclidean distance dg(z,y):

between z € R" and y € R" is

dz(z,ﬁ) = ,lg(z.- - )3,

where R is the real line. Similar definition holds for the M-ary vector additive
channel using the tra.nsfofmation F(.). The minimum Euclidean distance dg of a
code is the minimum Euclidean distance between any distinct pair of codewords
with elements in R. A maximum likelihood decoder will map a received vector
to the closest codeword; i.e. Y*™ = Y™. When used on an additive channel a
(bounded distance) soft decision decoder will decode correctly only those received

vectors with Euclidean distance dg/2 from some codeword.

We assume that after transmission through the g-ary symmetric channel chan-

nel the received n-tuple (yy, ..., yn) differs from the transmitted codeword by some
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error sequence (ej, ey, ...,€,); that is y; = c; +e; for j = 1,...,n, where addition
is performed over GF(g). Also, ey, e,,...,e, are independent and identically dis-
tributed random variables with Pr(e; # 0) =1 — p and Pr(e; = 0) = p for all 5 (as

in Figure 1.3). Define s;, j=1,..,n—k as

5 & doUihi; =D ehy;. (1.2)
=1

i=1
The (n — k)-tuple (sy,...,8n—&) is known as the syndrome of the received se-
quence. The (optimal) decoding problem consists of finding the error sequence,
producing a given syndrome, that is most probable for a given channel. For a sym-
metric mémoryless channel the most probable error sequence is that one which has
the minimum number of nonzero components. In that case the decoding problem

reduces to finding the solution to equation (1.2) with the minimum weight.

It is generally not feasible to find the most probable solution of (1.2) for an
arbitrary syndrome, simply because of the enormous number of possibilities. Fur-
thermore, it has been shown by Berlekamp and McEliece [4] that the algorithm
that solves for the most probable solution of (1.2) is in the class of N P-complete
algorithms. This means that it is (currently) not poesible to find an algorithm for
(1.2) whose complexity does not grow exponentially but grows polynomially with
n. Levitin and Hartman [19] based on a new concept of zero neighbors (a special
set of codewords) found an algorithm for which the time complexity is polynomial
but the space complexity is exponential in n. Optimal decoding algorithms for

other channels are at least as complex as that of the DMC.

For an M-ary symmetric channel an efficient suboptimal solution to the decod-

ing problem depends on finding a simple method for determining an approximation
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to the most probable solution of (1.2) for a high probability subset of the set of
all error sequences. This shows why we assumed Y*® C Y™. For codes with some
algebraic structure such as being linear or cyclic, algebraic decoding has led to
a practical decoding algorithm for M-ary symmetric errors-and-erasures channels
called bounded distance decoding. A bounded distance decoder decodes only those
received vectors lying in a decoding sphere about a codeword (a decoding sphere
is the set of errors and erasures pairs (e, ) correctable by the decoder such that
21 + ¢ < t, where ¢ is called the radius of the sphere). Other received vectors
that have more than the number of errors and erasures correctable by the code
are declared by the decoder as unrécognizable in which case the decoder is said to
have failed. For instance, the Berlekamp algorithm for linear cyclic codes (codes
for which cyclic shifts of a codeword is also a codeword) will correct e errors and r
erasures if 2¢ + 7 is less than the minimum Hamming distance d of the code. The

complexity of implementation of this algorithm is proportional to d2.

A decoding algorithm for an M-ary symmetric channel can be used for a discrete
time additive channel by quantizing the output of the additive channel. However,
there is an information loss caused by quantizing which will cause degradation
in performance. Under most conditions soft decision decoding gives better per-
formance than hard decision decoding or errors-and-erasures decoding mentioned
earlier. For instance, for additive white Gaussian noise channel hard decision de-
coding results in an asymptotic 2 dB loss in signal-to-noise ratio over soft decision
decoding ‘in the limit as the code rate goes to zero, both for binary and nonbi-
nary codes. One problem remains: soft decision decoding requires high complexity
for ‘codes with large block length. It is desired to recover the loss incurred by

quantizing without implementing a highly complex decoding algorithm.
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1.4 Outline and Summary of the Results of the Thesis

In Chapters 3 and 4 we investigate practical decoding methods for the additive
channel. Then in Chapters 5 and 6 we propose techniques to create an M-ary
errors-and-erasures channel for a slow time-varying channel. In the former case the
proposed algorithms use the powerful class of codes known as concatenated codes
introduced by Forney [12]. Very long block codes are possible with reasonable
complexity. Decoding is done in two stages resulting in a significant reduction
in decoding complexity over that which would be required to provide the same
overall error rate with a single level of coding. The remainder of this Section gives

an outline of the results of this thesis.

In Chapter 2 we briefly review concatenated codes as developed by Forney theg
describe a generalized concatenated coding scheme due to Zinov’ev and Zyablov
(38]. We propose a parallel algorithm for the discrete-time additive channel similar
to that introduced by Zyablov [40] for the M-ary symmetric channel. The proposed
algorithm (described in detail in Chapter 2) uses several decoders in a parallel
fashion. Each of the decoders consists of an inner and an outer decoder. The
inner decoder is a soft decision decoder for a short block length code. The outer
decoder is an errors-and-erasures Reed-Solomon decoder. The algorithm outputs
several candidate codewords and a decision device chooses the most likely one, as
the transmitted codeword. The main result is to optimize the inner decoders to

maximize the minimum Euclidean distance correctable by the overall system.

Chapter 3 investigates the parallel decoding problem when the code symbols
are coherently detected; in this case the performance measure is taken to be the

Euclidean distance correctable by the concatenated code; this measure is referred



15

Al

to as the error correcting capability of the code when used on an additive channel.
Then it is shown that the decoding algorithm has (close to) the maximum error

correcting capability when only few decoding branches are used.

The second problem, investigated in Chapter 4, attempts to characterize the
error correcting capability when the reception of code symbols is noncoherent;
that is when the received waveforms are detected using a noncoherent matched
filler. However, for noncoherent detection the noise effect is more complicated
than in the coherent case; the noise does not affect the decision: of the decoder
in an additive fashion. Because of this, minimum Euclidean distance correctable
is not an appropriate performance measure. Nevertheless, we motivate the idea
of parallel decoding for this noncoherent channel by making certain assumptions
about the noise. The inner code is taken to be a repetition code and the inner
decoder is a square-law combiner which, for each codeword respectively, sums the
(energy) outputs of the noncoherent matched filters. Thus the number of the sums
at the output of the combiner is the same as the number of (inner) codewords.
A decisibn devise then compares these sums and delivers an erasure if any two
outputs are “close”, otherwise it takes the codeword with the largest sum, as the
transmitted codeword. We find the §ptimum set of thresholds that maximizes a
certain error correcting capability when the inner decoder is similar to the Viterbi

Ratio Thresholding described in [34].

The communications systems analyzed in Chapters 5 and 6 evaluate techniques
that will enable the communication designer to create an errors-and-erasures chan-
nel and use coding for this channel. The particular application considered is a

coded slow frequency hopped spread spectrum system where the channel suffers






17

used to correct and detect errors. If errors are detected one or more symbols are
erased in the outer code. Then the outer code is used to correct these erasures
and errors which are undetected by the first code. This technique has proven to
be much more powerful than the previous technique (the test bits case), because
redundancy is introduced in each hop in a more complicated fashion using coding.

Final conclusions and remarks are made in Chapter 7.



CHAPTER 11

CONCATENATED CODES

2.1 Introduction and Motivation

The discovery of cyclic BCH codes led to practical (low complexity) methods of
designing the hardware or software for implementing for irhplementing the encoder
and decoder. However, as the block length becomes larger the performance of BCH
codes gets worse and the complexity for decoding, although polynomial, becomes
substantial. Concatenation of codes, first investigated by Forney [12], is a way of
constructing long block codes without requiring an impossibly complex decoder.
The idea is that the channel is used with an inner encoder and decoder, anti the
combination can be viewed as a “super-channel.” Then an outer code is designed
for this discrete super channel as shown in Figure 2.1. The outer code is typically
a Reed-Solomon code. Unfortunately, while Forney’s theorem is practical, it is still
not constructive in the sense that it does not tell us how to find the appropriate

super channel (i.e., the inner code).

Since we are using two codes, one can design the inner decoder to learn about
the channel and to help the outer code to correct as many errors as possible. If the

channel statistics are fixed and known it is appropriate to design the inner code to

18
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match the resulting super channel to the outer code which is a Reed-Solomon code.
If, however, the channel parameters vary with time, or are unknown but belong
to a class of channels, a technique which provides robust performance against a
channel with varying statistics involves parallel decoding of the received vector by
decoders which have inner decoders matched to different channel parameters and
then using a selector to decide which super channel is the most probable for the
duration of a codeword. More details about designing the inner decoder will be

discussed in Section 2.4.

The Chapter is structured in the following way. In Section 2, we start by
briefly discussing the basic concepts of first order (i.e., one outer code) concatenated
coding. Section 3 describes a generalized class of codes called generalized concate-
nated codes. In Section 4 we investigate concatenated decoding schemes where we-
described a particularly attractive decoding structure called parallel decoding, and

we discuss some of the earlier work that is relevant to our problem.

2.2 First Order Linear Concatenated Codes

In this section we describe a class of codes that are useful for all channel models
introduced in Chapter 1. An (N, K, D) concatenated code with minimum distance
D, block length N, and dimension K consists of two stages: an (na, k2, dagg)
outer code C; with code symbols belonging to X = GF(2™), m; > 2, and
an (ny,k;,dyg) inner code C; with code symbols over U = GF(2™) , where in
general my > m; > 1. Throughout the thesis, symbols in GF(2™) are represented
as binary m-tuples. With this in mind codewords are formed as follows. First

k: information symbols from GF(2™) are encoded using the outer code into n,
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symbols also in GF(2™2); the resulting mjn, bits are considered to be a sequence
of mat2 (an integer, i.e. parameters are chosen such that my divides myn,) symbols
in GF(2™). Then each ki symbols in GF(2™) are further encoded using the inner
- code into n; symbols in GF(2™). If m; =1 we have a binary concatenated code.
In all cases of interest the outer code used is a Reed-Solomon code which belongs to
the class of maximum distance separable’ codes. These are codes have the property
that dyg = ng — k3 + 1, which is the maximum Hamming distance for any code

with same block length and dimension.

The resultant linear concatenated code has block length N = nins,, dimension
K = kyk;, and minimum Hamming distance D that is lower bounded by Dy =
dygdig. Moreover, D > D; with equality if the inner code is a code whose

nonzero codewords are of constant weight.

For example the idea is illustrated below when an inner codeword corresponds
to one outer code symbol:

Let the outer-encoding be characterized by a mapping
F: X ks — rz,
where X is the alphabet of the outer code. Let f be the i-th coordinate of 7 and
let the inner-encoding be
g: X—Uum,
where U is the alphabet of the inner code. Then conecatenation is defined by
F&gm7 . X, ymm |

where g™ f is the “composition” of the two functions g™ and ¥ such that g F 2

(9f1,--19fn;)T. The concatenated codeword is the ny x n, matrix shown below.
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Uy Y12 - . Ugp,
g
T2 - Ugy U2 . . Uzp,
7 —
9
\ Tn, } - \ Un,i Ung2 . . Ungn, j

where m represents a message (€ X*2), z; is an outer code symbol (€ X), and u;;

is a channel symbol (€ U).

Each row in the ns x n; matrix is a codeword of the inner code. For each
nonzero codeword of a concatenated code, there exists at least d;z nonzero rows,
each of the nonzero rows contains at least d;g nonzero elements. Therefore, the

weight of a nonzero concatenated code is at least d,gd;g.

Some binary concatenated codes of length 128 or less have been constructed in
[36]. Some of these codes whose parameters are shown in Table 2.1, are superior
to the best previously known linear codes with the same block length n;n, and
dimension k,k;. Specifically the constructed codes have a larger minimum distance
(bound) D; than the dmis of previously known codes (the actual improvement
may be even better, because D, is a lower bound to D). In the table, D,,
is the best known minimum Hamming distance of linear block codes, aside from

concatenated codes.

2.3 Generalized Concatenated Codes

In the previous section we considered concatenated codes with only one outer
code and one inner code. Now we describe a scheme due to Zinovev and Zyablov

[38] where there are m outer codes and one inner code. This is called an m-th order
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N K DL DP" 2 kg dgH ny k1 duy

70 9 32 30|10 3 817 3 4
88 12 36 34 |11 3 9(8 4 4
98 12 40 36 |12 3 108 4 4
98 16 33 32|14 4 11|17 4 3
104 12 44 40 {13 3 11} 8 4 4
104 24 32 30 |13 6 8|8 4 4
105 20 33 32 (15 5 11 7 4 3
112 12 48 44 (14 3 12/ 8 4 4
112 24 36 33 |14 6 9|8 4 4
120 12 52 5115 3 13|8 4 4
128 16 52 48 |16 4 13| 8 4 4

128 32 36 32|16 8 98 4 4

Table 2.1: Minimum Distances of Concatenated Codes.
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generalized concatenated codes. When m = 1 this is the first order concatenated
code described in the previous Section. For simplicity, we only describe binary
inner codes.. ‘Although the generalized codes will not be used in the remaining part
of the thesis, they provide motivation for the parallel decode: discussed in Chapters

3 and 4.

Below we briefly describe the encoding method (shown in Figure 2.2). Consider
encoding a message u consisting of m non-overlapping smaller submessages
{wi : i=1,...,m}, that is p = (u142...tm). Each submessage y; is a sequence of
symbols of some length b; from GF(2%); thus the total number of information bits

to be encoded is 37, a:b;.

Denote by Ci(gi,n3,d2:, M3;) an outer block (possibly nonlinear) code with
symbols in GF(g;) of block length n, (symbols), minimum Hamming distance
d;; , and code size M,,, for ¢ = 1,...,m. Let 7 denote the encoding for code (;,
i.e. a mapping from u; to a codeword in C;. Then encoding thg information u with
the outer encoder 7(.) results in the outer codeword 4 = F(u) which consists of

m codewords (vi,...,7m) such that v; € C;, where the mapping 7 is defined as

follows:

Y= (Vyeeestm)T

?(/-‘l’ﬂ'al‘m)

where

%= Filw) € Ci(gi,na,dag, Myy)

t=12....,m ,

and T denotes transpose. Outer encoding is equivalent to encoding with m (pos-
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Figure 2.2: Generalized Concatenated Codes
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sibly distinct) codes. That is, the outer codeword could be thought of as a matrix
of size m X n; with the i-th row containing an arbitrary codeword from code
Ciy t= 1,;:.,m;'see Figure 2.2 for more clarification. Note that different rows,

in general, have different field sizes.

Let vU) be the column vector, of length 7, q; bits, containing the J-th symbol
of each outer-code codeword. That is ~0) is the J-th column vector of the outer
code in Figure 2.2. Also let B(q, ni,dy1, M) denote an inner block code with
symbolé in GF(g) of block length n; (symbols), minimum Hamming distance
dy; , and code size Mu Then inner encoding § of + results in a binary codeword

¢ such that
e = (c(l), ceey c("‘))
= G()

= (9(v),...,9(»™))

where ¢ is an encoding using the binary code B'(2,n,,dy,1, My ;). thus the column
vector c) = g(~4\)) BY(2,ny,d11,My1) and My, = qiqs... gm. Hence, we
have an n; x n; (matrix) binary concatenated code of order m. The size of the
resulting concatenated code is ﬁM,,.- . The code distance is d is lower bounded

=1
below.

