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GLOSSARY

acoustic path cycle length: range of one cycle of a ray path. this cycle perfectly repeats

for range-invariant ocean models. typical ranges are 30 to 70 km.
axial source: source located on the sound channel axis (depth of minimum sound speed)

buoyancy frequency: the density gradient is described in terms of the buoyancy frequency,
N(z), the frequency at which an isodensity displaced from its equilibrium position will

oscillate.

caustic: the point where a modeled infinite-frequency acoustic signal has infinite amplitude.

the wavefront is folding onto itself at this point.

caustic phase: each time an acoustic ray travels through a caustic, the acoustic phase
advances 90°. the summation of these 90° phase rotations is the caustic phase and is a

contribution to the acoustic time-domain phase.

coherent integration loss: the loss incurred by coherently integrating a signal with
unstable time-domain phase referenced to coherently integrating a signal with perfectly

stable time-domain phase.

computational ocean model: the sound speed field that is directly used in the computer

code to numerically simulate acoustic propagation.

crescendo: the terminal time segment of a deep ocean acoustic reception. these receptions

typically increase in amplitude with time, ending with a sharp large amplitude segment.

differential equation method: a method for computing the amplitude of an acoustic ray

based on solving additional differential equations along the ray path.
diffracted wavefronts: finite-frequency acoustic wavefronts spawned from diffraction.

dispersion: in the context of acoustic normal modes, when modes of different frequency

travel at different horizontal speeds.
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eigenrays: acoustic rays that connect the source and receiver.

focusing/defocusing: geometric gathering/spreading of acoustic rays which related to

increased /decreased acoustic amplitude along the propagating wavefront.

Garret-Munk spectrum: community accepted analytic spectral description of deep ocean

internal wave fields.

group velocity: in the context of acoustic normal modes, the “average” velocity of a

spectral band of normal modes with identical mode number.

high-frequency approximation: approximation required to solve the wave equation in

terms of acoustic rays
horizontal line array: an array of receiving hydrophones oriented horizontally.
hypo front: a hypothesized measurement front.

inertial frequency: is a function of the latitude and is introduced by including the Coriolis

acceleration into the equations of motion.

internal waves: slowly moving density waves and are similar to the familiar ocean surface

waves, except they occur internal to the ocean.

launch angle: the ray inclination @, and ray azimuth ¢, angles at the source. ray incli-

nation angles are positive downward, consistent with the z-axis being positive downward.
long-range propagation: 150 km to 10 Mm and beyond.

low-angle approximation: approximation required to reduce the wave equation to the

parabolic equation.

mainfront: the primary wavefront among many micromultipath wavefronts termed mi-

crofronts.
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measurement front: impulse response defining the number of arrivals and traveltimes to

any collection of reception points, typically restricted to a fixed range.
megameter: 1000 km.
mesoscale eddy: ocean eddies with diameters on the scale of 100 km.

micromultipath: multipath (multiple arrivals) typically within the acoustic pulse recip-

rocal bandwidth which have resulted from the breaking and bending of a single wavefront.
microfront: the many secondary fronts along with the primary front termed the mainfront.

micromultipath combing loss: the loss resulting from the destructive combining of

micromultipath relative to all the micromultipaths being precisely in phase.
Munk profile: popular academic sound-speed profile for mid-latitude deep-ocean regions.
nominal acoustic direction: directly from transmitter to receiver.

nonensonified region: area where infinite-frequency acoustic analysis would not predict

acoustic propagation (also called shadow zone).
normal modes: the horizontally propagating acoustic modes of the deep ocean waveguide.

ocean process: any physical process which perturb the sound speed field, that is moves

the ocean waters. for example internal waves, tides, eddies.
operational bandwidth: the complete spectral coverage of a signal

parabolic equation: approximation to the wave equation (obtained by employing the low-

angle approximation) that has a solution-form that is suitable for computer implementation.

path-integral technique: a method developed in the early 1970’s to stochastically model

acoustic propagation through a fluctuating ocean.

phone impulse response: the impulse response of set source-receiver geometry.
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physical ocean model: a description of the sound speed field, modeling the ocean pro-
cesses under study, that has not been compromised with issues of implementation, a pure

physical description.

propagation method: numerical simulation of acoustic propagation given the computa-

tional ocean model. methods are based on solutions to the wave equation.

ray centered coordinate system: coordinate system centered at the current point on
the ray path, since the ray path is locally normal to the wavefront these two axes create a

convenient coordinate system.

ray endpoint density method: method to calculate the received acoustic amplitude

based on the density of rays. many rays are propagated.

ray tracing: solution to the wave equation (obtained by making the high-frequency ap-

proximation) suitable for computer implementation.

ray tube: for illustrative purposes, acoustic rays are given dimension to model geometric

spreading of the acoustic power.

Rayleigh fading: constructive and destructive interference of multiple arrivals within
the pulses reciprocal bandwidth, under certain classical conditions will cause the received

amplitude to fade with Rayleigh statistics and uniformly distributed phase.

reciprocity: as long as the motion of the water can be ignored (currents), the received
signal from some source is identical to a received signal at the “source” transmitted from

the receiver.

resolution: the relative delay of two like pulses required to observe two distinct pulses in
a typical signal-to-noise ratio environment. likewise, the time-width of the main lobe of the

pulse measured at half-height.

shadow zone: area where infinite-frequency acoustic analysis would not predict acoustic

propagation (also called nonensonified region).



sheet: single section of a timefront of measurement front.

sound channel axis: depth of minimum sound speed. if the source and receiver are
located on the sound channel axis, the terminal arrival is composed of sound that traveled

in a straight line from transmitter to receiver.
sound speed profile: speed of sound as a function of depth.

spatially synchronized internal waves: internal waves having spatial wavelengths in
the direction of acoustic propagation which are an integer fraction of the acoustic ray path
cycle length. internal waves are spatially synchronized with respect to a given acoustic ray

(acoustic arrival).

thermocline: the top 500 to 1000 meters in the ocean. this is where temperature changes
dominate the shape of the sound speed profile. sometime the top 100 meters is referred to

as the mixing layer and not considered part of the thermocline.
timefront: location of an acoustic impulse transmitted from the source after a set time.

transverse focusing: focusing of the acoustic rays along the transverse coordinate result-

ing from spatially synchronized internal waves.

vertical focusing: focusing of the acoustic rays along the vertical (depth) coordinate

resulting from spatially synchronized internal waves.
vertical line array: an array of receiving hydrophones oriented vertically (depth).

wave equation: mathematical model (partial differential equation) of small amplitude

wave propagation based on the equations of motion, continuity, an state.
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Preface

This was written to set the stage for the research in this dissertation.

“Acoustic monitoring of ocean processes” is how the U.S.Congress labeled research work
that combines the science of oceanography and the engineering research and technology of
underwater sound transmissions. The use of sound waves opened up the field of ocean acous-
tic tomography to study ocean mesoscale eddies of perhaps 100 km diameter, and acoustic
thermometry to study warming and cooling on ocean basin scales of several megameters.
(The meter was originally fixed so that the distance from pole to equator would be ten
megameters, 10 Mm.)

This all is possible because sound travéls faster in warmer water (near the surface) and
in denser water (near the bottom). These balance, forming a minimum sound speed at
roughly a kilometer depth. In the 3-5 km deep ocean the sound will refract toward this
minimum, oscillating shallow and deep and avoiding scattering by the surface and bottom.
The acoustic frequencies have to be quite low, 25-250 hertz, to escape catastrophic losses
due to disassociation of various dissolved salts. In this way low frequencies and refraction
combine to allow propagation for many megameters, with the sound weakening only due
to spreading out thinner and thinner. Precisely timed point to point transmissions provide

the sophisticated oceanographer with an average temperature meter.

After traveling for long distances the weak received signals must be very time stable in
order for repeated signal processing to build them up out of the shipping noise; amplitude
stability is not really necessary. Although long continuous measurements are few, they do
indicate that the ocean propagation is indeed time-stable but amplitude-unstable. No cur-
rent propagation theory o'r model matches this behavior, so new ideas must be incorporated

in propagation models to match the measurements.

Internal waves, waves of density anomalies and associated temperatures, appear to be
everywhere in all oceans. Direct measurements of internal waves are difficult, and there are

very few. Development of internal wave understanding as a stochastic theory have spanned

xxiv



the last twenty years. Recent research has progressed from classical mathematical analysis
to computer simulations, with statistics derived from averages of many random realizations.

Internal waves are universally believed to be the ultimate limitation on acoustic prop-
agation stability. We must understand the interaction of sound and internal waves if we

depend on time-stability in long range propagation.

This dissertation will investigate internal waves as the cause of time-stable but unstable-
amplitude propagation. In order to do this yet another obstacle had to be overcome, this
being in matching computational modeling to physical modeling. When the refraction of the
ocean is the result of temperature and density changes as a function of depth as mentioned
above, the three-dimensional physics can be simplified to two dimensions since the sound
that gets from the transmitter to the receiver will travel in the vertical plane between them.
The computer programs that calculate propagation take advantage of this simplification.

When internal waves move across the acoustic path they will refract the sound out of the
plane, so the computations must be 3-D to match the 3-D physics. Going back to 3-D from
2-D for the differential equation ray tracing approach to calculation is straightforward; but
all other computational methods will need major overhauls because they relied heavily on
the 2-D simplification. Historically the acoustic interaction part of internal wave simulations

has used 2-D propagation models.

This dissertation research is exploratory in nature, taking advantage of ever increasing
computer power and memory to investigate the interaction of internal waves and acoustic
propagation. The methodology is to examine in detail specific instances of internal wave
fields in a specific 750 km propagation scenario. A phenomena to be labeled “spatial
synchronization” was discovered early, and became the cornerstone for understanding both
2-D and 3-D interactions that caused time-stable but amplitude-unstable realizations. The

methodology and resulting understanding are deterministic, not stochastic.
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CHAPTER 1

Introduction

1.1 Background

The speed of sound in ocean waters depends on temperature, pressure, and to a lesser
extent salinity. An increase in temperature of 1°C increases the speed of sound by 4.6 meters
per second[l]. By transmitting an acoustic pulse over a fixed range, changes in acoustic
traveltime can be related to changes in average ocean temperature over the propagation
path. In other words, one can construct an acoustic thermometer which estimates changes
in ocean temperature.

This is the key concept to an international project! aimed at detecting global changes in
average ocean temperature. It is desirable to separate the transmitter and receiver by great
distances to obtain a global average temperature. Local measurements contain temperature
variations due to ocean circulation processes such as mesoscale eddies (ocean eddies with
diameters on the scale of 100 km). To monitor small changes in average temperature,
acoustic propagation over long ranges can be an asset. For a change in average ocean
temperature of AT in °C, the change in acoustic traveltime in seconds is approximated by

the relation

At ~ —2RAT (1.1)

where R is the transmitter-receiver separation in Mm (megameters). Longer ranges allows
a measured traveltime change to relate to a more sensitive change in average ocean tem-

perature. The accuracy in determining a change in acoustic traveltime will depend on the

! The Acoustic Thermometry of Ocean Climates Project



signal-to-noise ratio of a resolved? received pulse. The received signal energy will decrease
with longer range propagation causing experiment designers to face a trade off in selecting
transmitter and receiver locations. The acoustic signal must be composed of low frequencies
to propagate through the deep ocean thousands of kilometers without suffering catastrophic
attenuation. At frequencies of the order of 75 hz the attenuation of sound in the ocean is of
the order of 0.001 dB/km. This attenuation factor increases exponentially wi... the square
of acoustic frequency making long range propagation of acoustic frequencies over several
hundred hertz impractical.

The sound takes multiple paths to the receiver, creating many wavefront arrivals, known
as multipath. By transmitting a broadband waveform, many of the early wavefront ar-
rivals can be resolved. By tracking the received time-domain phase of an early arrival,
precise changes in the transmitter-to-receiver acoustic traveltime can be estimated, creat-
ing a very accurate acoustic thermometer. To obtain sufficient signal energy and pulse
resolution at the receiver, the propagating waveform is a continuously periodic large time-
bandwidth product signal with a time period precisely equivalent to an integer number
of center frequency cycles, so that consecutive periods can be directly coherently summed
and making continuous transmissions implementable for some signaling types. Candidate
signal types are phase modulated waveforms based on maximal period linear binary pseudo-
random sequences (known as m-sequences) [2] and swept frequency modulated waveforms
[3]. “Continuously periodic” refers to many identical periods being transmitted consecu-
tively. Period-to-period time-domain phase changes of an early (resolved) wavefront arrival
correspond to precise measurements of traveltime change integrated along the particular
propagation path. Each wavefront arrival has traveled a unique path and corresponds to
a unique interrogation of the ocean. It is also desirable to transmit a source waveform
with an appropriate spectral shape such that the time-domain pulse sidelobes are low with
respect to the pulse peak. In summary, it is desirable to employ a low frequency (reduce at-
tenuation), large time-bandwidth product (increase energy and improve resolution) source

waveform for long range acoustic propagation experiments.

2The reference is to resolution in the time domain. Two pulses separated in time such that it can be

distinguished that two pulses are present is a qualitative description of resolution.
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Figure 1.1: The source voltage spectrum is shown to the left. Only the ac-
tive positive frequencies are displayed. The voltage spectrum
is centered at 75 hz, has a bandwidth of 15 hz, and null-to-null
covers 30 hz from 60 hz to 90 hz. The time-domain envelope
(dashed) and waveform (solid) of the received and matched fil-
tered pulse is shown to the right. The effective transmitted
acoustic pulse consists of 5 cycles of a 75 hz waveform. This is
referred to as a Q of 5. The “Q” is equal to the center-frequency
divided by the bandwidth, in this case 75/15 = 5.

Figure 1.1 shows the voltage spectrum of a desirable low-frequency, broadband source
signal and the matched filtered time-domain waveform. The center frequency, f., is 75 hz
and the bandwidth is W = 15 hz. The null-to-null operational bandwidth is 30 hz (from
60 to 90 hz). The voltage spectrum, S(f), is sinc-shaped and defined by

%sinc(f—{-;-) fe-W<f< fe+W

S(f)=1 Lsinc(f+{) —fe-W<f<—fc+W (1.2)

0 otherwise
where f is the acoustic frequency. The corresponding baseband spectrum is

sinc(f/W) -W<<f<W
S(f)= (1.3)

0 otherwise
If the spectrum were not truncated, the effective time-domain pulse would consist of exactly

Q f.-cycles. In this case, @ = 5 and f. = 75 hz cycles. In general, @ = f./W so that the



spectrum described in Equation 1.2 has a @ equal to 5 as well. The resolution of the
pulse is approximately 1/W. The truncation of the spectrum yields a resulting matched
filtered time-domain pulse with a smoothed rounded shape and a resolution of 72 ms. The
time-domain envelope is shown using a dashed curve. The time-domain sidelobes are below
a level of 0.1 giving a 19 dB peak-to-sidelobe level for this matched filtered signal. For
multipath receptions, the signal sidelobes can be a cause of self interference.

Figure 1.2 shows the envelope and phase of two consecutively received and processed
transmissions created from a computer simulation of 1 Mm range acoustic propagation
through the deep ocean. No noise was included in the simulation, and the low frequency
broadband source waveform described by Equation 1.1 was used. The early resolved wave-
front arrivals are apparent by the single pﬁlses early in the reception. The two arrivals vary
in envelope, but only slightly vary in time-domain phase. These changes are the result of
the time-varying ocean model. A change in time-domain phase of A¢ (cycles) corresponds

to a traveltime change (in seconds), Ar, of

AT = Ag/f., (1.4)

where f. is the acoustic waveform center frequency. A positive value of A7 indicates the
second transmission experienced an increase in traveltime. For the first arrival near 167.2
seconds, A¢ = 0.1 cycles which corresponds to a change in traveltime of 1.3 ms and a
change in average ocean temperature of 0.0006 C° along this particular propagation path.
This is an over simplification of the processing and analysis required to determine changes
in ocean temperature, but the main point of the procedure is accurately illustrated.

The average power of an early arrival is low. Shipping noise interferes with the reception
throughout the signal band. Long integration times are required to obtain sufficient signal
energy with respect to noise and interference levels to reliably estimate the received phase.
This is accomplished by transmitting long periods or coherently summing consecutive peri-
ods. If the time-domain phase is not stable, beneficial coherent integration times are short,
sufficient signal energy can not be accumulated, and time-domain phase measurements can
not be used for precise traveltime measurements. Phase instabilities can be the result of

transmitter/receiver motion or induced by physical ocean processes which contribute dy-
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Figure 1.2: The time-domain envelope (top) and phase (bottom) receptions
from two long range transmissions (solid and dashed lines).
Changes in the time-domain phase between the receptions can
be used to compute the average change in traveltime along the
propagation path. Each arrival corresponds to a unique propa-
gation path through the ocean.

namically to the ocean sound speed field. Motions of the transmitter and receiver can be
eliminated either through rigid moorings or tracking their movement and removing the ef-
fective movement from the received data via signal processing techniques. It is of critical
importance to determine if ocean processes can cause significant phase fluctuations during
expected coherent integration times of 20 minutes to a few hours.

From long-range acoustic propagation experimental results, the amplitude of individual
early arrivals is reported to fluctuate[4]. Histograms of amplitude values taken over long
time periods show a shape that is consistent with Rayleigh fading. An intuitive description
of Rayleigh fading is that a single arrival is composed of many “micromultipath” arrivals,
each taking a slightly different route from transmitter to receiver, and the Rayleigh ampli-
tude is the result of constructive and destructive interference of the multiple arrivals via
the dynamic relative traveltimes. In this case, the time-domain phase will be unstable.
Experimental results with a rigidly moored transmitter and receiving array show that the

period-to-period time-domain phase remains relatively stable over durations of significant



amplitude fluctuation. This observation is not consistent with the traditional Rayleigh
fading model.

It has been conjectured by Birdsall that it must be internal waves which modulate the
acoustic amplitude without significantly affecting the r ived time-domain phase. Internal
waves are the physical ocean process believed to have the most significant impact on the
received acoustic waveform for time scales under 12 hours, and therefore become the im-
mediate candidate causing the Rayleigh-like amplitude fading / stable time-domain phase
phenomenon. The internal wave field is composed of a series of horizontally propagating
modes. Internal waves are viewed by most researchers as a stochastic disturbance to the
ocean sound-speed field and are believed to significantly contribute to an ultimate uncer-
tainty in the time-domain amplitude and phase of the received acoustic waveform. Con-
siderable work has been expended for over thirty years to assess the impact that internal

waves have on long range acoustic propagation.

