ANALYSIS OF ASYNCHRONOQOUS
FREQUENCY-HOP
SPREAD-SPECTRUM
MULTIPLE-ACCESS NETWORKS

by
Kyung-whoon Cheun

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Electrical Engineering: Systems)
in The University of Michigan
1989

Doctoral Committee:

Associate Professor W.E. Stark, Chairperson
Professor D.L. Neuhoff

Professor D. Teichroew

Assistant Professor K.A. Winick



® Kyung-whoon Cheun 1989
All Rights Reserved







ACKNOWLEDGEMENTS

[ would like to express my deepest gratitude to Professor Stark, my thesis advisor.
He provided me with enlightening discussions and comments on which this thesis and
my knowledge on communications theory is based.

I would also like to thank my doctoral committee members, Professor Neuhoff,
Professor Winick and Professor Teichroew for their invaluable comments on the the-
sis.

Most of all, I owe my utmost thanks to my parents who gave up many things
in their lives so as to make mine a better one. And to my wife for overcoming the
hardship of being a wife of an overstressed graduate student.

I would like to thank the following institutions for providing me with financial
support throughout my four years of graduate study. The Pohang Steel Company
of Korea, without whom my studies here may never have got off the ground, and
The National Science Foundation (grant ECS 8451266), and the Hughes Aircraft

Company.

iii



TABLE OF CONTENTS

DEDICATION . . . . ... et il
ACKNOWLEDGEMENTS . . ... .. ... ... iii
LISTOF FIGURES . . . . . .. ... . o, vii
LIST OF TABLES . . . . . . .. . . it e xii
CHAPTER

LINTRODUCTION. . . ... .. .. i, 1
1.1 Previous Work . . . ... ... ... ... ... ... ..., 4
1.2 Problems . .. ... ... ... ... .. 5
1.2.1 Error Probability . .. ... ... .. .. ...... 6
1.2.2  Viterbi Ratio Thresholding . . . . .. ... ... .. 7

1.2.3  Binary Error Correcting Codes in Generating Side-
Information for Slow FHSS-MA networks . . . . . . 8

II. SYSTEM MODEL AND PERFORMANCE MEASURES . . 10

2.1 Hopping Patterns . . ... ................... 11
2.2 User-Channel Model: One Symbol Per Hop . . .. ... ... 18
2.3 User-Channel Model: Multiple Symbols Per Hop . . . ... . 28
2.4 Side-Information and Quantization . . . . ... ... ... .. 30
2.5 Performance Measures . . . . .. ................ 34
2.5.1 Discrete Memoryless Channel . ... ........ 34
2.5.2 Channel Capacity . . ... .............. 35
2.5.3 Throughput . .. ........ ... ... ..... 39
2.6 Reviewof Problems . ...................... 40

III. PROBABILITY OF ERROR IN AN AFHSS-MA NETWORK 41

3.1 Spherically Symmetric Random Vectors . . . ... ... ... 42
3.2 Derivation of an Expression for the Probability of Error . . . 47
3.2.1  Averaging over the Random Variables . . . . . . . . 52

iv






Figure
2.1

2.2

2.3

2.5
2.6
2.7
2.8

2.9

3.2

3.3

LIST OF FIGURES

Division of the available bandwidth into ¢ frequency slots. . . . . . 12
Example of memoryless and Markov hopping patterns. . .. .. .. 14
Example of hopping patterns in a network with two users. . . ... 17

Block diagram of the transmitters and the channel of an AFHSS-MA

network. . . . ... L 20
Block diagram of the receivers of an AFHSS-MA network. . . . . . 21
Simplified channel model. . . . . . ... ... ... ... ..., ... 22
Delay Model. . . .. ... ... .. ... .. . ... .. ... . 25
Noncoherent demodulator. . . . . ... ... ... . ... ...... 26
BSC. . o, 29
BSEEC. . . . . . 29
Slow FHSS system transmitting n=4 bits per hop. . . . . .. .. .. 31
Hits in a slow AFHSS-MA network . .. ... ... ......... 32
Binary input 4-ary output DMC. . ... ... .. ... ....... 37

Probability of error as a function of the normalized delay with one
interfering tone with equal power %=11dB. ............. 63

Probability of error versus the number of interfering tones for —h-—SdB.

All users have same power.. . . . . .. .. ... ... ... ... .. 64
Probability of error versus the number of interfering tones f01 =11dB.
All users have same power.. . . . . . .. .. .. .. . ... ..... 65

vil



3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

Probability of error versus the number of interfering tones for -—ﬁ =13dB.
All users have same power. . . . . . .. ... ... ... ....... 66

Probability of error versus the number of interfering tones for —‘* =16dB.
All users have same power. . . . . . .. .. ... ... ...... .. 67

Probability of error versus the number of interfering tones for —‘1 =19dB.
All users have samepower. . . . . . .. .. ... .. ... ..... . 68

Average probability of error given that there are K users in the
network with the same power level. %=8dB. g=100. ....... 70

Average probability of error given that there are K users in the

network with the same power level. 1%*=lldB. q=100.. ... ... 71
Average probability of error given that there are K users in the
network with the same power level. 1—€-§=13dB. g=100........ 72
Average probability of error given that there are K users in the
network with the same power level. %:16dB. g=100........ 73
Average probability of error given that there are K users in the
network with the same power level. 1Evh 19dB. ¢ =100. . . . . . .. 74
Channel capacity for %zS,leB. g=100. . ... .. ... ... .. 76

Normalxzed throughput of a coded system that achieves channel ca-
pacity. £ -8 19dB. ¢=100 . . .. .. ... ... ... .......

-1
-1

Average probablllty of error using non-orthogonal BFSK. All users
have equal power. -‘1 =11dB. ¢=100. 1 =1,09. ... ....... 80

Average probability of error using non—orthogonal FSK using the
-approximation. All users have equal power. "f: =11dB. ¢ = 100. . 81

Bounds on the a.vefage probability of error using independent hop-

pmg patterns. All users have same power. Orthogonal signalling.
—b- =11dB. ¢ =100. K=10-100. . . ... . ... ... ... ..... 82

Bounds on the average probability of error using independent hop-
plng patterns. All users have same power. Orthogonal mgna.lhng

=11dB. ¢ =100. K=2-10. . .................... 83

viil



4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

Binary input 4-ary output symmetric channel resulting from 4-level
VRT.

Binary convolutional encoder. . . . .. ... ... ... .......
Rate %, K = 3 binary convolutional code. . . . . . ... ... ....
Trellis diagram for the code in Fig.4.2. . . ... ... ... .....

Probability of error and erasure versus K’ for three level VRT with
0=15 §=13dB............................

Probability of error and erasure versus K’ for three level VRT with

E .
0= 2.5. =13dB.. ... ...

Probability of error and erasure versus K’ for three level VRT with
0=15 £ =19dB.. . ...... ...,

Probability of error and erasure versus K’ for three level VRT with
0=25 £ =19dB... ... ... ... ... ..

Channel cépacity versus the number of users in the network of vari-
ous systems for ,—f’% =13dBand §=1.5.¢=100 . ... ... .. ..

Channel capacity versus the number of users in the network of vari-
ous systems for 1%: =13dBand # =2.0. ¢=100 . . . ... ... ..

Channel capacity versus the number of user in the network of various
systems for 5 =13dB and §=25. ¢=100 .. ...........

Throughput associated with channel capacity versus the number of
users in the network of various systems for 75—3 =13dB and 8 = 1.5.
=100 . . .,

Throughput associated with channel capacity versus the number of
users in the network of various systems for 7%—3 =13dB and § = 2.0.
g=100 . .. ...

Throughput associated with channel capacity versus the number of

users 14 the network of various systems for % =13dB and § = 2.5.

=100 . . .

Throughput associated with channel capacity versus the number of
users in the network of system (5) for % =13dB with 6§ as a param-
eter. ¢q=100 . .. .. . ..

X



4.16

4.17

4.18

4.19

4.20

4.22

4.23

5.1

5.2

9.3

5.4

Throughput associated with channel capacity versus the number of
users in the network of system (6) for % =13dB with # as a param-
eter. ¢q=100 . ... . ... ... 114

Lower bound on the normalized throughput when rate k=7

convolutional codes are employed versus the number of users in the
network. 42 =13dB, 6 =1.5, Npee =5, L =70. . . . ... ... ... 115

Lower bound on the normalized throughput when rate L k=1
convolutional codes are employed versus the number of users in the
network. % =13dB, 0 =2.0, Njpet =5, L =70. . . . .. ... ... . 116
Lower bound on the normalized throughput when rate k=17

convolutional codes are employed versus the number of users in the
network. % =13dB, 0 =2.5, Nppet =5, L =70. . .. .. ... .... 117

Lower bound on the normalized throughput of system (5) when rate
2, k = T convolutional codes are employed versus the number of

users in the network with 6 as a parameter. ﬁ-“; =13dB, L =70. .. 118

Lower bound on the normalized throughput of system (6) when rate
%, k = T convolutional codes are employed versus the number of
users in the network with 6 as a parameter. 1—5—2 =13dB, Npe: =3,

Simulated normalized throughput when rate 1, k = 7 convolutional

codes are employed versus the number of users in the network.
R =13dB, Npee =5, L=70. ¢ =100 . . . ... ........... 121

Effects of bounding techniques on the evaluation of normalized through-
put when rate %, k = 7 convolutional codes are employed with four

level VRT. {2 =13dB, Npe; =5, L=70. ¢ =100 . . . . ....... 122
Construction of a packet and the coding scheme. . . . . . ... ... 126
Test patternscheme. . . . .. .. .. ... ... . ... . ... ... 128
Hit patterns o, Bandy. . .. ... ... ... .. .. ........ 132

Packet error probability versus the number of users in the network.
Po=10"2.¢=100. ... ....... ... ........ C e e 142



5.5

5.6

5.7

5.8

5.9

5.10

3.11

5.12

5.13

5.14

5.15

5.16

5.17

Packet error probability versus the number of users in the network.
Po=10"2.g=100. ... ... ... 143

Packet error probability versus the number of users in the network.
Po=10"% g=100. ... .. ... . . . 144

Packet error probability versus the number of users in the network.
Po=10"5.¢=100. ... ... .. .0 145

Packet error probability versus the number of users in the network.
Po=107%¢g=100. ... .. ... ..o 146

Packet error probability vs the number of users in the network. Con-
catenated coding scheme. ¢=100. .. ................ 148

Packet error probability vs the number of users in the network. Per-
fect side-information. ¢ =100.. . . . . ... .. ... .. ...... 149

Packet error probability vs the number of users in the network. Test
pattern scheme. ¢ =100.. . . .. ... ... ... . ......... 150

Unnormalized throughput vs the number of users in the network.
Po=10"2 g =100. . .. .o 152

Unnormalized throughput vs the number of users in the network.

Po=10"2 g =100. . .... ..o 153

Unnormalized throughput vs the number of users in the network.
Po=10"% g=100. . ... 154

Unnormalized throughput vs the number of users in the network.
Po=10"%¢g=100. ... ... ..., 155

Packet error probability vs the number of users in the network with
Rayleigh fading. P, =10"%. ¢=100. . ... .. ... ... ..... 156

Packet error probability vs the number of users in the network with
Rayleigh fading. Po=10"¢. ¢ =100. . .. .. ... ......... 157



LIST OF TABLES

Table
3.1 Comparison of Geraniotis’ approximation and (3.22). %=lldB. .. 69

3.2 Average probability of error for two power level groups. %:lldB.
q = 100.



CHAPTER 1

INTRODUCTION

Sprea.d-Spectfum (SS) communications is a modulation technique where the mod-
ulated signal has much larger bandwidth than the minimum bandwidth needed to
transmit the data. For example, the modulated signal could have bandwidth 100
khz when the information data rate is 100 bits/sec. The main advantages of us-

ing spread-spectrum systems over conventional narrowband systems are threefold

[Vit 79b].
1. Ability to suppress interference.
2. Low Probability of Intercept (LPI).
3. Ability to make accurate ranging or time delay measurements.

The most important of these three is probably the interference suppression (rejection)

capability where the interference source could be any combination of the following

[Vit 79b].
1. Interference due to hostile opponents.

2. Interference due to other users (friendly) sharing the same spectrum in a net-

work environment.



3. Interference due to multipath (self-jamming).

In this thesis we are interested in the capability of an SS communications system in
rejecting interference of type (2).

The spreading of the bandwidth in an SS system is commonly done by one of
the following two methods. The first, referred to as the Direct-Sequence Spread-
Spectrum (DSSS) system [Sim 85], spreads the bandwidth by multiplying the infor- |
mation signal (with values +1 or —1) by a pseudorandom spreading sequence (with
values +1 or —1) which has bandwidth much larger than that of the information
signal. Since the spectrum of a product of two uncorrelated signals is given by the
convolution of the spectrums of each signal, the resulting bandwidth will be ap-
proximately that of the spreading signal. The second technique for spreading the
bandwidth of the transmitted signal is called the Frequency-Hop Spread-Spectrum
(FHSS) technique and is adopted in this thesis as the spreading method. With to-
day’s technology, this method offers a larger bandwidth than the DSSS technique for
a given information rate. FHSS communications systems will be described in detail
in the next paragraph and in Chapter 2.

Spread-spectrum communications systems are almost always used with some kind
of error correcting code. The gain one may obtain by employing error correcting
codes in SS systems with interference is usually much larger than that in standard
narrowband communications systems.

The discussion in this chapter contains standard terminology in the FHSS Multiple-
Access (FHSS-MA) field that =il be precisely defined in Chapter 2 where a detailed
description of the channel, and user (transmitter-receiver pair) models used for the
analyses are given. Mathematical descriptions of the problems will be given in the

corresponding chapters. It is suggested that readers not familiar with FHSS-MA



networks read Chapter 2 first.

In a standard Frequency-Hop Spread-Spectrum (FHSS) communications system,
a given bandwidth W,, is divided into g equal width sub-bands called frequency slots
or simply slots. For every n channel symbols to be transmitted, the transmitter
chooses one of the ¢ slots for transmission in some pseudorandormn fashion. Hence
the frequency used by the system hops among the ¢ available slots as a function of
time and hence the name frequency hopping. FHSS communications systems were
originally developed because of their ability to provide reliable communications in the
presence of hostile jammers and in fading/multipath environment and also because
of their Low Probability of Intercept (LPI) property [Sch 77] [Sim 85].

Recently, the application of FHSS systems to Multiple-Access (MA) networks,
where many users share a single physical channel without central coordination, has
been the focus of interest of many researchers [Pur 81] [Ger 82] [Pur 87b] [Heg 88]
[Kim 89]. This method of sharing a given physical channel among many users is called
Frequency-Hop Spread-Spectrum Multiple- Access (FHSS-MA) communications. A
FHSS-MA network [Pur 87b] is formed simply when many users employing FHSS
modulation over the same spectrum coexist. Though FHSS-MA systems can be just
as bandwidth efficient as traditional narrowband ALOHA MA system in the sense
that, for a given bandwidth it can achieve the same throughput [Kim 87], the main
reason for applying FHSS techniques to MA networks is to take advantage of the
interference and fading/multipath rejection capabilities of the FHSS system. Hence
the major application of FHSS-MA networks are probably in constructing surviv-
able networks for military communications. Other advantages of Spread-Spectrum
Multiple-Access (SSMA) networks in general are the capture effect [Pur 87b] which

refers to the ability of a receiver to lock on to one transmission when there are sev-



eral overlapping transmissions addressed to it and the fact that SSMA networks offer
greater flexibility than traditional multiple-access systems. For example, the number
of users sharing the network can be increased very easily and the the performance of
the network degrades gracefully as the number of users in the network is increased.
Also, unlike traditional techniques (e.g. Time division multiple-access, Frequency
division multiple-access) a SSMA network can operate without network timing or a
system controller.

The objective of this thesis is to provide a more accurate analysis of the modu-
lation (demodulation) and coding aspects of FHSS-MA networks than are presently
available, especially for asynchronous FHSS-MA (AF HSS-MA) networks where the
hopping patterns of different users are not synchronized. We also consider differ-
ent schemes that enhance the performance of an AFHSS-MA networks and analyze
them.

In this chapter we will cite some of the previous work on Frequency-Hop Spread-
Spectrum Multiple-Access (FHSS-MA) networks and give a brief summary of the
problems we consider. We will comment on the significance of these problems and
related work done by other researchers. A summary of the results is also given in

this chapter.