Let the inner code B! be decomposed (i.e. partitioned) into ¢, codes as
follows B,?I(Z, n1,d13,419s ... 9m), where 5, = 0,1,... »q1 — 1. This can be done by
choosing all codewords that begin with symbols f; to be code B}. Also, let B}
be decomposed in a similar way into ¢; codes B} i (2,n1,d13,¢s...qm), 1, =

0,...,¢1. — 1, 33 = 0,1,...,q3 — 1. Proceeding further we get m steps of

decomposition. Codes B() are usually called inner codes. These inner codes are
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used in the decoding process which is not described in this thesis, Let

di = d,; dyy

df) = m‘.in{d,-}.

Then it was shown in [38] that d > dA),

The construction of generalized concatenated codes permits one to impose cer-
tain additional requirements on the weight spectrum of the codes and to construct
codes with specified minimum and maximum distances. More_over, these codes can
be used when information symbols need to be unequally protected. That is, some
of the information symbols are more valuable than others and need to be encoded

with a lower rate code or with a code that has a large minimum Hamming distance.

In his survey, Sloane [30] offered a table of the best known codes. The use of-
generalized concatenated codes allows construction of codes which are closer to the
optimal codes than those presented in Sloane’s table. For lengths n < 200 around

60 codes were constructed in [38]. For instance we have the following example.

Example:

As inner codes we take the trivial binary codes B(2,6,1,2%); i.e., the set of

all binary vectors of length 6. B! can be decomposed into

Bf(,z)(2,6, 2,2%) = all vectors with an even
number of 1’s ,
B{” (2,6,2,2°) = all vectors with an odd

number of 1’s .

Let the external codes be the repetition code C, (2,30, 30, 2)v and the Reed-Solomon
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code C(2(2%,30,15,2%), The resultant generalized concatenated code has parame-
ters ¢ =2, n =180, d = 30, k = 81. If you delete any position of this code we
get a code with pé.ra.meters n' =179, d' = 29, k' = 81. For specified d' > 29
and r=n'—-k' =98, this code has maximum length 179 from among the known

codes of same distance and dimension.

2.4 Decoding of Concatenated Codes

Concatenated codgs are usually considered to be effective for channels with
burst errors as well as random errors. Consider a Reed-Solomon code over GF(2™)
with block length n = 2™ — 1; usually each symbol is represented by m bits. It is
evident that such a code is not very effective on a channel with random errors, be-
cause one bit error in a symbol means the loss of the whole symbol of m bits. This-
is because the existing decoding algorithms has no way of taking into account the
symbols that are “nearly right”, and these decoders are for M’ -ary symmetric chan-
nels (or errors-and-erasures channels). However, the code is effective when errors
and/or erasures come in bursts, since Jm consecutive erroneous bits is equivalent
to at most j + 1 symbols in error. Now if each symbol of the Reed-Solomon code
is encoded into, for instance, an (n,,m) code which corrects random errors, then
the resultant concatenated code is effective when used over channels with burst as

well as random errors.

In decoding concatenated codes we do decoding in two steps, i.e. one performs
the inner-decoding and the outer-decoding separately: the inner-decoder processes
the incoming data and uses all the available information (for instance soft decision

statistics) to correct random errors and detect burst errors. The output of the
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inner-decoder is predominantly either correct data or stretches of burst-errors that
may be flagged as being unreliable. This output then becomes the input to the
Reed-Solomon decoder that corrects errors and erasures. One could think of the
inner decoder as one that reduces poor quality data into medium quality data and

the outer-decoder reduces medium quality data to very good quality data.

The challenging problem in constructing concatenated codes is to find the ap-
propriate inner code and the inner decoder. The inner decoder is usually designed
to “match” the super-channel to the outer code. Numerous c—onﬁgura.tions for the
decoder have been considered in particular in spread-spectrum communications
systems in the presence of unknown interference. Parallel decoding described be-
low has proved to be very effective to combat such interference on channels with
arbitrarily varying statistics. This was the initial motivation for our work on par- .

allel decoding.

2.4.1 Parallel Decoding

In parallel decoding there is a family of decoders with decoding rules D, ..., D;.
Each decoding rule is applied to the received vector, say y. Then the output of the
parallel decoder is D;(y) where 1 is chosen such that d(D;, y) is the sma.lleét for all 1.
The cost function d is the appropriate channel distance function (d is the Hamming
distance for a g-ary symmetric channel or symmetric errors-and-erasures channel,
and d is the Euclidean distance for an additive channel. Or the cost function can

be the probability of error for an arbitrary channel).

For instance consider a communication system with a noise source that pulses

between off and on (or a spread-spectrum communication system with partial-band
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interference [?] ) with fixed total power, where the fraction of the band the noise is
“on” is constant for a whole codeword but may vary from codeword to codeword.
For these types of systems it is desirable to have reliable communication irrespective
of the fraction of time (or band) the interference affects the transmitted symbol.
Furthermore, assume the decoder knows if a code symbol has been subject to
interference. Then one useful decoding algorithm for small pulsing times is to erase
symbols that are subject to interference, then use an erasure correcting decoder to
correct these erasures. If the erasure correcting capability of the code is larger
than the expected number of erasures, this algorithm should perform well. For
large duty times, erasing such symbols will cause too many erasures for an erasure
correction decoder. In this case it is often better to perform error correction since
many of the erased symbols would not have caused an error. A parallel approach
using an erasure correcting decoder in parallel with an error correcting decoder will .
perform well for all values of the duty cycle . Thus parallel decoding with different
decoding algorithms “matched” to different channels is a useful way of combatting
channels with unknown interference. This idea was the original motivation behind
the work presented here and in Chapters 3 and 4. Previous studies on parallel
decoding in partial band interference begin with Pursley and Stark [26] where
perfect side information about the interference was assumed to be available at the
receiver. Castor and Stark [6] - (7] analyzed parallel decoding for partial band
jamming with no side information. Also, Kim [18] analyzed parallel decoding with

no side information for a multiple access environment.

Parallel decoding for concatenated codes has each decoder Dy, t+=1,...,z con-
sisting of an inner decoder and an outer decoder. The problem then is to design the

z inner decoders appropriately to optimize for some performance measure (such as
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d(.) above). Consider a channel as seen by the inner encoder-decoder pair. Let
z be the transmitted inner codeword and w be the corresponding output of the
channel. If the channel statistics are time-invariant and known then one can design
_ the inner decoder such that the resulting super channel matches the outer code,
for instance, to minimize the probability of bit error, or to maximize the capacity
of the super channel. However, in many occasions the channel statistics are slowly
time-varying or unknown; one could think of the channel at a given time interval
(such as the duration of a codeword) as belonging to a class of channels. Different

channels have different inner decoders which yield the best performance.

In parallel decoding of concatenated codes the channel output w is processed by
several (say z) distinct branches; each branch consists of an inner decoder connected
to an outer decoder as shown in Figure 2.3. The i-th inner decoder is characterized _
by a threshold A, for deciding whether to erase or to output its best estimate to
the outer decoder. The output of an inner decoder is either an erasure, a correct
estimate, or an erroneous (inner) codeword. Then z identical bounded distance
outer decoders (one for each inner decoder) are used to correct the maximum
number of errors and erasures. The decoders produce z candidate estimates of
the transmitted concatenated codeword. The final decoding step, performed by
the decision device, is to choose the “closest” (i.e., the most likely) concatenated
codeword to the received vector for a given channel, as the transmitted one. When
designed properly each inner decoder is at least nearly optimal for a subclass of
(super) channels. The problem then is that of finding the set of thresholds A;, i =
1, ...,z which optimizes some performance criteria. The algorithm for erasing inner
codewords (which uses the above thresholds for an erasure criteria) depends on the

channel model and will be described in Chapters 3 and 4.
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In the next two Chapters we use parallel decoding for concatenated codes with
the above description. As noted earlier, the performance measure of the concate-
nated decoder is the number or the size of errors that can be corrected and will be
referred to as the “error correcting capability” of the code (using some decoding
algorithm and a choice of thresholds). We define in Chapters 3 and 4 the error

correcting capability in different ways depending on the channel model and the

applications in mind.

2.4.2 Previous Work

We start by reviewing the work done by Forney. He considered an inner decoder
which passes to the outer decoder its best estimate of the inner codeword along
with a real number which indicates how reliable it supposes its estimate to be.
He showed how such information can be efficiently used by the outer decoder in
a method called Generalized Minimum Distance (GMD) decoding; this type of
decoding allows the use of likelihood information in algebraic decoding algorithms.
If y is the output of the demodulater, p(y | ) is the probability density of the output
of the demodulator given the input to the modulator is z, and L(y) = ln%

is the bit log likelihood ratio, then the input to the outer decoder is a vector

a = (&, @3, ..., @), (n being the inner code length) such that, for some threshold

T, o = q(y) such that

+1  L(y) > T;

qv)={ & _T<Ly)<T;
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Thus the channel considered is that of an additive channel with a soft limiter
at the output. The outer decoder processes the received vector 2 by making hard
decisions on each component of the vector g and then attempting to decode with
a standard bounded distance error correcting method. If the (bounded distance)
error correcting decoding fails, the least reliable symbol is erased and an attempt
is made to decode using an errors and erasures method. If the decoding fails the
two least reliable symbols are erased and decoding is attempted using an errors
and erasures decoding. This continues until a codeword is decoded with (eyr) >
n — dmin, Or there are more erasures th§n can be corrected by the code, where
(e,r) is the scalar product of a codeword ¢ and the received vector r and dmin is
the minimum Hamming distance of the inner code. Note that there is a vector
successfully decoded by the inner decoder with s erasures, where ¢ can take values
in {0,1,2,...,dmin — 1}; however, it can be shown that only [4-*;-‘*'—1J attempts for

decoding are necessary and sufficient for decoding. It is easy to show that errors

only decoding and errors-and-erasures decoding are special cases of this algorithm.

The other parallel algorithms that have been considered in the literature are

described below.

1. Parallel decoding for spread spectrum communications with jamming.

Castor and Stark [6] - [7] and Pursley and Stark [26] have considered the use
of parallel decoding schemes to mitigate the effects of partial band Gaussian
jamming for spread spectrum, M-ary orthogonal, frequency hopped commu-
nication systems. Results were presented for the probability of error when
the decoders performed hard decision decoding on the received vectors. Their

results demonstrate that good performance is achievable in the partial band
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jamming environment independent of the percentage of bandwidth jammed.

. First order concatenated codes transmitted over an M. -ary symmetric chan-

nel.

The logical error correcting capability is the number of errors correctable
by the decoder. It is desirable to have a decoding algorithm that corrects all
error patterns with Hamming weight [éﬂz—‘-lj or less, where dg is the minimum

Hamming distance of the concatenated code.

Knowing that the Hamming distance of the codg is lower bounded by
digdyg, the maximum error correcting capability of the code is at least
[" "2 =1|. Designing a decoder which employs the maximum possible capa-
bility is not a trivial task. For instance, if the inner code is used to correct
|##=1| errors and the outer code to correct |8=1] errors, then the dz-a-v
coder f~1(g~1)"2(u"1*"3) can correct only about dudadt errors. For this case
Zyablov [40] found a parallel decoding algorithm which has the maximum
possible error-correcting capability, at the expense of increasing the com-
plexity of the decoder, and Ericson [10] has a simplified description of the
algorithm. The algorithm was developed for an M-ary input and output
channel and depends on errors and erasures decoding and the use of sev-
eral branches with different tentative decisions. Altogether there are |datl |
branches. The inner code of the 5** branch corrects all error patterns with
i — 1 or fewer errors for ¢ = 1,2,...,| 24+L |, and the outer code corrects all
¢; errors and r; erasures if 2¢; + 7; < dag. Of the |4:££L| branches, the one

that has the smallest Hamming distance from the received vector is taken as

the final result. Then the decoder described above corrects all error patterns
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with weight |48%8=1| or less, A more general treatment of concatenated

codes for the M-ary input-output channel can be found in [41].

. m-th order concatenated codes transmitted over an M-ary symmetric chan-

nel.

The same argument, as that of the previous case, holds except dy is the
minimum Hamming distance of the generalized concatenated code. Zinov’ev
(38] presented a cascaded decoding algorithm that realizes the maximum error
correcting capability of a generalized concatenated code, where the distance
measure is the minimum Hamming distance of the code. The algorithm is

very similar to the third case summarized below.

. m~th order binary concatenated codes transmitted over an additive channel.

In this case the output of the channel is soft limited to between -1 and
+1. Generalized Minimum Distance decoding algorithm is used where the
error correcting capability is taken to be the correlation between the received
vector and the inner codewords. For the above continuous-output channel,
an algorithm was proposed by Dumer et. al. [9] for concatenated decoding
of binary codes with respect to the generalized minimum distance introduced
by Forney. This distance measure uses the correlation between the received
vector and the codewords as a performance measure. A brief summary of their
results follows. Consider a binary concatenated code C of order m. Then
¢ € C is a ny X n; matrix with symbols in GF(2) = {0, 1}, where n, is the
block length of the outer codes, and n, is the block length of the inner code(s).
Denote by d(f) as the minimum Hamming distance of the concatenated code

C. Moreover, the likelihood detector output is soft limited using ¢(.) defined
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earlier.

Let z be the resulting matrix at the output of the soft limiter. Then there

exists at most one codeword ¢ such that (Theorem 3.1, Forney [12])
(C,Z) >ning — d(H). (21)

where (¢, z) is the scalar product of the codeword ¢ and z. Note that ¢ is
obtained by at most [“—(leﬂj attempts using errors and erasures decoding
(Theorem 3.2, Forney [12]). Decoding using 2.1 is referred to as Minimum
Generalized Distance (MGD) decoding. For typically large values of d(&)
this way of finding e is complex. Dumer (et. al.) breaks the problem of
decoding into m steps by MGD decoding of inner codes then decoding (errors
and erasures) with outer codes. This is called cascaded decoding which is
less complex than decoding using 2.1 directly. The algorithm proposed in
[9] uses parallel decoding and is characterized by a set of thresholds T, =

{t1,t2, ..., taq} for the i-th step of decoding. The two main results in [9] are:

* Only by appropriately choosing {{Ti(z} : ¢ = 1,...,m}, which is a func-
tion of the received vector 2, and upon which a set of candidate (outer
code) vectors are derived, the proposed algorithm outputs the correct
codeword if and only if (e,2) satisfies 2.1.

The number of thresholds (that are optimal in the above sense) could
be as large as n,. However, only [&;—ﬂj are sufficient when determining
the i-th row (i.e., the i-th step), where d;; is the minimum Hamming

distance of the i-th outer code (i = 1,2,...,m).

¢ Restricting the decoder to M < mm.l_dé;ﬂj fixed thresholds will result

in a some loss in the error correcting capaBility of the code based on
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(2.1). This loss is minimized by choosing uniform thresholds. In this

case the decoding algorithm will output ¢ if and only if

2M

— 4#)
(e,2) > nyny — d M1

(2.2)

The loss incured in using the uniform fixed thresholds is not being able

to decode correctly if 3 ¢ € C such that

M

ning — d@ 2M + 1

> (€,2) > nyng — dF), (2.3)

In the proof of [?] a stronger result was obtained which is a lower
bound on the realizable distance for any system of M fixed thresholds.

The bound depends only on two parameters § and A where

6 = dy;—t,
A = maximum separation of adjacent thresholds

= mf.x(tk - tk+l)'

Next we formulate the problem for the additive channel case. With soft decision
inner decoding we combine the advantage of likelihood decoding with the power of

algebraic outer decoding.