1.2 Stochastic versus deterministic modeling

To investigate acoustic propagation through deep ocean internal wave fields, it is neces-
sary to establish a model defining the impact of internal waves on the propagating acoustic
waveform. Deep ocean internal wave fields over long range propagation paths are a three-
dimensional, time-varying, complex, large-scale system. Researchers have primarily mod-
eled the internal wave field as a random field[5]-[12] . A deterministic model could entail
accounting for each internal wave that has a significant impact on acoustic propagation.
If manageable, the deterministic approach would yield detailed information on the inter-
nal wave field. This information is of interest to oceanographers, climatologists, and naval
forces. Also internal-wave induced variations on the received waveform once determined

could be removed to help understand other ocean processes that modulate the received

signal.
1.2.1 Stochastic modeling

Since the mid 1970s there have been continual advances in the understanding of deep-

ocean internal-wave fields and acoustic propagation through them[5]-[12]. Much of the early



success was based on a path-integral technique[5]. This technique exploits the geometrical
optics approximation for propagation in the absence of internal waves and integrates the
internal-wave effects along this path to estimate statistics on received acoustic observables.
Several experiments in the 1970’s provided theoreticians measured data on acoustic fluc-
tuation with which to compare their predictions[5]. The observations of these experiments
were the received acoustic phase and intensity spectra. The measured spectra agreed with
theoretical predictions from the path-integral theory, giving support to their conjecture that
internal waves significantly impact long-range, deep-ocean acoustic propagation[7].

Users of the path-integral technique understand the limits of its applicability. Recent
long-range, low frequency ocean acoustic propagation experiments have gathered precise
data that cannot be quantitatively characterized using path-integral techniques[11]. For
this reason, numerical simulations have been developed. A realization of a random field
is constructed to represent the ocean sound speed field. A propagation method is used to
simulate acoustic propagation through the field to a down range hydrophone. The field is
advanced discretely in time, each time simulating the received waveform. Time averages
are taken to estimate first and second order statistics of the received phase and intensity of
the wavefront arrivals.

An example of numerical simulation statistical estimates matching measured acoustic
reception statistics from a long-range propagation experiment is described in [12]. In this
work a 2D (range and depth) ocean sound-speed model was constructed, representing the
deep-ocean waveguide (deterministically) and the internal-wave field (stochastically) present
during the experiment. The internal-wave field model was composed of hundreds of internal
waves and was in agreement with the Garrett-Munk spectrum?®[6]. The parabolic equation
(PE) propagation method was used to simulate acoustic propagation. The experimen-
tal measurements showed unexpected acoustic fluctuations (significant variance in received
phase). The simulation results also showed these fluctuations, yielding strong evidence they
can be attributed to the internal-wave field. In summary, previous and continuing successful

work in internal-wave ocean modeling is based on characterizing the statistical properties

3The Garret-Munk spectrum is the current stochastic description of deep ocean internal waves. It was

developed in the early 1970’s and is based on limited experimental data.



of the received acoustic signal based on a random-field interpretation of the internal-wave
sound speed perturbations and is carried out using a 2D ocean model. It is important to

note that long time averages (over days) are taken to compute variance estimates.
1.2.2 Deterministic modeling

The research reported in this dissertation uses a different approach. Numerical simula-
tion is used to study acoustic propagation through internal-wave fields. The approach uses

3D modeling and deterministically models both the deep-ocean waveguide and the internal-

wave field. Physically, the internal-wave field is composed of a summation of internal wave
modes. The goal is to understand how specific internal waves impact the received acoustic
signal, as opposed to understanding how a stochastic parameterization of the internal-wave
field affects the statistics of the received acoustic observables.

A deterministic analysis of sound propagation through internal wave fields was initiated
in the mid 1970’s by DeFerrari et al[13]. This study was limited to an internal wavefields
impact on acoustic traveltime. By 1980, the deterministic approach was abandoned, and
the research community exclusively selected the path integral (stochastic) technique. The
deterministic approach was resurrected by Techau in the late 1980s. This framework was
employed to demonstrate that oscillatory perturbations to a range-invariant sound-speed
profile can cause the amplitude of early arrivals to change without significantly changing
the arrival traveltime (phase) [14]. Ray tracing was used in a 2D ocean model. Techau used
the concept of timefronts [15] to describe the model ocean impulse response.

In this dissertation, a numerical simulation tool was developed to simulate long-range
acoustic propagation through deep ocean internal wave fields. For long-range propagation
numerical simulations, the amount of computing power available is a major factor when
determining the detail of the ocean model. Since computing power will steadily increase
through the years and ocean processes are rather slowly moving (time scales of hours),
there is interest in how a given internal-wave field, which could be thought of as a single
realization of a random field, deterministically affects acoustic propagation in hopes that
future models can estimate and track large-scale ocean processes. This would not only yield

valuable oceanographic information, but also may allow signal processesors to estimate and



remove the effects of these processes on the received acoustic arrival, allowing for longer

coherent integration times and improved ocean process estimates.

1.3 Research goals

A goal of this research is to establish the feasibility that internal waves can cause early
acoustic arrivals to have fluctuating time-domain amplitude coincident with stable time-
domain phase. The interest in early wavefront arrivals is because these acoustic arrivals
are expected to be resolved and changes in traveltime can be monitored. The fluctuating
amplitude and stable phase phenomenon has been observed during long range acoustical
experiments and has been previously unexplained. This requires an establishment of a
numerical simulation tool for long—range'acoustic propagation that is in agreement with
fundamental physical principles as well as experimental observations. With such a tool in
place, it is a goal of this research to demonstrate the extent individual internal waves can

be identified via a deterministic interpretation of the received acoustic waveform.

1.4 Research path

Pursuing these research goals has revealed a wealth of information on modeling long-
range deep-ocean acoustic propagation and receptions. An overview of the research path
followed to meet the goals is listed and summarized. These topics are addressed in detail in
the dissertation and lead to a comprehensive contribution to the field of underwater acoustic
modeling and signal processing.

Initially, a numerical simulation tool is needed to simulate acoustic propagation through
deep ocean internal wave fields. The tool consists of three major components: a description
of the sound speed field (ocean model), simulation of acoustic propagation through the field
based on a numerical solution of the wave equation (propagation method), and signal pro-
cessing of the simulated received acoustic waveform. In developing these resources several

research products were developed and are listed below here.

O Importance to clearly define the physical and computational ocean models



O Development and validation of a low-frequency broadband ray-tracing propagation
method

O Derivation and validation of a 3D ray tracing propagation method
O Development and validation of a method to construct diffracted wavefronts

Given the ability to simulate long range acoustic propagation through internal wave
fields, it is desirable to determine if any class of internal wave modes significantly impacts
the acoustic reception. These internal wave modes will most likely be successfully identified

through a deterministic analysis of the acoustic reception.

O Established that internal waves that are spatially synchronized to an arrival’s acous-
tic path cycle length significantly affect the acoustic reception, while spatially non-
synchronized internal waves have little impact on the reception

O Established conditions under which spatially synchronized internal waves coherently
focus and defocus the acoustic wavefront in the vertical plane

O Established conditions under which spatially synchronized internal waves coherently
focus and defocus the acoustic wavefront in the transverse plane

O Comparisons of 3D and N x 2D modeling techniques demonstrate that complete 3D
modeling techniques are required to deterministically simulate long range acoustic
propagation through internal wave fields

Long-range acoustic propagation is simulated using a 3D time-varying computational
ocean model and a ray tracing propagation method. A reduced internal wave model is em-
ployed that includes one to a few spatially synchronized internal waves and several spatially
non-synchronized internal waves. The simulation results from the reduced internal wave
model are consistent with fundamental observations of long range acoustical experiments.
O Established the feasibility that internal waves can cause early acoustic arrivals to

have Rayleigh-like amplitude fluctuation coincident with stable time-domain phase

O Simulated early acoustic receptions were determined to consist of a single coherent
wavefront sheet for a 750 km range

O Experimental data shows consistency with the modeled data

The nature of the research was exploratory. A deterministic framework for long-range
acoustic propagation is established to host underwater acoustic signal processing algorithms.

This work contributes to establishing the direction of future signal processing algorithms
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such that they will contain a detailed deterministic description of the physics of acoustic

propagation.
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CHAPTER 2

Physical and computational ocean models

Table 2.1 shows the fundamental building blocks required to simulate acoustic propa-
gation through the ocean and analyze the received acoustic waveform. The basic process
consists of characterizing a physical description of the ocean features that impact acoustic
propagation. In this study, the physical motion of internal waves are characterized by a
second-order differential equation and associated boundary conditions. This description
is mapped to a 3D and time varying sound speed field called the physical ocean model.
For computer implementation, the physical ocean model is translated to a computational

ocean model. This is the sound speed field that is coded into the numerical simulation. It is

Physical ocean model

(Physical Characterization of the Sound Speed Field)

Computational Ocean Model

(Computer Implementation of the Sound Speed Field)

Propagation Method

(Numerical Simulation of Acoustic Propagation)

Signal Processing

(Extraction of Information from Received Acoustic Waveform)

Table 2.1: Building blocks of acoustic propagation simulation and analysis
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desirable to have these two ocean models equivalent, but most implementations make this
prohibitive based on limitations in computer instruction rates and memory. With a compu-
tational ocean model in place, the wave equation is numerically solved using a propagation
method! to simulate acoustic propagation. Several propagation methods have been devel-
oped [16]. Signal processing algorithms are developed to extract oceanographic or source
signal information from the received acoustic waveforms. The trend in the underwater
acoustic signal processing community is to incorporate details of the physical propagation
into the framework of the signal processing algorithms as evidenced in [4] [17] [18], and [19].
The propagation methods and signal processing techniques will be addressed in following
chapters. This chapter focuses on physical and computational ocean models describing the

deep ocean acoustic channel.

2.1 Physical ocean model

Many long-range sound experiments have shown that seasonal variations, internal waves,
tides, Rossby waves, currents, and mesoscale eddies impact acoustic transmission[5]. By the
mid 1970’s oceanographers had identified internal waves as the most important source of
variability on time scales less than 12 hours[6]. The physical ocean model employed here is
a combination of a range-invariant Munk sound-speed profile and space and time varying
perturbations to the sound speed profile induced by horizontally propagating internal waves.
These two contributions to the sound-speed field will be described independently, then

combined in a sensible way according to [5].

2.1.1 Munk profile

The Munk profile is a popular academic sound-speed profile for mid-latitude deep-ocean
regions[20]. The speed of sound is a function of temperature and pressure. Temperature
changes dominate the shape of the sound-speed profile near the ocean surface, and changes
in pressure dominate the shape of the sound-speed profile in the deeper ocean. These

competing effects cause a sound speed minimum typically near a depth of 1 km. The

1The phrase propagation method refers to a computer method to simulate acoustic propagation.
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sound speed does not typically vary by more than 5% over the water column, but this
variation is significant for acoustic propagation. Propagating sound is refracted toward the
depth of minimum sound speed, the sound channel axis, and thus, the deep ocean acts as
a waveguide.

The Munk profile, cyuai(2), describes the sound speed as it varies with depth. It de-
scribes the primary features of the deep-ocean channel[20]. The formula for the sound speed

as a function of depth is

Cvunk(2) = o[l + €(e™" + = 1)] (2.1)

where ¢g is the minimum sound speed, n = 2(z — z9)/b, 20 is the depth of the minimum
sound speed, € is a dimensionless parameter controlling the overall sound-speed variation,
and b is the buoyancy decay parameter. '

Two sound-speed profiles were used in this work. Their profiles are plotted in Figure
2.1. The solid curve represents a Munk profile commonly used for academic studies. The
following parameter values are used to define cyun(2): 20 = 1200m, co = 1480m/s, b =
1040 m, € = 0.006. The dashed curve represents a Munk profile fit to environmental data
taken during a long range acoustic experiment in the North Pacific. This data is known
as the SLICE 89 data[l12]. The following parameter values are taken to define csgo(2):

20=800m, ¢o=1478 m/s, b=533 m, €=0.003.

2.1.2 Internal waves

Internal waves are slowly moving density waves and are similar to the familiar ocean
surface waves, except they occur internal to the ocean. For a detailed description of internal
waves see [21].

The displacement of all internal waves with a given wavenumber, k£ in radians/meter,
can be described in terms of a series of horizontally propagating modes each of the form,
W;(k, z) cos(kzz+kyy—w;(k)t). Here z,y, z form a Cartesian coordinate system. W;(k, z)
is internal wave mode j of wavenumber k, and it describes the relative vertical displacement
of an isodensity with equilibrium depth z. The internal-wave angular frequency for each

mode is denoted by w;(k) in radians/second. Without internal waves the relevant acoustic
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Figure 2.1: Munk sound-speed profiles. The parameters for the two sound
speed profiles are defined in the text. The solid curve represents
cmunk(2), and the dashed curve represents csgo(2)-

propagation is in the X Z-plane, and the corresponding horizontal direction is the nominal
acoustic direction. The angle the internal-wave propagation direction makes with respect
to the nominal acoustic direction is denoted by 8, so that k, =k cosd and k, =ksin 8. This
geometry is described in Figure 2.2

The discrete set of internal waves for a given wavenumber, k, is obtained through
the “eigen” solutions of the following differential equation (derived from the equations of

motion)[21].
2Wi(k,z) o [ N*(z)—wi(k)
— g t =

The physically reasonable boundary conditions are zero vertical displacement at the surface,

) W;(k,z) =0 (2.2)

W,(k,0)=0, and at the bottom of the ocean, W;(k, z) =0.

The “shooting method” with a fourth-order Runge-Kutta integrator was used to solve for
the internal-wave functions and corresponding wavenumbers[22]. A Bessel function based
solution was also employed as a check[5]. The modes are ordered such that w;(k) < w;t1(k).

The inertial angular frequency, w;, is a function of the latitude and is introduced by including
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Figure 2.2: The Cartesian coordinate system, direction of acoustic propa-
gation, and internal wave propagation direction are defined.

the Coriolis acceleration into the equations of motion. The inertial frequency takes values
from 0 cph (cycles per hour) at the equator to 0.083 cph at the poles. The density gradient
is described in terms of the buoyancy frequency, N(z), the frequency at which an isodensity
displaced from its equilibrium position will oscillate.? A simple and accepted model of the

buoyancy frequency is to assume an exponential decrease with depth, z
N(z) = Noe~?/® (2.3)

where b is the buoyancy decay parameter and Ny is the extrapolated surface buoyancy
frequency. When an external force displaces water from the equilibrium positions, internal
waves result.

From measurements and analysis, Garrett and Munk have determined strengths for
normalized internal waves [6]. The modes W;(k, z) are normalized according to the following

condition

/0 *(N%(z2) - w?) W2k, 2)dz = 1 (2.4)

For a given wavenumber, k, a majority of the internal-wave energy tends to reside in the

lower-order modes; however, the higher-order modes may have an important affect on the

2Flectrical engineers would call this the impulse response frequency or pole frequency of a circuit.
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received waveform and thus cannot be ignored. Using a stochastic ocean model, Colosi et al
found that only internal waves of mode j < 10 significantly impact early arrival wavefront
statistics [12].

Consider M propagating internal waves present in the ocean that influence acoustic
propagation. The m!* internal wave has vertical shape W; ,(km, z) of the j** mode with
wavenumber k,,, and has angular frequency w; n, all related by Equation 2.2. In the model
this internal wave is given an amplitude and phase represented by the complex number
G;jm(km,0m), where 6, is the horizontal angle of travel of this internal wave relative to the
nominal acoustic direction.

The displacement of an isodensity by the m** internal wave is
(m(2,Y, 2,1) = Re (Gjim(Fm, O )Wim (kim, 2) e (bmcosdmthmysinin=um, (1)) (2.5
The aggregate displacement is the sum of these propagating internal wave displacements.

M
((z,9,2,t) = D (2,9, 2,0) (2.6)

m=1

Following [5], the change in sound speed induced by the internal waves is related to the

displacement of the isodensity by
bc(z,y,2,t) = 2.5¢, N*(2)((z,y, 2, 1) (2.7)

Three internal wave modes are plotted in Figure 2.3. The change in sound speed, é¢(z),
for a fixed time and z-y location is plotted. The assumed monotonically decreasing form
of the buoyancy frequency, N(z), in Equation 2.3 causes the the internal wave modes to be
an oscillatory function above some critical depth and an exponentially decaying function
below this depth. The critical depth is a function of the internal wave angular frequency
and is the depth where

N(2) = wi(k) (2.8)
since this is the condition the non-constant coefficient of the bracketed term in Equation 2.2
equals zero. This accounts for the majority of the internal wave induced change in sound
speed being in the shallower depths, typically within the first kilometer.

In the current research the complex magnitudes G; are picked to have reasonable or

interesting magnitudes consistent with the Garret-Munk spectrum. They are not random
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Figure 2.3: §c for three internal-wave modes W;(k,z2): left: ; = 1, k/2r =
1.315 cyc /km, w/27m = 2.00 cyc/hr center:j =4, k/27 = 2.046 cyc
/km, w/27 = 1.31 cyc/hr right: j = 10, k/2r = 0.231 cyc /km,
w/2m = 0.14 cyc/hr.

processes of time or space. The amplitude and propagation direction of the internal waves
do not change over the 750 km range and four hour interval used to study their impact on

acoustic propagation.

It is recognized that this coherence may not be consistent with stochastic internal wave

theory. It is part of the assumptions made to initiate a deterministic analysis.

2.1.3 Physical ocean model: an example

After establishing a set of internal waves to be included in the sound speed model, the

3D time-varying sound-speed field is completely specified by
c(z,9,2,t) = cpune(2) + 6¢(2, ¥, 2, ) (2.9)

where cyun(2) is defined in Equation 2.1, and éc(z, y, 2,t) is defined in Equations 2.3 - 2.7.
Equation 2.9 is the physical ocean model used for this study. A physical ocean model is
a representation of the sound-speed field based on the understanding of the physical ocean

processes under study. In other words, no compromises have been made to accommodate
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symbol definition Value
q internal-wave mode number 1-21
kn/27 internal-wave cyclic wavenumber 0.10 to 2.10 cyc / km
Om internal wave propagation direction angle 0° to 360°
Gjm(k,0) | internal-wave amplitude and phase (complex) | | G |< 10
wjm(k)/2r | internal-wave frequency 0.1 to 2.0 cph
M number of internal waves 1-7
w; /27 inertial frequency 0.05 cph
No/27m surface buoyancy frequency 3 cph
b buoyancy frequency decay parameter 1040 m
o minimum sound speed for Munk profile 1480 m/s
20 depth of minimum sound speed 1200 m
€ strength of deviation for Munk profile 0.006

Table 2.2: Summary of ocean model parameters

for computer limitations or the particular' propagation method. Physical ocean models are
3D and time-varying.

Table 2.2 lists the parameters required to define the physical ocean model. Column
three of the table defines the parameters or range of parameters used in the simulations.
The parameters in the first 4 rows of the table are selected for each of the M internal waves.
The internal-wave frequency, w;,m(k), is determined by specifying the wavenumber, &k, and
mode number, j, but is included for completeness. The later 5 rows of the table specify the

range-invariant properties of the deep ocean channel.

2.2 Computational ocean models

Researchers would like to use a computational ocean model consistent with the current
physical understanding of internal waves, a full complement of modes generated from Equa-
tion 2.2 in accordance with the Garrett-Munk spectrum. Unfortunately, modern computer
limitations do not allow implementation of a full 3D time-varying internal wave model over
megameter ranges using the method of Equation 2.9. To use this approach, compromises
must be made. Recently, Colosi et al used a 2D computational ocean model and represented
the Garrett-Munk spectrum by using hundreds of internal waves[12]. In this dissertation, a
full 3D time-varying computational ocean model was used, but the number of internal waves

was limited to make the model computationally implementable. Fortuitously, in Chapter
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4 it is shown that early acoustic arrivals are sensitive to a reduced class of (spatially syn-
chronized) internal waves. In some sense, it is possible that these internal waves may fairly
represent the Garret-Munk spectrum in that we are modeling the few modes (from a much
larger set of modes) that significantly impact this specific acoustic reception.