1.1 Previous Work

In this section we will briefly cite some of the previous key results in FHSS-MA
networks theory. In [Ger 82], Geraniotis and Pursley derived the probability of a
hop being hit by another user in the network in a FHSS-MA network for memoryless
and Markov hopping patterns. In [Pur 86] error probabilities and local throughput

were derived for an asynchronous frequency-hop packet radio network for slotted



and unslotted ALOHA network protocols with error control coding. By using an
information theoretic approach [Heg 85], Hegde and Stark showed the existence of
an optimal number of users in the network. This number maximizes the total reli-
able information transmitted through the network. They also derived the probability
distribution of the number of hits in a block of m symbols in a FHSS-MA network
and showed that the error resulting from assuming that the hits are independent
from hop to hop is negligible[Heg 88]. In [Kim 87] asymptotic performance of Reed-
Solomon codes for slotted FHSS-MA network was derived both with and without
perfect side-inforl;nation and concatenated coding schemes with random inner codes
were considered. In [Mad 88| similar analyses were done for unslotted FHSS-MA
networks assuming perfect side-information. It was also shown that when perfect
side-information is available, the asymptotic performance of FHSS-MA networks is
insensitive to both the distribution of packet lengths and to whether or not transmis-
sion is slotted. Convolutional coding for SSMA networks was considered in [Pur 85]
and an upper bound on the packet error probability was derived for the case when
hard decisions are made. Many researchers have also considered the network proto-
cols for spread-spectrum multiple-access networks [Wie 86] [Ray 81] [Pur 87b]. This

will not be discussed in this thesis.

1.2 Problems

In this section we discuss the problems considered in this thesis and previous
work done by other researchers on these problems. More detailed descriptions are

given at the beginning of each chapter.



1.2.1 Error Probability

The first problem we consider is that of computing the uncoded probability of
bit error in an AFHSS-MA network where one binary symbol is trénsmitted per hop
using Binary Frequency Shift Keying (BFSK) modulation. Most of the work done on
FHSS-MA up to now assumes that the probability of bit error whenever a hop is hit
by multiple-access interference in a FHSS-MA networks is 1 when M -ary (M > 2)
Frequency Shift Keying (MFSK) is used and % when BFSK is used. These ap-
proximations are used simply because there are no better bounds or approximations
available. Recently there has been some interest in deriving more accurate approxi-
mations to the probability of error for an AFHSS-MA network when one symbol is
transmitted per hop and BFSK with noncoherent detection is used. In [Kel 88], an
exact expression for the probability of error was derived when a hop is hit by one
interfering user and Monte Carlo simulations were performed when a hop is hit by
more than two users (up to four). In [Ger 88], approximations to the probability of
error were developed by assuming that the frequency separation between the BFSK
tones is large enough so that the nonorthogonality of the interfering tones (due to
the asynchronocity of the hopping patterns) can be neglected. But in practice, it
would be advantageous to use the minimum frequency separation because for a given
bandwidth, this would allow a larger number of slots to be used and thus decrease
the probability that a hop is hit by other interfering users. In [Sho 88], an exact ex-
pression for the probability of error given the initial phases, delays, power levels and
the data bits of the interfering tones was derived. But in most practical AFHSS-MA
systems, it is natural to assume that most of these quantities are random and thus
the expression for the error probability given in [Sho 88] must be averaged over these

variables to give the average error probability. This averaging involves two K’-fold



integrations for the initial phases and delays and a K’-fold summation for the data
bits of the interfering tones where K’ is the number of interfering users in the fre-
quency slot. This is a nontrivial task even for moderate values of K’. In short, these
result do not provide a sufficiently accurate or numerically tractable expressions for
the probability of error.

In Chapter 3 we derive an analytical expression for the probability of error based
on a general model for the AFHSS-MA network provided in Chapter 2. This ex-
pression will yield exact error probability when orthogonal BFSK is employed and
an approximation when nonorthogonal BFSK is employed. This expression is also
easier to evaluate than the one provided in [Ger 88]. We also describe an efficient
simulation technique to verify that our results agrees with simulation results. We
compare our results to the case when approximations in [Ger 88] are made and show |
that the latter gives optimistic results. Using our result, we compute various perfor-
mance measures for FHSS-MA networks and find that assuming that the probability
of error is % whenever a hop is hit results in excessively pessimistic estimates of coded
system performance and analyses based on this assumption have lead to misleading
results. For example, the excessively pessimistic analysis of the hard decisions re-
ceiver under this assumption lead to the claim that, using perfect side-information
to erase the hops that were hit (and make hard decisions on the hop that were not
hit) would outperform simple hard decisions. Our results show that, in fact, simple

hard decisions significantly outperforms the system using perfect side-information.

1.2.2 Viterbi Ratio Thresholding

Since for most error correcting codes, the erasure correcting capability of the code

is roughly twice that of its error correcting capacity, it follows that if we can devise a



way to single out those hops that were highly corrupted (probability of error close to
3) and erase the symbols corresponding to those hops, we can expect an increase in
performance. In Chapter 4 we consider Viterbi Ratio Thresholding (VRT) [Vit 82]
[Vit 85] to provide an alternate way of providing information about the quality of
the channel to the side-information as defined in Chapter 2. Using VRT to obtain
information about the channel for FHSS-MA networks was first considered in [Kel 88]
where simulations were done to estimate the channel statistics when a hop is hit by a
small number of interfering users ( < 4 ). We use the technique developed in Chapter
3 to derive the reéulting channel statistics when VRT is used. We provide simulation
results to confirm that our results agrees with the simulation results in this case also.
We consider two different forms of VRT and compare the results with various forms
of side-information and conclude that VRT provides a very simple means of obtaining
reliable information about the quality of the channel that significantly improves the

performance of the system.

1.2.3 Binary Error Correcting Codes in Generating Side-Information for

Slow FHSS-MA networks

In Chapter 5 we consider slow FHSS-MA networks where more than one code
symbol is transmitted in each hop. The widely used assumption is that when a hop
is hit, all the symbols in the hop are hit. Here we attack the problem of finding the
probability that [ out of the n symbols transmitted in a hop are actually hit when the
hop itself is hit. Using this result, we consider a concatenated coding scheme where
a set of k data symbols to be transmitted in a hop is éncoded using an (n, k) binary
code. Bounded distance decoding is used to decode this code, which corrects up to a

predetermined number of errors and with high probability, outputs an erasure when



the number of errors exceeds this value. The idea here is similar to VRT in that
instead of assuming that a hop is highly corrupted whenever it is hit and erasing
the corresponding symbols, we estimate the actual level of corruption of a given
hop and erase the symbols in the hop accordingly. We compare the performance
of this system to a system employing the test pattern scheme proposed in [Pur 87a]
and a system with perfect side-information. Numerical results show that this scheme
performs much better than the test pattern scheme with the same system parameters,
especially for low signal-to-noise ratios. It also performs better than the system using
perfect side-information to erased the symbols transmitted in a hop that was hit. We
also consider the case when the channel is further corrupted by Rayleigh fading and
show that we obtain a performance better than both the systems using test patterns

and perfect side-information.



CHAPTER 11

SYSTEM MODEL AND PERFORMANCE
MEASURES

In this chapter we provide a detailed description of the AFHSS-MA network
model that will be used in the following chapters and the performance measures used
to compare different schemes. For our purposes, a radio communications network will
consist of K users. Associated with each user is a transmitter and a receiver which
desire to communicate. Communication is accomplished by transmitting signals in
a common spectrum. The signal received at any receiver consists of a weighted and
delayed sum of the K transmitted signals plus additive white Gaussian noise.

First we describe the models for the hopping patterns used in FHSS-MA networks
and the mechanism for hits at the hop level. We then look at hits at the waveform
level and derive an expression for the outputs of the matched filters when binary
frequency shift keying and noncoherent detection is used with Markov hopping pat-
terns and the hop is hit by K’ interfering users. This is followed by definitions of
various forms of side-information. In the last section we introduce channel capacity
and normalized throughput which will be used as performance measures to compare

different schemes.

10
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2.1 Hopping Patterns

In a FHSS-MA network, the available bandwidth W,, [Hz] is divided into ¢ sub-
bands referred to as (frequency) slots as shown in Fig. 2.1. Each slot is of bandwidth
-‘-’-V;‘ and the center frequency of each slot, denoted by Fj, [ = 1,-- -, q, is the frequency
of the Radio Frequency (RF) carrier of the signal transmitted in the frequency slot.
That is, the I-th frequency slot is the frequency range [Fz - lvz-;-*, F+ %} with center
frequency F;. We denote the set of available center frequencies by F, = {F:1=
1,--+,¢}. In the following discussions we will use the terms center frequency and
frequency slot interchangeably. It is assumed that a user transmitting in the I-th
slot emits negligible power outside the I-th slot.

A user in the network consists of a transmitter which intends to communicate with
its corresponding receiver but not with other receivers in the network. The g available
frequency slots are shared among K actively communicating users. Each user in
the network is aséigned a hopping pattern which is a doubly infinite pseudorandom
sequence with elements in F, denoted by h = {h,-}f:fz with A; € F.. Without loss of
generality, we assume that each user has a clock with period T},. The k-th user chooses
a new center frequency for transmission at the beginning of each clock cycle, i.e., at
multiples of T}, using a frequency hopper. The hopping pattern then designates the
center frequency to be used by the transmitter at any time interval (m- Ty, (m+1)T}]
referred to as the m-th hop interval, where m is any integer. That is, if h,, = F}, the
transmitter uses center frequency Fj in the time interval (mT}, (m+1)T%] to transmit
data. The time spent on a particular frequency slot (T}) is referred to as the hop

duration or the dwell interval. We denote the set of hopping patterns assigned to

the K users in the network by {h*}X , where h* = {h¥}i=+% denotes the hopping

1=-—-00
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W [Hz]

T TTT o

| 2 3 g-249-1q

Slot Number

Figure 2.1: Division of the available bandwidth into q frequency slots.
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pattern assigned to the k-th user.

For many FHSS radio networks, the hopping patterns are generated using cryp-
tographic techniques and are not even available to the system engineer. In these
cases, it is useful to model the hopping patterns as a sequence of random variables.
We will adopt this model here. We will assume that the hopping patterns of different
users are mutually independent and have the same statistics. The most widely used
models for the hopping patterns are memoryless (independent) hopping patterns and
Markov hopping patterns. In the memoryless hopping pattern model, {4} is a se-
quence of independent and identically distributed (i.i.d.) random variables with a
uniform distribution on F.. In the Markov hopping pattern model, the conditional
distribution of kf given h%_, is a uniform distribution on F. — {h*_,} for any given s,
1.e., the system never uses the same center frequency for two consecutive hops. Fig.
2.2 shows an example of the memoryless and the Markov hopping patterns.

We can categorize FHSS-MA systems into the following two different schemes.
In one scheme, the hopping patterns of the users in the network are synchronized so
that the transition from one frequency slot to the next frequency slot of all the users
in the network are aligned as seen by each of the receivers. When this is true, we say
that the system is synchronized at the hop level, and the network is referred to as a
Synchronous FHSS-MA (SFHSS-MA) network. In the second scheme referred to as
the Asynchronous FHSS-MA (AFHSS-MA) network, the transitions from hop to hop
are not synchronized at each of the receivers. In practical systems the second scheme
is usually employed since in many cases, achieving this kind of synchronization is very
difficult except for some special cases. For example, SFHSS-MA is possible when a
number of mobile users transmit to a single base station and the base station in turn

broadcasts the data back to the mobile stations.
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Whenever two or more users simultaneously transmit in a particular frequency-
slot for a nonzero time interval, we say that a h:t has occurred. Consider a given
receiver (say the first receiver) and assume that the signal transmitted by the first
transmitter (the transmitter with which the first receiver wishes to communicate)
is at center frequency F; during the time interval (mT, + {,(m + )T, + 7/] (the
m-th hop) as seen by the first receiver, where 7{ is the propagation delay between
transmitter one and receiver one. It is usually assumed that {r{ mod T} }£ , which
denotes the propagation delays modulus the hop duration between the transmitter
k and receiver one are mutually independent and uniformly distributed in (0, T}).
We will adopt this assumption in this thesis. First let us consider the case where a
hop is hit by a particular user (say j) in the network. A hit by this user j can be
categorized into the following three different types. We say that the m-th hop of the
first user is hit from the left if the signal at the receiver of the first user due to user
J uses the center frequency Fj for the subinterval (mT}, + 71, (m + 1)T, + 7/ + t/] and
that it is hit from the right if user j uses the center frequency F} for the subinterval
(mTh + 1 +t",(m + 1)T, + 7{] where 0 < ¢, < T. We denote these events by
HT* and HE respectively and note that for memoryless hopping, the events H7 and
HE are independent. When a hop is hit from the left or from the right only, as
described above, we say that the hit is a partial hit. Finally a hit is categorized as a
full hit if the hop is hit from the left and from the right by user j. The probability
of partial and full hits are denoted by p, and p;. The probability of a hop being hit

by a particular user in the network denoted by px = p, + py is given by [Ger 82]

1(2-1) :asynchronous hopping
ph = g (2‘1)
: : synchronous hopping
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when memoryless (independent) hopping patterns are employed, and

when Markov hopping patterns are employed. These results are rather obvious for the

synchronous cases and the asynchronous Markov hopping case. For the asynchronous

: asynchronous hopping

@ e

Pr =

a

: synchronous hopping

memoryless hopping case, p, can easily be derived as follows.

Phr

Pr{H,U Hg}

P?‘{HLHFR}+PT{HRH-H-L}+PT{HLOHR}

1 1 1
-(1=-=-)x2+—
q( q) ¢
1 1
-(2-=). a
q q

2
(3]

In the above equations, H g denotes the complement of the event Hr and simlarily

for Hy.

An example of hopping patterns when there are two asynchronous users in the

network is shown in Fig. 2.3. It is easy to see that for the asynchronous Markov

hopping pattern case, the probability that a frequency slot used by one user is shared

with another user for the entire hop duration is zero. Hence for asynchronous Markov

hopping patterns p; = 0 and hence Pp = pr. On the other hand for asynchronous

independent hopping patterns, a hit may be either a full hit or a partial hit. The

probabilities ps and p, for independent hopping patterns can easily be seen to be

[Ger 85)

2 1
p =—1—~)
? q( q
1

pf = —. (2.3)

Q
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Using the above expressions for py, and the independence of hopping patterns, we
can write the probability that a particular hop is hit by at least one other user when

there are a total of K active users in the network, denoted by P, as
Phit =1- (l — ph)K—l. (24)

2.2 User-Channel Model: One Symbol Per Hop

In this section we provide a detailed description of the transmitter-receiver pair,
the channel, and the interference at the waveform level when one binary channel
symbol is transmitted in each hop. Using this, we derive an expression for the output
of the matched filters when binary frequency shift keying, noncoherent detection,
and Markov hopping patterns are employed. The extension of the argument to
the more general case when one M-ary channel symbol is transmitted per hop is
straightforward.

Each user in the network consists of a FHSS user transmitting one binary symbol
in each hop duration and a receiver that is perfectly synchronized (locked on) to
the hopping pattern of the corresponding transmitter, i.e., the receiver knows the
center frequency of the received signal of the corresponding transmitter at each time
instant.

We assume that Markov hopping patterns are employed. Assuming Markov hop-
ping patterns not only simplifies the analysis but also simplifies numerical computa-
tions. As we will see later, this is mainly due to the fact that when Markov hopping
patterns are used, all the hits are partial hits (p; = 0) and no full hits occur. Also in
later chapters, it will be shown that the results obtained by assuming Markov hop-
ping patterns provide close approximations to the results for independent hopping

patterns.
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In Fig. 2.4, we show the block diagram of the models for the transmitters and the
channel, and Fig. 2.5 is the block diagram of the model for the receivers. Fig. 2.4
together with Fig. 2.5 make up a general model of an AFHSS-MA network with K
active users sharing a common physical channel. We assume that each receiver hears
the transmissions of all active users in the network but only wishes to communicate
with the transmitter to which it is synchronized. All the users are assumed to
be identical except possibly for the output power and have mutually independent
hopping sequences with the same statistics.

Since different users may be located at different sites and different users may.
have different power, the power level of different users as seen by a receiver may
be different. The attenuated and delayed signals of the users are added along with
Additive White Gaussian Noise (AWGN), possibly corrupted by fading/multipath
and presented to the receivers for detection and decoding. The receivers demodulate
and decode independently of each other, i.e., there is no cooperation among the
users. Also there may be some kind of side-information about the channel available
to the receivers to aid the decoding process. Side-information will be discussed in
detail in Section 2.4. The transmitted signals of other users as seen by a specific
receiver, say the first receiver, may be considered as just another form of channel
corruption mechanism. The users other than the one intended (i.e., the one that
it is synchronized to) are called interfering users and the interference due to the
interfering users is called the multiple-access interference. Hence the channel model
for the first user can be simplified as shown in Fig. 2.6. The (channel) coder and the
decoder in Figs. 2.4-2.5 provides error protection against interference due to other
users in the network and AWGN.

The modulator/demodulator is assumed to be Binary Frequency Shift Keying
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(BFSK) modulation with noncoherent demodulation. Noncoherent demodulation is
usually used in FHSS systems since it is generally very difficult to acquire an accurate
approximation to the signal phase during the short hop duration. Let ff € F. be the
center frequency of the j-th frequency hop of the k-th user. Let bf € {—1,1} denote
the j-th data bit of the k-th user. Also let ¥ € (—=, ] be the initial phase of the
k-th user for the j-th hop and T(t) be the shaping waveform for the BFSK tones.
For simplicity, we assume that I'(¢) = 1 for 0 < ¢ < T, and zero otherwise. Then
using standard complex notation to represent real signals, the transmitted signal of

the k-th users for the j-th hop in the time interval (5T}, (j + 1)T}] can be written as
s(t) = T(t — jTh) exp[i2n(ff + B§Af)t + ]

where 2Af is the frequency separation between the two tones corresponding to bf
and ¢ = v/=1. The signal actually transmitted is given by the real part of s(¢).
For now, we assume that the only interference added to the transmitted signal other
than multiple-access interference is the AWGN.