Notice that the algorithm we consider is for an additive channel (as described
later), and it is slightly different than Forney’s decoding algorithm in that era-
sures are declared by comparing the reliability of each symbol to a threshold (that
increases from one decoder to another). Thus we may declare three erasures for

one decoding and then 5 erasures for the next without considering the case of 4






CHAPTER III

PARALLEL DECODING OF
CONCATENATED CODES: COHERENT
RECEPTION

In this chapter we analyze and optimize the performance of a parallel decoder
for concatenated codes on additive channels. Additive channels are motivated by
coherent demodulation and by the fact that quantization loses performance. Hence,
we consider soft decision inner decoders, which process the received (real) vector
and output either an estimate or an erasure. Each of the z inner decoders, say
the :-th branch, has a different threshold A; for deciding when to erase. If the
received vector is within Euclidean distance A; of some inner codeword, the i-th
inner decoder will output the information symbols of that codeword; otherwise it
will erase the inner codeword and pass the erasure to the outer decoder. Of the
z concatenated codewords produced by the parallel branches, the decision device
selects the one which is closest in Euclidean distance to the received vector, as the

transmitted codeword.,

The soft decision decoding described above assumes, implicitly, coherent detec-
tion of the received signals. Thus the notion of a correctable Euclidean distance

(of the code) is easy to define and is a reasonable performance criteria to consider.

40
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This is particularly true when considering additive white gaussian noise channe!

such as in deep space or satellite communications.

The principal contribution of this chapter is to show how to determine the
optimal choice of A;,2 = 1,2, ..., 2, in order to maximize the guaranteed maximum
Euclidean distance correctable by the concatenated code, which we referred to in
Chapter 1 as the error correcting capability of the code. Furthermore, we show
that for moderate values of z (3 or 4) this decoding algorithm can correct errors
up to something close to half the minimum Euclidean distance of the concatenated

code.

The error correcting capability of the code is evaluated by analyzing a game
situation with the channel and the decoder as opponents. The strategy of t‘he
channel consists of choosing a noise vector. The strategy for the decoder consists
of choosing the thresholds for declaring erasures in each decoding branch. The
objective of the channel is to minimize the Euclidean length of the noise it must
add to the transmitted signal in order to cause a decoding error. The objective of
the decoder is to choose the thresholds to maximize the noise length necessary to

cause an error (i.e., to maximize the error correcting capability of the code).

3.1 Game Theoretic Formulation

Consider the parallel decoding algorithm for a concatenated code and an ad-
ditive channel, such that the inner decoder of the i-th branch decodes all vec-
tors within Euclidean distance A; of some codeword, 1+ = 1,2,...,2, (note that
A; € (0,%42) as in Figure 2.1), where z is the number of decoder branches, and

dig is the Euclidean distance of the inner code. Errors are detected in the i-th
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branch if a received vector (corresponding to an inner codeword) does not fall in
any sphere of radius A;, and centered around an inner codeword. In this case
the inner decodex.' outputs an erasure to the outer decoder. The decision device
in this case chooses among the z candidate codewords the one which is closest in

Euclidean distance to the received vector, as the transmitted one.

The Euclidean distance d,z of the inner code depends on the modulation being
employed. For example, if we are using a binary inner code and antipodal signaling
(with unit energy) then dg = 2\/d1x, dig being the Hamming distance of the inner
code, whereas for an M-ary inner code and M-ary orthogonal signal set d\z =
v2dig. The exact relation between Euclidean distance and Hamming distance is
not important in this thesis since we are dealing with correcting capability with

respect to Euclidean distance.

The forthcoming analysis to evaluate the error correcting capability of the par-
allel decoder is valid for outer codes defined over GF(q), for all ¢ = 2™, m > 1,
and inner codes over GF(2) (usually I < m). The outer code is a Reed-Solomon
code that corrects any set of e errors and  erasures if 2e +r < d2g. As mentioned

earlier, of the at most z possible decoding results, the one that has the smallest

Euclidean distance from the received combination is taken as the final result.

We now discuss the additive channel model in more detail (refer to Figures 1.1
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and 1.2). Let the transmitted vector be given by

)

S11 §12 e Sipy
821 S22 ... 32,‘1
§= )
I R ..

(for binary codes with antipodal modulation sij € {~1,+1}; for M-ary orthogonal

signaling s;; € {~1, +1}*) then the received vector is
y=s+u

where

M 12 ... Vin,

a1 Va2 ... V2m

K I/,,zx e . Uﬂ‘zﬂl }

is the additive noise matrix; that is Yij = Sij + Vij, where v;; is a noise vector. The

square of the Euclidean distance between § and yis

g ng

t(y) £ di(s.y ZZV., vE (3.1)

=1 j=1
where T denotes transpose. We call t(x) the channel loss. If dg and dy are,

respectively, the Euclidean distance and Hamming distance of the concatenated

code, then for any transmitted concatenated codewords 8 and g’ we have

Z Z 311 3‘1 3:',')T
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de > dig\/day. (3.2)

We will be interested in bounded-distance decoders which decode correctly any

vector within Euclidean distance 5“152‘1@ from the transmitted one.

Recall that we are interested in evaluating and maximizing the error correcting
capability of concatenated codes using the Euclidean distance as a measure of per-
formance. For any code this capability depends on the particuia.r choice of concate-
nated decoding algorithm. To find the best decoding thresholds, it is appropriate
to treat the problem as a game with two players. The strategies of Player 1, called
the decoder, consist of all vectors A, = {A,, B, 0K A <L <A< i‘,fl.
The strategies of Player 2, called the channel, consist of all noise vectors v. Player
1 chooses the set A, to maximize the error correcting capability of the code; that
is to maximize the minimum noise véctor length that will cause an error. Player 2
chooses ¢ to minimize the (squared) noise length t(r) to guarantee each decoding
branch is not decoded correctly. By convention we let Ap=0and A,,.; =d; — A,.
Hence, associated with the game are two programs:

Program I (Decoder’s Program)

7= e )

where the minimum over v is such that the errors in the received vector cannot

be corrected by the paralle! decoder (i.e., the output of each decoder branch is
incorrect).

Program II (Channel’s Program)

7 = min max t(y)
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where the minimum over v is also conditioned on the decoder output being incor-

rect.

It is clear from the above programs that v < 4f; therefore, for a pessimistic
analysis (observed by the decoder) we are interested in investigating program I
which we do in several steps; however, we need some additional definitions that are
convenieﬁt in finding optimal solutions to our program. The solution to program
I is trivial and is shown in Appendix B. It is possible for the parallel decoder to
choose an erroneous concatenated codeword in some cases when t(r) is less than ~;
however, Reed-Solomon decoders are more likely to fail than being in error; thus

7 is very close to the maximum error correcting capability of the code.

Now define for any m > 0 and any v

n)
Zm = number of rows of ¥ such that Z V;,'V;“; =m,
i=1

Let N(m) be a counting measure with N(m) = 1if z, > 0 and N(m) = 0

b

otherwise; then

ty) = ). mzm,= /:o mzmdN(m). (3.3)

me&(0,00)

The above summation is well defined because Zm = 0 except for a finite number of

1)

m's.

In solving for 4, we are interested in evaluating, for a fixed threshold set A,,
miny, ¢(¢), where the minimum over v is such that the received vector cannot be

corrected by the parallel decoder. For a given v, let 7, be the number of induced
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erasures in the outer code for the k-th decoding branch. Also let e, be the number
of induced errors in the outer code for the k-th branch. Further let r = (T1, 72500y T2)
and e = (e, ...,é,) . Then v causes the parallel decoder to output an incorrect
codeword if (74, e;) for all k = 1,..., 2 causes the k-th outer decoder to output an
incorrect codeword, i.e. 2¢; + 1 > dyy (recall that incorrect codeword refers to

decoding failure or erroneous decoding). Thus we have the following

mint(y) = min  min t(y),

where the minimization over v is such that the channel causes r erasures and e

errors, and the minimization over r and e is such that 27, + ¢; > dog, k=1,..,z2.

Define v(A;, 7,¢) as the optimum (i.e. minimum) channel loss given the erasures

7, errors e, and fixed thresholds A,. That is

Jay .
(A 7€) = mint(y)

For the channel to cause an erasure in the j-th symbol (inner codeword) at
the output of the i-th inner decoder, the row vector v; = (vj1,vjs, wessVjn,) need
only have length just greater than A,. For the channel to cause an error in the
k-th symbol (inner codeword) at the output of the i-th inner decoder, v, must have
length no smaller than d,g— A; and this is sufficient if the vector is directed towards
a codeword that is at a distance d;g (there is always such a codeword). Since
the channel should always choose the direction to be that towards the minimum
Euclidean distance codeword, the above minimization can be expressed in terms. of
z = {Zm : m € [0,00)}; that is the number of vectors Y, 1 £ 1< ngof alength m.

Thus we have






For a A, distance correcting code, error detection will certainly occur when
A} S T vk < (dig — Ax)? (see Figure 3.1). Either error detection or incorrect
decoding will occur if 72 v% > (dyg — Ag)?. Therefore we obtain the following

bounds

(dig—Ag)?
Tp > / ImdN(m) (3.5)
ag
< / * "dN 3.6
€k S (d.s—AI)’I (m) (3.6)
k=1,2,..z

From (3.3) we can write the channel loss as

(d1p~-4,)? (dig-a,)?
= / mzndN(m) + ... +/ mzmdN(m) +
0 (dp-af)s
o0
dN
(die-at)3 mEmdlN(m)

{dig-4a,)? (dig-a1)?
/ © mzIn dN(m) + ... + / © mz,dN(m)
0

(dhg-af)2
+(dig — AT 2/ . ITmdN(m
(dig 1) (dw—A?’)’I (m)

oo

(di1g-4,)? (die—a4)?
/(; ® mzmdN(m) + ... +/ e mzmdN(m) + (dig — AI)Z(B.'T)

(d1p-aF)?

with equality if ¢, = f(?w_A:.), TmdN(m); this occurs when z,, = ¢, for m =
(dig—Af)*and z,, = 0form > (dig—AT)?. Similarly, going backward in equation
(3.7) we conclude that the channel loss is minimum when equality is attained in
(3.6) for k = 1,2,...,2. With equality achieved in (3.6) equality is also achieved in
(3.5), as implied by (3.4). Then in the case of optimal channel strategy, we can

rewrite (7) and (8) in a form more convenient for later use, as follows:

(drg=84-y)? oo
e = /( ImdN(m) + ZmdN (m)

dg-Af)? (dip-af_))?
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Assuming C, is transmitteq
: correct
e errar
— erase

Figure 3.1: Decoding Regions For the i-th Branch
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(dig-Bky)?
= / IndN{(m) + ey, k=2,3,..,z (3.8)
(dip-aj)?
. cr(ap)?
Ty = / - TndN(m)
(ae)? ,
(dig=Aksy)? {dig—a)?
+f zndN(m) + [ mdN (m)
At (dig=af,,)?

(ag.,)?
= / ImdN(m) + Tepr +epgr —ex k=1,2,.,2~1 (3.9)

aj
Also,
= dN 3.10
= d
[T . mdN(m) (3.10)
(diz-4.)?
T, =/2w ImdN(m) (3.11)
Az

It follows from (3.8) and (3.9) that

el e k=1,2,...,2-1

Tk 2 Tey1 K=1,2,...,2—1

The above inequalities will be used as optimization constraints later in this
section. We estimate the conditional (conditioned on A,,r, and e) channel loss
Y(A.,,e) in the case of its optimal strategy under the condition that there are r,

erasures and e; errors in the outer code in the k-th decoding branch; that is,
o0
(A7, 8) = m;in/ Mz, dN(m) (3.12)
0

where the minimum is over z satisfying (3.8)-(3.11). Before we proceed, we note
that
b/
min/ ’ mz,dN(m) = j1a (3.13)
n

where the minimum is over all z,, , 7, < m < j2 such that






where

(e, ex) = (A1 = AL ) + (242 = AL, — ALy, + 2d15A4s, — 2di5Ak)er

From (3.14) we can determine the minimum channel loss in the case of a
channel optimal str‘ategy under the condition that the output of the k—th inner
decoder has 7, erasures and e; errors. Next we use this result to determine the
channel loss v(A,,7) ip the case of the optimal channel strategy under the condition
that 7, erasures occur in the k — th decoding trial and decoding is unsuccessful,
i.e. the k-th outer decoder fail to decode or outputs an incorrect codeword. For
all the decoder branches to be unsuccessful, it is necessary and sufficient that the

following z inequalities hold:

doer —
e > max(—?-‘f’—2—f£,o) k=1,2,.. z (3.15)

from this, we obtain
Y(Az, T) = mejnv(A,,r,e) (3.16)

where the minimum is taken over e satisfying (3.15). From (3.15) and (3.16) we

have
YAz 1) = miny(4,,7,¢)
= Zmin'y(")(n‘,ek)
k=1 °*
= Zq(k)('fk); (3.17)
k=1 .
where

A} - A} ) +b(k)|Be=ntll o< <d
B (r,) = (AL = AF 1) + b(k)| Basntl | b S dm (3.18)

(A - A ) Ty > dag
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where b(k) = 24} — AZ_| — AL, +2dig Ay — 2d15A. We use (3.18) to minimize

over all vectors 7 such that
Te = Thyl-

Then we have

(A:) = miny(A;,7) = min_ {y¥(n) + min{y®(r) + ...+ min A& (1)} ) )
T 71273 Tsmi2Ts

dyr 27120

(3.19)

We now evaluate the above minimization using the principle of dynamic pro-
gramming, sometimes called Bellman’s optimality (suppose one has a system char-
acterized by a state, and some decision is performed which depends on that state,
then an optimal strategy has the property that regardless of the initial state and
initial decision the next decision must determine an optimal strategy with respect
to the state obtained as a result of the initial decision.) The following lemma is

also needed to find the solution to (3.20).

Lemma: Let T = {r:7r =dyy (mod 2)}, and 0 < a < b, we have

: b .
ylél;_lélz{a‘r +bl(d-7+1)/2]} = ) + g 7 (2a —b)/2 (3.20)

= /2 + min{z"(2a ~ b),y"(2 - b)}
where 7* € T, a:‘=max{r6T:zZr},andy‘=min{r€T:y$r}.
Proof: Let f(r) £ ar +b[(d -7+ 1)/2]. Then
fr*=1)=a(r" = 1) +b|(d=r" +1+1)/2] =ar +b(d~7")/2+ b —a;
f(r*)=ar" +b[(d~r" +1)/2] = ar* + b(d —r*)/2;
flr*+1)=a(r* +1) +b{(d= 7" - 1+1)/2] =ar" +b(d-7")/2 +a.

The lemma follows from the relations f(r* — 1) > f(r*) and f(r* +1) > f(r).
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According to the lemma, the minimum in (3.19) occurs at point 7 whose
elements satisfy

nEn=..=1r,=d;y (mod 2) (3.21)

~(Az) ;; -d—;ﬁb(k) + min Zz_jl (A2, = A2 +2d1pAy — 2d15Dks) /2
where
kZz: b(k) = kzz:l(zAi - A} — AL, + 2digAgy — 2d15A)
=1 =
- kz';l(az —AL+ é(A: ~ AL) + 245 g;l(AHl ~ Ay

= Al+(a]-4L,) +2dip(Asr — AY)

= A+ Al -dlp - A +2d1A, + 2dip(diE — A, - AY)
= A+ dip —2dipA,

= (dig - A)?.

since A;4+1 = dig — A,. Hence,

- dog(dig — A1)?

v(4A:) 3

+ min i_l To(Ab — AL +2d 15O — 2d150k11)/2 .
"~ (3.22)

Two cases for dyg are considered.