As previously mentioned, it is common to represent the physical ocean model using a 2D
computational ocean model in range and depth. This model is obtained from the 3D physical
ocean model by setting y = 0 in Equation 2.9. However, the actual 3D physical ocean model
corresponding to this 2D computational ocean model is one where all internal waves are
propagating in the direction of sound propagation (or the exact opposite direction); thus,
6, = 0° or 180°, so that k, = 0 and k¥ = +k,. However when y is set to zero the term
kmy sin 0, is effectively removed from Equation 2.9, and a new set of effective k£ values are
generated, namely K, cos §,,, that have corresponding modes, W ;,(km, z), and frequencies,

w;,m(k), that are not consistent with Equation 2.2.
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Figure 2.4: This is a plan view showing the planes used for N x 2D propa-
gation.

From another view, only when the physical ocean model is composed of internal wave
modes traveling in the nominal acoustic plane is a 2D computational ocean model con-

sistent with the physical ocean model. Other than this degenerate case, a 2D computa-
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tional ocean model does not maintain internal wave direction information. Moreover, and
very importantly, the 2D computational ocean model neglects transverse refraction. Since
d(6¢)/dy # 0, rays will refract out of the nominal acoustic plane, and this refraction carries
information on the internal-wave modes present in the field.

One way researchers model a 3D field is to propagate the sound over several 2D slices
of the ocean, this is called N x 2D modeling [24]. Figure 2.4 shows a plan view of the ocean
describing the N x 2D propagation planes. For a source at coordinate (z,y) = (0,0), the
acoustics are propagated within the planes depicted in the figure. Typically, N is on the
order of 10 or 100 depending on the range and variability of the ocean model. Since, for
each slice the sound is constrained to the 2D slice in which it originates, we have the same
physical interpretation as the case where the acoustics are forced to remain in a 2D plane.
For this reason, even considering an infinite number of 2D slices, results from this modeling
technique do not approach that of a 3D model when internal waves are present.

After establishing the ocean model to be studied, the wave equation must be solved over
this model to simulate acoustic propagation. There are several methods to accomplish this,
all with different and varying degrees of assumptions. The propagation methods suitable

for long range deep ocean propagation are investigated in the following chapter.
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CHAPTER 3

Methods of Propagation Simulation

This chapter addresses methods to simulate long-range acoustic propagation through
the deep ocean. The focus is on propagation methods (methods to simulate acoustic prop-
agation) suitable for 3D computational ocean models. This leads to an investigation of 3D

low frequency broadband ray tracing.

3.1 Overview: normal modes, PE, rays

Table 3.1 summarizes a selection of the propagation methods available to simulate acous-
tic propagation through 2D range invariant, 2D range variant, and 3D space variant compu-
tational ocean models. Each of the propagation methods will be addressed in the following
sections and supporting appendices. Three brands of propagation methods are addressed:
normal mode methods, parabolic equation (PE) methods, and ray tracing methods. A
propagation method not studied here is based on a direct discretization and numerical
integration of the wave equation[16]. This approach is computationally intensive and is
prohibitive for long range acoustic modeling and has been limited to the solution of special
short range scattering problems(16].

Validation of a propagation method within the framework of the computational ocean
model under study is critical. Subsequent analysis and processing carries little or no meaning
if the propagation method produces erroneous received acoustic waveforms. Unfortunately,
the only propagation method that yields a ground truth! received waveform is the normal

mode solution to the wave equation restricted to range invariant computational ocean mod-

IThe phrase ground truth refers to an a solution known to be exact.
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Computational
Ocean Models

Normal Modes

PE

Ray Tracing

2D

3D

Range invariant

Range variant

Space variant

Ground truth

Not ground truth.
Adiabatic approximation
used to extend

method to range

varying ocean models.

2D methods used in
an N x 2D
framework to
approximate

3D modeling.

Low-angle approximation.

Inaccurate modeling of
early wavefront arrivals

Popular Method.
Incorporates diffracted,
refracted, and reflected
energy; thus considered a
“ full physics” method.

Impractical
implementation. 2D
methods used in an
N x 2D framework
for 3D modeling.

High-frequency approx.
Accurate modeling of
early wavefront arrivals.
Does not incorporate
diffraction.

Computationally
efficient

Practical

implementation

Table 3.1: This table comments on the utility of the normal mode, PE,
and ray tracing propagation methods for 2D range invariant, 2D
range variant and 3D space variant computational ocean models.

els. Certain contrived range varying cases have “ground truth” solutions as well [25], but

these solutions do not offer assistance to validating propagation methods used in internal

wave field ocean models. To study the effect of an internal wave field’s impact on acoustic

propagation, a time and space variant computational model is needed. As a first step, can-

didate propagation methods must be benchmarked against the normal mode method in a

range invariant model to establish an upper bound on the accuracy expected for propaga-

tion through range varying models. Extensions of a propagation method to range varying

models should be handled cautiously. The normal mode propagation method is reviewed in

Section 3.2.

Simulating acoustic propagation through 2D range invariant computational ocean mod-

els (Column one of Table 3.1) will be addressed by benchmarking the PE and ray tracing
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propagation methods against the normal mode ground truth case. A specific benchmarking
exercise is described in Section 3.5 to illustrate the general result that the ray propaga-
tion method is superior to the standard PE propagation method for the modeling of early
wavefront arrivals after long range propagation through the deep ocean.

The PE propagation method uses a first-order approximate form of the wave equation
(called the parabolic wave equation) and Fast Fourier Transform techniques to efficiently
compute the vertical acoustic pressure field?, p(z,,2), in a range-wise recursive manner.
Said symbolically, p(z,,z) — p(z, + Az, z). Given a vertical acoustic pressure field at the
source, this solution is conducted repeatedly to march the vertical acoustic pressure field
in range over great distances. The computed pressure field represents a single frequency
waveform. Broadband acoustic propagation is simulated by repeating the procedure for
many (maybe hundreds) of frequencies within the acoustic operational bandwidth. In Table
3.1, the attributes listed for the PE propagation method for 2D range-variant and 2D range-
invariant computational ocean models actually apply to each method; that is, all 2D PE
simulation of propagation is regarded as inaccurate modeling of early arrivals and considered
a “full physics” method. The standard PE propagation method is reviewed in Section 3.3.

The standard ray tracing propagation method is based on a high frequency solution
to the wave equation. The propagating acoustic wavefront is computed by tracing rays.
Rays are traced by numerically integrating a set of differential equations. A large number
of rays at varying initial trajectories can be traced to simulate acoustic propagation of an
impulse from a source. In general, the impulse response is denoted by Az, y, z0.t.(Z, ¥, 2,1)
and defines the location (z,y, z) of the impulse after ¢ seconds of propagation from a source
located at (z,, Yo, 2,) emitted at time ¢,. The impulse response is evaluated by fixing one
or more of the impulse response arguments. The notation hz, 4, :,(Z,¥,2,|t = T') defines
the location of the impulse in space after T seconds of propagation3. For 2D computational
ocean models the y coordinate is suppressed, hs,.,(z,z |t = T). This impulse response
is called a timefront. The acoustic rays travel normal to the timefront. The notation

Ry yozo(2,t| 2 = X,y = Y) defines the impulse response to a fixed range (and transverse

2The vertical acoustic pressure field is the pressure across depth evaluated at a given range, p(zo, z).

3For time-invariant computational ocean models, the transmission time, t, is typically suppressed.
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Figure 3.1: The figure to the left shows the ray paths propagated through a
deep ocean channel. Clearly, the sound is refracted away from
the ocean surface and bottom allowing for successful long range
propagation. The figure to the right shows a timefront. The
rays were propagated each for 125 seconds. The ray endpoints
are connected to construct the current position of the front.
The accordion shape is typical for deep ocean propagation.

coordinate for 3D modeling). This is the impulse response measured by a vertical line array?
and for this reason serves great utility. This impulse response is termed a measurement
front. Similarly, the notation hz,y, ., (t | £ = X,y =Y,z = Z) defines the impulse response
at a single hydrophone at location (X,Y, Z) from a source located at (zo,¥,,2,). This is
termed the phone impulse respone.

In Figure 3.1, rays are traced through the range-invariant deep ocean sound-speed model,
cvunk(2). The rays traced have one degree separation in launch angle, the ray inclination at
the source and range between +£15°. The low angle acoustic energy travels near the sound
channel axis and lags the high-angle acoustic energy. The high-angle energy travels near
the ocean surface and bottom and is received first at a receiver down range. Energy outside
of this £15°-swath will reflect off the ocean surface and is assumed to not propagate over

long ranges. The source is located on the sound channel axis at a depth of 1200 m. The

*A vertical line array is a set of hydrophones positioned along a vertical line
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Figure 3.2: Measurement front at a range of 185 km through a deep ocean
sound speed profile. The number of totally refracted arrivals
and their traveltimes can be determined for a receiver at any
depth. An axial receiver, in this case at 1200 m deep, will
receive 7 pulses, two sets of two which will arrive simultaneously
at 124.38 and 124.98 seconds. There are six caustic points and
they are labeled on the figure. Exterior to the measurement
front is the non-ensonified region or shadow zone. This area
will not receive totally refracted wavefronts computed using ray
tracing techniques; however, diffracted wavefronts are known to
exist in this region from complete solutions of the wave equation
and experimental measurements.

ray paths paint the location the acoustic field has traveled, giving an intuitive view of deep
ocean acoustic propagation. It is clear that the rays are refracted away from the ocean
surface and bottom to channel the acoustic energy and allow propagation over long ranges.
The rays are traced each for a fixed time of 125 seconds. By connecting the ray endpoints
a timefront, hz, =om,z,=1200m(Z, z | t = 125s), is formed and is shown in Figure 3.1 to the
right. It is useful to determine the amplitude and phase along the timefront so that a source
signal can be convolved with the timefront to determine the source response. These issues

are addressed in subsequent sections.
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The ray paths create sharp boundaries between ensonified regions and non-ensonified re-
gions. This boundary is called a caustic and is the result of infinite-frequency computations
where diffraction effects are not incorporated. A caustic point is the location of which two
adjacent ray paths cross. Caustic points are identified on timefronts or measurement fronts
as places where two sheets connect at a cusp. The non-enosonifed regions are located above
surface-side cusps and below bottom-side cusps. The term “non-ensonified” is a misnomer
in that diffracted acoustic energy leaks into this region.

An example of a measurement front, bz —om,z,=1200m(2,t | £ = 186km) is shown in
Figure 3.2 for the range-invariant deep ocean sound-speed model cyyu.(2). The range of
186 km is approximately equivalent to 125 seconds of propagation. The measurement front
has a reversed shape with respect to the timefront in Figure 3.1. The caustic points, cusps,
and non-ensonified regions are labeled in the figure. The ray propagation method is further
described in Section 3.4.

Column 2 of Table 3.1 addresses propagation methods for 2D range variant computa-
tional ocean models. For this case, the PE propagation method has gained overwhelming
popularity in the research community of underwater sound propagation. Because both
diffracted, refracted, and reflected energy is modeled for low frequency acoustic signals,
researchers call the PE propagation method a “full physics” solution to the wave equation;
however, the construct of the PE recursion is not an exact solution to the wave equation.
The normal mode expansion loses its ground truth superiority for range variant computa-
tional ocean models; however, the adiabatic approximation can be employed to maintain the
normal mode construct through a range varying model [19]. The adiabatic approximation
assumes that modes do not transfer energy to other modes. In actuality, modes transfer en-
ergy during propagation. This is called mode coupling and is described by equations which
lead to a computationally expensive implementation[16]. Two-dimensional range-variant
ray tracing is computationally efficient but as with all standard ray tracing computations,
carries the burden of being based on a high frequency approximation. With current and
future long range, deep ocean acoustical experiments moving to lower acoustic frequencies,
ray propagation techniques have fallen out of favor. A comparison of propagation methods

in a 2D range varying computational ocean model is addressed in Section 3.7.
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If the complete dimensionality of the physical ocean model must be maintained in the
computational ocean model, a 3D space varying model is necessary. Any propagation
method suitable for 2D range varying computational ocean models can be artificially ex-
tended to a propagation method in a 3D computational ocean model by propagating within
a series of 2D computational ocean models at different azimuth angles from the receiver.
This is called N x 2D modeling as described in Chapter 2 and currently is the most pop-
ular model used to study 3D propagation. These computations confine the acoustics to
the 2D plane and do not allow the expression of the effects of transverse refraction on the
acoustic reception. For a deterministic investigation of long-range acoustic propagation it
is imperative to maintain the complete three-dimensionality of the ocean model, and N x
2D modeling leads to inaccurate results®.

Column 3 in Table 3.1 addresses propagation methods for 3D space varying computa-
tional ocean models. Normal mode propagation methods through a 3D computational ocean
model have been addressed within an N x 2D framework [26]. Others have propagated nor-
mal mode solutions along a given ray path in a 3D model. This approach is applicable when
the entire vertical acoustic pressure field is similarly transversely refracted, as expected to
result from sound speed changes caused by mesoscale eddies or bathymetric features but
not for sound-speed perturbations caused by internal waves. The PE propagation method
can be derived for complete 3D computations; however, the implementation is effectively
not implementable due to prohibitive computer run times and memory requirements[27].
The utility of ray tracing is it’s flexibility. By adding two additional first-order differential
equations to the suite of equations for numerical integration, ray tracing can be extended
to complete 3D computations. With present day computers, ray tracing is the only
viable 3D propagation method for 3D computational ocean models. With this
being the case, the high frequency approximation must be seriously addressed, and a pro-
cedure must be developed and validated to establish a 3D, low-frequency, broadband, ray
tracing propagation method. First, the normal mode and PE propagation methods are

reviewed followed by the development of 3D low frequency broadband ray tracing.

*This is demonstrated in Chapter 4
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3.2 Normal modes: the ground truth solution

For sound propagation through a range invariant sound speed profile, the normal mode
solution to the wave equation is essentially exact. Normal modes are physical, not only a
mathematical basis, in the sense that each mode describes an acoustic disturbance which
propagates horizontally through the environment independently of all other modes[28].

For a 2D range invariant computational ocean model, the normal-mode constructed

complex baseband time-domain waveform for a given depth and range is[16]

) w M o ' _
mode t)= el / 3 m s)Um — = eminm()z giznft .
Pmode(Zy2,t) = € ] S(f)mi=1 U (R, 25) Un(Q, 2) ()2 e e df (3.1)

This solution results from the separability of range and depth in solving the wave equa-
tion. The first M normal modes are summed. Each normal mode represents a broadband
waveform. The solution is not precisely ground truth in that an infinite number of normal
modes have not been included in the sum; however, for long range scenarios this solution
can be regarded as ground truth within certain bounds.

Constructing a received waveform using normal modes is straight forward once the
normal-mode functions, Un (%, z), and wavenumbers, kKm(Q2), for the desired sound-speed
profile and frequency band are obtained. The source at depth z, is specified by its spectrum,
S(f), which covers an operational bandwidth of f — W to fc + W. An unconventional but

useful notation to distinguish baseband functions from passband functions is established

Q=2n(f+f) (3.2)

All passband functions have angular frequency arguments, and all baseband functions have
cyclic frequency arguments. The normal-mode (eigen) functions and wavenumbers (eigen-
values) are obtained through normalized solutions of a second-order differential equation.
The solutions of the equation are obtained numerically, and this is no easy task when
accuracy is at a premium. To declare the normal-mode constructed waveforms for a range-
invariant sound-speed profile as the “ground truth” solution, the normal-mode functions
and wavenumbers must be very accurate, a large number of normal modes must be in-

cluded, and the receiver must be sufficiently distant so that the continuum of evanescent
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modes (the spatial transient due to a small source size) have died out. This concern is
further addressed in Appendix A.

There are an ensemble of ways to extend the normal mode solution to an approximate so-
lution in range-variant computational ocean models. Using the adiabatic approximation and
eigenvalue perturbation formula [19], one can map internal wave induced perturbations to
the sound speed profile to perturbations in the modal wavenumber. Ac(z,2) — Ak, (Q, z),
and &,,(Q)z is replaced by &, (Q)z + fOR AKm(R,2")dz’ in Equation 3.1. This technique
leads to a reasonably efficient implementation for internal-wave sound-speed perturbations;
however, as illustrated in Section 3.7, the utility of this technique is suspect for long range

propagation through internal wave fields.

3.3 Parabolic equation

Application of the parabolic equation (PE) is attributed to Leontovich and Fock for their
work in radio wave propagation in the atmosphere in the 1940s. The work was introduced
to the underwater sound community by Hardin and Tappert in the early 1970s[29]. The
method reduces the wave equation to first-order by making a “low angle approximation.”
The low angle approximation means the solution better characterizes energy departing
horizontally toward the receiver as opposed to energy that leaves at a launch angle, «a,
where the departure of sina from a makes a significant difference (see Figure 3.1 for a
ray interpretation of high angle and low angle acoustic energy). The first-order equation
is solved numerically by marching a single frequency solution in range and using efficient
Fast Fourier Transform techniques. Broadband computations are obtained by marching
solutions over an appropriate sampling of the frequency spectrum.

The standard single-frequency PE equation steps the vertical pressure field, p(z, z), by

way of the following relations

A0 —,—ﬂ—cz -1)Az ;coAT
Y(z1 + Az,2) = eeo ey A F (e 50 kzF(T(:rl,z))) (3.3)
p(z,2) = T(z;z) G(B2-3) (3.4)

The function, T(z, ), is the envelope of the pressure field, and F and F~! are the Fourier

Transform and inverse Fourier Transform operators. The operator F' transforms data from
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depth space, z, to wavenumber space, k. The use of the symbol % is not the internal wave
wavenumber, but this symbol is used as the parabolic equation wavenumber.

Just as employers of ray tracing must be concerned with the high frequency approxi-
mation, employers of the PE method must be concerned with the low angle approximation.
Development of high-angle PE methods is a topic of current research [30]. Another concern
of PE based implementations is the starting field, used to initiate the recursive marching

equation. The most popular starting field is the Gaussian Source[16].

Y(0,2) = ,/cge'%(?—.)’(‘—’-)’ (3.5)

This initial condition is widely used in practice because of its simple analytic form. A more
complex normal mode starter is recommended for benchmarking exercises. This starter is
defined by Equation 3.1 evaluated at £ = 0 where a normalization is executed to keep the

solution from infinity.

3.4 Ray tracing

Ray tracing has been used for many decades in underwater acoustics. Smell’s Law,
derivable from the ray solution to the wave equation that governs the refraction of rays, dates
back to 1626[16]. The ray tracing equations are derived from the wave equation by making
a high acoustic frequency approximation and assuming the acoustic amplitude and phase
are separable. Standard 3D ray tracing requires 6 first-order, coupled, nonlinear, ordinary
differential equations. The amplitudes along the wavefront can be calculated using a ray
endpoint density method (requiring no further differential equations) or using a differential
equation method (requiring four additional differential equations to be integrated along
with the ray equations). These methods are described in Section 3.4.2.