At the first receiver, the received signal is first passed through a band-pass Radio
Frequency (RF) filter to attenuate any other signal that might be present outside
the spread-spectrum band. Then for the j-th hop of the first transmitter using
center frequency f;, the signal is then multiplied by a sinusoidal tone from a local
oscillator with frequency f} — fir using a multiplier circuit, where frp is called the
Intermediate Frequency (IF). The multiplier together with the circuitry to track the
hopping pattern of the corresponding transmitter, is usually called the dehopper. The
resulting signal is same as the signal out of the RF filter except that now, the center
frequency of the j-th hop is located at f;r. The signal output from Vthe multiplier is

then fed through the IF filter which is a band-pass filter with center frequency fir
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and bandwidth W;—‘ Finally, the noncoherent demodulator makes decisions based on
this signal. All other receivers in the network will operate in the same fashion except
that they will follow the hopping patterns of the corresponding transmitters.
Now,the signal seen at the output of the IF filter of the first receiver during the
J-th hop interval denoted by r;(t) can be written as shown below given that there
are K’ + 1 users sharing the frequency slot (i.e., from the first receiver’s point of

view, the hop is hit by K’ interfering users.)

K'+1
ri(t) = Z L(t — jTh)akse(t — T;‘) + z(t)
k=
= Y T(t - jTu)awexp (i2n(frr + BEAS)(t — 7F) + io}) + 2(t)

k=1

where 77 € (=T}, Th) is the delay of the beginning of the transmission of the k-
interfering users with respect to the beginning of transmission of the j-th hop of the
first user mod T},. The term z(t) denotes the complex white Gaussian noise process
with two sided power spectral density %‘1 and the amplitudes of the signals out of the
IF filter due to the k-th tranmitter as seen by the first receiver are denoted by aj > 0.
Also, without loss of generality, the propagation delay from the first transmitter to
the first receiver was normalized to zero. We also define the normalized delay of the
k-th user with respect to the first user for the j-hop as pf = %:- Fig. 2.7 shows
the hop j-th hop for the first user being hit by three interfering users with different
delays, amplitudes, and data bits.

For detection of the signals, we employ the noncoherent demodulator that is
optimal when only AWGN is present. The demodulator for the first transmitter is

given by Fig. 2.8 [Pro 83] where

() =T(t — jTi) exp[~i2x(frr + Af )]

r-1(t) = T(t — jTi) exp[—i2x (frr — AS)1].
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The decision variables are |U1| and |U_;| which are obtained from the received signal
r(t) by first multiplying r;(¢) by r1(t) and r_;(t) respectively and integrating over
the hop duration and taking the magnitude. Hence the outputs of the integrators

(Fig. 2.8) Uy and U_; are given by

U, = / ri(t)r (t)dt
U = / ri(t)r_1(t)dt.

Hence Uy, U_; can be written as follows given that b} = +1 (Note that we dropped

the subscript j and use k as the subscript).

[E, . [E, KX rapy :
U = z1+ e 4,2 E (__) e~ fIFTE ik 1, p, bk
! 1 No NQ k=2 (03] k( Pr )
Eb i1 E, & <ak> 27 f1FTr L0k
_ 1 bk ¥4 4 T 1 _1’ , b
z 1+p\/NOe W k§=2 =) e¥*ar(—1, pk, bx)

where z; and z_; are complex Gaussian random variables with E {z1z1} =1, E{z_12%,} =

U

1, E{zzZ,} = p* (z* denotes the complex conjugate of z) and % 1s the signal-to-
2
noise ratio of the first user with £, = 3’5—'—'- The term p is the complex correlation co-

efficient between the two BFSK tones defined as p = e~274f Th%. The terms
ar(l,pe.b), I € {1, =1} are complex functions of pr and b;. If we let Ag({, py, by)
and 0k(!, px, bx) be the magnitude and the phase of ak(l, px, bx), then simple analysis

shows that they can be written as follows.

sin 27 ( qx

ALl o) = 6(1, b.)d, [, —b.)q,
k(1 e, 0k) = 6(1, b ) g + 6(1, — by ) g 2rCa

e Pebe) = sgn(pe)8(1, be)etoom e —sgn(pr)é(l, —bk) (2.6)

where 6(z,y) is the Kronecker delta function defined to be 1 if z = y and 0 otherwise.

The function sgn(z) returns the sign of the number z (i.e. sgn(z) = +1if z > 0 and
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sgn(z) =-1ifz <0),di =1 —|px| and ¢ = %‘}-. Hence

‘Eb ip1 E, & —i{27 frrTic+0k(1,pk bk)} Livk 47
U1=zl -+ Wo-e + Fo' Z e Ry e Ak(l,pk,bk)

k=2
Eb . Eb K'+1 ) 0 ) ]
U_y=2_, +p No_e'“P—l + FO. Z e~ H2m f1pmet6k(~1,pk, k)}e”PkA;C(..l’pk’bk)_ (2.7)
k=2

where
A;:(lvpkv bk) = (E;E) Ak(la Pk» bk)a l € {_17 +1}
1

The decision device in Fig. 2.8 makes decisions about the transmitted binary
symbols based on |Uy| and |U_;|. For example, the decision device may simply
make hard decisions by deciding that a ‘+1’ was transmitted if |U;| > |U_;| and
a ‘=1’ was transmitted if |U;| < |U_;|. In this case, the resulting channel from
the transmitted binary symbol to the decision outputs can be modeled as a Binary
Symmetric Channel (BSC) (Fig. 2.9) with some transition probability p. On the
other hand, if the decision device makes decisions or erasures based on some rule,
e.g., Viterbi ratio thresholding, then the resulting channel can be modeled as a
Binary Symmetric Errors and Erasure Channel (BSEEC) with error and erasure
probabilities p. and p. as shown in Fig. 2.10 if the rule is symmetric. Both BSC and
the BSEEC belong to a class of channels called the discrete memoryless channels.
Discrete memoryless channels will be discussed in Section 2.5.1. Chapters 3 and 4

will be concerned with deriving expressions for these probabilities.

2.3 User-Channel Model: Multiple Symbols Per Hop

In this section we describe the case when multiple binary symbols are transmitted
in each hop duration. This type of FHSS-MA system is generally referred as slow
FHSS-MA system. We denote the number of symbols transmitted in a hop by n

(Fig. 2.11). The model for the users and the channel are same as the one given in
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the previous section except that now n binary symbols are transmitted in each hop.

A major difference between analyzing an AFHSS-MA network where one channel
symbol is transmitted per hop and a slow AFHSS-MA network is that for the first
system. when a hop is hit, the symbol corresponding to the hop is always subject to
multiple-access interference whereas in a slow AFHS’S»MA network, symbols within
a hop may not be subject to multiple-access interference (referred to as a symbol hit
as opposed to a hop hit) even though the hop itself is hit as shown in Fig.2.12. Also
within a hop, the symbol hits are not independent from each other which complicates
the analysis. The statistics of hits for a slow AFHSS-MA network employing Markov

hopping patterns will be derived in Chapter 5.

2.4 Side-Information and Quantization

In this section we will define what we mean by side-information. We will introduce
various forms of side-information and discuss the increase in complexity needed to
obtain this information. We will also discuss how the outputs of the noncoherent
detector could be quantized to yield various amounts of information about the quality
of the channel.

It is generally very difficult to give a clear cut definition of what side-information
is. In this thesis, we will define side-information to be any form of information about
the quality of the channel other than that obtainable by processing the outputs of
the matched filters of the noncoherent demodulator, i.e., |U;] and |U_;|. The most
popular férm of side-information considered in FHSS-MA networks is the information
as to whether a particular hop was hit or not. This form of side-information is usually

referred to as perfect side-information. Previous results [Pur 86] [Kim 89] indicated
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that using this form of side-information to erase the symbol transmitted in a hop
that was hit can greatly improve the performance of a coded FHSS-MA networks.
The idea behind trying to acquire and use this form of side-information is that when
a hop is hit, the hit is usually detrimental and it is advantageous to erase the symbols
corresponding to the hop to make use of the larger erasure correcting capability of the
forward error correcting codes which is roughly twice the error correcting capability.
One way for a receiver to obtain perfect side-information is for the receiver to track
the hopping patterns of all the users in the network. Another way is to detect
perfectly (if it is possible) whether a frequency slot to be used is also being used by
other users by measuring the energy in the frequency slot just before hopping to that
frequency slot and just after leaving that frequency slot. The first method is usually
expensive to implement and the second method is usually not very reliable unless the
signal-to-noise ratio is very large. Although obtaining the (perfect) side-inférma,tion
is usually difficult and/or expensive, the improvement in the performance when using
this information to erase the hops that were hit shown in previous works justified the
effort. We will show in this thesis that in reality, the previous results on using perfect
side-information to erase the symbols that were hit based on the assumption that the
probability of error is -;- whenever a hop is hit are misleading. In fact, when all the
hops that were hit are erased, the performance will degrade considerably below that
of a system that simply chooses the largest of the matched filters as its estimate, i.e.,
makes hard-decisions. Of course we do not have to erase the symbols corresponding
to the hops that were hit. For example, it is possible to make Maximum Likelihood
(ML) decisions based on the code words with perfect side-information available to
the decoder. If the receiver is tracking the hopping patterns of all the users in the

network to obtain this information, the receiver also has knowledge of exactly how
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many interfering users hit a specific hop. This is a much more detailed information
than that provided by perfect side-information, and it is also possible for a receiver
to make ML decision on the code symbols with this side-information available to the
receiver.

On the other hand, without using side-information, we can obtain information
about the quality of the channel (the quality of the channel for a hop) by processing
the outputs of the matched filter of the noncoherent detector as in Viterbi ratio
thresholding. The Viterbi ratio thresholding technique offers a method of more finely
quantizing the output of the noncoherent detector than the simple hard-decisions,
which is a two level quantizer. This method of obtaining information about the
channel is usually much easier to implement. It will be shown in Chapter 4 that
Viterbi ratio thresholding provides quality information about the channel to the

decoder and improves the performance of the network over simple hard decisions.

2.5 Performance Measures

In this section we introduce some of the performance measures that will be used
in later Chapters. We will introduce Discrete Memoryless Channels (DMC) and
show how the AFHSS-MA channel can be closely modeled as a DMC. We then
derive the channel capacity for various DMCs that will arise in the analysis of an
FHSS-MA channels. Finally we introduce the normalized throughput as a measure

of information flow in a network.

2.5.1 Discrete Memoryless Channel

A communications channel is called a Discrete Memoryless Channel (DMC)

[Vit 79a] if it is characterized by a discrete input alphabet X, a discrete output



35

alphabet Y, and a set of conditional probabilities of py|x (y|z) where the input to
the channel is denoted by X and the output of the channel is denoted by Y. Also,
the output letter of the channel must depend only on the corresponding input so that
for an input sequence of of length N; denoted by x = (z1,---,zx;), the conditional
probability of the corresponding output sequence y = (y1,- - -, yn;) may be expressed
as
PN(YI%) = T p(yaln).

The BSC and the BSEEC are examples of a DMC.

In an AFHSS-MA network it is clear that the channel has discrete input and
output alphabets with corresponding transition probabilities given that some sort of
quantization is done at the receiver. It can be shown [Heg 88] that the asynchronous
FHSS-MA channel actually has memory and hence the memoryless condition is not
satisfied. But it is also shown in [Heg 88] that the memory is very weak for realistic

values of ¢ and hence a DMC approximation of asynchronous FHSS-MA channels is

very accurate,

2.5.2 Channel Capacity

First let us define a quantity C’ for a DMC which is the maximum of the mutual
information between the input X and the output Y (written as I(X;Y)) over all

possible input distributions. That is
C'= I’%?XI(X; Y) (2.8)

where gx denotes the distribution of X and for discrete input and output alphabets,

the mutual information I(X;Y), is given by

RTINS A
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The channel capacity of a communications channel, denoted by C, is defined to be
the maximum data rate at which reliable (i.e., arbitrarily small probability of error)
communications is possible over the channel. The channel coding theorem for the
DMC [Gal 68] states that, for any DMC, there exists a code of rate r [bits/channel

use] such that reliable communication is possible provided that
r< '

where C’ is given by (2.8). The converse of the channel coding theorem states that
for any DMC , there exists no code that provides reliable communications with rate
greater than C'. Hence, C = C’ and the channel capacity for a DMC is given by
(2.8).

The channel capacities of BSC (Cpsc) and BSEEC (Cgsgrc) (figs. 2.9-2.10) can

easily be shown to be the following [Gal 68].

Cgsc =1+ (1 — p)log,(1 — p) + plog, p, (2.10)

E4 - Pz

2p. 2p.
Ceseec = p.log, (1 fp ) + p. log, (1 d ) (2.11)

where p. = 1 — p, — p. Let us consider a DMC with binary input and 4-ary output
as shown in Fig.2.13. It will be shown in Chapter 4 that this is the resulting channel
when 4-level Viterbi ratio thresholding is employed. The channel capacity for this

channel denoted by Cy can be computed to be the following using (2.8) and (2.9)
[Che 88a).

2pc 2ch
Cy = p.lo ( > + peclo (—-——-)
* 82\ petpe) TP 08\ G

2Pes 2pe
+ Pez log (""—_‘) + De lo ( ) .
2\ Dz + Pes 82\ 3. + e

When side-information is available, the channel capacity can be written as [Mce 84]

(2.12)

C=r%§xI(X;Y,S) (2.13)
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Figure 2.13: Binary input 4-ary output DMC.
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where the random variable S denotes side-information. The mutual information
I(X;Y,S)is given by I(X; Y, §) = Es{I(X;Y|S)} where Es denotes the expectation

over the random variable S,

IXYl) = 3 Cplule shax(e) bg Pl oy

and s is a particular outcome of the random variable S. When perfect side-information
is available, the channel of an AFHSS-MA channel, with the receiver making hard
decisions can be modeled as a BSC whose transition probability is a function of
S € {H,H} where H denotes the event that the hop is hit and H denotes the com-
plement of H. Hence using (2.11) and (2.12) the channel capacity Cpsy, can be

written as [Mce 84]
Cpsr = I(X;Y|H)Pue + I(X; Y[H)(1 = Prir) (2.15)
where I(X;Y|H) is given by (2.10), p = -15% and

k=1 [ K -1 ;
P= > P(K') pi’ (1 —pp)f-1-F

K'=1 K’

where P(K’) is the probability of error given that the hop is by K’ interfering users.
The mutual information when the hop is not hit I(X;Y|H), is given by (2.10) with
p = P(0). Similarly, when side-information as to the number of interfering users

hitting the hop is available, the channel capacity, Cyyps can be written as follows

K i ‘[ -1 ’
Cvum = 3 I(X;Y|HY) PR (1—pu)==% (2.16)
K=o K’

where H*" denotes the event that the hop is hit by K’ interfering users and I(X;Y|H™")

is given by (2.10) with p = P(K").
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2.5.3 Throughput

A network is a collection of users operating over a common channel. During the
normal operation of a network, there exists a large number of potential users of which
only a small subset will try to communicate at a given time. The information to be
transmitted by a user is grouped into packets before transmission and the transmis-
sion is successful only if the packet is received error free. A network is referred to as
a slotted network if the transmission of the packets between users are synchronized
and unslotted if the transmission of the packets are not synchronized. Achieving
this synchronocity of packets is generally much easier than achieving synchroniza-
tion at the hop level. We assume that the transmission of packets are synchronized
throughout the thesis.

A useful measure of performance of a network is the throughput W defined as
W=(1-F)-K (2.17)

where the factor P, is the probability of incorrectly transmitting a packet across the
network where a packet is simply defined to be a fixed number of data bits considered
to be a unit of information to be sent over the network. The throughput measures
the average number of packets successfully transmitted over the network. In order
to make fair comparisons we need to normalize the throughput over the bandwidth

and time needed to transmit the packet. We define the normalized throughput w as

follows [Pur 86]

(2.18)

where r [bits/channel use] is the rate of the code used if any.

When a code that achieves channel capacity is employed, the normalized through-
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put can be written as

2.6 Review of Problems

In this section we will look at the problems that will be considered in the following
chapters. In Chapter 3, our main goal is to compute the average probability that
|Ui| is greater than |U_;| for the first user given that a ‘+1’ was transmitted in a
given hop and the hop is hit by a given number of users. That is, we would like
to compute the average error probability where the averaging is over the delays, the
data bits, the initial phases of the interfering users.

In Chapter 4 we consider the use of Viterbi ratio thresholding [Vit 82] [Vit 85] as a
means of quantizing the output of the detector to more than 2 levels provided by hard
decisions. In this case, the computation of the channel statistics involves evaluation
of the probabilities of the form Pr {|U;| > 0|U_;|} for some # > 1. This can easily
be done using the same techniques used in Chapter 3. The analysis in Chapter 3 and
Chapter 4 will be carried out using the techniqus of spherically symmetric random
variables.