CASE [: dyy =0 (mod 2), then according to the lemma above the minimum is

attained at one of the z + 1 points

TeES= {(0, 0, ...,0), (dg};,o, ceny 0), (dzH, dzH,O, ...,0), ey (dzg, ceey dzH)}

then

dag(dig — A)?
2

v(A,) = +min ) 7 (A, — Af_; + 2d1gA, — 2d15Ak) /2
m=1
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dogr(dig — Ay)? L&
= - dasi( 1E2 d + min D dam(AL L - AL +2digAn — 2d15 A1) /2 + 0
m=1

= dyg(dig — A)?/2 + dag /2 mkin((dw — &) — (dip - A+ AL)

. d
= min —;’i((dw —A)+ AL k=1,2,.,z+1 (3.23)

CASE II: d2y =1 (mod 2); this implies that
r€ S ={(1,1,..,1),(dem, 1, ..., 1), (d2pr, dor, 1, 0, 1), ..o, (2, ooy dor) }

and the channel loss is given by

z k-1
v(A) =3 f’z—ﬁb(k) +min (Z dog (AL — AL +2dig A — 2d1EDmsy) /2 +
k=1 m=]

Z (A72n+l - Afn—l + 2digAm — 2dlEAm.+1)/2;
m=k
the first two sums have been calculated above, and it is easy to show that

Z (Azn+l - Arzn—l + 2Cl).EAm - 2d1EAm+1) =

m=k

(A, - Al + (A~ Al —2dip(Aser — Ar) =

241 - (dig - A - AL

hence,

(degr — 1)

5 ((die - AR+ A%_) + A2 Jk=1,2,.,2+1 (3.24)

7(4;) = min

The minimum channel loss in the case of its optimal strategy under the condition
of decoding failure is given in (3.23) and (3.24), which also shows the dependance
of the error correcting capability of the concatenated code as a function of the

parameters A,, dyy, dig.
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3.2 Optimal Decoder Strategy

The optimal decoder strategy maximizes the channel loss for a fixed z; i.e., it

is the solution of the equation

;= arg n3\a.x*y(A,)

For d;y even the resulting channel loss is given by

dog
'7—-n:‘1ta.xxnbm-—[dw—Ak 2] k=1,2,0,z241.

Let 6, = —-*- and f(6,8k-1) = (1 - 5;,) + 6%_,. It is shown in Appendix A that
rr}\a:xmgn F (e, bx-1)

is obtained when f(&,68c-1) = a., k 1,2,...,z + 1; where «, is some unique

]

constant that depends on z. Given the conditions § = 0 and 6,,; = 1 — §,; the

z + 1 equations for 6y,...,6;, @, can be solved numerically.

We now can solve for the optimal value of the thersholds A,; that is we can
determine the decoder strategy that maximizes the error correcting capability of
concatenated codes when used on g-ary additive channels (recall that A; = §; dg).
These thresholds are strictly a function of the number of decoder branches used in
the parallel decoder. One expects that the error correcting capability of the code

improves with larger z. This behaviour is analyzed below.

Similar argument as above holds for d;g odd. In this case the channel loss is

given by
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dogr — 1
’7=maxnii_n———-( 24 )

n: 7 (e — AP+ AL +AY, k=1,2,.,z+1.

It is shown in Appendix C that the solution for the above game is the same as for
the even case. That is, the strategy is the same and the resulting losses are equal

regardless if dypy is odd or even.

The error-correcting capability (squared) of the code when the decoder uses

its best strategy is

doy d?
H wa

2 F
a,
or /4 = dw\/dw\/?
_ dlEV2d2H\/2—a:

dlE 2d2H,Bz ¥ (325)

where 3, < 1; also 3, goes to one as z becomes larger, as proved in the following

proposition. Proposition:

lim B3, =1

L= 0

Proof: «, is given by

a, = (1 - 51:)2 + 6:_1
where 6, satisfies the conditions:

1. 6 is a strictly increasing function of k ;

2. 6 is bounded above by 0.5.






39

1 | 0.3431 | 0.828

2 10.4187 | 0.915

3 | 0.4500 | 0.948

4 | 0.4655 | 0.965

5 10.4750 | 0.974

6 | 0.4800 | 0.979

7 | 0.4850 | 0.984

8 | 0.4877 | 0.988

9 | 0.4900 | 0.990

10 | 0.4915 | 0.991

15 | 0.4957 | 0.995

30 | 0.4982 | 0.998

Table 3.1: Error-Correcting capability for various number of branches z.
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tipodal signaling (for m=2) or orthogonal signaling (for m > 2). We developed a
decoding algorithm that maximizes the ability of the concatenated code to correct
more errors. The code symbols were assumed to be coherently demodulated. This
made the Euclidean distance (from the transmitted codeword) correctable by the
concatenated code, an appropriate performance measure of the error correcting

capability of the code.

The decoding algorithm proposed uses errors-and-erasures decoding and
makes use of several branches with different tentative decisions giving rise to par-
allel decoding. The set of thresholds for each algorithm is chosen to optimize for
the error correcting capability of the code. Moreover, the algorithm can be used
without modification for a more general case and with no loss of optimality. For
instance, it applies when k; symbols of same coordinates, each symbol from a

possibly different codeword of the outer code, are inner encoded.

The error correcting capability of the code improves with increasing z. We
showed that the full error correcting capability is attained asymptotically with z.
However, the numerical results shows that z = 4 gaurantees more than 95 % of

this capability.

In case we need to communicate over a bursty channel with long burst
lengths, one can add an outer-outer code to pick the correct outer codeword. Then
a decoding algorithm is needed to make best use of the resulting concatenated

code.

The inner codes need not be block codes. Convolutional or trellis codes
for which the Viterbi algorithm algorithm provides a good algorithm for maximum

likelihood decoding can be used. We leave such treatment for future research.



CHAPTER IV

| PARALLEL DECODING OF
CONCATENATED CODES: NONCOHERENT
RECEPTION

4.1 Preliminaries and Motivation

In the previous chapter we investigated the error correcting capabilit}i
of an additive channel appropriate for when the received signals are coherently
detected. In this Section we attempt to characterize the error correcting capability
for a model appropriate to the case of noncoherent reception. The concept of a
distance that characterizes some performance measure is not clear in this case, and

for any reasonable distance measure taken the problem is extremely complex to
evaluate. Here we specialize the treatment by making additional assumptions on
the inner code being a repetition code and develop an appropriate distance measure.
The outer code is a bounded distance Reed-Solomon decoder, which is capable of

correcting any combination of e errors and r erasures such that 2e + 7 < dyy — 1.

Consider an M-ary additive channel that models with noncoherent recep-
tion of M-ary code symbols transmitted over a continuous additive white Guassian

channel using Frequency Shift Keying (FSK) shown in Figure 4.1.

61
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Figure 4.1: Noncoherent Reception for M-ary Orthogonal FSK Signals.
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In what follows we assume that the all zeroes inner codeword is transmitted,
and the sum of the outputs of the energy detectors matched to symbol 1 is the
largest among the M — 1 nonzero symbols. In this case the analysis takes into

consideration only the outputs of the 0 and 1 energy detectors.

Referring to Figure 4.1, let

ZO = (ZO,c ZO,J)

N
l

(Zl c Zl .9)

. ]

where

T
r(t) cos witdt

N
il

¥

T
r(t) sin w;tdt

I
o &

1,8

1=1,2
r(t) being the received signal consisting of the transmitted signal plus additive
noise process n(t), and T is the signal duration.

Given 0 is transmitted we have (assuming the energy per symbol E, = 1)

Zo. = cosl+ng,
ZO 3 = Sin 0 + nO','
Zl e = Ny

Zl,: = Ny

where



\/5/ n(t) coswnpt dt

0

Mm,e

m = 0,1.

Consider a repetition inner code of order L (that is the transmission of L
replicas of the same symbol; see Section 5.3) and an outer decoder that corrects
errors and erasures. The inner decoder, referred to as the diversity combiner, is
taken to be a square law combiner which consists of the sum of squares of the
output of a matched filter (see Chapter 5 for more details). Moreover, the output
of the square law combiner with maximum value is compared with that of next
largest value. If the output of these two energy detectors are “close” the inner
decoder decides the corresponding symbol\ is unreliable .a.nd declares an erasure to

the outer decoder. Formally, the diversity decoder outputs symbol 0 if and only if

where 7 is a threshold chosen to optimize some performance criteria. Assuming

Co is transmitted, the above equation reduces to

L+ 7(zo,8) 2 1 || na |f?

where

Iml = Sda(b) + nia(k)
7 (80, 8) ;(ng,c(k) +ng,())
+ 2 Z(cos 0(k)no.(k) + sin8(k)ng,(k))

= E(”o c(k) + nOs(k))

k

+2/nd (k) + nd, (k) B(k) .
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In the above equation

B(k) = cos(¢(k) + 6(k))
No c(k)
\/nOC +n03 k)

#(k) = arccos

The inner decoder output is an erasure if and only if

—HMW<L+?( 8) <7 |l ny |
and an error will orccur when
L+ F(ng,8) <nin|*.

We would like to choose n such that the concatenated code has its maximuri
error correcting capability for that single branch. Ideally we would like to use
| 71 ||* + || nz ||? correctable by the code, as the error correcting capability of the
decoder. However, this performance measure is very hard to analyze, and we use
a slightly different, but appropriate, performance measure. Before describing the

performance measure of interest, define the following.

Let z,, £ number of rows such that

InylP=m

then

= /:o mzmdN(m);

where N(m) is a counting measure with N(m) = 1 if z,, > 0 and N(m) = 0,

otherwise. Hence, « is the total noise added to the energy detector with next
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largest value. Then choose 7 = 1" to maximize 7, i.e.
n’ = arg max Y

where the maximum is over all  such that the decoder outputs the correct code-

word.

If we have more than one decoder branch with different thresholds, it is
reasonable to expect that with optimal settings of these thresholds the parallel
decoder will perform better than the single branch decoder, as is the case for the
coherent reception. In this Section we consider such a parallel decoder scheme. We

start by formulating the problem and proceed like we did in Chapter 3.
4.2 Problem Formulation

In the following analysis we rely on some results from Section 3.5. We
consider a parallel decoding scheme with z branches. Branch i is characterized
by threshold 7; used by the inner decoder to declare erasures for the outer decoder.

Thus the decoder is determined by the set of thresholds:

Hz = {’71,---,77:}'

where 71 < 72 < ... < 7n,. The set H, is to be chosen to maximize the error

correcting capability of the code.

Also, by convention we let

1
Moo= """, Nzp1 =00 .
n

Let £ 2 L + F(ng,8). Then the inner decoder outputs an error if and only if
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L< ;1; || 71 ||*, and it outputs an erasure if and only if
1 2 2
=l P< L<melln]®.
Mk

Therefore, we can write an exact expression for the number of errors e, and

number of erasures 7, for the k-th branch, at the input of the outer decoder.

These are
€, = / Zmd N (m) (4.1)
n L
and
Ll
T,,:/L zmdN(m) , k=1,2,...2 . (4.2)
L7

To find recursive relations for e; and 7, notice that we can rewrite (4.1) and

(4.2) as follows

ey = /oo TmdN (m)
Ml

ne+1 L oo '
= / TndN(m) + ZmdN(m)
n

kL Nkt £

Me+1L
= / ZndN(m) + ey , k=1,...,2~1
n

L
e, = ZndN(m)
nsl
Similarly,
mL
=/, TmdN(m)
T
— ”—k‘——l dN M1l dN et dN
= /:L Tm (m)+/_L ZmdN(m) + gy TmdN(m)
LTy LI k-1
= .L-l a:mdN(m)+T,,-1+ ey — €k , k=2,...,2
%
me
n o= TmdN(m) .
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From the above relations we note that

Te < Tk4l 5 €k 2 €+l

which is reasonable, since for a larger value of threshold we expect a larger number

of erasures and therefore, less errors.

Now we find an expression for the minimum channel loss such that the num-
ber of errors and erasures in the branches are given by the vectors 7 = (1y,...,7;)

and e = (ey,...,e,;), respectively. We make use again of the following property:

7
min | ’ mz,dN(m) = aj
Fi3

where the minimum is over z such that J{’ ZmdN(m) = a. The equality holds if
and only if

Zp,=a for m=13, Tp,=0 for <M< .
For a given H,,e, and 7 we denote v by <(H.,7,e) which is rewritten as

v(Hz 7, 8) = mim/; mzmdN (m)

. ;;L;E ,'—'1_—;3
- nim{ fo mzmdN(m) + /L mEmdN(m) + ...
+ [™ mzndN(m) + /"’szmdN(m)a- " EmdN (m)
% & me
+...+ ':iama:mdN(m) + ::: mz,dN (m)

L
= 0+ ;(Tz — Tz~1 — €z~1 T+ ez) + (Tt—l - Tgm2 — €z-2 F ez—l)
z

Nz-1

L L
+o+ (g - —e1+ )+ —
n2 m

+ Lny(ey —e2) + Lnafes —es) + ... + Lna-1(es-1 — )

+ Lne,
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z 1 E
= EZ""(TI: —Tkop— €1t e)+— 7y

k=2 Tk M
z—1
4+ LY mk(er — errr) + Lnge,
k=1

where the minimum above is over all noise strategy such that the decoder outputs

are incorrect. By rearranging terms (see Appendix D) we get

: ((1 1 1 1
Y(Hzr,8) = LY {|—~ e+ | — - + Nk — i1 €
k=1 L\TE T+l Mk Mk+1

Zz: T (7 e0) (4.3)
k=1

As in the coherent case, minimizing over e is simple

1 z

—_— = ; (k)

Ev(H,,T) oL k_l'y (Tes k)
=1,...,.2 =

z

- - (k)
lgl =k12cg-li?2423 7 (Tk’ ek)

> ()
k=1

i

where
1 1 1 1 dopr—1p~1
(=) e+ (2 = ks e —mey) [Be5Ast)
¥ (r,) = if 0< 7 < dyg
1 1 R
\ (;,:",;';T)Tk , if 7 > dag.
Then,
ZH) = min (H
g VH:) = min v 2 T)
= : (2) : (=-1)
- 7515,"2 {'7 (TZ) + 7xr—1];lgfl {’7 (Tz—l)
i (1)
+ ... +frlnslgﬂy (rl)}}...}

According to Lemma, the minimum occurs when

NEn=...=dg
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This implies

Nk Nk+1
. =T 1 1 1 1
mm) —=i2|— - - \=— - + M — Mk-1
™ oy 2 Mk Mksl Nk Mkl
Zz

drg . {1 1
= 7,— + min — — =+ T
2 T Mt Miet1

z d 1 1
v(H,) = L (—— - + M = nk—l) +
T

Two cases are considered

Case 1: d;g =0 mod 2; this implies that

TE {(0,0,...,0) y (0,...,0,d,3),...,(du{,...,dg};)}

In this case
1 - day . ooy [ 1 1 )
=v(H:) = = n,+min ) == = - —— — g + T
7(H) 5 7 k,§12nm T T T e
dZH . dg;{ 1
= Tnz+lrllcln_§— a‘f"?k—l"]z
dag

. 1
- T 15?51?“ (a + 771:-1)
‘Casge 2: dig =1 mod 2; which implies that

Te{(1,1,...,1),(1,...,1,(12}1),...,(dzH,...,dgH)} R

Therefore
1 dag . il 1 )
=v(H,) = —n,+ min |l = Mt M+
Eﬁ( :) 2 k€{1,2,...2+1} {m}; 2\ Mienr T T M1
L d 1 1
+E‘Z£("’"'—. ,—m.+m.-1>}
mek 2 \Me M+l
1 dog — 1 ) 1
T m T A, (Z + m"l)
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The optimal decoder strategy maximizes the channel loss ~v(H,) for a fixed

number of branches z. For d,y even, it is the solution of the game,

7 = max, min  (H)
dig L , (1 )
= max min -t k=13
2 Hy 15k<z+1 Nk

for d,y odd
1 dyg—1 1
vemp o B i ()

The solution to the above game follows exactly the steps we used for the coher-

ent case, namely
) 1
H}ﬁx 1511?51&-1 (;7: + m"l)
is obtained when

1
-’7—+r)k-1=a, , k=1,2,...2,z+1 . (4.4)
k

Moreover, H, = arg max ~(H.) is a unique decoder strategy and there is only one

constant «, such that (4.3) holds. Similar arguments hold for d,g odd.