Low frequency ray tracing through ocean channels has only recently been addressed,
and these methods focus on accounting for acoustic energy which “leaks” into the shadow
zones® due to diffraction. The most popular method is called Gaussian beam tracing[31]
and is based on the idea that a ray should be considered as a statistically varying curve

with Gaussian statistics. This method is successful in accounting for acoustic leakage into

5The terms “shadow zone” and “non-ensonified region” are synonyms.
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the shadow zones in a qualitative way, but does not lead to precise computations. Other
techniques have been presented in the literature over the past 15 years [32][33].

In this work a 3D, low-frequency, broadband, ray tracing propagation method is devel-
oped. The remainder of this chapter focuses on this propagation method starting with the
standard ray tracing equations to compute the number of arrivals and corresponding trav-
eltimes at a down range receiver. Next, the calculation of the wavefront arrival amplitudes
is addressed for 3D computational ocean models, followed by time-domain phase calcula-
tions for each arrival. These results are used to construct received acoustic waveforms. The
low frequency broadband waveforms are benchmarked against a 2D range-invariant normal
mode computation, serving as ground truth. This leads to promising results, and an auxil-
iary technique to locate wavefronts resulting from diffraction effects is developed in Section
3.6. In Section 3.7 the low frequency broadband ray tracing method is evaluated in a 2D
range variant computational ocean model. Other propagation methods are compared for a
study of long-range acoustic propagation through internal-wave fields. Also in Section 3.7,
the 3D, low-frequency, broadband propagation method is discussed. This method has the
absolute advantage of simulating complete 3D time-varying propagation. Rays are traced
independent of the source spectrum and the procedure does not need to be repeated for
each frequency, reducing low-frequency long-range computation time by factors of two to

three orders of magnitude over normal mode and PE based propagation methods.
3.4.1 Ray tracing equations: number of arrivals and traveltimes

The ray solution to the wave equation leads to a computationally efficient propagation
method. Rays are launched from the source location at different initial trajectories defined
by the launch angles @, and v,, the ray inclination and ray azimuth angle at the source,
respectively. Figure 3.3 shows the rectangular coordinate system employed. z denotes the
range coordinate, y denotes the transverse coordinate, and z (positive downward) denotes
the depth coordinate. A single ray is drawn and the launch angles are indicated.

The ray path propagated through a 3D computational ocean model is determined

through the numerical integration of 6 coupled, non-linear, ordinary differential equations.
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Source

Figure 3.3: The rectangular coordinate system is shown. The coordinate
z denotes the range and is in the nominal acoustic direction.
The coordinate y denotes the transverse coordinate typically
not included in long range acoustic modeling. The coordinate
z is positive downward and indicates depth. Rays are launched
from the source with initial launch angles defined by inclination
and azimuth angles a and 1 respectively.

These standard ray tracing equations are defined in Equations 3.6 - 3.11.

Y (3.6)
&_2 (3.7)
22 (3.8)
= - —%%j—: (3.10)
2= —%Z—;j—i (3.11)

The initial conditions are the source location, (z,,¥,, 2,), the transmission time ¢,, and

initial auxiliary parameters defined in Equations 3.12 - 3.14.

P g aly
A= —2—Fe (3.12)

Cs
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sin a,

B, = (3.13)
Cs
cOos a, sin
D, = —%—w" (3.14)

The sound speed, ¢(z,y, z,t) is denoted by ¢, and the sound speed at the source at the time
of transmission is denoted c,. Commonly, the source is located on the sound channel axis
so that c, is set to ¢,. The auxiliary parameter A tracks the quantity 5’5%“‘3 This value
is strictly positive and division by this quantity does not lead to numerical instabilities in
the ray computations. The angles a and ¥ denote the ray inclination and azimuth along
the ray path. The ray tracing equations are derived from the wave equation in Appendix
B.

The equations are numerically integrated using a 4th order Runge-Kutta integration
routine[22], and a 5-tap finite impulse response (FIR) spatial filter is used to approximate
the partial derivatives[23]. The independent variable is range for the equations presented.
They can easily be manipulated such that the independent variable is time. Both fixed
step-size and adaptive step size algorithms were used to execute the numerical integration.

The number of rays that connect the source and receiver (termed eigenrays) deter-
mine the number of totally refracted wavefront arrivals. The corresponding traveltimes are
directly computed from integration of time along the ray path. The ray inclination, a,
evaluated at the receiver represents the angle of arrival of a wavefront and can be computed

from the auxiliary parameter B at the receiver
a=sin"!cB (3.15)
3.4.2 Amplitude computations

The amplitude of the acoustic waveform along each ray can be calculated using two
methods: a differential equation method and a ray end point density method. The differ-
ential equation method is introduced for 3D computations, and the ray endpoint density

method is developed.
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Differential equation method

The differential equation method is based on tracking the height and width of the cross
sectional area of an imaginary ray tube about the ray path. An intuitive description is
developed here, and the derivation is contained in Appendix B. Four first-order, coupled,
ordinary differential equations are needed to track these parameters. The cross section of the
ray tube is taken along the wavefront. The wavefront is perpendicular to the ray trajectory
and these three orthogonal components (r along the ray path, w along the wavefront, and
y) compose a 3D ray centered coordinate system. The relation between the ray centered
coordinate system (r,w,y) and the 3D rectangular coordinate system (z,y, z) is through «
the current ray inclination as described by Equations 3.16 and 3.17 and shown in Figure
3.4. For long range propagation only rays with azimuth launch angles, 1, near 0° need to
be considered and it is assumed that ¢ = 0° for the derivation of this amplitude calculation

method (detailed in Appendix B).

T =rcosa— wsina (3.16)
z=rsina+wcosa (3.17)
y=y (3.18)

The ray tube is constructed such that constant power is maintained over the cross
sectional area along the wavefront; thus, the cross sectional area is inversely proportional
to the average intensity of the acoustic waveform. Intensity, I, is a measure of the rate of
energy flow (power, p) through a unit area, AA, perpendicular to the direction of wave
propagation”.

I=p/AA (3.19)
This cross sectional area, AA, is monitored by its height along the wavefront coordinate,
w, and width measured along the transverse coordinate, y, using the symbols ¢ and v

respectively such that AA = qv. These parameters are labeled in Figure 3.5 where the

concept of a ray tube is illustrated.

A single plane wave is assumed.
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Figure 3.4: The ray centered coordinate system is shown in two dimen-
sions. The current ray inclination angle, a, defines the relation
between the ray centered and rectangular coordinate systems.

For a 2D computational ocean model only two additional differential equations are
required to track the height of the ray tube, g. The width of the ray tube is equivalent
to the propagation range. The differential equations for the 2D case are derived in [31],
and have been modified to agree with the coordinate system and independent integration

variable used in this treatment. The two differential equations required to compute g along

the ray are
dg s
ds —q 0%

The initial conditions are s, = 1/c, and g, = 0. The s parameter is updated proportional
to the curvature of the sound speed field along the wavefront coordinate w and determines
whether the local acoustic rays diverge (g—;% > 0) or converge (é—at%% < 0) to yield an in-
crease or decrease in acoustic power, respectively. By iteratively applying the chain rule to

construct a change of coordinates we find

d%c &c 4
S AB + 2 A%) (3.22)

0%

ow?

0%
= 62(81:2 B2 + 2
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ray tube

Figure 3.5: The ray tube with cross sectional area AA drawn in the ray
centered coordinate system. The values ¢ and v denote the
height and width of the ray tube and are used to compute the
acoustic amplitude along the front.

so that

ds —q, 0% _, 0% 8% 5
& = 4ca:2f t25:5;48 5247 (3.23)

Extending this method to three dimensions, the two differential equations required to

track the width of the ray tube are
dv u

E = -Z (3.24)
du —v 8%

The initial conditions are u, = 1/c, and v, = 0. The sound speed curvature along the
orthogonal coordinate, y, is monitored to track the width of the ray tube. These equations
are derived in Appendix B.

These equations are directly implementable using a Runge-Kutta integration routine.
The second-order partial derivatives are computed using a 5-tap FIR spatial filter. To
obtain the compact form for Equations 3.24 and 3.25, it was assumed the ray is traveling
in the nominal acoustic plane and that the ray tube does not rotate.

The acoustic intensity of the wavefront at a downfield location is proportional to 1/qv,
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and the acoustic amplitude is proportional to 1/,/qv. If the the sound speed gradient in the
y direction equals zero, then v is equivalent to the range and is consistent with cylindrical

spreading.
Ray endpoint density method

The ray endpoint density method to compute the amplitude is based on tracing a large
number of rays closely and uniformly spaced in launch angles. The density of the ray

endpoints at some down range receiver location can be used to calculate the received acoustic

amplitude. By launching a quiver of rays separated by small angles Aa, and A%,, the

AA.‘i

1

=
1

|~
L

—

\\

AR

Wavefront

Source

Figure 3.6: A set of rays are propagated 1 meter from the source. The
rays are uniformly spaced in launch angle by Aa, and A, in
inclination and azimuth respectively. Each ray represents an
equal area of the wavefront and an equal power contribution to
the acoustic waveform.

wavefront area associated with each ray 1 meter from the source is
AA; = Aa,A, (3.26)

where A A; is in units m? and the angles are measured in radians. This is sketched in Figure
3.6. Each ray represents an equal power contribution to the wavefront. The effective cross

sectional area of a given ray down range, denoted AA;, will contribute equal power across
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this area such that we have the relation through a conservation of power

IlAAl = I2AA2 (327)

where I; and I indicate the average intensity at the two points along the ray. The construct

is analogous to that of a ray tube and a similar diagram is shown in Figure 3.7. The cross

.
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A ray tube w
y
Figure 3.7: The ray tube is redrawn to describe the ray endpoint density

method. This method is based on the cross sectional area a
single ray represents along the wavefront as the acoustic ray
propagates down range.

sectional area A A, is computed by counting the number of ray endpoints which land within

an observational area A, centered at the receiver location.

AA; = Agys/N (3.28)

where N is the ray endpoint count within the observation area. Thus, AA; represents the

effective cross sectional area of a single ray’s tube at the receiver point. From Equations
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3.26, 3.27, and 3.28 the ratio of intensities is

Ig AAl Aao Al/)o
2= =N
Il AAZ Acba (329)

The acoustic amplitude relative to the amplitude one meter from the source is simply the

square root of Equation 3.29
Aa, A,

=4/N
¢ Aobs

(3.30)

To obtain a more local estimate, a two-dimensional Gaussian window centered on the
receiver location can be applied to the ray endpoint counts to weight their distance from the
actual receiver location. In summary, the amplitude of a received wavefront can be calcu-
lated by estimating the ray endpoint density about the receiver point. This is accomplished
by propagating a large number of rays uniformly and closely spaced in launch angles. To
guarantee sufficient accuracy, the density of the rays at the source is increased until the
computed power across the wavefront converges.

In Chapter 4, it will be of interest to calculate the change in received power due to the
presence of an internal wave field filling the propagation path. The ratio of the received
power with the internal wave field present and the internal wave field not present is equiv-
alent to the ratio of the ray endpoint counts within an equivalent observation area for the
two cases. By transmitting a set of rays that could potentially contribute to the down
range arrival, the change in power across the entire front can be efficiently computed by
simply taking this ratio at any hypothesized receiver location. For a given area, the ratio
of received acoustic power and received acoustic intensity are equal.

There are advantages to each amplitude calculation method. The differential equation
method is an infinite acoustic frequency calculation. The ray tube cross sectional area can
vanish yielding an infinite received acoustic intensity. The ray endpoint density method
is based on a finite frequency interpretation of the infinite frequency ray tracing compu-
tations. Through an implicit spatial averaging the ray endpoint density estimate does not
yield infinite intensity computations at a caustic; moreover, a significant advantage of the
ray endpoint density method is that it can be tuned to underestimate amplitude gains
at caustics, the point where the differential equation method predicts infinite amplitudes.

In Chapter 4, the results of acoustic propagation through internal wave fields show great

40



amplitude fluctuation of the received waveform using the ray endpoint density amplitude
calculation, since the ray endpoint density method conservatively evaluates amplitude fluc-
tuations it is an appropriate technique to use. If the differential equation method were
used, large amplitude fluctuations could be attributed to errors in the amplitude computa-
tion method.

When the amplitude is calculated away from a caustic, the two methods yield essentially
identical results. The differences in the amplitude computations using the two techniques

has been experimentally determined to be less than 1 percent or less than a tenth of a dB.

3.4.3 Time-domain phase computations

The received time-domain phase associated with a given wavefront arrival is a function
of the traveltime and number of caustic interactions. The traveltime for each ray path is
directly computed from the standard ray tracing equations by integration of Equation 3.6.

Consider the differential equation interpretation of computing the acoustic amplitude.
The cross sectional area of the ray tube becomes zero when the ray crosses at a caustic.
At this point, the amplitude is computed as infinite and is a well documented problem
with infinite-frequency acoustic amplitude computations. At the caustic point, the acoustic
phase advances by 90°. Intuitively, the ray-tube cross sectional area is proportional to the
reciprocal of the acoustic intensity along the ray. At a caustic, the ray tube area experiences
a sign change as the height or width of the ray tube crosses through zero. Since the acoustic
pressure is proportional to the square root of the intensity, propagation through a caustic
relates to a v/—1 change in acoustic pressure or equivalently a 90° change in phase. This
has been proven formally in [34]. What is interesting to note in this work is that caustics
can also occur due to a sound speed gradient in the transverse direction, allowing the width
of the ray tube to experience a zero crossing. The number of these caustics can be tallied
using the differential equation amplitude calculation method since encountering a caustic
corresponds to ¢ or v passing through zero (changing sign).

The time-domain phase of a single wavefront arrival may change over consecutive acous-
tic transmissions. Recall, the acoustic signal is transmitted periodically with a period equal

to an integer number of carrier cycles. If a time-invariant computational ocean model is em-
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ployed, the time-domain phase of a single wavefront arrival will remain precisely constant.
This likely is the case for a time-varying computational ocean model. The period-to-period
change in time-domain phase is computed by calculating the time-difference-of-arrival of
the wavefront over consecutive transmissions. The change in acoustic traveltime (seconds)

is mapped to a change in phase (cycles) through the center frequency, f. by
A¢p=AT/f, (3.31)

By tracking the wavefront using the differential equation method for amplitude calculation,
the total number of caustics encountered along the propagation path can be monitored.
If this number changes between transmissions, the time-domain phase can be advanced or
retarded by the appropriate number of quarter cycles. Please note that these phase changes
do not result in a change in traveltime, only a change in phase. This means that a change
in phase may not always relate to a change in traveltime and using changes in time-domain
phase as a precise measure of a change in traveltime may not be appropriate as discussed in
Chapter 1. If this is the case, traveltime measurements should be based on the peak of the
envelope of a resolved pulse reception since this measurement is independent of the caustic

phase.

3.4.4 Waveform construction

Waveforms are constructed by coherently summing the received wavefront arrivals at a
down range source. The number of arrivals and their traveltimes at any range and depth are
easily extracted from ray tracing results, as long as rays can be constructed to the point of
interest. The received acoustic waveforms are created by constructing a baseband complex
pulse at each ray-tracing arrival time. The phase of the pulse is the sum of the traveltime
delay and the caustic phase. A received waveform is constructed as a coherent summation

of arrivals.

As an example, the source and receiver are located on the sound channel axis at a depth
of 800 m and separated by 500 km. A range-invariant 2D computational ocean model is
used as described by cgsg(z) in Chapter 2. Rays are traced for the 500 km distance. The ray
endpoints are connected to form a measurement front. h,,—goom z.=om(z,t | z = 500km).

The measurement front is shown at the top of Figure 3.8. For a given depth, the number of
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Figure 3.8: The top figure shows the measurement front after 500 km of
propagation through a deep ocean sound speed profile with the
source on the sound channel axis, 800 meters deep. The number
of arrivals and the corresponding traveltimes can be determined
for a receiver at any depth. The intersection of the dashed line
and the measurement front define the arrival traveltimes for a
800 meter deep receiver. The bottom figure shows the envelope
of the 800 meter deep reception.

arrivals, N, and their traveltimes, 7,, are directly obtained. The amplitude of each arrival,
an, was computed using both the differential equation and ray endpoint density methods
yielding equivalent results. The source is spectrally centered at 75 hz and is sinc-shaped
with nulls at 60 and 90 hz and was defined in Equation 1.2. There are N = 32 arrivals for
a receiver depth of 800 m.

The number of sign changes of the ¢ parameter from Equation 3.20 is tallied along the
ray path for each arrival. This number is denoted by ¢,, and the caustic phase for the nth

received signal is ¢, /4 cycles. The ray-tracing constructed complex baseband time-domain

43



waveform is

N .

Pray(t) = ) ans(t — 7)™/ (3.32)

n=1
which is the convolution of the time-domain source signal and the phone impulse response.
Equation 3.32 represents the summation of pulses arriving without dispersion along each of
the eigenray paths. The time-domain pulses, s(t — 7, ), are complex valued, and p,qy(t) rep-
resents a model of a complex demodulated acoustic reception. It is easier to construct the
waveform in the frequency domain using the real baseband signal spectrum .5~’(f), the base-
band equivalent of the passband spectrum S(f). The corresponding baseband frequency-
domain description is

N
Pray(f) = 3 anS(f)e 2 HSe)mngicnr/2 (3.33)

n=1

The envelope of the received waveform is shown in the bottom of Figure 3.8. The early wave-
front arrivals are resolved while the terminal section is composed of many unresolved wave-
front arrivals. It is typical for long range acoustic receptions to begin with relatively weak
wavefront arrivals and build to a relatively loud terminal arrival known as the crescendo.

The amplitudes of the thirty-two arrivals were calculated by both the differential equa-
tion method and the ray endpoint density method. These methods yield nearly identical
results for this reception, deviating less than 0.02 dB for any arrival amplitude computation.
The only time these results differ is where the receiver is located within meters of a caustic,

when the differential equation based method will yield erroneously large amplitude results.

3.5 2D range invariant benchmarking

For long-range acoustic propagation through the deep ocean channel, it is demonstrated
that ray methods yield essentially identical arrival structures and sound-field amplitudes as
the normal mode (ground truth) propagation method.

Benchmarking propagation methods against the normal mode solution to the wave equa-
tion for range-invariant cases is a critical step to acoustic modeling. Range invariant bench-
marking exercises compare the envelope and phase of the computed received waveform from
different propagation methods at a specified transmitter/receiver geometry and source sig-

nal.
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3.5.1 Ray tracing benchmarking
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Figure 3.9: A measurement front after 3 Mm of propagation through a deep
ocean sound speed profile. The source is located on the sound
channel axis, 800 meters deep.

A single benchmarking scenario is illustrated to demonstrate the general results. The
range-invariant computational ocean model is described by the sound-speed profile, ¢ss5(2),
which is defined in Chapter 2. The source is located on the sound channel axis, z; = 800
m. The receivers are located at a range of 3 Mm. The source signal is low frequency and
broadband and is described in Equation 1.2. The simulation sampling rate is 240 Hz, and
the signal will consist of 4096 samples allowing the simulated time-domain waveform to
cover over 17 seconds.