In Chapter 5 we consider slow AFHSS-MA networks. Here the main concern is
the computation of the probability that a certain number of symbol hits will occur
given that a hop is hit. This is important because for an asynchronous, slow FHSS-
MA network, when a hop is hit by a small number of interfering users, there is high
probability that not all the symbols in the hop will be hit since the hit may be a
partial hit. Also it is easy to show that for practical systems when a hop is hit, with

high probability it will be hit by a small number of users, usually less than three.



CHAPTER III

PROBABILITY OF ERROR IN AN
AFHSS-MA NETWORK

In this chapter, we will derive an expression for the probability of error for an
AFHSS-MA network when one binary symbol is transmitted per hop using BFSK
modulation with noncoherent detection and when Markov hopping patterns are em-
ployed. This expression will yield the exact probability of error when orthogonal
BFSK is employed and an approximation when nonorthogonal BFSK is employed.
Most of the previous work on AFHSS-MA employing BFSK assume error probability
of 2 [Pur 87a] (referred to as the 3-approzimation) whenever a hop is hit by multiple-
access interference. Our results indicate that the -approximation is an excessively
pessimistic assumption and using this assumption in analyzing the performance of
AFHSS-MA networks transmitting one symbol per hop has yielded misleading re-
sults.

Before we can derive an expression for the probability of error, we need to intro-
duce the concept of spherically symmetric random vectors and present some known
results. Most of the results on spherically symmetric random vectors used in our

analysis are due to Lord [Lor 54] and Bird [Bir 85].
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3.1 Spherically Symmetric Random Vectors

In this section, we summarize some of the basic results on spherically symmetric
random vectors obtained in [Lor 54] [Bir 85]. For a rigorous derivation of the results,
the reader is referred to these references.

Let X be a d-dimensional absolutely continuous random vector with probability
density function (pdf) p(x) where x denotes a realization of X. Then the character-

istic function of X denoted by ®(s) is defined as

®(s) = /exp(ix - s)p(x)dx (3.1

where the integration is over the support set of X, s is a d-dimensional vector in
R¢ (the d-dimensional Eucledian space) and x - s denotes the inner product of the

vectors x and s. It is easily seen that ®(s) can also be written as follows.
®(s) = E{exp(iX -s)}.

Hence if X is a sum of n independent random vectors, i.e., X = %, X; where the
addition of vectors is componentwise, then the characteristic function of X can be
decomposed as follows

B(s) = By(s) -+ Bo(s) (3.2)

where ®;(s) is the characteristic function of X;. This process can be reversed to
find the pdf of X when the characteristic function is known, by using the following

inversion formula
p(x) = (27)~° / exp(—ix - s)®(s)ds (3.3)
where the integration is over R¢.

A random vector X is said to spherically symmetric if p(x) is a function of

the magnitude of the random vector R = |X| only, i.e., p(x) = f(r) where r is a
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realization of R. From now on, we assume X to be spherically symmetric. The

infinitesimal volume dx of (3.1) is given by
dx = r*1drd%,

where Z; is the surface of the d-dimensional unit sphere. Also if we let s be the

magnitude of the vector s, then
X s = rscos(d)
where 6 is the angle between x and s. Thus

®(s) = _[o rd'lf(r)dr/exp(irs cos(9))dEy (3.4)

where the inner integral is over £, and thus the value of the inner integral is inde-
pendent of the direction of s and is a function of r and s only. Hence we note that for
a spherically symmetric random vector, the characteristic function ®(s) is a function
of s only, i.e., ®(s) = ®(s). From now on the characteristic function ® will refer
to ®(s) with the scalar argument s. The inner integral of (3.4) can be evaluated
by converting to polar coordinates (r,61,---,04_1) where 6y,---,0,_5 € (0,7] and
04-1 € (0,27] and using the fact that &; = 27r%d/1’(%a’) where the Gamma function
['(-) is defined as [Abr 72]
[(z) = /Ooo t*~lemidt

and I'(n + 1) = n! for integer values of n. Thus,
B(s) = (27)3ds—d4H / Ty, (rs) f(r)dr (3.5)
0
where J,(-) denotes the Bessel function of the first kind defined as [Abr 72]

Ju(z) = 1 /ﬂcos(z sin(6) — v6)df — sin(vr) /oo e7sinh(t)-vt gy

™ Jo w 0
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Since ®(-) is a function of s only we may obtain the following formula for f(r) by

applying similar procedures to (3.3).
F(r) = (2r)~¥ep—3en /0 sty (rs)8(s)ds. (3.6)

If we define a probability function p(r) such that p(r)dr denotes the probability
Pr{r < |X| < r+dr} then p(r) is the pdf for |X| where f(r) is the pdf for X. We
note that

p(r) = f(r)r*'Zy

27r‘2ldrd"lf(r)
I'(3d)

2

since r#~15; is the surface area of a sphere with radius r in d-dimensions. By defining
A, as [Jah 45]

Aa(2) = Tla+1)(32)™*Vu(2)
it can be shown that

B(s) = /0 " p(r) Ay (rs)dr (3.7)

and

p(r) = 2-¥e1 {r(%s)}-l /0 " (rs)E 4 (rs)B(s)ds. (3.3)

Let us denote the cumulative distribution function (CDF) of R = |X| to be
Fr)= [ p(u)du.
(r)= [ plu)du

Then it can be shown that the following relations hold between the CDF and the

characteristic function of the random vector X.
B(s) = 23471 (%s) 74 [T b4, (rs) P(r)dr (3.9)
0
and

F(r) = 9-3d+1 {I’(%s)}“1 rzd /ws%d‘lJ%d(rs)Q(s)dr. (3.10)

0
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For the special cases of d = 2,3, equations (3.7) and (3.10) are simplified as follows.

When d = 2,

O(s) = /OooJo(r.s)p(r)dr
F(r) = r /OcoJl(rs)(P(s)ds. (3.11)

When d = 3

o(s) = /0°° (Sin(”)) p(r)dr

F(ry = (%r:) /Ooo (ﬂrl?(? - cos(rs)) D(s)ds. (3.12)

The relations (3.11) and (3.12) between the characteristic function and the distribu-
tion functions of a spherically symmetric random vector are useful when the charac-
teristic function of the random vector is relatively easy to compute (usually applying
(3.2)) but the distribution function is not. This is exactly the case in the study of
the probability of error in AFHSS-MA networks. Next we will present some known
results on the characteristic function of a spherically symmetric random vector that
simplifies its evaluation in many cases.

In the following argument, we will show that given a d-dimensional spherically
symmetric random vector X, the characteristic function ®(s) of X projected onto a
subspace of dimension ¢ < d passing through the origin is identical to that of the
original vector X. Clearly the projection results in another spherically symmetric

random vector with pdf

pq(xfl’...,xlq) frocey /pd(xl’-..’zd)dxlll...d:rg_q

in Cartesian coordinates (zy,---,z,) where (23, ++,z;) as the coordinates in the

space of projection and z} € {z;,--+,z4}. The characteristic function of the pro-
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jected vector is written as

— / 1 gi(s1zy et sqzl) 3.7 ;
@q(sl’...’sq) = /pq(ml,...,mq)e 1 qqdzl...dxq

- (512 ., 4842 ’ ’
= /pd(ml’...,zd)e(ll qq)dzl...dxd,

that is

Do(s1,-+,80) = a1, +,84,0,---,0) (3.13)

where @, is the characteristic function of the original d-dimensional random vector.
Now, since the projected random vector is also spherically symmetric, both sides of

(3.13) are functions of only s = (/s +--- + s? and hence
®,(s) = 0s(s) (3.14)

Now consider a random vector Y which is a sum of m statistically independent
and spherically symmetric random vectors, W;. Then by (3.2) we know that the

characteristic function of Y is given as
Oy(s) = L, @w.(s) (3.15)

where Oy, (s) is the characteristic function of W;. Hence the characteristic function
of Y is a function of s only and this implies that the sum of independent and
spherically symmetric random vectors is also a spherically symmetric random vector.

The expression that is directly needed in computing the probability of error of an
AFHSS-MA network is that of the magnitude of one 2-dimensional spherically sym-
metric random vector being greater than that of another, independent, 2-dimensional
spherically symmetric random vector. Let U; and U_; be two statistically indepen-
dent, 2-dimensional spherically symmetric random vectors. Denote the characteristic

functions of U; and U_; and their magnitudes by ®(s), ®_;(s) and r,, r_; respec-
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tively. Then the probability of r_; being greater than r; may be written as follows
Pr(r; <r_y) =L Pr(ry < roylro1)p(r-y)dr-;.
From (3.11) we know that
Pr(ry <r_y|roy) = r_1/0 Ji(r-18)®1(s)ds.
Combining these two expressions we have
o (=}
P;(rl <r.p)= ‘[) Ql(s)A ro1p(r-1)Ji(r_ys)dr_.ds. (3.16)

By differentiating the expression for ®(s) in (3.11) we find that

d®_,(s)

/0 T—lp(r—l)Jl(T_pS)dT‘_l = - R

Hence we have an expression for Pr(r; < r_;) in terms of the characteristic functions
of U]_ and U_l.
Pr(ry <) = —-/m @1(3)%‘1;(—3-)%3. (3.17)
0

This concludes the summary of important results on spherically symmetric random

vectors.

3.2 Derivation of an Expression for the Probability of Error

In this section, we will use the background developed in Chapter 2 and the previ-
ous section on spherically symmetric random vectors to derive an expression for the
probability of error in an AFHSS-MA network when one binary symbol is transmitted
per »~p using BFSK signalling and Markov hopping patterns.

The following is some notation that will be used in this chapter. Let N be the
number of different power levels as seen by the first receiver, which we call power

level groups. The number of users in each power level group is denoted by K;,
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i=1,---,N. Let K = (%, ---,kn) be the interference pattern vector with each
component k; representing the number of interfering users from each power level
group that hit the hop under consideration and let o = (ay,- -+, agr41) where ay
denotes the amplitude of the signal due to the k-th user.. Obviously Y™V, K; = K -1
and TN, %; = K’ where K is the number of active users in the network and K is
the number of interfering users sharing the slot.. We also define the vectors p and
b tobe p = (p1,--*,pxr4+1), b= (b1, -+, bgr41) where pr and by are the normalized
delay and the data bits of the k-th user as defined in Chapter 2.

First we will derive an expression for the probability of error conditioned on the
delays (p), the data bits (b) and the power levels (K) given that a hop is hit by K’
interfering users using the fact that the outputs of the integrators of the matched
filters are spherically symmetric. We will then average this over the appropriate
random variables to obtain the average probability of error.

We consider the probability of error for the first user transmitting on a slot with
center frequency f1. A total of K'+1 users are assumed to be sharing the slot. Under
the model described in Chapter 2, the outputs of the integrators of the matched filters
given that a ‘+1’ was transmitted were shown to be given by (2.7) which is repeated

here,

E K'+1
Uy = 2+ ,N e 4 /Vb Z —i{27 frpTi+8k (1P bk)} upkAl(l,Pk,bk)
0 0 =2
Eb K'+1
U, = z.1+p —-e“"’ + No Z e~ 2 f1rmi+0k(~1,px bx)} ka/( 1, px, bx).

We assume that the initial phases of the users are i.i.d. with a uniform distribution
on (—m,r]. Then conditioned on p, b and K, the terms 27 iz, + 0x((, pi, bx) and
AL, pe, b)), 1 € {+1,—1}, are constants and the phase terms e~ {27 /1r7e+8x(Lpe be)} givk

may be replaced by e*+() where {¢}(l)mod(r)} are i.i.d. and uniformly distributed
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in (-, 7] for I € {+1,—1} since we need only consider the phase terms mod(r).

Hence the expressions for U; and U, can be simplified as follows

Eb . K'+1 ,
Ui = n+yf57e + 3 WAL py, bi)
No k=2
Eb ‘o K1 .y [
Ut o= ozl /e + 3 e DA (=1, pg, by). (3.18)
NO k=2
where ¢ = 0(p) + ¢1 where 0(p) denotes the phase of p. Now it is clear that U; and
U_, are sums of independent and spherically symmetric complex random variables
and hence they themselves are spherically symmetric conditioned on p, b and K.
Since the noncoherent detector chooses the largest of |U;| and |[U_,| as its estimate,

the probability of error conditioned on p, b, K can be written as follows

Pep;b,K) = Pr{|U.|>|Uh] | b =+1,p,b,K}Pr{b = +1}

+ Pr{IU1|>|U"1|l b0=-17p»b,K}Pr{bl=—"—-l}.

If we assume that the data bits of the first user are equi-probable, then P.(p,b, K)

can be simplified to
Pc(p’va) = Pr{lU—ll > IUII l bl = +17p,baK} :

We note from (3.18) and (2.7) that |U;| and |U_,| are not statistically independent
since the noise terms z;, and z_; are correlated. But Theorem 3.1 given below shows
that |U;| and |U_;| are statistically independent given p,b,K, when orthogonal
BFSK is employed, i.e., when |p| = 0. Before we can prove Theorem 3.1, we first

need to establish the following Lemma.

Lemma III.1 Let X and Y be two independent and identically distributed random
variables with uniform distribution on (—m,x]. Then V = (X + Y)mod(x) and

W = (X + c¢)mod(x) are independent where ¢ is a constant.
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proof

It is easy to show that V' has a uniform distribution on (—, 7). Also,
Pr{V <o|W = w} = Pr{(¢’ + Y)mod(r) < v}

where ¢ = w — ¢ is a constant. Since (¢’ + Y)mod(r) has a uniform distribution on
(==, ],

Pr{V<v|[W=w}=Pr{V <v}. O
Using this Lemma we may prove the following Theorem.

Theorem III.1 The decision variables |Uy| and |U-;| are statistically independent

given p,b, K when |p| = 0.

proof
When |p| = 0, U; and U_4, given p,b,K can be written as follows.

Eb ; K'+1 -1 '
Uy = =+ -N—e‘~°1+ > e WAL, py, bi)
0 k=2

K'+1 ,
Uy, = 24+ Z e*(wk(1)+ck)Ak(_1’pk,bk)
k=2

where ¢ is a constant. Hence, we can write

Y £ S
Use = z;+ ~ + > el AL(1, pi, be)
0

k=2
K'+1 ,
U, = 2z, + Z ez(‘t’k(l)‘*'ck)Ak(_l,pk’bk)
k=2

where 2] = ze™*!. Now using Lemma 3.1, we see that (¢,(1) — ¢;)mod(r) and

(x(1) + cx)mod(r) are independent for k = 1,---, K’ + 1. Hence, Uye~*! and U_,

are independent. Also, since |U;| = |Uje™*1|, |U;| and |U,| are independent. O
To make the analysis tractable for the case when |p| > 0, we make the assump-

tion that |U;] and |U_,| are independent for these cases and use (3.17). Hence the
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probability of error is written as follows (an approximation when |p| > 0.)

d‘b-l(S) ds

P.(p,bK) = - [ @:(s) =5

Let @;(s) and ®_;(s) to be

Bi(s) = IFFJo (AL(L, s, bi)s)

=yl
L
=

i

T Jo (A (=1, pr, bi)s)

which are the characteristic functions of the contributions of the multiple-access
interferences on the decision variables Uy, U.;. Let J,(-) denotes the Bessel function

of the first kind of integer order n defined by [Abr 72]
1/~ .
Jo(2z) = -7-7-/(; cos(zsin(§) — nb)d6.

Then ®,(s) and ®_,(s) can easily shown to be the following using the fact that the
characteristic function of the projection of a spherically symmetric random vector is

identical to that of the original vector and (3.2).

2 E —
8.1(s) = ety (lpl 2 ) Bou(s). (3.19)
0
Hence i‘g;—;iﬂ can be computed to be
d(I’_l(s) _ _22 S Eb Eb Eb -
2 e (30 (bl o) 101 2o (11 225) ) B




52

then P.(p,b,K) can be written as

P.(p,b,K) = /0 F e 5 o (,/%s> B, _1(s)ds. (3.20)

Straightforward computation yields

K'+1

dg_ 7 !
—(Z;_(S—)' = Z A;c(_l')plh bk)Jl(Ak(—17pka bk)S)Hi¢kJ0(Ai(_11pi,bi)s)'
k=2

Hence @, _;(s) is given by

Boslo) =[5 (I 5e) + 1ol e (1 fj—)]

x  TTEE [Jo (AL(L, pry b)) Jo (A4 (=1, Pk, be)s)]

E K'+1 )
+ JO (lpl 'JTZS) Z A;c(-lapkv bk)Jl (A;c(—ly Pk bk)‘s) ‘]0 (Ak(]-’pk’ bk)s)
k=2
% Tk [Jo (AL(1, pi, bi)s) Jo (AN(=1,ps, bi)s)] - (3.21)

This together with (3.20) gives the desired expression for the probability of error

conditioned on p, b and K.