Property:
1<a,<2 , forall z
Jim o =2

Proof:

Since . >1 , k=1,...,2=>

a,=;,1:+m,_1>1 .
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z| a, H,
1| V2 m =2
211.7316 m = 1.155 n, = 1.7316

3 | 1.8500 | n; = 1.0824, n, = 1.3066, n3 = 1.8500

Table 4.1: Error-Correcting capability for various
number of branches z (noncoherent case).

Also, for k=1 we have

but n; > 1 which implies that f: > 1 which in tern implies that a < 2.
To show the second property, notice that

1 < <M1 < oo <1,

and 7; is upper bounded by 2. This implies n, converges as k,z — 00 t0 7. In

this case we have,

— 4 oo = oo,
0
2
Qoo

Solving these two equations we get a,, = 2. Several values are tabulated below.
4.3 Conclusions

In this Chapter we evaluated the error correcting capability for a particular

concatenated code: the inner code being a repetition code, and the outer code is
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a Reed-Solomon code. The code symbols were transmitted through the channel
using orthogonal signaling and were noncoherently detected by the receiver. We
proposed a'parall.el decoding algorithm when the diversity symbols are combined
by a soft decision decoder, mainly square-law combining. This algorithm made use
of parallel decoding with different branches characterized by different thresholds,
the later chosen to maximize a certain performance measure which reflects the

error correcting capability of the concatenated code.

The error correcting capability v = v(no,8) is random variable. It would be of
more interest to find the expected value of v with respect to the random vectors

ng and 8, which depend on the channel statistics.

Due to noncoherent demodulation of the code symbols, the Euclidean dist
tance measure used in the previous Chapter is not an appropriate perforrna.ncé
criteria for error correcting capability. We use a criteria for the Viterbi Ratio
Threshold decoder. The reason for restricting the inner code to be a repetition
code is the difficulty in defining an appropriate performance measure for the er-
ror correcting capability of general code used in the noncoherent communication

system. This remains an open problem.



CHAPTER V

PERFORMANCE OF A FHSS SYSTEM IN
RAYLEIGH FADING WITH NOISY SIDE
INFORMATION

5.1 Introduction

The engineering importance of communication media that exhibit fading:
has increased markedly in recent years. Common examples of channels where fad-
ing is encountered in practice are the ionospheric high frequency (HF) channel
and the tropospheric scatter channel [23]-[28]. For instance when using cellular
mobile radio communications (1] and indoor radio communications [27] the recep-
tion usually suffers from severe multipath fading. In this chapter we are interested
in problems which arise when considering slow-frequency hopped (SFH) spread
spectrum communications systems over selective fading channels [13]-(16], because
in many applications of SFH systems (such as in SFH multiple access communica-
tions) the channel cannot be adequately modeled as a non-dispersive additive white
Gaussian noise channel. Moreover, frequency hopping spread spectrum modulation
is an effective way to combat fading. In slow frequency-hopped spread spectrum
modulation the hopping rate is smaller than the data rate. During transmission

the spread spectrum signal encounters on such channels severe fading (i.e. reduced
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signal strength) and may produce intersymbol-interference or other dispersive ef-

fects.

F01: most fading channels it is impractical to obtain accurate phase esti-
mates and incorporate these estimates in the detection process; thus the random
character of the fading channel prohibits the use of coherent demodulation. There-
fore, noncoherent demodulation is considered for faded channels. Binary differential
phase-shift-keying (DPSK) and frequency-shift keying (FSK) are of particular in-
terest for applications of SFH systems in selective fading channels [23], since these
forms do not require the receiver to establish phase coherence at the beginning of

each hop. The form of modulation considered in this Chapter is orthogonal BFSK.

As a result of fading, reliable communication over such channels requires a
large bit energy to noise ratio £2. It is known [37] that when communicating over
a fading channel the uncoded bit error rate (BER) decreases linearly rather than
exponentially with —g-: As a result, to achieve an error probability of 107°, which
requires only 13.4 dB for a noncoherent channel with no fading and when using
binary orthogonal signaling, requires approximately 50 dB for a fading channel
[34]. Also, the loss in capacity and cutoff rate of the channel due to Rician fading

was investigated by Stark in [31].

To compensate for such a tremendous loss, most communication systems
use some forms of error-correction coding. For fading channels we recover most
of the loss incurred frorn fading with the use of diversity (repetition coding) with
optimum rate. For example with repetition coding we need 22.4 dB as compared
to 50 dB to ;chieve error probability of 107%. The use of further smart coding

techniques reduces the loss in performance to approximately 5 dB [34], assuming
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codes of equal complexity and equal error probability requirements.

In a SFH communication system more than one data symbol is transmitted
per dwell interval. If the system uses some form of coding it is desirable to obtain
information concerning the reliability of the symbols in a particular dwell interval

which enables us to erase unreliable symbols.

As mentioned in Chapter 1, postdetection is one way to generate side
information. Included in thé postdetection methods is the technique used in this
chapter and which is described as follows. We include in each transmitted hop a
known sequence of symbols called test symbols. The number of such symbols that
are received correctly during a given dwell interval is used as a statistic upon which
to base an estimate of the reliability of the data symbols in that dwell interval. This
method was suggested by McEliece and Stark in [21], and it was used by Pursle}:'
in [25] for a frequency-hopped multiple access channel to detect the presence of a
hit in a given dwell interval. The estimate regarding the reliability of the symbols
in a given dwell interval can be made arbitrarily reliable by increasing the number
of symbols in the known "test” sequence at the expense of reduced data rate. The
implementation of such a side information generation is simple; however, this side
information is noisy in the sense that correct data symbols will occasionally be

classified as unreliable or incorrect data symbols as reliable.

In Chapter 6 we develop another method in Chapter 6 for generating side
information about a received hop. This method is based on concatenated coding.
The idea is to introduce redundancy (i.e., parity check) symbols in each dwell
interval by inner encoding the interleaved outer-code symbols. The inner-code is

used for error correction and error detection to judge whether a received hop is
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reliable; if the received inner-code lies in the detection region, then it is claimed

unreliable and the entire hop is erased.

Th;e goal of this chapter is to investigate the performance of a coded slow-
frequency-hopped spread spectrum communication system, when using the above
form of side information, in the presence of Rayleigh fading and additive white
Guassion noise. The system considered assumes noncoherent reception with or-
thogonal BFSK as a signaling scheme. We also assume that the hopping patterns
are sequences of independent random variables each of which is uniformly dis-
tributed on the set of g available frequencies, and assume the channel is memoryless
from hop to hop; that is, fading is independant from hop to hop. Full interleaving
is employed such that no two code symbols from the same codeword will be trans-
mitted in the same dwell interval. This will ensure that errors and erasures within

a codeword are independent.

We give a careful introduction on the system model. Section 3 investigates
the performance of the system when repetition coding is employed with hard de-
cision combining and soft decision combining. The performance when using Reed-
Solomon codes is analyzed in Section 4 in which we consider two configurations
for decoding. The first configuration consists of a single Reed-Solomon decoder
that corrects errors and erasures. The second configuration analyzed is a parallel
decoder scheme with two Reed-Solomon decoders: the first decoder corrects errors

and erasures and the second one is used only as an error correcting decoder.

We show how using this technique for generating side information, significantly
improves the performance of Reed-Solomon coded SFH spread spectrum commu-

nications in a fading channel. The performance measure taken is the probability of
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symbol error. When symbol error probablity of 10™* is desired, the improvement in
symbol signal-to-noise ratio required to achieve this performance is approximately
2 dB. This is done by transmitting only 3 test bits in each dwell interval and using

a (32,5) Reed-Solomon code.
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5.2 System- Model

As mentioned earlier, we consider orthogonal BFSK signaling; the modu-
lated signal is frequency hopped to produce the transmitted signal. The received
signal is dehopped then noncoherently demodulated to produce the channel output.
The received signal is corrupted by multiplicative noise with Rayleigh statistics,
which is referred to as fading. We treat the frequency hopper and dehopper as
performing inverse operations on the modulated signal. Below we elaborate more

on the system model used throughout this chapter and Chapter 6.

The channel considered is assumed to be a slow Rayleigh faded channel.
This means that fading is assumed to be slow enough that the amplitude of thé
faded signal is nearly constant over the duration of a frequency hop. This is
usually referred to as a uniform channel. In frequency hopped spread spectrum
communications the channel spectrum utilized is divided into frequency slots where
the communicator uses one slot during a time interval called the dwell interval
during which J symbols are transmitted. The communicator then uses another
frequency slot during the next dwell interval to transmit the next J symbols, and
~ soon. The frequency slots are chosen during each dwell interval in a pseudorandom
fashion. Moreover, it is assumed that the fading at different frequency slots are

independent.

For a more formalized treatment of the frequency hopped spread spectrum
system we use the model adopted by Stark in [32]. Consider frequency hopping

with J symbols transmitted in each dwell interval. Assume that the particular hop
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begins at time ¢t = 0 and is of duration JT where T is the duration of one BFSK
signal. When the input to the channel is Xi, 1 = 0,1, the data modulated signal
s;(t—JjT) is-the input to the frequency hopper during the interval IT<t< (j+1)T.

The signal s{(t) is given by
5i(t) = V2Pcos(w;t + 6;)pr(t) , (J-1)T <t<yT (5.1)

where w;, 7 = 0,1, is the radian frequency of the signal, P its power, and 0;
the phase of the i-th signal. Also, pr(t) is a basic pulse shaping function usually
designed to reduce intersymbol interference (ISI) and used for spectrum shaping.

Since this is beyond the scope of this chapter, pr(t) is taken to be

1, 0<t<T
pr(t) =
0 , otherwise.
The frequency hopper changes the center frequency of the modulated signal
in different hops to one of ¢ different center frequencies according to a specified
hopping pattern to produce the transmitted signal s;(t — jT). Let T}, be the hop

dwell interval. The transmitted signal for the j-th symbol of the I-th hop during

the interval jT +IT, <t < (j + 1)T +ITh, 0 < j < J, given by
si(t) = V2Ppr(t)cos((w™ + wi)t + &) (5.2)

where {w,(H) : =00 <! < oo} is a sequence of independent and uniformly distributed
random variablés that take values from a set of g available frequencies. The received
signal y(t) when s;(t - jT), 0< 5 < J y is transmitted consists of the transmitted

signal with random amplitude and additive white Gaussian noise:

y(t) = R, si(t - 4T) + n(t), JT+IT,<t< (7+1)T +1T,, (5.3)
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where {R; : ~00 < | < o} is a sequence of independent and identically Rayleigh

distributed random variables; i.e. with probability density function

2re=r’ , r>0
PR;(") = (54)
0, otherwise.
We have normalized E(R?) to be equal to 1 so that the average received signal
energy is -E_;=E(R2)Eb = Ey and is the mean bit energy, E, being the unfaded

signal energy per bit at the receiver. Also n(t) is additive white Gaussian noise

with double sided power spectral density %‘1

The frequency dehopper changes the center frequency of the received signal
according to the hopping pattern of the transmitter. The signal y'(¢) at the output

of the frequency dehopper is then given by
y'(t) = Rt V2Pcos(wit + ¢:)pr(t) + n'(t), (J=UT +ITh <t < jT+IT,, (5.5)

where n/(t) is the term due to the additive white Gaussian noise, which is also
additive and white Gaussian. In (5.5) ¢; is 2 random phase which accounts for
the phase introduced by the frequency hopper, dehopper, transmission delays, and
more seriously random phase due to fading, since degradation due to uncertainty
in phase is more severe than that of amplitude. The received signals are first
demodulated by a noncoherent matched filter followed by an envelope detector;
this is equivalent to the square root of the sum of the squares of the outputs of an
inphase-quadrature (I-Q) square-law demodulator. Equivalent block diagrams for

the demodulator are shown in Figures 5.1 and 5.2.

For our case (BFSK) the detector consists of two matched filters-envelope detec-
tors (matched to so(t) and s,(t), respectively), or equivalently inphase and quadra-

ture correlators whose two outputs are squared and summed. Then a comparator
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Demuiulator
Filter o g::g%? -

Diversity
Combiner

Figure 5.1: Block diagram of a noncoherent receiver.

Demodulator

(-

Ve

Diversity
Comnmner

Figure 5.2: Equivalent block diagram of a noncoherent receiver.
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determines the largest detector output and decides in favor of the corresponding

signal.

Without any form of coding, the bit error rate ps(r) conditioned on the fade r

is given by

Averaging the above expression with respect to the probability density function

in (5.4) we get

1
E
2+ B

» =

which shows the detrimental effect of Rayleigh fading, when compared to the ex-

ponential dependence of p, on E,/N, for the additive Gaussian channel.

A discrete-time channel model that incorporates the above SFH system is as
follows. The data stream is divided into blocks of length J in which each block
being transmmitted in one hop. Since fading is independent from hop to hop we
can view the channel considered as a block interference, which is a class of channel
models with memory investigated in [21]. In this case the channel is characterized
by occasional severe error bursts of constant length J for a time period equal to
a dwell interval. The block interference channel we consider does not assume that
the decoder knows the state of the channel (i.e. the severity of the fading) for any
hop. Consider the channel from the input of the modulator (with inputs 0 or 1)
to the output of the demodulator/quantizer (with output alphabet iO, 1}). For a
given fade level R = r the channel is a binary symmetric channel with crossover
probability s = py(r). Let S = p,(R) be a random variable that depends on the

fading random variable R. Then for orthogonal BFSK signaling the probability
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distribution of S on [0, 1] has a density function given by
8 p-1 1
p(s) = 825 0§s<—2-,

where 8 = 2/ —NE-; The channel from the output of the frequency hopper to the input
of the frequency dehopper can then be modelled as a 27-ary DMC channel with
input and output alphabets {0,1}’. The probability that y=(y,, ..., ys) is received,

given that z=(z,,...,z;) is transmitted, is given by

4
ply|2) = [*s*(1 - )"~ p(s)ds
0
where d is the Hamming distance between z and y.

The capacity for this type of channels with no side information was shown
to be monotonically increasing in J, and as J tends to infinity, the capacity ap-
proaches that with perfect side information about the state of the channel available
at the receiver. Also, it was argued that interleaving when side information is ab-
sent degrades the theoretical performance (where performance is the information
theoretic capacity). Since we interleave the code symbols we are trading in capacity.
However, if J is large enough, the receiver can make a reliable statistical estimate
of the noise severity even if the channel does not provide side information. If this
is done, interleaving is close to the optimal coding strategy. This was thg primary

motivation for using a test pattern in each frequency hop.

Now consider the first method for generating the side information, that of
transmitting a known test pattern of bits in each dwell interval. A second system
that is based on concatenated coding will be presented separately in Chapter 6.
For the former case, three types of symbols are transmitted in each dwell interval:

information symbols, redundant symbols, and A known test symbols. Collectively,
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the information symbols and the redundant symbols are referred to as the data
symbols and they are from an alphabet of size M. Each information symbol conveys
log,M bits of info;-mation. In our application M is a power of 2 (say M = 2™) and
a data symbol is represented as a sequence of m binary symbols. The test symbols
are assumed to be binary symbols. The A test bits provide the decoder with
information about the channel, and the decoder uses this information to improve
the correcting capability of the code. A block diagram of the communication system

considered is shown in Figure 5.3.