The envelopes of the low-frequency broadband ray and normal-mode constructed wavé-
forms are plotted in Figure 3.10. The receiver depth is 800 m. The ray constructed waveform
is composed of 171 arrivals and spans 15 seconds. Both the differential equation and ray
endpoint density amplitude calculation methods yield essentially identical results. In com-
paring the 171 amplitude calculations using the two methods, the computed amplitudes do

not differ by more than 0.05 dB, where the maximum and minimum amplitudes computed
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Figure 3.10: The top figure shows the envelope of the simulated acoustic
reception at a depth of 800 meters using the ray propagation
method. The bottom figure shows the envelope of the sim-
ulated acoustic reception at a depth of 800 meters using the
normal mode propagation method.

using either method differ by more than 26 dB. Returning to Figure 3.10, the normal-mode
and ray waveform envelopes are very similar. Only 65 normal-modes were used, and the ear-
liest arrivals are not present in the normal-mode constructed waveform because the higher
(not included) normal modes have faster group velocities, arrive earlier, and construct the
early wavefront arrivals.

Taking a close look at the crescendo in Figure 3.11, the waveform envelopes are essen-
tially exact. The ray constructed waveform is plotted using a solid line, and the normal-
mode constructed waveform is plotted using a dashed line. The envelope match is absolute.
The waveforms were not normalized. The arrivals in this section are unresolved. The in-
dividual ray-arrival phases are critical in determining the envelope shape. If the caustic

phase were not added to each arrival, the ray constructed waveform envelope would not be
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similar to the normal-mode constructed waveform.
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Figure 3.11: The top figure shows the envelopes of the ray constructed
waveform (solid) and normal mode constructed waveform
(dashed) for the last second of the reception, crescendo. The
two envelopes are essentially identical. The bottom figure
shows the time-domain phase of the ray constructed waveform
(solid) and normal mode constructed waveform (dashed).

The phase comparison in the bottom plot of Figure 3.11 shows that the time-domain
phases are very similar. The absolute phase differs by 0.03 cycles or 0.4 ms. This is within
the expected tolerance of the computations. This small phase error decreases with shorter
range propagation.

In Figure 3.12 the middle section of the arrival is investigated. The same dashed/solid
convention is used to identify the curves. The waveform envelopes are essentially identi-
cal. The amplitudes assigned to the individual arrivals using the ray endpoint density and
differential equation methods are in excellent agreement with the normal-mode solution.
Arrivals are unresolved after ¢ = 2027.25 seconds. The absolute time-domain phase com-
parison shows the same bias as seen in Figure 3.11, suggesting that the phase (traveltime)
difference is predominantly independent of launch angle.

In Figure 3.13 the early section of the arrival is shown. This is the only section of

the arrival where the envelopes significantly differ. This is due to the number of normal
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Figure 3.12: The top figure shows the envelopes of the ray constructed
waveform (solid) and normal mode constructed waveform
(dashed) for a middle section of the reception. The two en-
velopes are essentially identical. The bottom figure shows the
time-domain phase of the ray constructed waveform (solid) and
normal mode constructed waveform (dashed).

modes included in the normal-mode constructed arrival (dashed line). Sixty-five modes were
included. The time-domain phase of the normal-mode constructed waveform is not constant
under a pulse but becomes flat as the amplitudes match the ray waveform at t = 2018.75
seconds, indicating 65 modes are adequate thereafter.

For this example, 120,000 normal modes are required (M = 200 modes each at 60
frequencies based on a 0.5 Hz sampling of the 30 Hz wide broadband source) to accurately
represent the complete arrival structure 8 The arrival is equivalently represented by 171 ray
arrivals, albeit 30,000 rays were traced to construct the measurement front. The normal-
mode constructed and ray-constructed waveforms are identical for the pre-crescendo arrivals.
Thus, ray and mode methods should be seen as complementary. Only a relatively few modes
are required to construct the crescendo portion of the arrival where the rays are highly

unresolved. Also, only a relatively few rays (and many modes) are required to construct

®Normal modes greater than M = 200 will interact with the ocean surface and/or bottom and are

assumed to not travel long ranges without being catastrophically attenuated.
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Figure 3.13: The top figure shows the envelopes of the ray constructed
waveform (dashed) and normal mode constructed waveform
(solid) for the early part of the reception. The two envelopes
differ because an insufficient number of normal modes was in-
cluded in the modeling. The bottom figure shows the time-
domain phase of the ray constructed waveform (solid) and nor-
mal mode constructed waveform (dashed). The disagreement
is due to the insufficient number of normal modes included in
the modeling

the pre-crescendo arrival structure.

These comparisons have been repeated at many source and receiver depths for several
range-invariant sound speed profiles. The results are similar to the set presented with one
class of exceptions. For off-axis source or receiver, since diffraction effects are not included
in the ray-tracing solution, as much as the last 0.2 seconds of the crescendo constructed
using each method do not accurately match. However, prior to this last section of the
crescendo, the waveforms accurately match, including throughout times when the ray ar-
rivals are unresolved. For the case demonstrated, the receiver is not near any caustics and
offects from diffraction are not significant. There are many corrections one can apply to
ray tracing results: beam displacement, Gaussian beams, caustic/shadow zone corrections,
and diffracted rays[35]. None were applied for this comparison. In Section 3.6 a method

to include all diffracted wavefronts is developed. Prior, the PE propagation method is
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benchmarked against the normal mode method for this range-invariant case.
3.5.2 PE benchmarking

The PE propagation method has enjoyed a rather unchecked wave of popularity for low
frequency acoustic propagation studies. The standard PE method has been the primary
algorithm used by researchers to implement a PE based propagation method prior to 1990.
Improvements on the standard method remains a topic of current research, and many
improvements in accuracy have been achieved at the expense of computation time. In this
section, through a range-invariant benchmarking exercise, it is highlighted why the standard
PE propagation method is not suitable for a deterministic analysis of long range acoustic
propagation.
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Figure 3.14: The figure shows the normal mode (solid) and PE (dashed)
constructed waveform envelopes for an axial reception after 1
Mm propagation through a deep ocean sound speed profile.

A similar model is used as with the ray tracing benchmarking example. The same 2D
computational ocean model, csso(z), was used, and the source and receiver were located
on the sound channel axis. The only difference is that in this case, the range is reduced
from 3 Mm to 1 Mm. The same acoustic signal is used as described in Equation 1.2. The

envelopes of the normal mode constructed waveform (solid line) and the PE constructed
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Figure 3.15: The top figure shows the normal mode constructed waveform
envelope (solid) and the PE constructed waveform (dashed)
for the last two seconds of the reception. The envelopes are in
agreement throughout the crescendo where the PE low angle
approximation is adequate. The earlier arrivals, corresponding
to high angle ray arrivals, is not accurately modeled using the
standard PE propagation method. The bottom figure shows
the time-domain phase for the normal mode (solid) and PE
(dashed) constructed waveforms. The agreement is best near
the crescendo.

waveform are shown in Figure 3.14. The normal mode constructed waveform can fairly be
considered as ground truth after the 8.0 second time mark based on the limited number
of normal modes included. The early arriving (high angle) wavefronts show a significant
difference in arrival time. This significant error for long-range deep ocean propagation has
been reported in [36]. It is clear that the high-frequency approximation for ray tracing is
not nearly as critical as the low-angle approximation for the PE propagation method for
the scenario evaluated.

In Figure 3.15, the time-domain envelope and phase of the waveforms are shown for the
last two seconds. The envelope match is good for the terminal arrivals. These correspond
to the low-angle rays and fit well within the low-angle assumption to form the standard PE

recursion. The time-domain phase differs only slightly near the terminal arrival, but varies
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significantly with earlier arrivals. The obvious arrival time discrepancies in the envelope
comparison reflect a traveltime induced time-domain phase discrepancy.

The discrepancy in both the time-domain envelope and phase of the acoustic arrival
compared against the ground truth solution increases with transmitter receiver separation.
Additional traveltime (a waveform shift to the right along the time axis) corresponds to a
decrease in time-domain phase. Although the standard PE propagation method is termed a
“fast” solution to the wave equation, run times are 100 to 1000 times longer than for the ray
propagation method for the cases studied by the author. Since the ray method computes
the ray paths and amplitudes independent of the source spectrum, significant computations
are saved for simulation of broadband acoustic propagation. Along with the computational
savings, the ray tracing propagation method is more accurate for long range deep ocean
propagation. In all of the simulations, the step sizes to integrate the differential equations
were decreased until there was no longer a change in the final computations®.

The PE propagation method can not fully incorporate a time-varying computational
ocean model. The sound speed field must be frozen as the acoustic signal propagates through
the medium. A larger disadvantage is that the PE propagation method suffers a significant
increase in computation time and memory requirements to move to a 3D computational
ocean model.

Since we are ultimately interested in a deterministic analysis on the acoustic propagation
through the ocean model, based on the benchmarking results and with the computing power
available, we move to use of the ray tracing propagation method.

For the low frequency, broadband acoustic signals of interest the high-frequency approx-
imation is reasonably met; however, ray tracing equations do not incorporate diffracted

energy. The next section develops a method to model diffracted wavefronts.

3.6 Diffracted wavefronts

Two extensions of standard ray tracing to match full-wave normal-mode computations

for acoustic propagation through a range-invariant sound-speed profile are described. A

9Fven though the PE propagation method yields inaccurate results for the early acoustic arrivals, the

method does converge to a stable solution as the numerical step size is decreased.
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received acoustic waveform can be described solely in terms of refracted and diffracted
wavefront arrivals. Previous ray modeling in this dissertation has addressed only refracted
arrivals which make up the vast majority of the received acoustic energy. The first extension
of standard ray tracing is well known to researchers in the field of ocean acoustic propa-
gation. A diffracted wavefront in the shadow zone is modeled as a wavefront. However it
is necessary to review this work to present the second extension to standard ray tracing.
The well-known diffracted wavefronts above/below caustics in the shadow zone
are used to define another class of diffracted wavefronts which have not been

previously modeled using ray tracing techniques.
3.6.1 Standard ray-tracing constructed waveform

Using standard ray-tracing computations, broadband acoustic receptions are modeled
by identifying the number of arrivals (eigenrays), their amplitudes, traveltimes, and caustic
phases, as described in Section 3.4. The source and receiver locations as well as the source
spectrum must be known. Without considering diffraction, acoustic waveforms can be con-
structed that match normal-mode computations exceptionally well, except possibly during
and after the crescendo where diffraction effects can be significant.

Figure 3.16 shows the measurement front for a deep-ocean range-invariant sound speed
profile, cyunk(2). The source is located at the sound-channel axis (a depth of 1200 m), and
the receiver is at a range of 500 km. A hydrophone on the sound-channel axis will receive
18 arrivals. The traveltimes are specified where the measurement front crosses the receiver
depth. The simultaneously received arrivals combine coherently since they share the same
traveltime and caustic phase.

The cusps of the measurement front represent caustic points and the area above the
surface-side cusps and below the bottom-side cusps is termed the “non-ensonified region”
or “shadow zone,” the area where no refracted acoustic energy is present.

For a hydrophone at a depth of 500 m, there are 12 totally refracted multipath recep-
tions, from 335.7943 to 337.5682 seconds. Standard ray-tracing results do not incorporate
diffraction of acoustic energy into the shadow zones, but exact solutions of the wave equa-

tion and other propagation techniques verify the existence of this acoustic leakage[32]. In
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Figure 3.17, the envelopes of the normal-mode and ray constructed waveforms are plotted.
The spectrum of the waveform is centered at 75 Hz and is sinc-shaped and bandlimited to
the first nulls at 60 and 90 Hz as defined in Equation 1.2. The normal-mode constructed
waveform (dashed line), which incorporates diffraction, shows a trailing arrival at 337.7356
seconds, while the ray-constructed waveform (solid line) does not model this arrival. Re-
turning to Figure 3.16, we see this arrival is precisely coincident with a caustic cusp (as
indicated by the time marker at 337.7356 seconds). For the waveforms in Figure 3.17, only
65 normal-modes were included in the normal-mode constructed waveform causing the early

arrivals to be inaccurately modeled.
3.6.2 Diffracted arrivals above/below caustics

White and Pedersen’s evaluation of acoustic energy in the shadow-zone demonstrates[33]
that wavefronts can be used to model acoustic energy in the shadow zones above/below
caustics. The leakage is in the form of an arrival with essentially the exact traveltime
of the caustic cusp. In Figure 3.18, we modify the measurement front of Figure 3.16 to
include the diffracted arrivals by extending spurs vertically from the cusps. The diffracted
front also affects the ensonified region, but this is essentially insignificant. For an arrival at
500 m, the corrected model predicts three diffracted arrivals with traveltimes of 337.7356,
337.8005, and 337.8373 seconds. The earliest diffracted pulse arrives approximately 0.17
seconds after the last ray-predicted arrival. White and Pedersen additionally state that the
caustic phase attributed to the arrival (above or below) a caustic cusp should advance 45°
and the amplitude should fall off rapidly with depth away from the cusp.

In Figure 3.19, the envelope and phase of the 550 meter deep reception is plotted, and we
focus on the last second of the reception. The normal-mode constructed waveform is plotted
using a dashed line and the corrected ray constructed waveform is plotted using a solid line.
By incorporating the three additional diffracted arrivals, a waveform is constructed which
is in agreement with normal-mode solutions; although, the last two arrivals are quite weak
and not visible on this plot. Several other simulation configurations have been studied to
verify that the arrivals have traveltimes coincident with the caustic cusps and have the 45°

additional caustic phase.
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Figure 3.16: Measurement front: 1200 m source, 500 km range. There are
9 surface-side caustic cusps and 8 bottom-side caustic cusps.
The shadow zone is exterior to the measurement front. A 500
deep receiver will not receive a totally refracted arrival with
a traveltime of 337.7356 seconds, but known extensions to the
ray tracing propagation method will predict a diffracted arrival

with this traveltime.

3.6.3 Reciprocity

Since acoustic propagation is reciprocal for our ocean model, it will be interesting to de-
termine where the well-known diffracted fronts above and below caustics map for reciprocal
transmissions. From a ray perspective, reciprocity means that the ray from a source located
at point p, and passing through point p, at traveltime T, can be traced backwards from

p, over the reversed path through p, with identical traveltime 7. In terms of the phone

impulse response the statement of reciprocity is
hTOyzo(t I xr’zr) = hzr,zr(t I To, zo) (3.34)

Consider a source at depth z,, not on the sound channel axis. (An axial source will turn
out to be trivial.) The goal is to map the location of the known-to-exist diffracted fronts
above/below the cusps into the measurement front for the reciprocal transmission. This is

accomplished in a two-step procedure and will be further described by way of an example.

55



<] TR § | R TR R R RS PRSI RE RS AT SRR ER LA EE S LRt | s e —
(-] SRR Solid line: ray constricted waveformy - -« - - -« s ios s e -
[ oLk R Dashetfi dine: Normal%—mode'cons-trtfrcted waveforr::n ---------------------------- -

Envelope

- = 1
835 336 336.5 337 337.7356
Traveltime (seconds)

Figure 3.17: Envelopes of normal-mode (dashed) and ray (solid) con-
structed arrivals. Source depth 1200 m, range 500 km, receiver
depth 500 m. The normal mode solution to the wave equation
includes both refracted and diffracted energy. The normal
mode constructed waveform shows an arrival with a traveltime
of 337.7356 seconds where standard ray tracing computations
do not model this arrival.

Step P: Calculate the measurement front for the source depth, 2,, and range R. This
will be called the primary front, h,,(z,t| z = R).

Step H: Consider a hypothetical source depth 2, and calculate the corresponding mea-
surement front for the range R. Call this the hypo front, h. (z,t| z = R). By reciprocity,
the traveltimes to depth z, on the hypo front correspond to the traveltimes on the primary
front to depth z,. h, (t | %o,2,) = h.,(t| zr,2:). If 2, lies exterior to any caustics of the
hypo front, say at times t.[n], add the diffracted eigenray endpoint “z, at time ¢,[n]” to the
primary front.

Repeat Step H for all reasonable source depths. This yields an extension of the primary
front consisting of diffracted arrivals whose traveltimes are greater than all of the totally
refracted arrivals.

A brief example will make the procedure clear. Consider the measurement front from a

2z, = 500 m deep source at a range of R = 500 km shown in Figure 3.20A. The wavefronts are
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Figure 3.18: Measurement front: source 1200 m, range 500 km (solid).
Diffracted Measurement fronts (dashed). For a 500 meter deep
receiver, three diffracted wavefronts will be received with trav-
eltimes of 337.7356, 337.8005, and 337.8373 seconds.

the result of standard ray tracing and are totally refracted. Let this be the primary front of
Step P. For Step H, consider the hypo front from a z, = 1200 m deep source. This is shown in
Figure 3.16. Evaluating the arrival times at a depth of z, = 500 m, three diffracted arrivals
will be present at t,[1] = 337.7356,,[2] = 337.8005, and ¢,[3] = 337.8373 seconds. These
points (marked by x) are added to the primary front at a depth of z. = 1200 m. This is
shown in Figure 3.20B. Step H is repeated. Consider the hypo front from a z, = 1400 m deep
source shown in Figure 3.20C. Evaluating the arrival times at a depth of z, = 500 m, three
diffracted arrivals will be present at t,[1] = 337.7201,¢,[2] = 337.8124, and ¢,[3] = 337.8322
seconds. These points are added to the primary front at a depth of z, = 1400 m. This is
shown in Figure 3.20D where we have connected the diffracted arrival points and the shape
of the diffracted front begins to take form.

After conducting Step H across all reasonable source depths, (Step H was executed for
2z, = 600 to 2600 meters in 20 m increments) the diffracted measurement front is formed for a
source at a depth of 500 meters and a range of 500 km. In Figure 3.21 the measurement front

corresponding to the totally refracted rays is plotted using a solid line and the diffracted
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Figure 3.19: Last second of reception. Envelope and phase of received wave-
forms: normal mode (dashed) corrected ray (solid). Source
1200 m, range 500 km, receiver 500 m. The amplitude of the
diffracted ray arrival was selected to match the normal-mode
constructed waveform.

measurement front, computed using reciprocity, is plotted using a dashed line.

In Figure 3.22, normal modes are used to construct the waveform envelope in depth-time
space analogous to a ray constructed measurement front. The thin lines of the measurement
fronts have been effectively replaced by the actual pulse structure. The logarithm of the
envelope is displayed to enhance the weaker diffracted fronts. This enhances the visibility of
the weaker fronts, but also enhances the time-domain sidelobes of the stronger arrivals. A
gray scale is used, and light intensities indicate loud arrivals while dark intensities indicate
weak arrivals. By comparison with Figure 3.21, the first two diffracted fronts are visible.
The third diffracted front is as weak as the time-domain sidelobes of the previously arriving

pulses and cannot be made visible through the log enhancement.