3.2.1 Averaging over the Random Variables

In this section, we consider the case when the data bits b;’s and the delays pi’s
are random variables. In this case, we need to average (3.20) over p and b and

evaluate P,(K) = Ep p{P.(p, b, K)} which can be written as

Ep,b{Pe(p) b, K)} = Ep,b {Aoo 6_&23]0 (\/%S) 61,_1(3)} ds
= ‘[]w e—!;.]g (\/;EV"ZS> Ep,b{ali_l(S)}dS. (322)

We assume t.~t b;’s are i.i.d. and are equally likely to be ‘+1’ or ‘~1". We also
assume that pg's are i.i.d. and uniformly distributed on (—1,+1] and that p;’s and

bi’s are also independent. These naturally arising assumptions are usually made in

the analysis of AFHSS-MA networks [Ger 88].
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Now, under these assumptions we can write Epp, {®,,-1(s)} as follows using the
fact that the éxpectation of products of independent random variables is the product

of the expectations of the individual random variables.

o ) o (o)

HK_—,.;-I [ p,b {JO (A;c(lvpa b)S)JO(AL("]-’pv b)S)}]

E
+ Jo (Ipl —N’i)

Ep.b {51,—1 (s)}

X

K'+1
X 1; E b {A ( -1 s Py )Jl (A;c(—]-?p’ b)S) JO (A;c(l’p7 b)S)}
X Tz [Epp {Jo (Ai(1,p, 0)s) Jo (Ai(=1,p,0)s)}] (3.23)

where we dropped the dependence of pi’s and b;’s on k in the notation. Now if we

group the product and the summation into groups of equal power levels, we have

Epp{®1-1(s)} = [J’o (Ipl ':E—S>+l/’| o (Ipl EZ )]

x T, (B, {Jo( 411, p,b>s>Jo(A'( 1,p,8)s)}"

v o 1ol 2s)
N
X Z [—E,'Ep'b {Ag(—l,p, b)Jl(A:(_lv p, b)S)JO(A:(]-’pv b)S)}

X (Epp {Jo(AL(L, p,b)s)Jo(AL(~1,p,b)s) )"

x I ( p,b{JO(A;(l,p,b)s)Jo(A;(—l,p,b)s)})"’] (3.24)

where the subscript of A’ now denotes the power level group.

Equation (3.24) with equation (3.22) yields the desired general expression for the
average probability of error given that a hop is hit by an interference vector K.

We observe that for each point s we choose in our numerical integration of {3.22),

we need to numerically compute the expectations

Eps {Ai(=1,p,0)1(Ai(~1,p, b)s) Jo(Ai(1. p, b)s)} - (3.25)
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and
Epp {Jo(Ai(1,p,0)s)Jo( Ai(—1,p, b)s)} (3.26)
for each power level ¢ for a given signal-to-noise ratio. We will see in the numerical
results section that the evaluation of these two expressions dominate the compu-
tational complexity needed to evaluate the probability of error. But we note that
the expectations (3.25) and (3.26) do not depend on K’ which implies that once we
have computed these expectations, the probability of error for different K's may be
evaluated very quickly. This simplicity is a result of the fact that the network is
assumed to employ Markov hopping patterns [Ger 88].
It is worthwhile at this point to see how this expression would be simplified if all
the users in the network had the same power level as seen by the first receiver, as
in a satellite network. If we set o) = o for all k =1,2,--- K, then Ep'b{?b-l'_l(s)}

simplifies to
[gJo (lpl %s)+|pl 2, (Ipl %)]
X [Eps {Jo(A(L,p,5)s)Jo(A(~1,p,)s)}}¥'

il

Ep.b{El,—l(s)}

x K- Epy {A(=1,p, )11 (A(=1,p,b)s) Jo(A(1, p, b)s)}

X By {Jo(A(1,p, b)) Jo(A(=1,p,b)s) 1~ (3.27)
where we further dropped the dependence of A on the power level. If we simplify
the problem by assuming that orthogonal BFSK is employed, i.e., |p| = 0, then
Epn{®1,-1(s)} further simplifies to

Epn{Tia(9)} = 5 [Eps {Jo(A/(1,p,0)3)o(4'(=1,p, D))}
+ K Epp {A'(=1,p,0)i(A'(=1,p, b)s)Jo(A'(L, p, b)s)}

X [Epp {Jo(A'(1,p,b)s)Jo( A'(=1,p,b)s)}] (3.28)
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and (3.22) gives the exact probability of error in this case. We may simply replace
the A'({, p, b)’é in the above equation with A(l, p,b) to account for the case when all
users have the same power level and orthogonal BFSK is used. In these cases we may
compute P.(K) = P,(K"'), the probability of error for a hop given that the hop is hit
by K’ users with the same power as the first user using (3.22) and thus compute the

average probability of error P, for the first user using

k- K=-1) o
Po= 3 o' (1 — ) K=KV P, (K"). (3.29)
K=o\ g

For the general case, the average probability of error for the first user may be written

as [Ger 88]
P = Ex{P(K)}

K Kn K; _- -

= P(K) TL ¢ |pi(—pa) s
leﬂ TC-N=0 ki

_ o2 [B

= /0 e J0< Nos)
K Ky K; - -

X
_ptl:l
o
——
S
=
1
-
o
g
H—I
=
n
e~
p‘ -
PN
—t
|
g3
T
x>

ds.(3.30)

3.2.2 Nonorthogonal BFSK Signalling

Here we discuss the reason for considering non-orthogonal FSK where |p| > 0.
As described below, the basic idea behind using non-orthogonal FSK in AFHSS-
MA networks is to provide a trade-off between the number of errors caused by the
background noise and the number of errors caused by multiple-access hits.

If we assume that the error probability is £ whenever a hop is hit, the fact that the
system performance will be dominated by multiple-access interference rather than

background noise for sufficiently large signal-to-noise ratios leads to the following
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idea. If we use non-orthogonal FSK instead of orthogonal FSK (|p| = 0), we will
be able to increase the number of slots available to the network for a given fixed
bandwidth since the spacing between the BFSK tones decrease and hence the band-
width required for a frequency slot decreases. This in effect reduces p;. This is
done at the cost of higher quiescent error probability since increasing |p| increases
the error probability when the hop is not hit [Pro 83]. These two competing factors
will result in an optimum |p| that minimizes the average error probability and since
the multiple-access hits are far more detrimental than the quiescent errors with the
3-approximation, the optimal |p| will be greater than zero. In general this optimum
|o| will depend on the number of users in the network and the signal-to-noise ratio.

Now if we define u to be
- _4f
Afortho

where Af is the frequency separation employed and A f,4h, = %}: is the minimum

7

frequency separation needed for the tones to be orthogonal. Then the resulting

number of slots available is simply given by

ortho
q= [q : J = Gortho
7

where gorih, 1s the number of slots available when A f = A fortho and |z| denotes the

largest integer not exceeding z. Thus with Markov hopping patterns, ps decreases

2

Qortho

from to % as we decrease the frequency separation from A f,..4, to Af.

Though thisis an interesting idea, and it can be shown that with the 2-approximation,
the gain achieved by using |p| > 0 can be as high as two orders of magnitude when
coding is employed, it will be shown in the numerical results section that if we use

the results developed in this chapter for the probability of error, we see that the gain

achieved by using non-orthogonal signalling is practically negligible.
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3.2.3 Independent Hopping Patterns

Up to now, we have considered Markov hopping patterns to simplify the analysis
and obtain numerically easy to compute results and also since for practical values
of ¢, it is expected to provide a close approximation to the performance of a system
using independent hopping patterns. In this subsection we will briefly discuss the
changes that should be made in order to consider independent hopping patterns and
derive an upper bound and a lower bound on the average probability of error. Using
these bounds, it will be shown in the numerical results section that for practical
values of ¢, the probability of error when Markov patterns are assumed is a very
good approximation to the probability of error when independent hopping patterns

are assumed. First let us define the following parameters
¢ I; = The number of interfering users causing partial hits.
¢ K3 = The number of interfering users causing full hits to tone ‘+1’.
¢ [{3 = The number of interfering users causing full hits to tone ‘~1".
¢ [, = The number of interfering users causing partial hits to both tones

and K' = Ky + Ky + K3 + K. Also let P, k=1,---,K'"+1 beiid. and uniform

in (—1,0), then the outputs of the matched filters U; and U?, can be written as

. Eb . 38! i’ (1)
U = Foe"“ﬁ— > e AL (1, iy by)

kl =0

Ko
+ Y 4l (1,0,1)

ka=0

Ko o
+ Z ewk*(l) [A;c,(lap;:u b(l)h) + A;n(]" (1 + p;“)’bz‘)]
ke=0

+ 2z
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Uil = IPI N 1% + Z ewkl(—l)A (2’pk17bkl)
0 k1=0
Ks
£ e (21,0,-1)
k3=0
Ke (-1) (1) (2)
-+ Z €'k [A;u(—]-:p;cubka‘)'i-A;u( (1+pk4) b )]
k4=0
+ z4

where as before A} (I, pg,b:) = (%’;) %Ak(l,pk,bk) and b§j’, i € {+1,—1} are inde-
pendent and equally likely to be ‘—~1’ or ‘+1’. The phase terms are defined similarly

as before. Now, if we define ®,(s) and ®_,(s) as

61(3) = Hg—'O']O(Akl(l Pknbkx)s)nkg_o ( ;:2(170514)3)
X TECodo [(Ah, (1, Phyr 53)s) + Ak (1, (1 + 5L, ), B2)5))
6—1(3) = H£{11=0J0(A;c;(17 Pkyy bkl)s)Hﬁ:,:OJO(A;CQ ("1’ 0, _1)3)

X TIECodo (AL, (=1, Pk, B)s) + Al (=1,(1 + ), ); 82)s)]

then the characteristic functions of U; and U_; are again given by

From this point on we can go through similar steps as before and use the results
for averaging over K;’s from [Ger 88| and find the average probability of error for
the first user. Instead of doing this let us consider an upper bound and a lower
bound on the probability of error when independent hopping pattern: are assumed.
If we can show that the upper bound and the lower bound are tight and also that
the probability of error when Markov hopping patterns are assumed falls in between

these bounds then we will have in effect shown that the probability of error when
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Then we can show that the average probability of error when all the users have the

same power level may be written as

kafK-1) Kk
PK) = 3 ph (1 —ps)
K=o\ K

X /0°° [F(s)El(s)K'-i-Jo (Ipl %s) I('EQ(S)E{\”-I} ds.

Straightforward analysis shows that

lim P(K)= /Ooo e~ PA-E1(s)) [F(s) +2AJo (]pl %s) Eg(s)] ds.
0

K g—co, L=
Unfortunately it is not practical to numerically evaluate this expression since the
integrand does not converge to zero fast enough. But numerical computations of the
throughput show that the probability of error as a functions of A remains essentially
unchanged for ¢ > 100. It is also possible to derive an expression for the case
when the signal-to-noise ratio tends to infinity (i.e., negligible background noise),
but the resulting integral converges quite slowly and thus is not practical to compute

numerically.

3.3 Simulation

In order to verify that our results are correct, we carry out Monte Carlo simula-
tions to estimate the error probability of a AFHSS-MA system when a hop is hit by
a given number of interfering users. We consider the case when orthogonal BFSK is
employed and all the users have the same power at the receiver.

The simulation can be done most easily by using (2.7) with p = 0. For each sim-
ulation point, we generate the random variables {¢.}, {px}, {6} and the Gaussian
noise variables z; and z_; and simply count the number of events that satisfies the

condition that |{U_;| > |U3|. It turns out that this method of simulation (which is
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essentially the Monte Carlo method of integration [Kuo 72}) is very efficient and we
can estimate Pr(|U1| < [U~4]) for K" =1,--+,20 in less than six hours on an Appllo
DN4000 workstation counting 20,000 errors for each data point. Of course, K’ < 5
would be sufficient in most cases since the probability of error is very close to % when

K’ > 5 in practical situations.

3.4 Numerical Results

In this section we will provide numerical results for the probability of error for an
AFHSS-MA network using the expressions developed in previous sections. We will
also provide the results for the channel capacity and the associated throughput of the
network. We will compare our results to the %-approximation and the approximation

made in [Ger 88]. Basically the assumption made in [Ger 88] is that in equation (2.5),
Ak(l,pk, —-1) = Ak(—l,pk, +l) = 0.

That is, an interfering tone corresponding to the data bit of ‘“+1’ does not affect the
output of the matched filter corresponding to the data bit of ‘—1’. We will refer to
this approximation as the ‘Geraniotis’ approximation’. The case when there are two
different power levels as seen by the receiver will also be considered as well as for the
case when the signalling is nonorthogonal.

First, let us consider orthogonal BFSK with Af = 5,_},—", that is, the case when
p = 0 with the minimum separation between the tones. We use (3.20) to compute
the error probability of a given hop as a function of the normalized delay p when
*he hop is hit by one interfering user of the same power level with the data bit of
the interfering user as a parameter. For signal-to-noise ratio equal to 11dB, this is
shown in Fig. 3.1 for p > 0 along with simulation results where 10,000 errors were

collected for each data point. Obviously the error probability is symmetric about
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p = 0 since it is only a function of |p|. We see that our results coincide very closely
with the simulation results. Figs. 3.2-3.6 are the plots for the error probability
computed using (3.22) and Geraniotis’ approximation compared to the simulation
results where 20,000 errors were collected for each data point for X’ = 1,---,5 and
-f—,g = 8, 11, 13, 16 and 19dB. Orthogonal BFSK with Af = 5%‘- is assumed and
the power levels of all the users are assumed to be the same. We observe that
Geraniotis’ approximation gives optimistic results, especially for small number of
users which usually dominate the average error probability. These probabilities for

% = 11dB are tabulated in Table 3.1.
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Figure 3.1: Probabuiity of error as a function of the normalized delay with one inter-
fering tone with equal power %=1ldB.
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Figure 3.4: Probability of error versus the number of interfering tones for %=13dB.
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Figure 3.5: Probability of error versus the number of intertering tones for %=16dB.
All users have same power.
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Figure 3.6: Probability of error versus the number of interfering tones for —%:19dB.
All users have same power.
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K' | Geraniotis’ | Equation (3.22) | Simulation
1 6.88e-2 8.5%e-2 8.62e-2
2 0.15 0.17 0.17
3 0.21 0.24 0.24
4 0.26 0.28 0.28
) 0.29 0.31 0.31

Table 3.1: Comparison of Geraniotis’ approximation and (3.22). %zlldB.

The difference between Geraniotis’ results and those computed using (3.20) and
the simulation results may seem small, but when coding is employed, small differences
in the channel statistic is usually amplified by orders of magnitude. Hence it is very
important that we compute the channel statistics accurately. We also notice that
the exact error probabilities are much smaller than 2. Since we have established that
the expressions developed in this chapter gives correct results, from here on, we will
only consider our results and that of Geraniotis’ and compare them to the results
under the -approximation.

Now let us use (3.29) to look at the average probability of error for a hop given
that there are K active users in the network and orthogonal BFSK is employed.
Let the number of available slots ¢ be 100. In Figs. 3.7-3.11 we show the average
error probability of a hop under Geraniotis’ and the %-approximations and the exact
values developed in this chapter for different signal-to-noise ratios.  We note that
there could be up to an order of magnitude difference between the exact results and
the %-approximation. With error correction coding, the difference would be further

amplified.
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75

This fact that the actual average probability of error is much less than that
computed using the 2-approximation leads to very interesting results. For example,
we will see that using perfect side-information to erase the hops that were hit results
in very poor performance. Much worse than simple hard decisions. Fig. 3.12 and
3.13 shows the channel capacity and the associated throughput computed using the
results from Section 2.5 for a system using perfect side-information to erase the
symbols of the hop that were hit and a system that simply makes hard decision for
%=8, 19dB. We note that contrary to previous results, the system that simply
makes hard deciéions without side-information actually does much better than the
system using perfect side-information to erase the symbols corresponding to the hops
that were hit. This can be explained by recalling that the probability of error when
a hop is hit by a small number of interfering users (which are usually the most
probable cases) is much lower than }. Hence it turns out that if we erase all the
symbols corresponding to the hops that were hit and make hard decision on the
symbols that were not hit, we will in fact be throwing away many reliable symbols.

Next, we consider the case where there are two different power level groups P
and P, as seen by the first receiver. We take P, to have the same power as the first
user, i.e., of!) = a; where o denotes the amplitude of the tone corresponding to
the :-th power level group. We consider two cases where a(? = 0.5, al® = 1.5, ie.,
the other group either has 1.76dB more or 3dB less power than the reference user.
We tabulate the results obtained using (3.30) for K = 11 and K = 21 and various
combinations of K1, K, in Table 3.2 for %‘o’- =11dB. Also included in the table are the
3-approximation and the results when equal power among the users is assumed. We
note that the errors resulting from these approximations are quite large and again

they will further be amplified with coding.
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In Fig. 3.13, the approximation to the average error probability is shown for
g =1and 0.9 (¢ was defined in Section 3.2.2.) The trend was that as u decreases
below 0.9, the average error probability tends to increase, above that of y = 1. F ig.
3.15 shows similar curves when using the %-approximation. For the bottom curve of
Fig. 3.15, u was optimized for each K for minimum average error probability. This
shows again that the conclusions that we obtain from using the %—approximation
could be quite different from what we obtain by using our approximation to the
error probability. In this case the difference arises from the fact that the decrease in
the hit probability by using 4 < 1 does not compensate for the increase in the error
probability.