To decide about which symbol to erase, the receiver performs the following
additional function. Hard decisions are made on the A test bits. If A or more of
these are in error, for some threshold X, then the receiver labels all the other
symbols transmitted during that hop as "bad” and erases all the symbols in thaé
hop. If fewer than A are in error then the receiver labels all other bits transmitted

during that hop as "good” and delivers the corresponding estimates to the decoder.

The measure of performance considered is the probability of symbol error,

and we choose the threshold A which will minimize this probability.



86

ynm waisis winiydads peaids paddoy-£ou

uonsulseq

Decoder

101810080

rerjsoiuig
Asvenbe: §

‘uoljeulIOjul PIS

anbaij e jo wesdelp yooig ‘€°S ainBiy

101810000

EUINDeS
uoHRWIOIU

1018iNpoweq

JOARO}
19)u}-8Q

1881
vorewiIopu|

101N [

puomyy (4 19y f—

L] §

10AR ¢

-19)u}

.Ssﬁ.




87

5.3 Performance of a Repetition Coded System

5.3.1 Hard Decision Decoding

The simplest type of block codes allowing a variable amount of redundancy is
the repetition code; this approach is often called diversity transmission. With this
code a single information symbol is encoded into a block of L identical symbols
producing an (L, 1) code. In this section we evaluate the average probability of sym-
bol error for the (L, 1) repetition code on an M -ary symmetric errors-and-erasures
channel. Decoding for such a channel is referred to (in Chapter 1) as hard decision
decoding. Diversity transmission is often employed to provide reliable communi-
cation in the presence of fading or other forms of interference such as partial-band
Gaussian interference. Here we first assume m = 1 which means that we have a:.
binary-symmetric-erasure channel as seen by the encoder decoder pair. Because
of interleaving, each code symbol is transmitted on a separate hop. As mentioned
earlier, to ensure statistical independence among successive code symbols the fad-
ing is assumed to be frequency selective. If fading is time selective, independence
is provided using time diversity which requires interleaving the diversity symbols
so that any two symbols are separated in transmission time by an amount which

is longer than the inverse bandwidth of the fading phenomena.

The performance of the diversity transmission system depends on the way in
which the received code symbols, called diversity receptions, are combined. The di-
versity combiner considered first is a hard decisiqn decoder which works as followé.
If at least one of the diversity transmissions is on a hop that is declared “good” by

the receiver then the diversity decoder is a majority logic decoder which combines
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the “good” diversity receptions. That is, among the good diversity receptions, the
diversity decoder counts the number of times each symbol is received and chooses
the one thit ha.v;e the largest count as the transmitted symbol. If all the diver-
sity receptions are declared “bad” by the receiver, then the majority logic decoder

combines all the “bad” symbols.

Our goal is to calculate the symbol error probability when using the above
described side information. Also for A > 1, we are to choose the threshold A which
minimizes this error probability. To do this calculate the performance of the above

system let o, x be the probability of a particular k errors in a hop of m symbols.

Then
amr = E [pf(r)(1 = po(r))™H)] (5.6)

where the expectation is with respect to a Rayleigh distributed random variable r
with probability density function given by (5.4). Also py(r) is the error probability
of the channel conditioned on r. For BFSK signaling and noncoherent reception

this is given by

1 _&?
po(r) = e+, (5.7)

where the energy per symbol E, = EL“, E, being the energy per bit. Substituting

(5.7) in (5.6) we get an expression for @y, as follows

ame = E[pj(r)(1 - p(r))" ¥

kBr Eyr
= (5 ) / 1—%e —1307)21-5"’ dr

_omzkf m—k ) (b))
) *'=Z° ; (kz"‘i)z—%;+ll' (5.8)

We now define the following events concerning a diversity symbol which
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are of interest.

Eg = .The event a symbol is in error and the corresponding
hop is declared "good”;
Ce = The event a symbol is correct and the ckorresponding
hop is declared "good”;
Ep = The event a symbol is in error and the corresponding
hop is declared "bad”;
Cp = The event a symbol is correct and the corresponding
hop is declared "bad”;
B = The event the hop is declared bad which is the same

as EBUCB-

Then, from the decoding process, the corresponding probabilities are given by

=1 A

P(Eg) = E pa(R); _ po(R)'(1 = po(R))A
ar 4 ) ‘ _
=X } E [po(R)™* (1 = po(R))*]
= § § QpA41,i+1
1=0 \ 1
A=-1

P(Cq) ps(R)'(1 - po(R))A

il
=
-

]
S
)
™

= AZ:: ' E [p(R)(1 - po(R))*]

=0 1 '



A=1] A
= Z Qppr
=0 1
Al A : :
P(Eg) = E |p(R))_ po(R) (1 = po(R))*
I=A 1
A A
= Z QA1+
= 1

P(Cs) = B|1-nE)E| " |nRA-n(R)

and, P(B)

I
t
N
S
E)
=
|
S
=
=

= i Qpq - (5.9)

To calculate the probability of bit error P, we proceed as follows. First we
calculate the probability of error and j hops are received as good. We then sum
over values of 5 from 0 to L. Thus

L
B = Z Pr{error and j hops "good”} (5.10)
=0
where for ; odd
i [

.| L .
Pr { error and j hops good} = 3 P(Eg)*P(Cg)'~* P(B):7;
e=lire | k i
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and for j even

. j ]
Pr { error and j hops good } = > 7 P(Eg)*P(Cg)'~*
k=j/2+1 k
7 . . L .
3 P(Eg)i/*P(Cg)/* P(B)&.

2| . :
\ J/2 J

We can now evaluate the performance of such a system and compare it to

the case when A = 0; i.e., with no side information case. In this case for L odd

L

L
B= 3 E[p(R)}* E[(1 - p(R)**,
k=|L/2]+1 k

and for L even

S L k - 1| L L/2 L2
P= Y% E(p(R)* E[(1 - p(R))}**+2 E[p(R)|**E((1 - p(R)|“"
k=L/2+1 | k L/2

Thus we have derived a formula for the symbol error probability. However, cares
must be taken into consideration when calculating the probability of bit error in
two matters. First, for the uninteresting case L = 1, the performance is the same
for any choice of A. This is obvious since we only have one symbol to decide which

signal was transmitted. In this case the probability of bit error is

1
E
2+ &

P, = E(p(R)) =

= C!l,]_.

Second when computing the j = 0 term in (5.10) we need to calculate Pr{error

and “0” hops are good }. Since in the case when all the hops are declared as "bad”
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we combine all the symbols prior to the ”side information test” which assumes the

availability of a buffer storage equal to the diversity level. Thus,

Pr{error and 0 hops are good} =
Pr{error and L hops are bad} =

Pr{error | L hops are bad}Pr{L hops are bad} =
L L

> P(Ep)tP(CB):-* for L odd, and
k=|L/2)+1 | k

L L
= X P(Ep)*P(Cp)*~*
k=L/2+1 k

L
+% P(Eg)t/*P(Cp)*/? for L even.

L/2
Figure 5.4 shows the performance of the system for A = 1 and for various
values of 1-{5,-:- by plotting the bit-error-rate (BER) versus the diversity level. It is
noticed that for a big range of bit energy-to-noise ratio there is a degradation in

performance due to the use of test bits. This holds for all values of diversity levels.

In Figure 5.5- Figure 5.7 we show the BER versus diversity for higher values of
A, and for a fixed value of A we show the behaviour for each threshold X less than
or equal to A. Initially, this is done for a small value of ,%:, namely 10 dB. In some
cases it is apparent that the optimum threshold A,,; depends on the diversity level

used, the bit energy-to-noise ratio, and A; i.e.,

Ey

Aopt = AOP‘(}V_Q’ A, L)

For instance we have a slight improvement when using the test bits with Aopt =

Aopt(10dB,4,3) = 1; that is we erase if one or more of the received test pattern is



93
in error.

Similarly, Figure 5.8 - Figure 5.13 exhibits the BER for larger values of -f;.g-,
mainly —f;g——:IG dB and 19 dB. For most cases of interest we either have no improve-
ment when using the side information, or the improvement is not substantial and
might not be worth implementing this type of side information generation. This
improvement becomes better, however, for large % with large A as apparent from

Figure 5.14. This is not true if A is small (e.g. see Figure 5.8).

5.3.2 Soft Decision Decoding

Now consider the case of soft decision decoding of diversity transmissions.
That is we want to evaluate the probability of bit error for a repetition code usec_l
on a binary additive channel. In this case we consider the performance of two
combining methods for the case m = 1: linear combining and square-law combin-
ing of symbols which are declared “good” by the receiver. In case all diversity
receptions of a given symbol are declared “bad” all the diversity receptions are
combined. These types of combining have been studied extensively for use in non-
coherent systems. In particular square-law combining is the optimum noncoherent
combining technique fof Rayleigh fading. However, square-law combining may not
be optimum when using side information about the received symbols. Linear and
square-law combining are believed to be suboptimal for the side information case.

We first analyze the performance of a linear combiner.

~ Linear Combining: In linear combining, the decision statistics are the sums of linear

terms. If a diversity reception is declared as unreliable, it is excluded from the sum

and all the emphasis is given to the “good” receptions. A block diagram which
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Figure 5.4: Plot of bit-error-rate versus diversity level for various values of % (A=
0,1). '
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shows linear combining is shown in Figure 5.15. The decision statistics are the
sums of the outputs of the envelope detectors. Given the symbol 0 is sent, and

given 7 hops are declared good, the decision statistics are

J J
ZQ(TI, ooy Tj) = Z \/(Xo’[ + l/‘)"?)2 -+ ),Oz,l = ZWO,I(TI) (511)
=1 =1
7 ]
Zy(ry..ary) = VXL +YE =Y Wiy(n) (5.12)
=1 =1
where
L — . [2Es
“VNoL

and given the random vector r = (ry,3,...,7;) the random variables { X}, Yi;: k =
0,1, 1 <! < ;} are mutually independent zero-mean, unit-variance Gaussian ran-
dom variables. In (5.11) and (5.12) we explicity show the dependence on the. L
Rayleigh distributed random variables r;...r; which are independent and identi-

cally distributed.

Now we calculate the probability of bit error for this type of soft decision de-
coding. To calculate the probability of bit error P{ error }, first we calculate the
probability of error and ;7 hops are received as “good”, then we sum over all values

of j from 0 to L. That is,

P{error} = > P{error and j hops good}

=0
L L b J
= > ) ES{PSY Woulr) <Y Wi(n),
j=0 \J =1 =1
[1‘—‘-[2-— =I] = 1,Ij+1- =IL=0} Z} (513)
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where I is defined as

g 1 , if test pattern checks for hop k
k -

0 , if test pattern fails for hop k .

it can be shown that

§=0

P{error} = i(‘?)P{iWw stqu :

where Wy, = E Wy, (r;) and W,; = E Wy (r|), expectation being with respect to

r.

In order to perform the above calculation it is useful to have a density

function for W;; and I; = 1, i.e. determine

d P{W,"[ S w; N Id = 1}

a
) - d w; 1

?w,,,,z,=1(w,~,[

To do this note that

P{W;.[ S wi NnIl= 1}

Il

E[P{(Wiy < wiyni = 1in}]

= E|P{wy < wir}P{L = 1|r}] .

Since differentiation is a linear operation we have

P{W, <wynh=1} d P{W;, < wiy|rn}
=F
d w; d Wi 1 .

d

P{I[ = 1]1’1}

This can be computed knowing that given zero is sent W, 4 and W, are independent

random variables. Furthermore,

P{L=1rn} & 7(n)
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A

= 3 (N - nr-
(5)

T

- S(HE () e

i=0 \'/ k=0

> .
[
~ 0

Substituting for the value of p,(r) given in (7) we get

=L E () (1) (@) e

i=0 4

Also,

d P{W,, < w,,|rn=r}
d W, 5

Z‘"o,lIR(wa»[IT) =

2
Yol

‘,2
= wo',e'T"zTIO(ero';)
where Iy(z) is the zeroth order modified Bessel’s Function. The density function
of r is given by

2r-? , r>0
Fr(r) =
0o, r<o0 .

Thus the density function we are interested in is

Fratiaa@) = [ Ta(r) B, (wlr) F(r)dr
S ()0 )@

R e _xi_a? —(i+k) 22
/ re”" we T T [o(vrw)e (TR
0

which can be simplified to

A=1 A-i ;
A A—z 1 $ - - 2
= = EE ()4 et

R S 7 A PR P
/ re " e T e RS [y (vrw)dr
0

- EE )l
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L2 2
/oo Te-<1+7+('+k)f7)r2 Iy(vrw)dr
0

- SR (M4 ) et

41_2...,?

e tvirtivk) b

2+ v+ (i + k)%

— - - N 2
3:01 t:(;. Cl,k we ﬂ"k‘.u ¥ w S 0

i

(5.14)
0 , w<O0 ,

where
vi/2

Ai,ké . 2
2+ (2+i+ k)%

.
)

RN

and

C‘.k _A_- (l:) (A;i) (_l)k%i+k—1 |

2+ (2+i+k)%

In arriving at (5.14) we made use of the identity

On the other hand to calculate #y,,1,=1(w) we use

2

we 7T , w>0

0 , w<0

which is independent of the fade r. Therefore, we have

we=F I Ta(r)F(r)dr, w20

ﬁvl.l?’l"'l(w) =

0 , w<O0
Certainly the integral above is equal to one.

Thus we have expressions for FWo.ir=i(w) and Fw, yp=1. In order to calcu-

late the probability of bit error we need to find the probability density functions
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of Zy and Z, where

N
I
M-

WO,[;IQ:I 3 and

..
1]
o

ZI=

]~

Wl.l;];:l

-
[

1

These are the j-th fold convolution of the probability density functions calculated
earlier. Unfortunately, closed form analytical expressions for 72z,(2) and 7z (2) are

not possible. However, when using the Chernoff bound it is easy to show that

P < Z( ) min [A(s;) B(sj, aie))’

0<s;<1

where

is the error function.

Square-Law Combining: In square-law combining, the decision statistics are the

sums of linear terms: the squares of the outputs of an I-Q square-law detector are

added, as shown in Figure 5.16.

For this case the decision statistics are

ZQ(TI,...,"J‘) = [XO[-}-UT" +Yol] ZWDI Tg

|
Zl(rl,...,r,-) = in,+ ZWI[("[)

i=1

The main difference in calculating P, for this case concerns the conditional
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Figure 5.17: Square-Law Combining of M-ary Diversity Symbols.
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probability density functions #w, ,z(w|r) and Fw, jr(w|r). Here we have:

Fwgr(wlr) =

ﬁvl.llR(w'T) =

TS L (Vavr) L 2o

yy=>0

i
wis

(SRR N
(1)

and both equal to 0 for y < 0. Performing computations similar to the previous

case gives
A=1 A—i ' N
};Vo,t;lj=l(w) = Z Z C:,k e"‘-’.k"’ » w20
i=0 k=0
where
A\ fA—1 1\ i+k-2
= () @ =
i = Ak (5.15)
and
1 _w
Fw,pirj=1(w) = €% W >0 .

It is easy in this case to calculate an exact expression for P,. Using the charac-
teristic functions method it is shown in Appendix E that the bit error rate is given

by the following expression:

where
“w () (P T )

J being the complex root of —1. Thus we have an expression for P, which is

numerically much faster to compute than the convolution method.