3.6.4 Discussion

The method identifies the traveltimes, caustic phases, and direction of arrivals of these
additional fronts impinging on an array at range R. The diffracted fronts extend the ac-

cordion shape mimicking the totally refracted fronts. Using normal mode theory, we have
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Figure 3.20: Example of P and H Steps to construct diffracted wavefronts.
A: Step P primary front. B: primary front and three diffracted
traveltime and depth points marked by an x. C: hypo front for
2, = 1400 m. Three diffracted traveltimes are evaluated at the
caustic cusps below a depth of 500 m. D: Traveltimes obtained
from C are mapped into the reciprocal space at a depth of
1400 m. This step is repeated for many depths to construct
the complete diffracted front.

determined that the amplitudes of the diffracted arrivals can be greater than the loudest
totally refracted arrival or can be essentially insignificant.

In Figure 3.23, results from standard PE propagation method are compared to the nor-
mal mode constructed waveform for the last second for this same scenario. As previously
discussed the standard PE method does not yield comparable results for high-angle propa-
gation. Since the source is at a depth of 500 m, there is not a direct axial path from source
to receiver where the PE method yields reliable results. Nevertheless, the PE results do
show the primary diffracted wavefront, a benefit the standard ray tracing computations do

not have. The time-domain phase is shown, and there is a difference of approximately a
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Figure 3.21: Measurement front: source 500 m, range 500 km (solid).
Diffracted wavefronts, obtained using reciprocity (dashed).
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Figure 3.22: Normal-Mode computed wavefront envelope encoded in gray
scale. White indicates a loud arrival and black indicates no
sound. The first two sheets of the diffracted wavefront are

visible.
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Figure 3.23: The top figure shows the normal mode (solid) and PE (dashed)

constructed waveform envelopes. The PE propagation method
does account for the diffracted wavefront. The bottom fig-
ure shows the time-domain phase for the normal mode (solid)
and PE (dashed) constructed waveforms. The time-domain
phase differs by more than a quarter of a cycle for the primary
diffracted wavefront arrival.
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Figure 3.24: The broadband mode filter signal envelopes from modeled re-
ceptions along a 40 phone vertical line array are shown for nor-
mal mode constructed waveforms (solid) and ray constructed
waveforms (dashed). The filter was designed to pass mode 1
for the top figure, mode 6 for the second figure and mode 25
for the bottom figure.

quarter cycle for the diffracted front. The diffracted ray constructed waveform time-domain
phase precisely matched with the normal mode (ground truth) waveform.

Another benefit of a ray-based reciprocal method over PE computations for computing
the diffracted and refracted energy is that the exact number of arrivals and their travel-
times, phases, and direction of arrival can be computed whether or not the arrivals are
resolved. Please note that the PE propagation method produces the received pressure field
and does not give specific information on the individual wavefront arrivals. For long range
propagation (multiple megameters) the diffracted arrivals will be unresolved.

By constructing acoustic arrivals at several depths along a vertical line array, using the
ray methods described in this chapter, broadband mode forming[37] can be used to monitor
single normal acoustic mode arrivals. Broadband mode forming is a vertical spatial filtering

procedure which exploits the orthogonality of the normal acoustic modes as a function
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of depth to extract single mode receptions. Figure 3.23 shows the broadband mode filter
output for normal modes 1, 6, and 2510, The precise normal mode output envelope is drawn
using a solid line and the normal mode filtered ray constructed waveforms are drawn using a
dashed line. The low-frequency broadband source as described in Equation 1.2 is used and
propagated over a 1 Mm propagation path. Acoustic mode 1 arrives last and is dispersed
the least of all modes. Higher modes arrive earlier and are increasingly dispersed!!.

The broadband mode filtered outputs using the ray constructed waveforms yield nearly
identical arrival envelopes as compared to the normal mode (ground truth) envelopes. It
is useful to have acoustic waveforms described in terms of wavefront arrivals because much
of our understanding of the impact of ocean processes on acoustic propagation is based on
amplitude and phase fluctuations of wavefront arrivals. These fluctuations can be induced
on a ray-constructed waveform and the impact on a given normal mode can be studied by
analyzing the mode filter outputs.

Many underwater acoustic signal processing algorithms are based on a ray or normal-
mode framework. It is important to understand the similarities and differences of ray
and normal-mode based propagation modeling to understand the strengths and weaknesses
of various signal processing algorithms with equivalent goals. Recently proposed source
localization techniques exploit the ability to trace wavefront (ray) arrivals back to the
source [39][40]. These approaches do not require full-wave matched-field processing[41] and
exploit the numerical efficiency of ray tracing. However, a warning is served that diffracted
wavefronts mimic totally refracted wavefronts but will not trace back to the source along an
eigenray path, potentially causing a significant increase in uncertainty in the source location

estimates.

10For more information on normal modes please see Appendix A.
1 Each acoustic mode is composed of a sum of horizontally propagating submodes, one submode for each

inband acoustic frequency. Each submode travels at a different horizontal speed and at the receiver the

submodes do not arrive simultaneously, but dispersed.
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3.7 2D and 3D range variant propagation

For range varying computational ocean models, a ground truth solution can not be
computed. In general, based on the nature of the variations to the sound speed field and
the goal of a given study, a favorable propagation method can be selected. For example,
propagation from shallow water over an abrupt shelf to deep water may be best modeled
using normal mode theory employing mode coupling to model range dependence. Short
range shallow water propagation through a varying sound speed profile with well known
varying bottom properties may be best modeled using a PE propagation method. For long-
range propagation through internal wave fields where it is of interest to study the early
resolved wavefront arrivals, use of a ray propagation method is best.

In this work, it is of interest to focus on the propagation of the early resolved wavefronts
and how they are affected by the presence of an internal wave field. The early arrivals
correspond to the high angle rays. High angle rays reach their apex within a few hundred
meters of the surface where the internal wave field is most active. Figure 3.25 shows a high
angle ray path through a deep ocean sound speed profile, cyunk(z). This is the physical
propagation path of the acoustic signal which represents an early resolved arrival. The dark
and light shading represents the change in sound speed due to a single propagating internal
wave mode. Light areas represent positive changes in sound speed and dark areas represent
negative changes to the sound speed. This particular internal wave has special properties
that will be discussed in detail in Chapter 4. Currently, it is of interest to compare the
received acoustic waveforms generated from the available 2D range varying propagation
methods for 2D range varying computational ocean models.

The ray propagation method is used to construct the received waveform envelope with
and without the presence of an internal wave. This is shown in Figure 3.26 where the solid
line describes the envelope with no internal wave present, and the dashed line describes the
received acoustic envelope with the internal wave present. The sound speed profile used is
cyunk(2)- The source is located on the sound channel axis at 1200 meters deep. The receiver
is located at a depth of 1250 meters and is 745 km from the source. The low frequency,

broadband source signal is defined in Equation 1.2. The internal wave, W(k, z) is defined by
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Figure 3.25: The dark line represents a single high-angle ray path which
corresponds to an early arriving and possibly resolved wave-
front at a down range receiver. The checkerboard pattern
above 800 m is the change in sound speed induced by a sin-
gle internal wave mode. Light areas indicate positive changes
in sound speed and dark areas represent negative changes in
sound speed.
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the parameters: j = 4, k/2r = 2.046 cyc/km, wj(k)/2m = 1.31 cph,| G |= 0.2, LG = 21°,
and § = 86°. [j is the mode number; k is the wavenumber; w;(k) is the internal wave
angular frequency; G is the complex internal wave strength and phase; 8 is the propagation
direction angle with respect to the nominal acoustic plane; the acoustic path cycle length

is 56.4 km.] The 2D computational ocean model is described by
o(2,2,1) = Cxuni(2) + 2.5 ¢ N2(2) Re (Gj(k, O)W(k, z) e/Frcos o+t sinf-w; (K)1))  (3.35)

where N(z) is defined in Equation 2.3. The model is studied for a transmission time of
t=10.

Any aggregate traveltime bias due to the presence of the internal wave is termed internal
wave bias and has been addressed in several studies [5], [12], [7]. The main point is that
the presence of the internal wave can have a significant impact on the envelope of the
early acoustic arrivals as indicated by the arrival near the 9 second mark which has been
significantly amplified by the presence of the single propagating internal wave mode.

The teceived waveform is constructed for the range varying normal mode propagation
method and PE propagation method. The three received waveform envelopes are compared
in Figure 3.27 where the ray constructed waveform is indicated using a dashed line, the
PE constructed waveform using a dotted line, and the normal mode constructed waveform
using a solid line. None of the three propagation methods are in agreement. As
expected, the PE constructed waveform includes the effects of diffraction but does not
accurately model the high angle acoustic propagation. The PE propagation method results
are most reliable near the terminal section of the arrival. The normal mode propagation
method does not show a significant variation due to the presence of the internal wave. The
cyclic nature of a single internal wave mode causes a canceling effect in the perturbation
calculation used for this method. Based on the numerous investigations similar to those
presented in this chapter, the ray propagation method is best suited to describe the early
ray arrivals, and these results will be relied upon to initiate a study of long range acoustic
propagation through internal wave fields.

In moving to 3D space varying computational ocean models, the ray propagation method

is the only method that can simulate 3D acoustic propagation with current computing
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Figure 3.26: The ray constructed envelopes are shown for the case of no
internal waves present in the ocean model (dashed) and a single
internal wave field present in the ocean model (solid). The
presence of the internal wave field has significantly changed the
received envelope, especially the amplitude of the arrival just
after the 9 second time mark. The apparent slight aggregate
change in traveltime of all the arrivals is termed the internal
wave bias.

power. It has been verified that low frequency broadband acoustic propagation can be ac-
curately modeled using ray tracing computations. Two amplitude calculation methods have
been developed and validated. The effects of diffraction have been studied and a procedure
has been developed such that a modified ray propagation method can be considered as a
“full physics” propagation method for 2D range invariant ocean models.

It is of interest to study the propagation of the early resolved wavefront arrivals, since
these are the candidate receptions that can be used to measure changes in acoustic travel-
time. Comparisons of 3D and N x 2D propagation methods will be addressed in Chapter 4
for these early wavefront arrivals. Additional studies are included to lead toward the fea-
sibility of internal waves causing the received acoustic amplitude to mimic Rayleigh fading
coincident with stable time-domain phase as well as determine the feasibility of identifying

individual internal waves present in the propagation path based on the acoustic reception.
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Figure 3.27: The normal mode (solid), PE (dotted), and ray tracing
(dashed) constructed waveform envelopes are shown for the
same 2D range varying computational ocean model. One in-
ternal wave is present in the ocean model. None of the three
propagation methods are in agreement.
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CHAPTER 4

Spatially synchronized internal waves

The class of spatially synchronized internal waves is defined and their impact on high-
angle acoustic propagation is studied. Internal waves from this class have the potential to
cause an early (high-angle) acoustic arrival to have stable time-domain phase coincident
with fluctuating time-domain amplitude. The acoustic coherent (phase stable) focusing
and defocusing (amplitude fluctuation) takes place in both the nominal acoustic plane and
the Y Z plane, and we call these vertical focusing and transverse focusing, respectively. In
detailing the effects internal waves have on acoustic propagation, the dimensionality of the
computational ocean model will be increased step by step from a range invariant, time
invariant 2D model to a complete 3D space and time varying model. The computational
ocean models used are in the form of Equation 2.9. The sound speed profile used to describe
the deep ocean waveguide is the Munk profile denoted cmunk(z) and defined in Chapter 2.
All simulations presented investigate a single early arrival at a range of approximately 750
km. The source is located on the sound channel axis at a depth of 1200 m. The rays
with vertical launch angles, a,, between —12.0° and —12.6° form the timefront sheet of
interest. These rays all have 14 upper turning points, and their endpoints constitute a

single down-going sheet of the timefront after 504 seconds of propagation.

4.1 Vertical focusing of acoustic rays

To begin the investigation of spatially synchronized internal waves, the ground work
is established to define “vertical focusing” of the acoustic rays. Two-dimensional range-

invariant and range-variant computational ocean models are studied. The results lead to a
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study of micromultipath generation.
4.1.1 2D Range-invariant vertical focusing

To simplify the description of the deterministic impact of a single internal wave on
acoustic propagation, a time-invariant 2D computational ocean model is used; ¢(z,y, z,t) =
¢(z,0,2,t,). The simplest case is a single internal wave traveling perpendicular to the
nominal acoustic plane. From Equation 2.5, when 8 = +£90°, ky;=kcos@ =0, describing a
range-invariant model where there is no transverse gradient, and sound strictly travels in
the nominal acoustic plane as illustrated by the computational ocean model in Equation
4.1.

(2,0, 2,t0) = cmunk(2) + 6¢(2) (4.1)

The internal-wave induced sound-speed deviation, éc(z), at the acoustic ray top turning
depth is important since this is where the the majority of the internal-wave influence on
acoustic propagation takes place[10]. An intuitive feel for a single internal wave’s impact
on acoustic propagation is developed by considering the shape of 6c at the ray’s top turning
depth, and recalling that rays bend toward sound speed minimums. Figure 4.1 shows the
change in sound speed caused by an internal wave with four sound speed extrema in the
vertical (j = 4) and horizontal wavenumber k/27 = 2.046 cyc/km. In a range-invariant
ocean model, each ray has a unique top turning depth, 24, by Snell’s Law

B . c(zs)
L zer?(;g,) [ief2) = cos( )

| (4.2)

Therefore, the underlying rays that form the timefront are refracted by the internal-wave
gradient, (8c(z))/0z, evaluated at the respective turning depths. Just as the Munk profile
globally focuses rays to form the deep-ocean channel, the internal wave focuses rays locally.
The top turning depths for rays with launch angles of o, = +14.9°,£12.3°,+9.3°, +5.6° are
identified in Figure 4.1. At these depths the internal wave induced change in sound speed
gradient is zero. The internal wave focuses and defocuses the acoustic amplitude about these
rays. For example, consider a timefront composed of rays with launch angles between -12.0°
and —12.6°. The rays with launch angles above —12.3° will be refracted downward toward

the —12.3° ray. The rays with launch angles below —12.3° will be refracted upward toward
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Figure 4.1: Internal-wave induced change in sound speed, éc(z), and ray
top-turning depths labeled by ray launch angle, a, in degrees.

the —12.3° ray. In both cases this is due to the locally “cupped” shape of the internal wave.
The internal wave focuses the rays toward the unperturbed —12.3° ray on the timefront.
By similar reasoning, rays with top turning depths near 400 m are defocused away from
the —9.3° ray. The natural oscillatory shape of internal waves through the thermocline
causes the amplitude of the early, high angle arrivals to be focused or defocused along the
timefront. This is called “vertical focusing” since the focusing takes place in the nominal
acoustic plane.

To quantify the amount of focusing and defocusing, the power relative to a no-internal-
wave ocean reception using the ray endpoint density method is calculated for the —12.3°
arrival at a range of 750 km. The internal-wave induced power fluctuation is plotted in
Figure 4.2 for various internal wave strengths defined by dc(z) at z = 202 m. When the
phase of the internal wave is reversed by a half cycle, defocusing results. It is concluded a

single internal wave of modest strength can cause a significant acoustic amplitude change.
4.1.2 2D Range-variant vertical focusing

In actuality, the internal wave is propagating and a 2D range-variant computational

ocean model Tesults. When the internal wave wavelength projected in the direction of sound
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Figure 4.2: Internal wave induced power fluctuation resulting from coherent
focusing and defocusing in range-invariant model. The arrival
has a top-turning depth of 202 meters below the ocean surface.

propagation, A, =27 /(k cosf), is an integral multiple of the acoustic path cycle length, the
propagating internal wave can appear to be range invariant. The impact of the internal
wave is reinforced each time the acoustic wave travels through the upper thermocline. In
this case, the internal wave is “spatially synchronized” to the acoustic arrival.

When an internal wave is propagating horizontally at an angle other than +90° to
the acoustic propagation, the 2D computational ocean model is range variant, ¢(z,0, z,1).
When A, is large, thousands of meters, the internal wave changes slowly with range. This is
referred to as the long-wavelength case. But for internal-wave propagation direction angles
away from normal and large-k internal waves, A can be as low as a few hundred meters.
This is referred to as the short-wavelength case. In this case, the rapid changing of the
internal wave induced sound speed along the top turning portion of the acoustic path yields
a canceling effect and a spatially synchronized internal wave causes little change in the
received arrival amplitude or time-domain phase.

In the long-wavelength case, the effect of spatially synchronized internal waves can be
significant. In a frozen ocean model (time invariant sound speed field), an internal wave is

spatially synchronized with an arrival with acoustic ray path cycle length, L,,,(a,), under
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Figure 4.3: The dark line represents a single high-angle ray path which cor-
responds to an early arriving and possibly resolved wavefront at
a down range receiver. The checkerboard pattern is the change
in sound speed induced by a single internal wave mode. Light
areas indicate positive changes in sound speed and dark areas
represent negative changes in sound speed. This internal wave is
spatially synchronized to the acoustic ray drawn. This is an ex-
ample of the long-wavelength case where n = 2. This illustration
demonstrates how the ray spatially samples the propagating in-
ternal wave, and how the spatial synchronization condition can
cause a reinforcing effect on the bending of the acoustic ray
paths.
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the condition
2Tn
k cos@

L., (a,) =nA; = (4.3)

where n is an integer. Figure 3.25 is replicated in Figure 4.3 and shows a high angle ray
that has an acoustic path cycle length that is twice (n = 2) the wavelength of the internal
wave. The solid line denotes the ray path, and the shading across the field indicates changes
in sound speed caused by the propagating internal wave.

Many seconds will pass between times when the propagating acoustic wave is at its top
turning depth, and in this time the internal wave may have moved significantly; thus, a
time-varying condition for spatial synchronization must be derived. By including time, the
spatial synchronization condition becomes

2nm

kcosf — w/c (4)

Lray(aO) =

For a given internal wave, the propagation direction angles required for spatial synchroniza-

tion are
2Tn w

0 = cos~l(—m__ 4 &
o8 R, (o) | Fo

) (4.5)

When the spatially synchronized internal-wave phase maximizes | 6¢(z) | and the acoustic
ray path is at its top turning point, the internal wave will have the greatest focusing effect.
Each time the ray reaches its top turning point, the internal wave causes a maximum
reinforcement. This is the case in Figure 4.3 where each time the ray reaches its top turning
point the internal wave phase maximizes | éc(z) | as indicated by the dark shading. If the
internal wave is spatially synchronized with an acoustic ray path that has a top-turning
depth where the internal wave’s change-in-sound-speed gradient is zero (with respect to
depth), vertical focusing or defocusing (depending on the phase of the internal wave) results.

Long-wavelength internal waves that are not spatially synchronized to a ray cycle length
cause little change in the received time-domain amplitude and phase.

There are three ranges of A,: large, mid-range, and small Only the large and mid-range
cases are effective in spatial synchronization. This characterization has fuzzy boundaries,
but roughly a large A, is larger than one-fifth of Lray, while a small A is less than 0.04
Lyqy. Internal-wave wavelengths projected on the direction of acoustic propagation that

are between these extremes are said to be “mid-range”. When A is in the mid range, the
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Figure 4.4: Vertical focusing in forced 2D range-variant internal wave
model. Top: Timefront for early arrival without internal wave
perturbation and corresponding ray endpoints (o). Also, the
ray endpoints resulting from an ocean model including a single
propagating spatially synchronized internal wave are marked by
(4), and these points fall nearly on the internal-wave free time-
front indicating the internal wave does not induce a significant
phase shift on the received acoustic signal. Bottom: The inter-
nal wave induces a 17 dB gain in power at a specific location on
the front.

amplitude focusing can be very intense (over 10 dB received power increase or decrease
relative to a reception propagated through an internal-wave free ocean model).