In Fig. 3.16-3.17, the bounds for the error probability when independent hopping
patterns are assumed derived in Section 3.2.3 are shown. These results verify that
the average probability of error of a system employing Markov hopping patterns
is a very good approximation to that of a system employing independent hopping
patterns for sufficiently large number of slots. The signal-to-noise ratio for these

figures is taken to be 11dB.
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CHAPTER IV

PERFORMANCE OF VITERBI RATIO
THRESHOLDING IN AFHSS-MA NETWORKS

In this chapter we extend the results of Chapter 3 to analyze the performance of
Viterbi Ratio Thresholding (VRT) [Vit 85] [Vit 82] in an AFHSS-MA network de-
scribed in Chapter 2. Using the Viterbi ratio thresholding technique for AFHSS-MA
channels to single out unreliable symbols (hops) was first considered in [Kel 88] where
Monte-Carlo simulations were performed to estimate the transition probabilities of
the resulting DMC when the number of interfering users is small (a precise definition
of the VRT scheme is given in the next section). This alternate method of generat-
ing information about the quality of the channel (as opposed to side-information) is
more interesting at this point since we have shown in Chapter 3 that using perfect
side-information to erase all the symbols that were hit actually degrades performance
over the simple hard decisions scheme.

Here, we offer analytical expressions for the transition probabilities of the result-
ing channels when VRT is employed by using basically the same techniques applied
in Chapter 3 for thé probability of error. Hence these expressions will have all the
desirable characteristics of the expressions developed for the probability of error.

Using these expressions, we compute the performance of three and four level

84
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Viterbi ratio thresholding and compare them to various other schemes of interest.
The measures of performance used to compare different schemes are the channel ca-
pacity, the packet error probability (a packet is simply a unit of data transmitted
over the network at a time) and the normalized throughput (when convolutional cod-
ing is employed.) Numerical results show that both two and four level Viterbi ratio
thresholding gives significant increase in performance for the AFHSS-MA network

over simple hard decisions.

4.1 Viterbi Ratio Thresholding

VRT is essentially a quantization scheme that quantizes the output of the channel
into an alphabet size greater than that of the channel input based on the observation
of the outputs of the matched filters. We consider two types of VRT, three level and
four level. For both cases the resulting channel can be accurately modeled as a DMC

with binary input.

4.1.1 Three Level VRT

In the three level VRT scheme, a thresholding rule is used to make an error and
erasure decision on each hop. In effect, some hops will be declared to be too corrupted
to be considered for detection and will be erased according to the thresholding rule.

Let |Unaz| denote the largest of {|U1],|U_,|} and let |Upin| denote the smaller of
the two. The rule is to erase the symbol if 1 < JI%:AI:I < @ and decide that the data
corresponding to |Unaz| was sent if Jl%:-.%:_ll > 6. Here 8 is a number greater than 1
that should be set to an appropriate value. The resulting channel is a BSEEC shown

in Fig.2.10.
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4.1.2 Four Level VRT

In the four level VRT scheme, the Viterbi ratio thresholding is used to develop
a quality bit @) for the demodulated bits. The rule is similar to the three level VRT
scheme described above except that when |Unaz|/|Unin| < 8 we decide |Upnoz| was
sent and attach a quality bit Q="‘v’ to indicate that it was an unreliable decision, and
when |Unaz|/|Umin| = 0 we attach Q=*r to indicate that it is a reliable decision. The
output of the channel is written as (z,Q) where z € {+1,—1} is the decision made
by the quantizer and Q € {u,r} denotes the estimated reliability of the decision.
The resulting channel is a binary input 4-ary output symmetric channel as shown in
Fig. 4.1.

The Viterbi ratio thresholding has been shown to be effective against various
types of intentional jammers [Vit 82] [Vit 85] [Che 88b]. It will be shown here that
it is also effective in discriminating hops that were severely corrupted by multiple-

access interference.

4'.2 Channel Statistics

In this section we will derive an analytical expression for the transition probabil-

ities of the resulting DMCs as a function of the threshold § when VRT is employed.

4.2.1 Three Level VRT

In this section we will derive Pgipbx(9), Pripbx(f) and Pxipb,x(0) for a ref-
erence user (the first user), that is, the correct, error, and erasure probability of the
channel given p,b,K as a function of § when three level VRT is employed. Since
Pxipb k() = 1= Poppb,x(9) — Ppipbk (9), we need only derive the correct and error

probabilities. These probabilities can be written as follows given that b, =‘+1’ was
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Figure 4.1: Binary input 4-ary output symmetric channel resulting from 4-level VRT.
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transmitted.

Pclp’b'K(e) = PI{IUII > 9|U-1”bl = ‘+1,’ P, baK} .

Pepbx(0) = Pr{|U.i|>8|Ui]|by = ‘+1,p,b,K}.

First, we derive Poip bk (6).

If we let

i

,_1 HU—I
then
) (s) = E{e } = &,(s8)
L1 (s) = B {1} = _y(s0)

where @1(s) and ®_,(s) are the characteristic function of U] and U’, and ®,(s) and
®_,(s) are the characteristic functions of U; and U_; given by (3.19). Now using

(3.17), we may express Pgipbx(f) in terms of ®;(s) and ®_,(s) as follows

Poppx(6) = Pr{lta]> U ]Ity

= - [TeL ™y,

_ i d@l(S)
T h 2-1(s0) =55~ ds

L_l_lv}

Simple calculation shows that

o () R () -2 (VR )

and thus (4.1) can be written as

o0 2 E —
Feipbx(9) =/0 e T+ 7, (lPl ‘N—ZSG) ®1,-1(s,0)ds (4.2)
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where
-3 T E £ By E \ d3
e ) ) ) ]
Also, since
dgl(s) K& 1 ' ’
i > AL, pr, bi) J1 (AL (L, piy be)s) e Jo( AL(1, i, b))
k=2 .

®;,_1(s,0) can be written as follows

= [E [E,  ([E
®y,1(s,0) = [%JD( —jv_zs) Nb‘Jl( Nz )}
x HkK-—:+1 [JO(A;( s Dks bk)s)JO(AZ(—l,pk, bk)sa)]
Eb K'41 ,
+ JO( NO ) Z Ak 1 pk’bk)Jl(Ak(l Pk,bk) )Jo(Ak(—l,pk,bk)se)
X Hi?‘-k [JO(A:(]',pn t)S)JO(A:(2, Dis ,)89)] .

This and (4.2) gives the probability of correct detection given p,b and K.
We will now average (4.2) over p and b to obtain the average probability of correct
detection given that the hop is hit by an interference pattern K and a threshold of

§ was employed denoted by P (6,K). It is easy to see from (4.2) that

Po(0, ) = [t 103 (1o o5t BBy 2(6)}ds.

Under the same assumptions made in Chapter 3 on p, b, we have

Eon(®a() = [3 (ﬁ,_ )+\/1—€ng ([f,‘b )] mics 0

Eb K'+1 -
+ J (‘/N ) > Ea(k, s0)Lis Ey (5, s6)
0

k=2
where p and b have the generic distribution of p;’s and the b’s and E\(k, s0),

E5(k, s8) are given by

El(kvse) = Ep,b{JD(AL(]-,P-)b)S)JO(A;c(—lvpvb)sa)}

E2(k130) = Ep,b {A;c(l’p’ b)Jl(A;c(l’p’ b)S)Jo(A;c(—-l,p, b)se)}
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Grouping this according to power level groups, we have,

Epp {T1a(s)} = [ >Jo (ﬁ) EJI (\/_]EE )}nglEl(n,sg)zn

E .
+ (V Nz ) Zk Ey(n,s0)Ey(n, So)k" 1HJ¢nE1(]’30) j

n=1
where n denotes the power level group.

We now derive the following conditional error probability
Pepbx(0) = Pr{|U.i| > 0|U:|lby = +1',p,b,K} .
Using the notations defined above, this probability can be written as,

Pepbk(l) = - /owé’l(s)i@;—;(slds
= - [Toyen 25ty (3)

Carrying out similar computations as before, we can show that the average error

probability Pg(6,K), is given by

PE(,K)= [ ‘«3(1+92)J E Epp{®; _i(s,0)}ds
0 NQ

where

B {B.1(5.00} = [350 1 —E—s)+|p| ot (1ot 5 | T Lm0

E, . NE
+ Jo (Ip| A ) > knE4(n,s6)E)(n, 59) M2 B (5, 56)

n=1

and

E{(k,s&) = Ep,b{JO(A;c(lapvb)Sg)JO(A;c(—lvpvb)s)}

Eq(k,s8) = Epp{A(=1,p,0)1(AL(1, p, 8)s)Jo(Ak(1, p, b)s6)} .
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4.2.2 Four Level VRT

The average channel statistics P5(8,K), Pty (0, K), Prx(8,K), Pr(8,K), for the
four level Viterbi ratio thresholding channel can be written in terms of that of the

three level Viterbi ratio thresholding channel and the hard decisions channel as follow

[Vit 85].

Fo(6,K) = FPo(6,K)
Pé'X(avK) = PC(LK)—PC(ovK)
,EX(07K) = PE(laK) —PE(07K)

Note that when 6 = 1 the resulting channel is equivalent to hard decisions channel.
Hence Pg(1,K) is the probability of error for the hard decisions scheme without VRT
derived in Chapter 3. All the expressions for the channel statistics can be further
averaged over K using (3.29). We denote these average probabilities as Pz(8), P5(6),
Fox(8), Pex(9).

This concludes our derivation of the expressions for the transition probabilities
of the resulting DMC when VRT is employed. In the next section we look at convo-

lutional codes and bounds on their performance.
4.3 Convolutional Codes and Bounds on Their Performance

In this section we briefly describe binary convolutional codes and the Viterbi
algorithm for decoding convolutional codes. We also present >n upper bound on
the packet error probability when convolutional coding and the Viterbi algorithm
[Vit 71] [For 73] is employed. For simplicity of description, we assume that the data

bits and the channel symbols are in {0,1} instead of {+1,—1}.
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4.3.1 Binary Convolutional Codes

A binarybonvolutiona.l encoder is simply a finite state machine (a shift register
circuit) shown in Fig. 4.2. The binary input data sequence into the decoder is
denoted by {i;} (¢ € {0,1}) and {2z} is the binary output stream where z; =
(2i,++-27') is the output of the encoder (z} € {0,1}, i = 1,2,--,n, t =1,2,--+))
corresponding to the input data symbol ¢,. The rate of the code is then r = 2 [data
symbol/code symbol] where m is the number of data bits shifted into the encoder
at a time. The number of memory elements m in the decoder is called the memory

length of the code and K = m + 1 is called the constraint length of the code. An

1

example of a K = 3, r = 7

convolutional encoder is shown if Fig. 4.3. The encoder
outputs two channel symbols corresponding to switch states 1 and 2 for each input
symbol.

It is well known that that a convolutional code can be described by a compact di-
agram called the trellis diagram [Vit 71]. The trellis diagram of the code represented
in Fig. 4.3 is given in Fig. 4.4. This trellis has four states a,b,c and d corresponding
to the state of the shift register of the encoder (u1,u9) = (0,0), (0,1), (1,0), (1,1).
In the trellis diagram the encoder initially starts at state a and makes a transition
to a new state via one of the two branches emerging from the state for every input
symbol and thus follows a path through the trellis according to the input sequence.
When the input symbol is a ‘0’, the encoder takes the branch represented by the solid
line to the new state and when the input symbol is a ‘1’, it moves to a new state

following the dotted branch. The vectors si; given above each branch connecting the

states : and j are the outputs of the encoder corresponding to the state transitions.
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4.3.2 Decoding of Convolutional Codes

It is well kﬁown that the Viterbi algorithm provides a Maximum a posteriori prob-
ability (MAP) estimate of the path taken by the convolutional encoder through the
trellis, i.e., the Viterbi algorithm is a MAP decoding rule [Vit 71] [For 73] [Vit 79a).
We will briefly describe the operation of the Viterbi decoder for the trellis shown in
Fig. 4.3 for a BSC with crossover probability less than 1 using the Hamming metric
(the Hamming metric will be defined below). 1t is straightforward to generalize the
Viterbi algorithm to general DMCs and metrics [Vit 79a] where a metric is any func-
tion between the input and the output sequence of the channel with the property
that the total metric between the input and the output sequences is equal to the
sum of the metrics of each channel input and output pair of the sequence [Sim 85].

The Hamming distance between two binary vectors is defined to be the number
of places in which they differ. Each state of the trellis in the decoder has ‘metric
memory’ devices that stores integer numbers which are initially set to zero. Let the
output of the channel (input to the decoder) be denoted by y; which is a corrupted
version of the encoder output. That is y; = z, @ n; where n, is a binary n-vector
representing noise and @ denotes mod 2 addition. For the first two branches eminat-
ing from state a, the Hamming distance computed between the vector yo and the s
vectors for each branch are stored in the memory for state a and b. For the second
state transition due to the the second input symbol, the Hamming distance between
the vectors y; and the s vectors are computed for each branch and the sum of this
value with the value stored in the memories of the originating states are stored in
the memories bf the new states. After the vector y, corresponding to the third input
symbol received, a state in the decoder trellis has multiple incoming branches and

each incoming branch corresponds to a different path through the trellis that leads
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to that state. We attach a number to each incoming path called the path metric.
The path metric for a path II that is ¢ branches long is defined to be the Hamming
distance between the sequence (yo,---,y:) and (z3, - - -, z!') where 2! is the output
of the encoder for the #-th branch for path II.

For each state, the decoder computes the metric corresponding to each of the
incoming (competing) branches and chooses the branch with the smallest metric as
the survivor and sets its metric memory equal to the survivors metric. Note that at
each time ¢t there will always be four surviving paths and when the transmitter forces
the encoder state to a by transmitting two consecutive zeros, there will only be one
survivor left and the input data sequence that would have produced this trellis path
is the MAP estimate of the transmitted data sequence. based on the observation of

the outputs of the matched filters

4.3.3 Error Performance

In this section, we derive bound on the error performance of convolutional codes.
In evaluating the error performance of the Viterbi decoder we need only consider the
all zeros input sequence since we only consider linear convolutional codes [Vit 79a].
We refer to the trellis path corresponding to the all zeros input as the all zeros
path. Also, Hamming weight of a path is defined to be the Hamming weight (the
Hamming distance between a vector and the all zeros vector) of the output sequence
of the encoder corresponding to the path.

Usually, the data to be transmitted over the network is grouped into packets and
the transmission is considered successful only if the packet is received error free. Let
the length of one packet be L bits long and define the first event error as the event

that a nonzero path (a path that corresponds to non all zero inputs) eminating from
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state a is selected as the survivor over the all zeros path. It is well known [Pro 83]
that the probability of first event error denoted by P; may be upper bounded as

follows

Py <> wuD* (4.4)
d=d!

where W, is the number of paths that eminate from state a and remerge to state a
with weight d, and dj is the minimum of weights over all the nonzero paths called
the free distance of the code. The parameter D is called the Chernoff parameter,

and is defined as

D = min E{exp(A(m(y, #; ¢) — m(y, 2; ¢)))|e} |z (4.5)

where m(y, z; z) is the metric between the output symbol y and the input symbol z
and ¢ is the side-information if any.

It is easy to see that during the transmission of an all zeros vector of length L a
packet error will occur if at least one first event error occurs. Hence the packet error

probability P, may be upper bounded as follows
F,<L.-P (4.6)

which is a simple union bound.

4.3.4 Metrics

In this section we will look into the metrics used by the Viterbi decoder for
different channels. The Chernoff parameter corresponding to these metrics will also
be given. We have already mentioned that for a BSC, a Viterbi decoder employing
the Hamming metric results in a MAP estimate of the transmitted data symbols.

The Chernoff parameter when Hamming metric is used with a BSC with crossover
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probability p is given by [Sim 85]

D =2/p(1 - p).

Also, for a BSEEC with error and erasure probability P. and p,, it can easily be
shown that a Viterbi decoder using Hamming distance as the metric and ignoring
the erased symbols results is a MAP decoder. In this case the Chernoff parameter

can be written as [Sim 85]

D = p. +2y/p.(1 — p. — p.).
For a binary input 4-ary output channel resulting from 4-level VRT, we resort to a
suboptimal metric called the integer metric [Vit 85] given by
m((0,7),0) = Npe
m((1,7),0) = —Nne
m((0,u),0) = 1
m((1,4),0) = -1 (4.7)
where Ny, is an integer that should be chosen appropriately. Straightforward cal-
culatioﬁ shows that the Chernoff parameter for this case is [Che 88b]
D(0) = min [P4(0)e™¥met 1 P (0)e™ + Pl (6)e™
+ Pp(8)ee (4.8)

where the dependence of the Chernoff parameter and the transition probabilities on

8 is made explicit.

4.4 Numerical Results

In this section we present numerical results on the performance of VRT in an

AFHSS-MA network. For simplicity we will restrict ourselves to the case when
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orthogonal BFSK with minimum frequency separation is used and all users have the
same power as seen by the first user. The number of slots available is taken to be

100 throughout this section.