The performance of soft decision combining with test bits is compared to

that of no test bits. In the later case the probability of bit error is given by [35]
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— L-1 -
=T (PR gy

where

2o

=g

+

£y
No

In Figures 5.17-5.19 we present the results of using these new formulae.
Notice that the performance when transmitting test bits improves only for high
signal to noise ratio, as is the case in hard decision combining. The results for hard
decision combining and soft decision combining show that the method proposed
to generate side information about each hop is unattractive for repetition coding.
Effectively we are reducing the diversity gain due to erasing. The case treated iI:l

the next section makes the method more interesting, however.
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5.4 Performance of a Reed-Solomon Coded System

We found earlier that in most cases test patterns with repetition coding does
not improve performance when compared to the no side information case, and
when the performance does improve it does so by a small amount. In this section
we analyze a coded SFH spread spectrum communication system with extended
Reed-Solomon codes. In this case the block length n of the code is equal to the
alphabet size M of the code alphabet. Reed-Solomon codes are desirable for their
maximal distance separable (MDS) property in which, for an (n, k) Reed-Solomon
code, the minimum distance of the code dmin = n—k+ 1, which is the best distance
value that could be achieved for any code with the same parameters. As pointed
out before, each code symbol is represented as a sequence of m bits, and thus a
symbol is in error if any of the m bits are estimated incorrectly. Therefore, we ha.véz
a discrete memoryless channel with channel input alphabet {0,1,...,2™ — 1} and
output alphabet {0,1,...,2™ — 1,7} which is an M-ary symmetric-erasure channel

described in Chapter 1.

All the events defined in the last section are still of interest; however, a symbol
is in error if one or more of the m bits is in error; hence, the corresponding proba-

bilities are modified as follows (supressing the dependance on the random variable

r).
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Az A ) )
= E[py(1 — ps)***"™
=0 1
A=-1 A
= Z Up+mi
=0 1
A A )
P(B) = E|X|  |s -
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(5.16)

The input to the Reed-Solomon decoder is one of three events: correct symbol,
symbol in error, or an erasure. We will always assume that the Reed-Solomon

decoder will either fail to decode or will output the correct codeword.

Thus in order to calculate symbol error probability, we need to specify the
decoding procedure in the case that the error-and-erasure correcting capability of
the cpde is exceeded. In this section we analyze two different configurations for the
decoder shown in Figure 5.20 and Figure 5.21. The first configuration (Decoder

A) consists of one Reed-Solomon decoder which corrects errors and erasures and a
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selector to choose the information portion of the codeword if the decoder fails.

If the error-and-erasure correcting capability of the code is exceeded the decoder
fails, and tl-le receiver will output the information symbols of the received vector
(we assume systematic encoding). The second configuration (Decoder B) consists
of two Reed-Solomon decoders in parallel and a selector to choose the output of
a decoder except when the two decoders fail. The first one is used for errors-and-
erasures correcting decoding. The second decoder is used to correct errors only.
There will be occasions when the first decoder fails to decode and the second one
outputs the correct codeword. In case both outputs codewords, they have to be the
same one, by assumption. If both decoders fail to decode, the receiver will output
the information symbols of the received vector. Obviously we expect the second

configuration to perform better than the first one, the second being more complex.

We now calculate exact expressions for the probability of symbol error for the
two decoders described above when using bounded-distance decoding. The baseline
performance measure that we use for comparisons is the symbol error probability
with no test bits (i.e., A = 0) used for side information extraction, denoted as P,.
The output symbol error probability for an (n,k) code error correcting decoder

when the input average symbol error probability is P, code is given by

n n
P= 3 -EP,"(I - P,)~*

k=t+1 k

where ¢t = | 22| is the error correcting capability of the code and where it is
assumed that the decoder fails only when it does not decode the correct codeword -

and outputs the information symbols of the received vector. Using our terminology
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Since errors and erasures are independent this is given by

P(E,,E.) = * P(EG)*P(B)*(1 - P(EG) — P(B)) " (5.19)
h,e
where
n n n—nh
h,e h e

P(E,, | Ex, E.) can be calculated as shown below.
P(Ea,a I Eh, Ee) = -P(Ea,o I Eha Ee, Ea,i)P(Es,i l Eln Ee)
+P(E,, | Ey,E.,E, ) P(E,;» | E4, E.)
+P(Es,o I Eh, Eey Ea,ic)P(E:,ic ' Eha Ec)' (520)

The last term on the right hand side is obviously equal to O. Moreover, P(E,, ]

EnE. E,;) =1 for 2¢ + h > dpin. It can be shown that the following hold

and

P(E,, | Ex,E.,E,;r) = P(E,,|E,;[)decoder fails)

P(E,,NE,;: | decoder fails)
P(E, ;| decoder fails)

_ P(EB)
~ P(B)
(5.21)
Combining all the above we get |
e + hELE2
P(E,, | Ew, E.) = =18 (5.22)
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Substituting (5.19)-(5.22) in (5.18) we get an expression for the symbol error prob-

ability for decoder (A)

e + hELEB) n
P(E,,) = S S (.ﬂ%ﬂﬂ)
h e:2e+h>dgnin h,e
P(EG)*P(B)*(1 ~ P(EG) — P(B))"**. (5.23)

For this decoder with Reed-Solomon coding we have found that Aope 1s equal to
1 for all cases of interest. That is, the best strategy for deciding whether a symbol
is reliable or not is to decide in favor of the received symbol only if the received
test pattern is correct. A typical behaviour for different thresholds \ (and fixed

A = 3) is shown in Figure 5.22.

When using the optimal threshold value Aope there is a substantial improvement
in performance due to the use of test bits in the decoding process. This is shown
for different rates in Figure 5.23-Figure 5.26. One first thing to notice is that for
all -ﬁ-:- the performance for any A > 0 is better than the A = 0, no test bits, case.
This is unlike the repetition coded system discussed earlier. For instance, for (32,3)
Reed-Solomon code and A = 3, there is more than 1.8 dB improvement in ﬁ-‘; for
probability of symbol error less than 10~%. For a larger rate the improvement in
performance, although substantial, is less; e.g. for (32,10) Reed-Solomon code the
improvement is approximately 1.3 dB for symbol error probability 10™*. However,
the overall performance for the r, = ;—2 case is better than that of r, = 3"‘; It seems
that some rate close in value to r = ;—g is the best rate to use in the communication
system considered when it is desiredlto have P, = 10™* or less. The value for
an optimum rate was expected and close to the value predicted by Stark in (31].

The performance with the same rates described above but with a larger minimum
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Figure 5.23: Performance of (32,5) Reed-Solomon code for A = 3 and for different

thresholds A.
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Hamming distance dmin is shown in Figures 5.27-5.30. The improvement when
using side information is slightly less in this case than the previous ones and there
is approxiniately 1 dB gain for A = 2 and P, = 10™*. Obviously, since we are using

a larger minimum distance we have a better overall performance in the latter case.

We point out another important conclusion from the figures. The improve-
ment in performance for each increment of A is monotonically decreasing. For a
fixed rate and required symbol error probability, the required % approaches an

asymptotic value for large A. This is demonstrated in Figure 5.31.
Performance of decoder B

For this system we have two decoders in parallel: one performs errors—a.nd.-
erasures correcting decoding, and the second performs error correction .decodiné
alone. Pursley and Stark have considered a similar system in [26] but with parallel
error-correction and erasure correction decoding. That system was proven to have
good performance in pﬁrtia.l-band Gaussian interference and for most values of
fraction jammed. Also Castor and Stark proposed similar systems [6] - [7] with

various methods for erasure criterion.

We calculate an expression for the symbol error probability which is the
same as the probability of the first output symbol being in error, P(E,,). The first
output will be in error if and only if both decoders fail to decode and the first input

symbol to the "insert erasure” block is in error; i.e.,

P(E,,) = P{decoderl fails|")decoder2 fails(\(Ey | Eu,)}
= P{decoderl fails{) decoder? fails | E;}P{Ex}

+P{decoderl fails (") decoder? fails | E,;;} P{E,}
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Event Input to Decoderl | Input to Decoder2 | Event Probability
E, correct correct P(CG)
E, correct erased P(CB)
E, error error P(EG)
E., error erased P(EB)

Table 5.1: Event description and the corresponding probabilities.
= P{2#/(errors+1)+#erasures > dmgnﬂ2#(errors+1) > dpin | E4}P(EG)
+P{2#(errors+1)+#erasures > dmin [ ) 2# (erTOrS+1) > dpnin | E.:}P(EB).

To evaluate the above probabilities it is helpful to make use of the notation in

Table 5.1.

Also, let S, = # of symbols in the last n — 1 symbols satisfying E,. Then

P {2(#(errors+1)+#-erasures > Amin [ )24 (erT0r5+1) > dmin | Es} =

= P{2(S3 + 1) + S2 + S4 > dpmin, 2(S3+ S¢ + 1) > dpmin}
3R>

such that 2(j + 1) + ¢ + k > dpin and 2(j + k + 1) > dpin.

"~ | PeByp(EG) P(EB) P(CG)ii-+
1,5,k
(5.24)

Similarly,

P{2#errors+#erasures > dpni, [ ] 2#(errors+1) > dpmin | B} =

= P{253 - Sg + 54 +12 dmim2(53 + 54) > dmin} (5.25)
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which is the same as (5.24) but with the constraints
27+ 1+ k> dmin

2(]. + k + 1) > din.
Thus we have an expression for the probability of symbol error.

The symbol error probability performance of decoder (B) is compared with
that of decoder (A). The comparisons are shown in Figure 32-Figure 36. The
performance of the two decoders was found to be very close. The improvement
when using decoder (B) as compared with that of (A) is about 0.1 dB, which is

very small.
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Figure 5.34: Comparing Decoders (A) and (B) for (32,5) Reed-Solomon code and
A=1.
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Figure 5.38: Comparing Decoders (A) and (B) for (64,15) Reed-Solomon code and
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CHAPTER VI

A CONCATENATED CODED SYSTEM IN
RAYLEIGH FADING

6.1 Introduction

In the previous Chapter we demonstrated how transmitting a known pattern of
test bits can be used at the decoder to significantly enhance the performance of z;
Reed-Solomon coded system in the presence of fading. In this chapter the idea of
using such redundant bits to learn about the state of each hop is used to develop
a smarter way of introducing redundancy into each hop. The idea is to further
encode the interleaved Reed-Solomon code symbols in each hop. Thus we have a
concatenated coded system with the outer-code being interleaved, and each inner-
codeword is transmitted over a fixed channel (we assumed that the fade is slow
enough and is constant over one dwell interval). The concatenated coded system
considered uses the inner code to correct and detect errors. That is the inner code
can correct e errors and detect f errors (e < f) provided e + f < dyy, where again
dig is the minimum Hamming distance of the inner code. When errors are only
detected, every syrﬁbol of the inner code is erased. There are, hc;wever, errors that
are not detected nor corrected by the inner code. Thus the outer Reed-Solomon

code correct errors and erasures.

144
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For the system considered, the performance criteria is taken to be the packet
error probability where each packet consists of a number of codewords. This
performance criteria is motivated by the application of the system considered in

frequency-hop packet radio networks [25] - [24].

The channel model and system model is the same as in Section 5.2 except
for the following. Consider transmitting a packet that consists of L extended
Reed-Solomon (NN, K) codewords with code symbols belonging to GF(2™). The
transmission of each symbol is done by m uses of a BSC channel (i.e., 1 symbol
= m bits) with cross over probability py(r) given by (5.7), where r is the fading

random variable. The outer code is interleaved to depth IV; thus we have L symbols

from different codewords that need to be transmitted over one hop.

6.2 Performance Analysis

We first consider the case when the inner encoder is binary. Then we investigate

a specific class of nonbinary inner codes.

The L symbols consist of mL bits which are encoded using a binary (nsz)
code with a minimum Hamming distance d. We make the assumption that if the
inner codeword is decoded incorrectly, then all the corresponding Reed-Solomon
Code symbols are incorrect. This implies that the packet error probability Py is

the same as the outer codeword error probability P, (obviously P, < Pyw).

To calculate P, we need to calculate the following probabilities of events that

are relevant to the inner code.

Pcp & P, {correct decoding} ;
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Picp & P, {incorrect decoding} ;

e

Pgp P, {error detection}

The inner decoder is assumed to be a bounded-distance decoder that corrects all
error patterns of Hamming weight ¢ or less, where ¢t < Li‘.‘;——-lj Also, error detection

results in erasing the entire hop. Then

Pw=1_Pc s

where

N —
P. = Z Z (CT)PICDPEDPC

¢ r2e+r<N-K ’
N-k [ B

N —e—T
= X > ( )P;CDPEr?DPN .

r=0 e=0 &7

Conditioned on the fade r, the inner code symbol errors are independent. Un-
derstanding that all the expectations below are with respect to the Rayleigh dis-
tributed random variable r, we have the following:

d n . R
Poo = E{3:(7)nt1-ni)]

i=0
t

= Z( )E[pb(r ) (1= ps(r))"]

=0

where a,; is given by (5.8).

Clearly some weight-(m —t) or less error patterns might be decoded into weight-

m error patterns with a t-error-correcting decoder. Denoting the probability of the

above event by P, (r) we have:

Picp = E { > Aum(")}

m=d
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= S An E[Pa(r)] (6.1)

m=d

where A, = number of codewords with weight m. Also from Michelson and

Levesque {22]

Pa(r) =33 ( ’_",J) (" . "‘) PH)™ " (1= P(r))(n—m+ v =27

rl
substituting for P,(r) in (6.1) we get an expression for P;cp:

n ¢ v -
Prep = Z Am Z Z ( ™ ) (n m) Anm—vi2e! -

m=d v=0r'=0 v—r r!
Finally, Pep =1 — Prep — Pep.

Thus, calculating the probabilities of interest for a linear binary inner-code can
be carried out exactly if the weight distribution A,, is known. Often the weight
distribution of a code is not readily determined, but if the weight distribution
of the dual code is known, exact performance results can be obtained using the

MacWilliams identity

B(z) =271+ 24 (1)

A(z), B(z) are the weight-enumerator polynomial of the code and its dual, respec-
tively. The weight distribution of most binary (and nonbinary) codes or their dual
is not known, and exhaustive calculation laborious. However, very good approxi-
mations for A,, can be obtained based on the assumption that codeword weights
follow a binomial distribution over their nonzero range. For an (n,mL) code for

which the all-ones vector is a codeword, we have the following approximation

Ao = Aﬂ=1
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>
I

0, n—d+1<1<n-1

n\ 2™ — 2 _[n )
(=) esisne,

7

R

A

where r is the number of redundant bits (n — mL). The approximation considered
has greatest accuracy for high-rate codes, except possibly for weights in the tails
of the distribution (near d and n — d). This approximation is used later to obtain

numerical results for Pjcp.

The second case is that of using nonbinary concatenated codes. The procedure
outlined above can be generalized to obtain results for linear nonbinary inner codes
used with bounded-distance decoding. The codes considered are defined on b-ary
alphabets where each inner code symbol is represented by b bits (i.e. we have

(n, (-";—L)) code over GF(2")). Then, given r, the symbol error probability is
P(r) =1-(1-py(r)) .

The analytical expression for the probability of correct decoding is the same as

before with substituting P,(r) for py(r). That is

Peo = 3 () BBV (- BIPY

B

However, the expression for Pjcp is more complicated since there are more involved

error patterns. From Michelson and Levesque [22| we have

PIC’D"ZA Z%, i( s+r’)( e )

—_ —_ ]
8=0k=m-sri=r, k m+s 2r
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where
r1 = max{0,k - m}
[k~m+sJ
rg = |———
2
and

Hk,r) = [?’_%)]k (1= P,(r))™* .

An approximation for A, that is similar to the binomial approximation in the
binary case is not known. The difficulty in knowing A,, for a nonbinary code
can be avoided if we are able to use Reed-Solomon inner codes since the weight
distributions of maximum distance separable (MDS) codes are known. To be able
to use Reed-Solomon codes for inner codes we assume that "‘TL < 2. In this case

(see [5])

m izo
where d = n — mL + 1. Thus, in this case we can calculate P,.