For an example of mid-range A, focusing using a 2D computational ocean model, con-
sider rays uniformly spaced in launch angle between o, = —12.6° and —12.0°. Figure 4.4a
shows the timefront (solid line), after 504 seconds of propagation for an ocean without
internal waves. This is the high-angle, early arrival that will be studied throughout the
chapter. The internal waves used in the computer simulations are listed in Table 4.1. IW1
is used and set to a propagation direction angle of § = 86.0° to meet the mid-range spa-
tial synchronization condition, corresponding to n = 8 in Equation 4.5. The ray-endpoints
(circles) represent no internal wave present in the ocean model and are uniformly spaced

along the timefront. The inclusion of the internal wave has significantly vertically focused
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the acoustic rays with endpoints marked by a plus sign (+), yet they lie nearly on top of
the same timefront. This means the internal wave focuses the amplitude along the front but
does not significantly alter the time-of-arrival; that is, the internal wave bias is insignificant
for this example. Figure 4.4b shows the change in arrival power, due to the inclusion of the
internal wave using the ray endpoint density method. For this model, a hydrophone at a
depth of 1250 m and range near 748 km would enjoy a 17 dB gain due to the presence of
the internal wave.

When internal waves are not spatially synchronized they yield little impact to the am-
plitude of the early acoustic reception. Figure 4.5 shows results of an analysis similar to
that of Figure 4.4. IW1 is used and set to a propagation direction angle of 8 = 75.0°
such that the spatial synchronization condition is met (n = 30 in Equation 4.5) but falls
into the category of a short-wave length case. The ray endpoints lie nearly on top of the
unperturbed endpoints indicating that the presence of the internal wave had essentially no
effect due to rapid cancelation of the sound speed perturbation along the ray path. The
change in received power induced by the internal wave is insignificant as seen in the lower
plot where the change in power is no more than 0.01 dB. Similar results occur for spatially

non-synchronized internal waves of any projected wavelength.
4.1.3 Micromultipaths

When ray paths focus, the acoustic amplitude significantly increases. At the point that
two adjacent ray paths cross, a caustic point is obtained. This is the point where the

cross sectional area of the ray tube vanishes. This focusing can result from a spatially

Name | j | k(cyc/km) | w;(k)(cph) | G (magnitude and phase) | §cmac(m/s)
W1 4 2.046 1.31 0.2, 21° 0.147
W2 1 1.315 2.00 0.7, —29° 0.352
W3 | 1 0.229 0.92 6.0, 42° 0.215
IW4 | 3 2.100 1.55 0.3, 146° 0.210
IW5 5 1.729 1.11 0.1, 240° 0.050
IWé6 |10 1.120 0.53 0.08, 105° 0.025
IW7 |21 0.415 0.12 0.05, 240° 0.008

Table 4.1: Internal waves used in computer simulations
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Figure 4.5: Top: Timefront for early arrival without internal wave pertur-
bation and corresponding ray endpoints (o). Also, the ray end-
points resulting from an ocean model including a single prop-
agating internal wave that is not spatially synchronized are
marked by (4), and these points fall nearly on the internal-
wave free ray endpoints indicating that internal wave does not
impact the acoustic reception. Bottom: The internal wave in-
duces insignificant change in received power along the front, less
than 0.01 dB.

synchronized internal wave. The following discussion and analysis concentrates on the
propagating acoustic wavefront after focusing.

After adjacent ray paths cross, they may diverge creating a microfront. After the cross-
ing, the single timefront sheet divides into a mainfront (the original timefront sheet) and a
microfront. The microfront is bordered by two caustic cusps. Figure 4.6 shows an illustra-
tion of a spawned microfront to discuss details of the post-focus wavefront. It is clear that a
hydrophone could receive three distinct wavefronts (2 mainfronts and 1 microfront) for this
example. The reception of these closely arriving multiple arrivals is termed micromultipath.
The mainfront and the microfront are labeled in the sketch (Figure 4.6). There are three
issues to discuss: the generation of diffracted fronts, the time-difference-of-arrival of the
micromultipath, and the difference in caustic phase contribution to the time-domain phase

of each arrival. These issues will be addressed in turn.
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Figure 4.6: Illustration of an acoustic wavefront after focusing. A mi-
crofront is formed which is 90° lagging in phase relative to the
main front. Diffracted fronts are formed extending from the
caustic cusps of the microfront with phase lagging 45° relative
to the main front.

As discussed and validated in Section 3.6, diffracted wavefronts extend from caustic
cusps. These diffracted fronts are added as dashed lines to the sketch. The acoustic am-
plitude along the diffracted front decreases away from the caustic. Hydrophones located
immediately exterior to the microfront will receive two distinct wavefront arrivals.

The greatest time-difference-of-arrival between the mainfront and the microfront is ap-
proximately 1.05 ms for a receiver at 1Mm receiving the vertically focussed reception de-
scribed in Figure 4.4. This is 250 km of propagation after the initial focus. This time-
difference of arrival corresponds to a time-domain phase difference contribution® of 0.09
cycles for the 75 hz signal described by Equation 1.2; thus, the micromultipath are unre-
solved and will appear as a single pulse with only a slight decrease in resolution, and the
micromultipath time-difference-of-arrival is negligible. Since rays are traced independent of
the source spectrum, the time-domain phase difference will scale linearly with acoustic fre-

quency; so that, a 1 kHz source signal will have a time-domain phase difference of 1.05 cycles.

IThe time-domain phase is composed of two components, traveltime and caustic phase.
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In this case the micromultipath time-difference-of-arrival may be significant depending on
the goal of the analysis. A more detailed study of micromultipath time-difference-of-arrival
will be presented in Section 4.3.3.

The microfront has crossed one fewer caustics than the mainfront and for this reason the
caustic phase contribution to the time-domain phase between the mainfront and microfront
differ by 90° (0.25 cycles) independent of the acoustic frequency. The mainfront and the
diffracted front differ by by 45° (0.125 cycles). For acoustic low frequencies, the caustic
phase will be the predominant contribution to the difference in time-domain phase, and for
high frequencies the micromultipath time-difference-of-arrival will dominate the difference
in time-domain phase.

The ray endpoint density amplitude calculation method assumes a single plane wave
reception. Strictly, the individual micromultipaths must be summed as vectors (magnitude
and phase) to compute the aggregate amplitude and phase of the propagating front. This
can be accomplished using the differential equation amplitude calculation method; however,
this method requires two additional (50% more?) computations versus the ray endpoint
density method. The approximate error expected in assuming a single plane wave reception
will be analyzed using a simple model and computer simulation exercise.

Consider a mainfront-mainfront-microfront reception. Assuming the phase contribution
due to the time-difference-of-arrival is negligible and the amplitudes of each arrival are

equal, the micromultipath reception can be simply modeled using complex numbers by
1+14i=247 (4.6)

This reception has a power equal to 5 and a phase equal to 26.56°. If the caustic phase
difference in the arrivals were ignored the reception would be modeled as (1+ 1+ 1) and
have a power of 9 and a phase equal to 0°. This represents an error of 2.55 dB in received
power and 26.56° difference in received phase, where 26.56° is less than 0.075 cycles for a
75 hz signal. The 2.55 dB loss in power is termed the MicroMultipath Combining Loss or
MMCL and is the loss in power due to the destructive combining of the individual arrivals.

If all micromultipath arrivals were precisely in phase, the MMCL = 0 dB. In following

2For 2D computational ocean models and 67% more computations for 3D models
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studies, there is interest in power fluctuations greater than 10 and 20 dB so that an error
on the order of 3 dB can be considered as negligible, and the ray endpoint density method
can be used as long as the degree of accuracy discussed is attended. Please recall that
the differential equation amplitude computation method identifies the individual arrivals
(mainfronts and microfronts) and assigns the proper phasing; however, near caustics the
amplitude calculation may be erroneously high as discussed in Chapter 3.
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Figure 4.7: The time-domain envelope and phase of an acoustic reception
after 750 km propagation through a deep ocean computational
model including a spatially synchronized internal wave.

In Figure 4.7 the time-domain envelope and phase are shown for a reception of the early
wavefront arrival at a depth of 1250 m and range of 748 km after propagation through the
spatially synchronized internal wave computational ocean model discussed in the previous
section. The strength of the internal wave has been doubled to enhance micromultipath
generation. By viewing the time-domain envelope, the focused arrival is clearly visible after
the time mark of 9 seconds. At this point, the absolute time-domain phase for this arrival
is near 0.25 cycles. In Figure 4.8, the time-domain power and phase of the focused arrival
(relative to an internal wave free reception) is shown for three-quarters of an hour, the
period of the particular spatially synchronized internal wave included in the ocean model.

The time-domain power and phase are computed using the ray endpoint density method
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Figure 4.8: The time-domain power and phase of the received resolved ar-
rival after 750 km propagation over one period of the single
spatially synchronized internal wave included in the model.

(dashed line) and the differential equation method (solid line). The difference in power is
approximately 3.5 dB at the peak, this is the only time the power calculations differ and also
is the only time micromultipaths are present at the receiver. The time-domain phase differs
at this time by as much as 0.18 cycles. These maximum errors in power and phase are on
par with the approximate analysis previously discussed. For the case of analyzing amplitude
fluctuation coincident with phase stability at a down-range receiver, the differences in the
results obtained using the two amplitude calculation methods is not significant.

As the wavefront propagates several megameters the potential for continued microfront
generation exists. Researchers have reported that the number of microfront arrivals in-
creases exponentially and at some distant range the acoustic wavefront will be composed
of a large number of arrivals[43]. This could result in a Rayleigh fading ocean channel;

however, amplitude fluctuations would be accompanied by unstable time-domain phase.

4.2 3D spatial synchronization

In general, internal waves induce a sound-speed gradient normal to the direction of

sound propagation. This will result in refraction of the ray paths out of the nominal acoustic
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Figure 4.9: Induced power fluctuation on early arriving front. The 3D front
has been projected into the YZ Plane. The legend indicates the
received power ratio with and without internal waves. IW1 is
used in the top figure, and IW2 is used in the bottom figures.
N x 2D computations are used for the left side plots, and 3D
computations are used for the right side plots. The N x 2-D
model is not a reasonable approximation to the 3-D model when
analyzing deterministic internal-wave induced received acoustic
power fluctuation.

plane. The wavelength of the internal wave in the transverse direction is 27 /(ksin §). If
the ray deviates by m/(k sinf) in the transverse direction the internal-wave sound-speed
perturbation has exactly the opposite polarity as the sound-speed perturbation used in
the 2D computational model. For high wavenumber internal waves, w/(k sin #) can be as
low as a few hundred meters. In the following sections, the internal-wave induced power

fluctuation across the 3D early arriving front is studied.
4.2.1 N x 2D versus 3D computational ocean models

Figures 4.9, 4.10, and 4.11 look at rectangular portions of a sheet of a timefront to show
the effect of internal waves on the received intensity. The situation and description of the
plots will be described in detail for these figures.

The sound speed used is a range-invariant Munk profile, cyunc(z), with a single internal

wave present. The traveltime is 504 seconds. Each plot is the result of propagating 150,000
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rays using 300 vertical angles, a,, between —12.6° and —12.0°, and 500 horizontal angles,
¥, between —0.5° and +0.5°. These 150,000 rays terminate on a timefront sheet at a range
of about 748 km, extending approximately 2.3 km vertically at an angle of about 12.3° off
vertical and propagating forward and downward.

Figure 4.9 uses gray-scale to indicate the fluctuation in received power caused by the
presence of a single internal wave. Specifically it indicates the ratio of the received intensity
with the internal wave relative to the received intensity without the internal wave using
the ray endpoint density method. Light grays indicate increased intensity, and dark grays,
reduced intensity. The midrange gray of 0 dB means the internal wave has caused no
amplitude change. The gray scale is shown at the bottom of Figure 4.9.

Two different internal waves were used. Both internal waves are spatially synchronized
for the 12.3° ray. IW1 caused the upper plots. IW2 caused the lower plots. The internal
wave parameters and the reasons for selecting these specific internal waves will be explained
while discussing the results.

Two different computational ocean models were used. Without internal waves these
yield identical results. The plots to the right used full 3D computational ocean models and
ray tracing. The plots to the left used 500 x 2D computational ocean models, meaning the
ray leaving the source at each of the 500 horizontal angles was forced to stay at that angle
by changing the transverse wavenumber to zero (called N x 2D in the literature where here
N = 500).

IW1 is the same internal wave as used for Figure 4.4, where it demonstrated how an
internal wave shows vertical focusing using a 2D computation. The upper left plot shows a
fuller picture of vertical focusing using 500 x 2D computation. It shows the vertical focusing
has a sharp depth sensitivity which shifts in the transverse direction with depth. The upper
right plot shows the true focusing using 3D computation. The angling to the right with
depth is parallel over the entire sheet. The central focusing seen in the 500 x 2D results are
bordered by broad low-amplitude bands, and narrow high amplitude bands about 1.5 km
either side of center.

IW2 is a first order (j = 1) internal wave moving almost perpendicular to the acoustic

propagation. The lower left N x 2D computation sees almost no internal wave effects. In
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contrast, the lower right 3D computation shows parallel vertical banding amid a string-like
structure of varying intensification and nulls. This is a phenomenon that will never be seen
using a 2D or N x 2D computational ocean model, where acoustic rays are forced to remain
in the nominal acoustic plane. This “transverse focusing” will be treated in the following
section.

This section has demonstrated that 3D computations reveal intensification patterns that
are, at best, only hinted at by the 2D and N x 2D computations. There has been no attempt
at statistical computations using a stochastic ocean model, and it may well be true that
some statistical intensity values based on 2D computations give insight to the values derived

from 3D computations.
4.2.2 Transverse focusing

In the previous section it was demonstrated that the oscillatory shape of an internal
wave across depth vertically focuses the acoustic rays. In the transverse direction, the
change in sound speed, éc(y), varies exactly sinusoidally for all internal waves as seen by
Equation 2.5. Just as the cupped shape of the internal wave in the depth direction vertically
focuses the acoustic rays, the sinusoidal shape of éc(y) transversely focuses the acoustic
rays. A spatially synchronized internal wave will significantly focus the sound transversely.
Transverse focusing is typically a larger contributor to the redistribution of power across
the front than vertical focusing.

Four examples of transverse focusing are demonstrated by including various spatially
synchronized internal waves in the ocean model. The same early arrival investigated in the
previous section is studied. For each example, the fluctuation in received power caused by
the presence of the internal wave is displayed in Figure 4.10. A 3D computational ocean
model is used for all cases.

Consider internal wave IW1. The internal wave propagation direction is set to —77.5°
to allow for spatial synchronization. The received power fluctuation results are shown in
the top left plot of Figure 4.10. The presence of the internal wave increases the received
power by more than 15 dB along a 100 m wide canted area on the timefront. Broad 400 m

wide 15 dB fades are set parallel to either side of the focus area. A transverse shift of 100
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Figure 4.10:
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Induced power fluctuation on early arriving front. The 3D
front has been projected into the YZ Plane. The legend indi-
cates the received power ratio with and without internal waves.
IW1 is used in the top two plots. The difference is the internal
wave phase. IW3 is used in the bottom left plot. In the bot-
tom right plot, IW1 is included in the ocean model as well as
6 additional internal waves that are not spatially synchronized
to the arrival. For this plot, IW1 is propagating at § = +77.5°
as opposed to § = —77.5°. 3D computations are used for all
plots. Each spatially synchronized internal wave significantly
transversely focuses the received power on the arriving time-
front.

meters in hydrophone placement could change the received power at this time instant by
over 30 dB. The internal wave presents little impact to the received power for 1 km shifts
away from the focus area. This is where the effective propagation angle no longer meets

the spatial synchronization condition.

In Figure 4.10 the top right plot shows results from the same internal wave (IW1) used

in the adjacent plot. Also the internal wave is traveling in the same direction with respect
to acoustic propagation. The only change is that 23 minutes has passed equal to half of
an internal-wave period (7/w). The polarity of the internal wave induced change in sound
speed is reversed, and the internal wave transversely defocuses the rays at the top-turning

depth and the 15 dB increase in received power has been replaced by a 15 dB decrease in
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received power.

Internal waves with large wavenumbers have the potential to have very short wave-
lengths in the transverse direction. This can cause very sharp and localized focusing. Low
wavenumber internal waves can cause very broad focusing and defocusing. Consider an
ocean model including IW3. The propagation direction angle is set to 85.6° to meet a
spatial synchronization condition. The phase of the internal wave was set to defocus the
acoustic rays. The power fluctuation caused by the internal wave across the front is shown
in the bottom left plot in Figure 4.10. The plot covers 40 km transversely to show the
broad defocusing. Internal waves with low wavenumbers have correspondingly low inter-
nal wave frequencies, w. These broad focusing/defocusing internal waves can induce power
gains/fades of several dB across an entire array that may last for hour-long periods. The
width of the 10 dB power fade is almost 10 km wide.

Previously only a single internal wave was included in the ocean model. Spatially syn-
chronized internal waves locally act on the 3D timefront to spatially redistribute power.
When multiple internal waves are included in an ocean model, the set of internal waves
generally act on the front as a composite of individual internal waves. No strong statement
about linearity can be made, but the system is very well behaved in this manner. In the
bottom right plot of Figure 4.10, the ocean model includes the seven internal waves listed
in Table 2. Only IW1 is spatially synchronized. It is traveling at an angle § = +77.5°
relative to the nominal acoustic plane. Two points will be made from observing this plot.
The acoustic rays are focused as if only IW1 is present. Also, the focusing is canted in the
reflected and opposite direction as compared to the results of the top left plot in Figure
4.10 where IW1 is used with 6§ = —77.5°.

In Figure 4.11 the top left plot shows the identical figure from the bottom right plot of
Figure 4.10. In the top right plot, a j = 4 spatially synchronized internal wave traveling
in the direction of the acoustic propagation is substituted for the spatially synchronized
internal wave in the previously described multiple internal wave ocean model. This is the
only case that 3D and N x 2D computational ocean models will yield similar results. The
acoustic amplitude is intensified across a horizontal band.

In Figure 4.11 in the bottom left plot the two spatially synchronized internal waves
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Figure 4.11: Induced power fluctuation on early arriving front for four com-
putational ocean models. The 3D front has been projected into
the YZ Plane. The legend indicates the received power ratio
with and without internal waves. In the top left plot, IW1 is in-
cluded in the ocean model as well as 6 additional internal waves
that are not spatially synchronized to the arrival. For this plot,
IW1 is propagating at 6 = +77.5°. In the top right plot, a spa-
tially synchronized internal wave traveling in the direction of
acoustic propagation is included along with the identical 6 ad-
ditional internal waves that are not spatially synchronized to
the arrival. In the bottom left plot, the two spatially synchro-
nized internal waves of the top plots are included along with
the additional spatially non-synchronized internal waves. In
the bottom right plot, only the 6 spatially non-synchronized
internal waves are included in the ocean model.

creating the top two plots are included in the ocean model along with the 6 additional
spatially non-synchronized internal waves. In a gross sense, the amplitude distribution
across the wavefront is a direct combination of the two intensification patterns caused by
the spatially synchronized internal waves when included in the ocean model individually.
In Figure 4.11 in the bottom right plot, the two spatially synchronized internal waves
are removed from the ocean model, leaving only the 6 spatially non-synchronized internal
waves. The acoustic amplitude across the front is essentially unchanged after propagating

through this internal wave field as indicated by the uniform gray level about 0 dB. This is
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a general result realized after numerous computer simulations.