4.4.1 Simulation

First, in order to verify that the expressions for the channel statistics developed
in this chapter is valid, we plot in Figs. 4.5-4.8, the probability of error and erasure
versus the number of interfering users that hit the hop (K”) for j%g- =13 and 19dB
when three level VRT is employed with § = 1.5 and 2.5 along with simulation results.

These results show that our expressions for the channel statistics when three level
VRT is employed are very close to the simulation results. Also since the channel
statistics when four level VRT is employed is a function of the channel statistics
when three level VRT is employed with the same 8 and the probability of error when
hard decisions are made, we may conclude that the results for the channel statistics

when four level VRT is employed are also correct.

4.4.2 Channel Capacity and Associated Throughput

In this section we use the formulas developed in Section 5 of Chapter 2 to compute

the channel capacity and the associated throughput under the following conditioned.
1. Hard decisions.

2. Perfect side-information: Erase the symbols that are hit.

[N ]

. Perfect side-information.

4. Knowledge of the exact number of interfering users in each hop.

5. Three level VRT.
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6. Four level VRT.

The difference between system (2) and (3) is that system (2) first erases all the
symbols that are hit and then makes maximum likelihood decisions on vthe codewords
and system (3) does maximum likelihood decoding on the codewords without first
erasing the symbols that were hit. Figs. 4.9-4.11 are the plots of the channel capacity
corresponding to these systems for % =13dB and 8 = 1.5, 2.0, 2.5, and Figs. 4.12-
4.14 are the associated throughput for the the same parameters. We note from
these figures that with an appropriate choice of 8, we gain up to 15% in maximum
throughput over system (1) with system (5) and almost 25% with system (6). Also
note that using perfect side-information and ML decoding (3) only gives a mediocre
gain over system (1) (hard decisions) and both systems (5) and (6) perform better
than system (4). This indicates that side-information as to the exact number of
interfering users is less informative than information about the relative magnitudes
of the matched filters at the demodulator. This can be intuitively explained by
looking at Fig. 3.1 and noting that the probability of error (when the hop is hit
by one interfering user) is strongly dependent on the relative delay and the data bit
of the interfering user. Hence the fact that a hop is hit does not guarantee that
the hit rendered the hop useless. This observation has far reaching consequences
since systems (5) and (6) are quite easily implementable whereas systems (2) (3)
and (4) are not. In order to study the dependence of the performance on the
threshold value 8, we plot the throughput versus K for systems (5) and (6) with 6 as
a parameter in Figs. 4.15-4.16. We note that the optimum v:Ine of 8 that maximizes
throughput for these systems is very robust against variations in the number of
users in the network and globally (with respect to K) optimum values of 6 exists.

Also, for system (6) the performance of the network is relatively insensitive of small
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perterbations of 8 about its optimal value.

4.4.3 Convolutional Coding

In this section we consider the performance of some of the practical systems
considered in the previous section when a rate é—, K = T convolutional code is
employed. Here we also present for reference, the results for the case when hard
decisions are made and the }-approximation is used in the analysis. We refer to to
this case as system (0).

The length of one packet is taken to be 70 bits long (L = 70). In Figs. 4.17-4.19,
we plot the lower bounds on the normalized throughput for systems (0), (1), (2),
(5) and (6) for § = 1.5, 2.0, 2.5 andemet = 5 using (4.4) and (4.6) for % =13dB.
We note that we obtain close to a two fold gain in performance over simple hard
decisions by using VRT. Again, in order to study the dependence of the throughput
on @ for systems (5) and (6) we plot the throughputs of systems (5) and (6) with 0
as a parameter in Figs. 4.20-4.21. These figures indicate that the optimal values
of § are close to that predicted by a system achieving channel capacity. Also, there
is the problem of choosing N,..;. Numerical results indicate that Niet =3,4,5 gives
comparable performance and that N >7 is too high.

We wish to emphasize that the results presented in Figs. 4.17-4.21 are derived
from bounds (4.4) and (4.6) which are, respectively, the union-Chernoff bound on
the first event error probability and the union bound on the packet error probability.
These bounds on the error probabilities can be quite tight when the associated prob-
abilities are small, say < 107*. Unfortunately, the regions of interest here (regions
of high throughput) are where the probability of error is relatively high in this case,

these bounds are quite loose. Also, the sharp drop in the normalized throughput
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Figure 4.17: Lower bound on the normalized throughput when rate %, k=T convo-

lutional codes are employed versus the number of users in the network.
2 =13dB, 0 =1.5, Nper =5, L =T0.



Normalized Throughput

116

/7
(3) \
\
(1)
/\ Z \
¥ |
1 1
(2) \
‘ |
|
- (0) \ i
10 20 30 40 50 50
K

Figure 4.18: Lower bound on the normalized throughput when i:te 3, k=17 convo-

lutional codes are employed versus the number of users in the network.
2 =13dB, 0 =2.0, Npet =5, L =T0.






Normalized Throughput

Figure 4.20: Lower bound on the normalized throughput of system (5)
k = T convolutional codes are employed versus the number of users in
the network with # as a parameter. % =13dB, Nt =5, L =T70.

.25

.20

.15

.10

.05

.00

118

=20

10

20

when rate =

60

21






120

after the number of users in the network increases beyond a certain point reinforces
the suggestion that the bounds are loose beyond this point. Therefore we carry out
simulations to determine exactly how loose these bound are.

Simulati

In order to evaluate the system performance more exactly, we simulate the Viterbi
decoder using the channel statistics derived above. In Fig. 4.22 we plot the normal-
ized throughput of systems (1), (2), (5) and (6) using the simulated values for the
packet error probability with the parameters % =13dB, 0 =2.0, N =5, L =T70.
We note that the combined bound of (4.4) and (4.6) are indeed very loose and give
very pessimistic results. For example, the optimum (in the sense of maximizing the
normalized throughput) number of users in the network predicted by the bound (Fig.
4.18) for system (6) is around 45 where that predicted by the simulation results is
approximately 75. This means that the bound is pessimistic by as much as 67%.
In order to study the the bounds more closely, we consider the following two cases.
First, we simulate the first event error probability of the Viterbi decoder and use
the union bound (4.6) to compute the packet error probability. Next we use the
simulated values for the channel statistic and use (4.4) to obtain an upper bound
on the first event error probability and then further upper bound the packet error
probability using (4.6). This is just what we used to plot Fig. 4.18. Fig. 4.23 shows
the normalized throughput computed for the above two cases along with the simu-
lated values. We note that most of the error is due to the union-Chernoff bound on
the first event error probability. Since the region where the difference is most severe
is where the packet error probability, hence the first event error probability, is quite
high, simulating the first event error probability for this region can be done quite fast.

In conclusion, we have seen that unless we simulate the Viterbi decoder to obtain
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an accurate value for the packet error probability given the channel statistics, the

results one gets by using the usual bounding techniques give excessively pessimistic

results.



CHAPTER V

PERFORMANCE OF ERROR CORRECTING
CODES IN GENERATING
SIDE-INFORMATION FOR SLOW AFHSS-MA
NETWORKS

In this chapter we consider using an (ny, kr) binary error correcting code to encode
the k; information bits to be transmitted in a hop in a slow frequency-hop system
described in Section 2.3. In the following section, we will give a brief introduction
to the problem and describe a related work by Pursley [Pur 87a). Then, we will
derive the probability that [ out of the n; binary code symbols transmitted in a
hop will actually be hit given that the hop is hit. This is a very general result and
may be applied to various types of error models. Then using the usual model that
when a binary symbol is hit, the error probability is %, and the errors within the
hop are independent, we will derive the average probability that J symbols out of
the n; symbols will be in error. We will later give a heuristic justification that the
-,1; approximation should be more accurate in a slow AFHSS-MA network compared
to tne ‘fast’” AFHSS-MA network. We use this result to evaluate the performance

of the (concatenated) coding scheme we propose. We also consider the case when

Rayleigh fading is present in addition to additive white Gaussian noise.
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5.1 Introduction

In this section we will give a brief introduction to the problems considered in
this chapter. We describe the system model and the coding technique employed.
Consider an AFHSS-MA network with one packet consisting of L, (N,, K,) Reed-
Solomon (RS) codewords [Bla 83]. An (N,, K,) RS code is a code with symbols in
GF(M), i.e., the Galois field of size M [Bla 83] where M is a power of a prime and
No=M—1,M,or M+1. When N, = M + 1, the code is called the extended
Reed-Solomon code. We will adopt this code in this chapter. Hence each code
symbol can be represented by m = [log, M| binary symbols. This code takes in K,
M-ary information symbols and produces codewords of length N, and has minimum
distance d,;;, = N, — K, +1 which is the minimum Hamming distance among all the
codewords in the code and hence can correct up to t errors and e erasures as long as
2t+e< N, - K, [Bla 83].

One packet is composed of L of these RS codewords and hence there are m - L-K,
binary data bits in a packet. Each packet is transmitted in N, hops where in the
J-th hop, j = 1,---, N,, the j-th symbols of the L, RS codewords in the packet are
transmitted as k; = m - L bits. In addition to transmitting the k; bits, we further
encode them using an (ny, k) binary code. This is illustrated in Fig. 5.1. We will
refer to this binary code as the inner code and the Reed-Solomon code as the outer
code since what we have described is in fact a concatenated coding scheme [For 77].
The decoders for the inner and the outer code are assumed to be bounded distance
decoders [Bla 83] where we set up a decoding region about each of the codewords and
the decoder attempts to decode only if the received vector falls within one of these

regions. For example, for the inner code, we can set the decoder so that it outputs
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a decoded codeword (correct or not) only if it differs from a codeword in at most
t< Lgmgij places and otherwise abort decoding where d% ; denotes the minimum
distance of the inner binary code. The RS decoder would then use this information
and erase the RS code symbols corresponding to the hop thus taking advantage of
the larger erasure correcting capability of the RS decoder. The idea behind this is
that we are trying to single out the hops that were severely corrupted while trying
to correct the few errors caused by additive white Gaussian noise or a hit resulting
from a small (one or two) number of interfering users. The parameter ¢ should be
optimized to maximize performance (e.g. throughput). The tradeoff resulting from
varying t is that as we increase ¢, the inner decoder will be able to correct more
errors but if the number of errors exceed t, then the probability of decoding to a
wrong codeword will also increase. On the other hand as ¢ is decreased, the number
of correctable errors is decreased but a large portion of the uncorrectable errors will
be detected. Hence the inner decoder generates (imperfect) side-information that
tells the outer decoder how severe a hit was.

A related work in generating imperfect side-information in AFHSS-MA networks
is [Pur 87a] where known test patterns are attached at the beginning and at the end
of each hop to detect whether a hop was hit or not (Fig. 5.2). Here the rule is that
if more than T out of the n., test bits at either of the test patterns are received in
error the hop is declared hit and the RS symbols corresponding to the hop are erased.
We will show in the numerical results section that the coding scheme proposed in
this chapter gives a significant improvement in performance over the test pattern
scheme of [Pur 87a] and a system having perfect side-information.

In order to analyze this concatenated coding system, we first compute the proba-

bility that ! out of the n; binary symbols transmitted in a hop are actually hit given
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that the hop is hit by k interfering users. This is a very general result and may be
applied in the analysis of various forms of slow AFHSS-MA networks. To analyze
the error performance of the inner code, we need to know the error statistics within a
hop, that is, the probability that j bits will actually be in error given the hit pattern.
It is very difficult to generalize the results of Chapter 3 to the slow AFHSS-MA case.
Hence we fall back on the usual assumption that whenever a symbol within a hop is
hit, that symbol will be in error with probability % and that the symbol errors within
a hop are independent. This approximation is probably more accurate here than the
case when one symbol is transmitted per hop since for slow AFHSS-MA networks
most of the symbol hits will be full hits (i.e., an interfering signal will overlap the
symbols for the entire symbol duration) and it was shown in Chapter 3 that the
probability of error is close to 1 when this is the case (see Fig. 3.1).

Other than the fact that more than n; > 1 binary symbols are transmitted per
hop, the system model is same as the ones assumed in previous chapters. Again
Markov hopping patterns are assumed to facilitate the analysis. But as shown in
Chapter 3, for practical values of ¢, this will provide a good approximation to the
independent hopping pattern case.

Lastly, we mention that this sort of concatenated coding scheme was considered
in [Kim 87] for random inner codes using approximations for the probability that [
out of the ny binary symbols transmitted in a hop is actually hit given that the hop
is hit by k interfering users. In the next section we proceed with the analysis of the

system described above.
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5.2 Analysis

In this section we analyze the coding scheme described in the previous section
and offer an upper bound on the packet error probability. First, let us define the

following variables and events.

e 5, : Number of binary symbols that are hit out of the n; binary symbols that

were transmitted in a hop.

e 5. : Number of symbols that are in error out of the n; symbols that were

transmitted in a hop.
o H(k) : The event that a hop is hit by k interfering users.

We break up the analysis into four parts as follows. First we compute the probability
of I bits out of the ns bits being hit given that a hop is hit by  interfering users
denoted by Pr(S, = I|H(k)). Next we compute the average probability of j bits
being in error, P1(S. = j). From these it is easy to derive the probability of correct
decoding P4, the probability of undetected error P,q, and the probability of detected
error P; for the binary inner code given the weight distribution of the code ansi
assuming that whenever a symbol within a hop is hit, that symbol will be in error
with probability % and that the errors within a hop are independent. Finally using
these results, we are able to derive an upper bound on the packet error probability
Pracker We assume without loss of generality, that the hop is initiated at time 0 and

p

normalize the hop duration to 1. This simplifies the notation in the analysis.

5.2.1 Derivation of Pr(S, = I|H(k))

In this section we derive the probability that [ symbols will actually be hit given

that the hop is hit by & interfering users. This is the crucial part of the analysis. To
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facilitate the derivation, we further break down the analysis into three parts.

(1) i=1

Obviously for this case

k
Pr(Sh = 1|H(k)) = 2 (571;)
(2)1#1,1#n;

For this case there are three possible hit patterns «, §,v defined as follows.

* a: The event that the first / symbols are hit and the last (n; — I) symbols are

not hit,.

® (: The event that the last [ symbols are hit and the first (n; — I) symbols are

not hit.

¢ 7 : The event that the first n; < I symbols and the last (I = ny) symbols are

hit and the symbols in between are not hit.

These events are depicted in Fig. 5.3. Let thegin and tenq denote the beginning and
the end of transmission time for an interfering user. Now since hit pattern « can
only occur if the end of transmission time t,.,4 for at least one of the k interfering
users is in the interval [1—};1-, ﬂ and other (k — 1) interfering users have tenq € [O, ﬂ,
the probability of hit pattern a given that the hop is hit by k users Pr(a|H(k)) is

given by

oo+ £ ) & (5)”

Il
TN
7|
S e~
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~—
b
1
TN
—
[\~]
S|
=~
~—
S






133

By symmetry Pr(8|H(k)) is equal to Pr(a|H(k)). To compute the probability of hit

pattern y given that the hop is hit by & users, let us define the following events.

e Ej(n) : The event that k' interfering users have teny € [O —"—-].

' nr

® Ep(n) : The event that &’ interfering users have tyegin € [;";, 1}.

o E3w(n) : The event that at least one out of k' users of event E14(n) has

tond € [l‘;l -’-‘-].

nr ' nr
® E;p(n) : The event that at least one out of &’ users of event E,4(n) has
tbcgin € [-:-I’ n_’-:;_l] .

where n € {1,2,---,n; — 2}. Using these definitions, the probability of hit pattern

- given that a hop is hit by k& users can be written as follows

k-1 | k
Pr(y[H(k)) = ) Pr (El.i(m), Es (k—iy(I = 1), E3,i(n1), Eg (ks (I = n1)) :
i=1 7

Since the events (E1(n1), Esi(n1)) and (Eyp_iy(! — n1), B4, (k-iy(I — ny)) are inde-

pendent, we have

Pr (El,i(n1)7 Eok—iy(I = 1), E3i(n1), Ea kg (I — n1)) =

Pr(Eyi(n1), Eai(m1)) Pr (Ba ey (! = 1), Egumiy (I = n1)).

Since

Pr(E:(n1), Esi(ny)) = Pr(E3;(n1)| By i(n)) Pr(Eri(n1))

and

Pr(Egvi(nl)lEl,i(nl)) =1 Pr(El,,-(nl -— 1)|E'1,,~(n1)),

it follows that

Pr(Eyi(n1), Esi(ny)) = Pr(Ey 4(ny)) — P(E;:(ny —1)).
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Similarly,

Pr(Eg_(k_i)(l — nl),E4,(k_,-)(l - nl)) = Pr(Eg,(k._,-)(l d nl)) — Pr(Egy(k_i)(l - N -+ l))

Thus
k-1 k i
Pr(y|H(k)) = ; | [Pr(Bri(na)) = P(Eri(m = 1))]

X [Pr(Eae-i)(I = n1)) = Pr(Eg iy (I — ny + 1))]
- BT - ey ) 7 ()]

I* 4 (1—2)% —2(1 = 1)
(2n1)’° '

Note that Pr(y|H(1)) = 0 since the hit pattern 4 cannot occur when the hop is
hit by only one other user. Since the hit patterns «, 8, v are the only hit patterns
possible when ! # 1 nor [ # n; and since the hit patterns are disjoint, the probability
of I symbols being hit when the hop is hit by % interfering users is the sum of the

probabilities of event «, 8 and v. Thus

31— 4(l— 1)k + (1 — 2)
(2n1)’°

Pr(Sy|H(k)) =
when Il # 1,1 # nj.