The formulae derived in this chapter for the packet error probability are eval-
uated numerically. The performance of the proposed concatenated coded system
proved to be much better than using test bits in each dwell interval. For instance,
Figure 6.1 compares the system analyzed in this chapter with the system analyzed
in Chapter 5 (i.e. the test bits case). The outer code is a (32,10) Reed-Solomon
code over GF(2s), and the inner code used is a (63,45) BCH binary code with min-
imum Hamming distance 8. Thus we have a packet which consists of 9 codewords.
The packet error probability is calculated when the inner codé is used to correct
all error patterns of Hamming weight ¢ or less and detect other error patterns. In

the example above, ¢t = 2 results in the best performance possible for all signal to
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noise ratios. Furthermore, the curve showing the performance for the test bits case
is a lower bound, because in this example we have not normalized for the total
energy used duri;lg a hop, for using the test bits. Notice that for probability of
packet error 107° there is more than 3 dB improvement in -f,-: over the test bits
case. Table 6.1 shows the accuracy of the binomial approximation used to find
the weight ditribution of the (63,45) code. The plot showing the behaviour of the

system with test bits uses the same number of redundant bits (i.e., 18) as the BCH

code. :

Figure 6.2 shows the performance for (31,15) BCH binary code with Hamming
distance 8. In this case we penalize the energy per code symbol for using the 16
test bits. The exact weight distribution is used in this case as shown in Table 6.2.
In Figure 6.3 we do not normalize for using the test bits and the Figure show':s

similar results for (127,105) BCH inner code. In all the above examples t = 2 is

the optimal value.

Finally, Figure 6.4 shows the performance of the concatenated coded system
when the inner code is a (32,9) Reed-Solomon code. That is L = 9 in this case.
For small values of TVEJ; the symbol error probability is high and compared to the
(63,45) BCH code its performance is inferior. However, the performance of the

nonbinary case becomes better for high signal to noise ratio.
6.3 Conclusions

In Chapters 5 and 6 we have investigated the performance of a coded slow-
frequency-hopped spread spectrum communication system with the channel being

dispersive with Rayleigh statistics. In particular we considered two methods for
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] A,(appr) . Ai
8 14774. 23877. |
10 487544.7 423360.

121 1.0179370 x 107 | 1.0350 x107
14| 1.4262210 x 108 | 1.4255 x108
16 | 1.3976890 x 10° | 1.3972 x10°
18 | 9.8751410 x 10° | 9.8751 x10°

30 { 3.2836120 x 1012 | 3.2832 x 10'2
32 [ 3.4954400 x 10'? | 3.4959 x 1012
34 [ 2.8973130 x 102 | 2.8969 x 10'2

Table 6.1: A Portion of the Weight Distribution and the Corresponding Approxi-
mation ((63,45) BCH Code).

T 4
8 | 465
12| 8680
16 | 18259
20 { 5208
24| 155

Table 6.2: The Weight Distribution of the (31,15) BCH code.
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Figure 6.2: Packet Error Probability versus ﬁ: for a (31,15,8) BCH binary inner
code. 4
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Figure 6.3: Packet Error Probability versus % for a (127,105,7) BCH binary inner
code. -
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evaluating whether a received hop is reliable or if that hop is "bad” and, therefore,

the corresponding code symbols should be erased.

The first system proposed in Chapter 5 uses a fixed number of known test
bits which are inserted in each hop. The number of erroneous bits received are
compared to a threshold for an erasure criteria. For repetition coding this method
is not attractive. Improvement in performance is only possible for large values of
A(> 4). This is not true for the Reed-Solomon coded system. Even for A = 1 the
improvement is still substantial. For both systems the increase in the number of

test bits in each hop improves the reliability of the side information.

In the second system we have a concatenated coded system with the inner
code used for error detection and error correction. As compared to the previous
technique, the concatenated coded system is superior in performance. The tradeoff
is that of complexity versus performance. In the first case the generation of side
information is very simple. In the second system we need an additional decoder

thus increasing hardware and time complexity.



CHAPTER VII

CONCLUSIONS

One of the advances in decoding to arise since Shannon’s work in 1948
is algebraic decoding, where the decoding problem is that of two computational

problems in finite fields:

o determine the coefficients of the error-locator polynomial, and

o given the coefficients of the error-locator polynomial find its roots.

To be able to use algebraic decoding one imposes restrictions on the receiver
such as information loss quantization of amplitude at the output of the demodula-
tor, which forces the code to be suboptimal, and imposing algebraic structure on
the code such as linearity and cyclicity. Moreover, if we provide the decoder errors
and erasures, then we generally reduce the number of decoding errors at the cost of |
introducing decoding erasures. Algebraic errors-and-erasures decoding algorithms
can be used to correct the resulting errors and erasures. The resulting overall error

probability is lower than that attainable with error correction only.

In this thesis we proposed several techniques to enhance the performance

of coded digital communications systems by creating an error-and-erasure channel
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seen by an encoder-decoder pair. We started by discussing the general decoding
problem of linear block codes. Then we summarized some techniques that could
simplify the decoding process on the expence of trading some performance. One
technique is concatenated .coding which is very attractive to achieve long block
codes with low complexity. The error correcting properties of concatenated codes
was evalﬁated in Chapters 3 and 4, for soft decision decoding. We developed two
algorithms for coherent reception and noncoherent reception, respectively. These
algorithms use errors-and-erasures decoding and make use of several branches with
different tentative decisions giving rise to parallel decoding. The set of thresholds
A. and H, (for the coherent and noncoherent cases, respectively) for each algorithm
is chosen to optimize the error correcting capability of the code. These algorithms
combine the power of soft decision decoding with low complexity, and algebraié
decoding. Thus we are able to use soft decision decoding of a long code, something
which is prohibitively complex to perform with one decoder. Therefore, we recover
most of the information loss which result in quantization needed to use algebraic
decoding. We found an expression for the error correcting capability of the code
that depends on z (the number of branches), and we showed for the coherent case
that full error correcting capability is achied asymptotically with z. However, the
numerical results indicated that only four decoders are sufficient to achieve over 95

% of the error correcting capability.

In Cha.pterVS we let the transmitter help in establishing an error-and-
erasure channel for a slow-frequency-hopped spread spectrum comminication sys-
- tem in a Rayleigh faded channel. We transmit a known sequence of test bits in
each dwell interval. At the receiver we use the number of errors in these test bits

and compare it to a threshold upon which we decide whether to erase the symbols
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in the corresponding dwell interval or to declare the hop as reliable. The symbols
of each codeword_ are fully interleaved such that no two symbols from the same
codeword are transmitted in the same hop. For repetition coding this method is
not attractive. Improvement in performance is only possible when transmitting
many test symbols. However, for a Reed-Solomon coded system, transmitting even
one test symobl improves performance substantially. For instance, for (32,5) Reed-
Solomon code and A = 3, there is more than 1.8 dB improvement in the required

ﬁ-: to achieve probability of symbol error less than 10~*.

In Chapter 6 we use a concatenated coded system with the inner decoder
used to help the outer decoder in whether the received hop is reliable or not. The
inner decoder is used for error detection and error correction. As compared to
the previous technique, the concatenated coded system is superior in performance:.
For probability of packet error 107° there is more than 3 dB improvement in the
required % over the test bits case (assuming equal redundancy in each hop and
same outer code). The tradeoff between the two systems proposed in Chapters 5
and 6 is that of complexity versus performance. In the first case the generation
of side information is very simple. In the second system we need an additional

decoder thus increasing hardware and time complexity.
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APPENDIX A

Solving for the Optimal Decoder Strategy

Let f(6k,6k-1) = (1 — 6)® + 6?_, be a sequence of functions defined for

k=1,2,...,2z+ 1 with § satisfying the following properties:

L & €(0,%) fork=1,2,..,2
2. 50 =0

3. 5z+1 = 1 b 62
Also, define A, = {6, 6;,...,6,}. We need to find
max min [ (6ky Ok—1). ' (A.1)

We will show first that it is necessary to have f(6;,6;-1) = a,k =

a being some constant, then prove a is unique for a given integer z.

Necessary condition:

Assume 3 some strategy A, such that for some a (that depends on z)

f (b, be-1) = a,
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k=1,2,...,z+1.

To prove the necessary condition, we need to show that for any A, # A, (i.e.,

6, # b, for some k.)

n}‘%xmkinf(ék,&_l) < a.

For any strategy A, # A, we have §; > §} or 6; < §}, for at least one j. Now let

J = arg mkin{é,c D6 < 61}

if such j exists, then it is obvious that

(1- 5,'-)2 + 5}2_1 < (1-6) + 5}_1 = o

if such 7 does not exist, let

| =arg mf.x{ﬁk 18 > 6.}

Then we have, (1-§/,,)* + 672 < (1 - §+.)% + 8 = a; we know that | or j, or both,

exist. Hence, the optimal strategy is A,.
Exjstence:

We have assumed earlier the existence of some strategy A, and a such that

(8, bk-1) = @, (A.2)
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k=1,2,...,z+1.

Now we.show that a positive solution for the above z + 1 (nonlinear) equations
with z + 1 unknowns always exist. We prove this by showing a computational
algorithm converges to a solution of (27). Using 6 = 0 and 6,4, = 1 — §, we

rewrite (27) as

(1—'51)2 = «

(1-6,)%+ 62

I
R

(1-6)}+6, = a

261

i
R

(A.3)

Begin by choosing an initial value for a = a(® < %, (since from Appendix B we

know that & < }). Using (A.3) we can solve for 6%, 5£(l)1, 61(0) as follows

o _ [0

2
69 = Va© - (1502

50 = ol — (1 - 502

AP = (160,

Then it is clear that (A.2) will be satisfied if A® = a(®, Notice that one
can always choose a(® such that a(® — (1 - 6{”)? > 0, Vk and, therefore, the

square roots have real positive values. For instance, choose a(® = 0.5~ since from
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Appendix B (1-6)* +6]_, <! =05-(1-6)>6_,>0. If A® = o
and a solution for (26) exists. If the above condition is not satisfied then consider
the two cases: A® < al® or A® > al®. In ejther case we are to show that it is

" possible to update a(®, (say) n times, until the the resulting o™ and A™ are as
close as desired; thus proving the existence of a solution for (A.2).
Case ] A® < o9,
In this case use a = a{!) by updating «{® such that
oV = of

where ¢, is an arbitrary small positive number. Then the following holds:

sV < 6O
s < 6%

Al > 40,

The last equation follows because all functions considered are continuous; thus
we can always choose ¢; to satisfy the last equation and have A < oY), If we

continue the process above, we have at stage n
n

ol = o — Y,
i=1

The algorithm stops when

| ol - AlM < e, (A.4)
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Due to the continuity of the functions, and
At S 4(n)
ot & 4(n)

3n and {e1, ..., €n} such that (A.3) is satisfied. Thus the algorithm converges to a

solution of (27).
Case II A©®) > o,

The same steps hold as in the previous case except updating a(?

n
o = o 3 ..
i=1

Uniqueness:

Assume there exists strategies A and A’ such that (for k = 1,2,...,z + 1)

fl0e,bect) =, f(8,6,-,) =2, a<a.

Solving (1 — &)% + 62_, = a for &, we get 6, = 1 — \/a~62_,. Furthermore,
b =1-\a>6 = 1 - Va'; assume 6 > 6y, then 1 — \Ja— 6% = 64y >

1—+/a' = 62 =6, ,; hence, by induction,
5, > 6. Vk; (A.5)

in particular, for k = z, §, > 6,. We can find §, and 6.’ in terms of «, since for

k= z+1 we have (1 — 6,41)% + 62 = a or 6, = /2. Therefore, \/a/2 > /o'/2 =
| 2

a > o, which contradicts our assumption that a < o'.
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APPENDIX B

Solving for a bound on «

Notice that

inf sup{(1 - 8e) + 601} = inf{sup(l - &)% sup (1l —&)%+6%,.., sup 26°}
A 5,

51(52
s Laseey 1y 2

1 .
2 ¥

(This asserts the fact that a < 1.)

The second equality follows from the fact that

sup {(1 -z)? +y2} = 1.

O<y<z<.5

53—1< x

(B.1)
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APPENDIX C

Equivalence of the Odd Case and Even Case

Let the optimum decoder strategy for d;z even be A,, and that for digy

odd be A,. Then for d;g even

d
=((die - )+ aF) =1,

and for dyg
dag — 1
2

((die — A3)" + AF) + AT =1

Furthermore, for a given z A, and [ are unique, and similarly A} and {'. Then if we

show that A, realizes ' in the odd case we are done. Using A, in the odd case we

have:

dig -1 dog — 1, 2
o ((de - A+ 81) + a2 = ZE (= 4 AY)

2 2 d2g
_ dag — 1( 2l l
2 dyg  day

I

B diy  doy’

where we used the fact that A? = {/dyy.
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APPENDIX D

The Proof of (4.3)

We have
z 1 1
v(H,;,7,e) = Z {—(Tk ~ Te-1— €k-1t k) +— 7y
k=2 Nk ™
z—1
+ Z ne(ee — ek+1)}
k=1

We break this sum into three sums.

1 L1 1
I:——TI+Z—T1¢-Z—‘TI=—1 =
k=2

m Nk k=2 Tk
z 1 z-1 1 z 1 z-1 1
Lonml s Lot o
k=2 Tk k=1 Tk+1 k=1 Tk k=1 Tk+1
2 1 1
z: - Te
k=1 \ Tk Mk+1

where we used the assumption 7,,; = co in the last step.

z 1 z 1 z 1 z-1 1

II: — e — —_— gy = —_— e — —_— e =
,,Z___:z Ui k=2 Nk g Nk ,,{‘:lﬂk-n
1 z 1 1 1

k=1 Tk k=1 Tk+t Te+1 M

€
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) z—1 z-1
OI: 3 meex— . Mkerrs +mie, =
k=1 k=1

z Z
Y ke =D Mi-1€k + noey =
k=1

z—1
Y Meex
k=1

z

1
Z(le —Mk-1) €+ — €1 ,
m

k=2

k=1 k=1

where we used ng = ;7‘7

[ + II + III yields the desired expression.

z
~ D Nk-1 ek + Nz,

(D.2)



Liv

APPENDIX =

Calculating Pr{W, < W,}

Consider

Wo=3 Woi , W, =3 Wy
. I=1

I=1

where {Wy,}7., are i.i.d. with

Fwo(w) =" 5 Cipe ™ v | | w>o (=0 otherwise) .
ik

Similarly {W;,}i_, are i.i.d. with

w v
1 e
Fw,, (w) = 5 2 , w>20| (=0 otherwise).

Then the characteristic functions of W,; and W, are Yw,,(Js) and ¥w (7s),

respectively, and given by:
‘pwo" (3) = / ﬁvul eJ’wdw = Z Z Ci N /- € (G{,A‘jJ)de
= Z 2 Cie —

1
1-25s

k-JS

and ‘I’W,', (3) =

Since all r.v.’s are independent and identically distributed =

= (Z 2 :/e—Js)n
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1 n
and ‘I’W, = (1 — 2js)

We have from Feller [11],

whn=1l

Fw,(w) = 2(—2_—1)—!(% , w>0;

also,

Pr{W, <W,} = / P, (a [/ .ﬁv"(w)dw] da
n

lan-1
- iz 1)° E {27r/ / ]da
= /ooo —(-7.%%:-’:__' 27r/ / e du (ZZA k—Js) ds| de

4 (1-e=aie)

= -21; oo {/:o %z(_%%—zl_.)-!e %o'(l—e""")da} 1 (ZZ%’)RCL@

]S

-5 L) s (BT aks) -
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