(3) I=ng
The probability of all n; symbols being hit when the hop is hit is just 1 minus
the sum of the probabilities that I = 1,2,...,n; — 1 symbols are hit. Hence
nr—~1
P(Sy,=niH(k))=1- > P(Sn = |H(k)).

I=1

In summary, the probability of I symbols being hit when the hop is hit by k
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interfering users is given by

( k
2(5) - =1
Pr(Sh = l|H(k)) = | L=tlabru=ar 25l<n -1
=M (35k —a(j-1)k +(5-2)%
\ ) D (3;(2’141():]‘ )< +(i-2) )’ l=n;

This result is very general and applies to all slow frequency-hop asynchronous multiple-
access channels that satisfy the general assumptions made in this thesis whether the

modulation is binary or M-ary.

5.2.2 Derivation of Pr(S, = j)

In this section we derive the average probability of j bits out of n; bits that were
transmitted in a hop being in error denoted by Pr(S. = j) under the assumption
that the probability of error is 1 whenever a symbol is hit and that the errors within
a hop are independent. The probability Pr(S, = j) can be decomposed into two

parts according to whether the hop is hit or not as follows.
Pr(S. = j) = Pr(S. = j|H) Pais + Pr(S. = j|H)(1 — Phay)

where H denotes the event that the hop is hit, H denotes the compliment of H and
Phit is the probability that the hop is hit given by (2.4). It is easy to see that the

probability Pr(S, = j|H) Py is given by the following summation.

. = E-1 : k K=1-k
P(S. = j|H)Puc = Y. P(S. = jIH(R)pE(L — pr)<-
k=1 k

where p; is given by (2.2). By further conditioning on the number of bits that are
actually hit given the hop is hit by k users, the probability Pr(S, = j|H(k)) can be

written as follows, which is a sum of the terms that can easily be computed in terms
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of results given in the previous section.
. ns
Pr(S. = j|H(k)) = ZPr(S, = j|Sn = )P(Sy = l|H(k)).
=1

Straightforward computation yields

i NV np—1 j—h —i=j+h
Pr(S. = j|Sh=1) = <§) ) Pih(1 — Pyrami=ith,
=2 B

The probability Pr(S, = j|[H)(1 — Py:) is easily computed to be

Pr(Se = J{H)1 - Poa) = | | Pi(L— B)"™(1 — Pa)
J
where P, denotes the binary symbol error probability due only to AWGN. This
concludes the derivation of Pr(S, = j).
Again, though the derivation given in this section is for the binary case, it can
easily be extended to the M-ary channel symbol case. The above two sections were

concerned with the channel statistics for the inner code. The following section deals

with the performance of the binary inner code using these results.

5.3 Analysis of the Inner Code

In this section the probability of correct decoding P.y, the probability of unde-

tected error P,q4, and the probability of detected error P, are derived for the (nr, kr)

. . . . o
binary inner code. With a bounded distance decoder that corrects up tot < [émg—lJ

errors, the probability of correct decoding is simply the probability of there being no
more than ¢ errors in the received vector. Thus

¢
P,= Z:Pr(Sc = 7j).

=0
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To compute the probability of undetected error we define N(w, j; ') to be the number
of vectors of Hamming weight j with Hamming distance ¢’ away from a particular

codeword of weight w. This is known to be [Bla 83]

., n-—w w
N(w,7;t") = ]
i i

if &%l is even and 0 otherwise. To go any further with the standard analysis, we
need to assume random shuffling of the n; bits of the codeword before transmission
and deshuffling after reception at this point, in order to ensure that different error
patterns of same weight are equi-probable. That is, every time a codeword is trans-
mitted in a hop, the ordering of the code symbols within the hop are randomized.
Without this assumption, the analysis is not tractable since the error probability
is not simply a function of the weight distribution of the code and different error
patterns of same weight have different probabilities of occurring. We also mention
that instead of making this assumption, one could try to design a code specific to
this nonsymmetric channel. This will not be further pursued in this thesis. Hence,
assuming shuffling and deshuffling, P,4 can be written as follows [Bla 83].

ny
Pud = Z Pr(EudlSczj)Pr(Sc=J)
i=t+1
-1
nr nr nr

= Z Z ZA"-’N(wvj;t,)Pr(Se=j)

j= : Y =
J=t41 7 w-dmint Q

where {4, } is the weight distribution (i.e., the number of codewords with Hamming
weight w) of the code and E,4 denotes the event that an error pattern is not detected.

The probability of detected error is simply given by

Pd:'-l"’Pcd"Pud-
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5.4 Packet error probability

As with most of the asynchronous slow-frequency-hop multiple-access networks
with more than one codeword per packet, it is extremely difficult to compute the
exact packet error probability (PgZ,.,) of the system due to the dependence of errors
between the codewords in a packet. Instead of trying to compute the exact packet
error probability, we make a simplifying assumption and obtain an upper bound
Pjicket on the packet error probability. First we note that an erasure in a symbol of
a RS codeword implies that all the corresponding (L —1) RS codeword symbols (i.e.,
symbols that were transmitted in the same hop) are erased, since once it is decided
that a hop is severely corrupted by the inner code, all the data bits corresponding
to the codeword are erased. Let us further assume that an error in a RS symbol also
implies that all the corresponding RS symbols are in error. Under this assumption,
the packet error probability is equal to the RS codeword error probability and this
results in an upper bound on the exact packet error probability. This is given by the

following well known formula [Cla 81}

Np—=Kg—~e
No—Ko, l. 2 J Na N ¢
u —_ e t a—e—
PPaCkCtSPpacket"'l— Z Z Pd'Pud'Pcd
e=o =0 e, t

where |z denotes the largest integer not exceeding z.

3.5 Performance Comparison

In this section we will describe two systems whose performance will be used to
evaluate the performance of the concatenated coding scheme proposed here. One is
a system having perfect side-information that erases the symbols corresponding to

the hop whenever the hop is hit. The second is the test pattern scheme analyzed in

[Pur 87a).
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5.5.1 System with perfect side-information

In this system the receiver is provided with the information as to whether a par-
ticular hop was hit or not. If a hop is known to be hit by multiple-access interference,
then all the RS code symbols transmitted in the hop are erased. For this case, the
exact packet error probability can easily be computed as follows. First we condition
on the number of hops (i.e., erasures) that are hit. Then the distribution for all
other symbols are statistically independent and identically distributed since they are
corrupted only by thermal noise. Thus the packet error probability can be written

as

No‘Ko No
Ppacket = 1- Z Pl:it(l - Ph“)No—e
e=0 e
(===l [ N,

Pst,o(l _ P_,,O)N"—e-t

t=0 t

where P, g is the quiescent RS code symbol error probability given by P,g =1— (1~

Py

5.5.2 System employing test patterns

In this system, we attach known test patterns of length n¢., at the beginning
and at the end of each hop. A hop is declared hit and the corresponding symbols
erased if at least one of the test patterns contain more than Y errors, where T is a
threshold chosen to optimize system performance. An upper bound on the packet

error probability for this system was derived by Pursley in [Pur 87a.
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5.6 Rayleigh Fading Channels

In this section we assume that the multiple-access channel is further corrupted
by Rayleigh fading. We carry over the assumption that the binary symbol error
probability is -;— when hit by multiple-access interference. With this assumption, we
only need to alter the expression for the probabilities of those events that involve
errors caused by AWGN in the results given in Section 5.2. These are Pr(S, = j|S), =
1) and Pr(S. = j|H). To compute these probabilities let us define a( L', U ) to be the
average probability of a specific error pattern of weight U/ in a block of L’ binary

symbols subject to same amount of fading. This is known to be [Has 88]

oL, U) = Ep[R(B)Y(1 - P(B))r'-Y)

U (oo UgEA? vBepr\ LY
<1> / e~ (1 - —l-e‘_‘zo“) (2,66"’62) dg
2 0 2

rv(r-v) By

2

where Fy(8) = 1™ # and -11(37;- is the binary symbol signal-to-noise ratio. Using

this, Pr(S, = j|Si = {) and Pr(S. = j|H) can be written as follows.

) 1 L g { nI—l .
Pr(Sg=j|Sh=10)= (-2-) > alny—1,j —m)
m=0 m ]__m
S ng .
Pr(S. = j|H) = afng, j).
J

For the system having perfect side-information, we cannot easily compute the
exact packet error probability as before since the errors are not independent condi-
tioned on the number of symbols erased. This forces us to resort to the Union bound

where we upper bound the packet error probability by L times the RS codeword



141

error probability. Let P,, be the RS symbol error probability given that it is not

erased. Then P,, can be written as

P,;, =1~ a(m,0).

Thus the codeword error probability is given by

No-Ko [ N,
Powa = 1— Y Pgo(1 — Ppg)Noe
e=0 e
| Ha=fa=| [ N _
< 3 P! (1~ P, )Nemo=t,
t=0 t

5.7 Numerical Results

In this section we give numerical results for a slow frequency-hop multiple-access
system utilizing the concatenated coding technique presented in this paper. We use
a (63,45) BCH code as our inner code and (32,14) extended RS code as our outer
code. There are nine RS codewords per packet (L=9). The (63,45) BCH code has
a minimum distance of 8 and hence, any error pattern with less than or equal to e
errors may be corrected and any error pattern with less than or equal to f errors can
be detected as long as e + f < 8 (f > ¢). Also the weight distribution of this code
is completely known [Cla 81]. For the same overall rate, the test pattern scheme is
allowed to use 18 test bits. Following [Pur 87a], we place 9 of these at the beginning
of the hop and 9 at the end. The number of frequency slots g was chosen to be 100.

The Figs. 5.4-5.8 are the plots of the bounds on the packet error probability
versus the number of users in the network of the three schemes considered for different
quiescent error probabilities. They demonstrate that the packet error probability

of the system with perfect side-information is a tight lower bound on the packet error
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probability of the system employing the test pattern scheme. This shows that for the
chosen parameters, the test pattern is performing up to its expectations, providing
reliable side-information to the RS decoder. Figs. 5.4-5.5 show the improvement
we get over other schemes by using an error correcting/detecting inner code. For
Py = 10~? which corresponds to the overall signal-to-noise ratio of 13.99 dB with
BFSK and noncoherent demodulation, the gain is over four orders of magnitude
for K = 10 and one order of magnitude for X = 30. For Py = 1073 (overall
signal-to-noise ratio=16.00 dB) the gains are reduced to approximately two orders of
magnitude for K = 10 and 3.5 for K = 30 respectively which is still a considerable
improvement. The gain we see at this range is mostly due to the inner code’s ability
to correct the errors caused by AWGN. For P, < 10~%, the packet error probability is
dominated by multiple-access interference and the error probabilities have stabilized
with respect to Py. The gain at these values of Py is the gain due to the inner code’s
ability to correct the errors caused mainly by multiple-access interference. This in
a sense reduces the probability of hit since a multiple-access hit which results in
less than ¢ errors will be received error free (ignoring the background noise). Figs.
5.9-5.11 are the same plots with the different schemes as the parameter.  These
set of figures allows us to compare the immunity of the schemes against thermal
noise. Fig. 5.9 shows that this concatenated coding scheme is quite impervious
to the background noise. The plots have converged for P, < 10~2. In contrast,
Figs. 5.10-5.11 show that the performance of other schemes are quiet dependent on
the background noise unless it is almost negligible (P, < 107°). The optimal value
of ¢, the number of errors corrected by the inner code was fixed at 2 for all the
cases considered. The optimal erasure threshold for the test pattern scheme varied

as a function of the background noise and the number of users in the network for
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Py > 107%. For P, < 10™* the optimal threshold was fixed at zero. Figs. 5.12-
5.16 are the plots of the unnormalized throughput W defined by W = P, - K for
different background noise levels. Here P, is the probability that a packet is
received correctly and K is the total number of users in the network. Observations
similar to the packet error probabilities can be made for these figures. For Py = 1072
there is approximately a 65% increase in the maximum throughput. This reduces
to approximately a 18% increase as Py decreases. Finally, Figs. 5.17-5.18 show the
upper bounds on the packet error probability of the concatenated coding scheme
and the perfect side-information case when the channel is corrupted by Rayleigh
fading. The figures are for signal-to-noise ratios corresponding to quiescent error
probabilities of 10™° and 10~ when there is no fading. These values correspond to
error probabilities of 4.23 x 10~2 and 3.54 x 10~2 respectively with fading. These
figures show that the concatenated coding scheme performs quiet well in channels

with Rayleigh fading.
5.8 Conclusions

In this chapter we presented a new method for obtaining reliable side-information
for slow AFHSS-MA networks. With an appropriate choice of parameters, this
method not only provides reliable side-information to the outer decoder but also cor-
rects a large portion of the quiescent errors and some due to multiple-access interfer-
ence. The proposed scheme works particularly well in noisy situations (P. > 1073),
performing orders of magnitude better than the test pattern or the perfect side-

information scheme.
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CHAPTER VI

CONCLUSIONS AND EXTENTIONS

In this chapter, we will summarize the results obtained in this thesis on Asyn-
chronous Frequency-Hop Spread-Spectrum Multiple-Access (AFHSS-MA) networks.

We will also remark on generalizations and extentions on these results.

6.1 Conclusions

The first problem considered in this thesis is that of deriving an analytical ex-
pression for the probability of error in an AFHSS-MA network transmitting one
Binary Frequency Keying (BFSK) modulated bit per hop. In most of the previous
investigations, the probability of error whenever a hop is hit by multiple-access in-

3 (the l-approximation.) In this thesis, we used the

terference was assumed to be
theory of spherically symmetric random vectors to derive an analytical expression
for this probability when Markov hopping patterns are used. This expression is
exact when standard orthogonal BFSK is employed and is an approximation when
nonorthogonal BFSK is employed.

The fact that we assumed Markov hopping patterns greatly simplified the analysis

and also the numerical computation. We showed that the numerical complexity

is dominated by the computation of two expectations which are not a function of

158
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the number of interfering users. Hence, once these expectations are computed, the
computation of the probability of error for different number of interfering users can
be done very easily.

We also showed that for practical values of the number of slots available in the
network (g), the probability of error when independent hopping patterns are assumed
can be accurately approximated by the probability of error when Markov hopping
patterns are assumed.

The probability of error computed using the expressions developed in this the-
sis showed that the 1-approximation is an excessively pessimistic assumption and
thus analyses based on this assumption grossly underestimate the multiple-access
capability of AFHSS-MA networks transmitting one bit per hop. It is also shown
that the %-a.pproximation has lead to misleading results. For example, it was pre-
viously believed that using perfect side-information to erase the hops that were hit
by multiple-access interference leads to large improvements in performance over sim-
ple hard decisions. We showed that this is not the case. In fact, it turns out that
a system employing simple hard decisions without side-information performs much
better than a system using perfect side-information to erase the hops that were hit.
This is a result of the fact that the probability of error when a hop is hit is, on the
average, much smaller than 1 and if all the hops that are hit are erased, many hops
that could have been correctly demodulated would be discarded.

The expression developed for the probability of error also allowed us to consider
the effects of different power levels of different users (near-far problem). Considera-
tion of different power levels in the network is shown to an important issue.

The second problem considered in this thesis is the use of Viterbi Ratio Thresh-

olding (VRT) in AFHSS-MA networks. The same technique used to derive the prob-
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ability of error is used to derive the channel statistics when VRT is used. The Viterbi
ratio thresholding is shown to offers significant improvements over hard decision at
a small increase in system complexity. We also considered the use of binary convolu-
tional codes with VRT in AFHSS-MA networks. It is shown that the usual bounds
on the first event error probability and the packet error probability are very loose
in the regions of interest and that simulations should be carried out to accurately
estimate the performance of systems where convolutional coding is used.

The last problem considered is concerned with slow AFHSS-MA networks where
n > 1 bits are trla.nsrnitted per hop. The usual assumption is that whenever a hop is
hit, all the symbols transmitted in that hop are hit. Here, we derived the probability
that exactly [ bits out of the n bits transmitted in a hop is hit given that a hop is
hit by multiple-access interference. This is a very general result and can be used
with various error models. We also propose a concatenated coding system with
Reed-Solomon outer codes and binary (BCH) inner codes. The basic idea here is to
encode the n bits transmitted in a hop with a BCH code to correct a small number
of errors and detect a hit when the number of errors exceed a predetermined value.
We showed that this scheme performs very well, especially when the signal-to-noise

ratio is small or when there is fading in the channel.

6.2 Extentions

In this section, we discuss how the results obtained in this thesis can be extended.
Also, we will look at other applications where the techniques developed in this thesis
can be used.

In this thesis, we developed an expression for the bit error probability for an

AFHSS-MA network where one binary symbol is transmitted per hop. It would be
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