Since the amplitude focusing can be attributed to the spatially synchronized internal
wave, and spatially non-synchronized internal waves create weak acoustic amplitude fluc-
tuations, only the spatially synchronized internal waves within a full Garret-Munk internal
wave spectrum need to be modeled to study the gross amplitude fluctuation of an early
acoustic arrival. This means a 3D time varying computational ocean model can be used
that is not exactly equivalent to the 3D time varying physical ocean model (Garret-Munk
internal wave spectrum of internal waves) but may adequately represent it for certain in-

vestigative purposes.
4.2.3 Micromultipath combining loss

After propagation through an internal-wave field, the 3D timefront forms a thin sheet.
Computation of the micromultipath combining loss (MMCL) shows instantaneous power
losses less than 3 dB with respect to a 75 Hz signal at a 750 km range. The MMCL is a
measure of the power loss resulting from internal-wave induced breaking of the wavefront
into multiple arrivals (called micromultipath) which differ in phase and thus combine to
some degree destructively®. For this research, internal-wave induced micromultipath is
not a significant contributor to the power fluctuations, and the primary component of the
fluctuations is a result of coherent focusing and defocusing. The M MCL increases with
propagation range, acoustic frequency, and internal-wave magnitudes | G |; thus, for other
scenarios the M MCL may be a dominating factor and could lead to unstable time-domain
phase.

Traveltime separation of micromultipaths can blur the resolution of the propagating
wavefront; however, simulation results show that maximum time separation of micromulti-
paths is negligible for all cases studied. In Figure 4.12 a histogram has been compiled for
the maximum time separation (labeled in cycles with respect to a 75 hz acoustic signal)
between micromultipaths for various receiver locations in the XY plane for the early arrival

studied at a range of 750 km. Ten different internal wave models are included where up to

3TFor this study the phase difference is dominated by a differing number of caustics crossed by different

microrays
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Figure 4.12: Histogram of the maximum time-difference-of-arrival spread
when micromultipath is present for ten different ocean models.
This time spread is plotted in terms of cycles with respect to a
75 hz acoustic signal. The total number of occurrences is 5538
to form the histogram. The maximum time-spread does not
exceed 3 ms or .225 cycles.

90 internal waves were included in the ocean model and up to three of the internal waves
were configured to be spatially synchronized with the arrival.

The main message is that for low-frequency acoustic signals, the amplitude fluctuation
can be significant while the time-domain phase remains stable and the wavefront remains
effectively a single plane wave sheet. The time-difference-of-arrival will scale linearly with
acoustic frequency and higher acoustic frequency signals would not necessarily remain this

stable.
4.3 Time-varying 3D computational ocean models

In this section, the time-domain phase and received power at a hydrophone(s) as a
function of time is analyzed. The same early arrival, studied in the previous sections, is
investigated. It will be demonstrated that the time-domain phase can remain relatively
stable while the received power fluctuates widely both spatially and temporally. At a single

hydrophone, the received amplitude distribution may appear to be Rayleigh distributed
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Figure 4.13: Top: Power as a function of time for early arrival at a range
of 750 km, depth of 1200 m, and transverse coordinate of 0 m.
Bottom: Time-domain phase for same early arrival.

while the time-domain phase is relatively stable.

The ocean model includes the seven internal waves in Table 4.1. IW1 and IW2 are
spatially synchronized to the acoustic arrival propagating at angles § = 77.5° and 89.2°,
respectively. The magnitude of the maximum change in sound speed induced by the internal-

wave field is less than 0.5 m/s.
4.3.1 Rayleigh fading stable phase

The received time-domain power and phase of an arrival at the range of 750 km, depth
of 1200 m and 0 m transverse shift is computed every 5 minutes over a four hour period and
shown in Figure 4.13. The received power fluctuations spread over 30 dB. The time-domain
phase oscillates with a peak-to-peak deviation of 0.18 cycles referenced to a 75 Hz center
frequency. This would impose no limitation on coherent integration.

The intensity level* at a candidate receiver site is considered as proportional to the
local ray endpoint density on the timefront sheet as described in Chapter 3. The intensity

histogram is computed for several receiver locations distributed across the timefront over

4The intensity level is an absolute measure in contrast to a referenced measure such as power measure-

ments in dB.
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Figure 4.14: Intensity histogram of early acoustic reception after long range
propagation through multiple internal wave fields. The data
are plotted on log-scale to show comparison with exponential
distribution (straight line), which is equivalent to a Rayleigh
amplitude distribution.

the four hour period. The histograms from the sample receiver locations are averaged and
the resulting histogram is shown in Figure 4.14. The intensity histogram is approximately
exponential (linear on a log scale) which is consistent with Rayleigh amplitude fading.
There is no underlying stochastic process forcing the amplitude distribution to be Rayleigh,
it just happens to be similar. Here we show through deterministic modeling that internal
waves can cause the received amplitude to mimic Rayleigh fading while maintaining stable

time-domain phase.
4.3.2 Vertical and horizontal line arrays

In Figure 4.15, the received power and time-domain phase of an early arrival at three
hydrophones (in the configuration consistent with a horizontal array) at a depth of 1500
meters, range of 750 km, and transverse coordinates of -300, -150, and 0 meters are plotted.
The power fluctuates over 30 dB at each hydrophone. At a given time, the received power
at two hydrophones with 150 meter separation can differ by over 20 dB. Clearly, for a

horizontal array, we cannot expect the arrival to be an equal amplitude plane wave across
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Figure 4.15: Horizontal array- Top: Power as a function of time for hy-
drophones at range of 0.75 Mm, depth of 1500 m, and trans-
verse coordinates of -300 m, -150 m, and 0 m. Bottom: Time-
domain phase for same three receptions.

all hydrophones. The time-domain phase at the three hydrophones is very similar, and
beamforming algorithms based on plane-wave receptions would be expected to be successful.

Similar results are obtained for hydrophones aligned in a vertical orientation. In Figure
4.16 shows the received time-domain power and phase of an early arrival at three hy-
drophones at a range of 750 km and depth coordinates 1300, 1450, and 1600 meters. The
power fluctuates well over 30 dB at each hydrophone, and at a given time, the received power
at two hydrophones with 150 meter separation can differ by over 20 dB. The time-domain
phase of each reception has been adjusted to remove the time-differences of arrival due to
the inclination of the received front. The time-domain phase of the front is very similar.
Once again, this allows the use of plane-wave beamforming techniques to determine the
angle-of-arrival of each wavefront and coherently (spatially) integrate the reception along
the vertical array.

The general oscillation of the time-domain phase is consistent with one of the internal
wave modes that is not spatially synchronized. The primary oscillation occurs at approxi-

mately 0.5 cycles per hour which is consistent with IW6 which has an internal wave frequency

of 0.53 cycles per hour.
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Figure 4.16: Vertical array - Top: Power as a function of time for hy-
drophones at range of 0.75 Mm, depths of 1300, 1450 and
1600 meters Bottom: Time-domain phase for same three re-
ceptions. The time difference of arrival due to the inclination
of the front has been removed from the phase information.

4.4 Comparisons with experimental data

Many long range sound propagation experiments have been conducted over the last 35
years. The acoustic signal is typically received at a horizontal or vertical array. The acoustic
signals at each array element (hydrophone) are combined (beamformed) to increase the
received signal energy. Therefore, the signal energy is accumulated by integrating over time
(matched filtering and coherent integration) and space (beamforming). Most engineers and
scientists studying acoustic propagation work with the matched filtered and beamformed
data. Because the University of Michigan has played a predominate role in the collection
and processing of the acoustic data, researchers from this University are familiar with the
character of the received time-domain amplitude and phase of the acoustic signal across
the hydrophones. The most general observation is that the acoustic time-domain amplitude
of a resolved arrival is significantly less stable than the time-domain phase in two senses:
1) on a hydrophone by hydrophone basis for a fixed time and 2) over time on any given

hydrophone. The physical cause of these observations was previously unexplained. From
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the data presented it is feasible that these previously unexplained observations can be the
result of the presence of internal waves within the propagation path. Figures 4.14, 4.15,
and 4.16 are model examples of this result.

The instability of time-domain phase has been largely contributed to fluctuating ocean
processes[5]. However, the acoustic signals have been transmitted and/or received from
moving platforms inducing acoustic phase instability. During the Heard Island Feasibility
Test®, the source (f, = 57hz) was located on a moving ship and the acoustic signal was
received 9.21 megameters away on a rigidly moored array of hydrophones as well as many
other receiver stations located around the earth’s oceans. The time-domain phase of the
reception was used to monitor precise changes in traveltime of the acoustic signal{44]. The
unwrapped change in time-domain phase weighted by the acoustic wavelength is equal to the
distance trajectory of the ship. The precise motion of the ship was tracked using acoustic
phase estimates and confirmed using GPS® readings taken on the ship during acoustic
transmission. The two estimated courses of the ship extraordinarily agreed within a few
meters[42]. A few meter error is on par with the accuracy of the GPS readings so that
it is not clear if tracking the ship location using low frequency acoustics over 9 Mm away
is less accurate than using GPS! Any instability in the acoustic phase induced by
fluctuating ocean processes, such as internal waves, would have corrupted the
acoustic estimates of the ship trajectory. This is the ultimate illustration of the
phase stability of the global ocean for low-frequency acoustic signals.

Previously suggested ocean models do not cause early acoustic arrivals to have fluctu-
ating amplitude coincident with stable time-domain phase. The ocean models presented
in this work are the first to be based on fundamental physical principles and be in agree-
ment with this long standing and previously unexplained observation of long range acoustic

receptions.

5The Heard Island Feasibility Test was a long range acoustic propagation experiment conducted to
determine if sound could be transmitted and detected over global distances with sufficient accuracy to
detect global climate variability.[42]

6Global Positioning System (GPS) is a satellite based location system
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4.5 Internal wave mode identification

Measurement of deep ocean internal wave fields is a difficult task, and only a few in-
complete measurements have been made[21]. The most common method is to measure the
ocean temperature at a fixed depth from a rigidly moored platform. Measured variations
in temperature relate to variations in density. The displacement of an isodensty parcel
of water is a measure of the internal wave (as well as every other ocean process such as
tidal and eddy processes) as it propagates past the measurement point. This was described
in Section 2.1.2. A time series of the density variation can be analyzed to separate the
relatively long time scale tidal and eddy effects and short time scale internal wave effects.

It would be desirable to study the internal wave field using an acoustic interrogation
signal. This would allow more global measurements and a more versatile monitoring system.
This problem has been investigated in [52] based on fluctuations in acoustic traveltime
(phase). The emphasis in this treatment is on the acoustic amplitude”. The observables of
the acoustic reception are the acoustic time-domain amplitude and phase at any number
of receiving hydrophones. It is assumed that we are monitoring the early, resolved acoustic
wavefront arrivals. Examples of time series of these observables are plotted in Figures 4.15
and 4.16.

It has been long conjectured that internal waves in the Pacific Ocean basin travel in
all directions based on the large roughly circular shape of this ocean’s coastal boundaries.
The internal waves, excited perhaps from tidal forces on coastal topography, are launched
propagating toward the ocean center. Thus, in the middle of the deep ocean, internal waves
are hypothesized to be propagating with no favor to direction. However, the Atlantic Ocean
basin is small and narrow on global scales and internal waves generated from coastal topog-
raphy are conjectured to favor east-west directivity. In this section, a method is described
to acoustically measure the propagation direction of spatially synchronized internal waves

based on spatially diverse amplitude measurements of a single acoustic wavefront.

"From an information view point, it is clear that we would want to analyze the complete reception (all

arrivals and amplitude and phase), we focus on amplitude to employ previous results in this dissertation.
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4.5.1 Sampling of the internal wave field

Based on the results previously presented in this chapter, spatially synchronized internal
waves will significantly impact the received acoustic amplitude. Our interest is in the
resolved wavefronts such that amplitude measurements sampled across a single wavefront
can be estimated. Each early wavefront arrival corresponds to a ray which has traveled
through the deep ocean in an oscillatory manner, refracting away from the ocean surface
and ocean bottom, as can be seen in Figure 3.1. It is fair to assume the internal wave’s
impact on the acoustic ray is limited to the ray’s top-turning points as described in Section
4.1.2. A single arrival has spatially sampled the internal wave field at a fixed period, the ray’s
acoustic path cycle length as described by Equation 4.4. Additionally, the ray’s top-turning
depth remains constant. This means that each ray’s acoustic amplitude fluctuation results
from a very spatially precise interrogation of the internal wave field (a set acoustic path
cycle length and top-turning depth). Each resolved arrival yields a different interrogation
because each resolved arrival corresponds to a ray path with a different acoustic path cycle
length and top-turning depth combination. Figure 4.17 shows the cycle-length and depth
combination sampled by early acoustic arriving wavefronts. The solid line and dashed line
correspond to rays propagated through the sound speed profiles plotted (same dashed, solid
convention) in Figure 2.1. The earliest arriving wavefront travels closest to the ocean surface
(shallower top-turning depth) and has a larger acoustic path cycle length.

The actual arrivals will sample the curve of Figure 4.17 differently depending on the
source and receiver depths. Longer ranges and/or multiple receiving hydrophones will
more finely sample the curve resulting in increased interrogation, but the ocean cannot be
investigated using an acoustic signal and received amplitude information for internal waves
at depths and cycles lengths off of these curves. The curves are completely described by the
sound-speed profile. The spatially synchronized internal waves that will potentially impact
the received acoustic amplitude have wavenumbers and propagation directions consistent
with the condition of Equation 4.5. Rays with launch angles of equal magnitude (e.g.
a, = +15° and —15°) will have identical acoustic path cycle lengths and top-turning depths

but for any observation time will be spatially sampling the internal wave field at a different
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Figure 4.17: Each curve represents the acoustic path cycle length and top-

spatial phase.

turning depth combination in which the acoustic wavefront can
interrogate spatially synchronized internal waves. The curves
are solely a function of the sound speed profile used to de-
scribe the deep ocean waveguide. The dashed curve represents
Cmunk(2), and the solid curve represents Casel(2)
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CHAPTER 5

Summary of contribution & future work

In this chapter, the motivation for the work is reviewed and the original contribution to
the field of underwater acoustic signal processing and modeling is summarized. Also, areas

of future work are outlined.

5.1 Review of motivation

Researchers have been interested in the effects of deep ocean internal waves on long
range acoustic propagation for decades. The end users of long range acoustic propagation
experiments are climatologists, oceanographers, and Naval forces, each having different
reasons for their interest. Currently, climatologists are interested in using thermometry
data collected from the ATOC (Acoustic Thermometry of Ocean Climates) project for
incorporation into global ocean climate models. The U.S. Navy is interested in the effects
of internal waves on both active and passive sonar systems.

To properly study the effects of long range acoustic propagation through internal wave
fields an appropriate ocean model must be established. The establishment of such a model
and the validation of the model is the hallmark result of this dissertation. With such
an acoustic propagation model established, researchers armed with relatively inexpensive
computer workstations can study the effects of internal waves within their particular ocean
acoustic system of interest and develop signal processing algorithms that are robust to the
presence of internal waves. This can be conducted in lieu of expensive field experiments for

introductory system development.
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5.2 Summary of contribution

A 3D time-varying deep ocean model suitable for simulating long range acoustic prop-
agation has been established and validated. The model includes two dominate effects on
acoustic propagation: the deep ocean waveguide and propagating internal wave fields. The
model is based on fundamental physical principles.

This is the first ocean model which exhibits a fundamental observation of received acous-
tic signals which have propagated long ranges through the deep ocean, namely the received
signal has large time-domain amplitude fluctuation coincident with stable time-domain
phase. The amplitude fluctuations have been reported to be Rayleigh distributed, and it
has been shown that internal waves are capable of creating a Rayleigh-like fading ampli-
tude coincident with stable time-domain phase. For example, the received power attributed
to an early arrival propagated over a 750 km range can fluctuate over 40 dB while the
time-domain phase remains within a quarter of a 75-Hz cycle.

The specific mechanism of the internal wave field causing the received acoustic signal
to have a Rayleigh-like amplitude fluctuation coincident with stable time-domain phase
is explained in detail leading to the demonstration that spatially synchronized internal
waves significantly impact the received acoustic amplitude while spatially non-synchronized
internal waves do not significantly impact the received acoustic amplitude.

Ray tracing was used to simulate acoustic propagation through the ocean model and a
method of simulating low frequency broadband acoustic propagation over long ranges was
developed and validated against exact solutions to the wave equation. These exact solu-
tions, however, have limited versatility and cannot be used in space and time varying ocean
models. Establishing an accurate ray tracing based simulation method for low-frequency,
broadband acoustic propagation is significant because it combines the computational effi-
ciency and extension to 3D time-varying ocean models of ray tracing while still accurately
modeling low-frequency broadband acoustic propagation. Two methods were independently
derived to compute the acoustic amplitude after propagation through a 3D ocean model
and compared. Each method is appropriate under separate conditions. Under most con-

ditions these methods compute essentially identical results. The validation led to a study
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of acoustic diffraction effects caused by the deep ocean waveguide. A method to model
diffracted acoustic energy using ray based methods was presented. This method allows one
to decompose the received acoustic field in terms of wavefront arrivals. This attribute is
unique to this method.

This work calls for the research community to use 3D computational ocean models
and 3D propagation methods. It is demonstrated that the standard 2D ocean models
used currently for studying long range acoustic propagation yield erroneous results; that
is, predicted received amplitudes can be in error in excess of 40 dB. A subtle contribution
of this work is the demonstration that one must clearly define the physical ocean model
under investigation and understand the penalties incurred by changing this ocean model to
a computational ocean model for computer implementation.

The deep ocean internal wave model presented is used to produce several additional
introductory results including: measures of micromultipath combining loss and coherent

integration loss to establish functional range limitations on long range acoustic propagation.

5.3 Future work

The nature of the research presented was exploratory. Many “side studies” were given a
preliminary investigation, and from this work a collection of open problems in underwater

acoustic signal processing and modeling was spawned, accompanied by initial insight.
5.3.1 Internal wave imposed limitations on acoustic receptions

In the previous sections, it has been demonstrated that internal waves can cause the re-
ceived acoustic amplitude to fluctuate coincident with relatively stable time-domain phase.
For the ranges, internal wave strengths, and acoustic frequencies studied, the amplitude fluc-
tuation is the result of acoustic ray focusing and defocusing and not the result of destructive
and constructive interference of multiple arrivals. For greater ranges, stronger internal wave
fields, and/or higher acoustic frequencies, many factors could cause the received acoustic
wavefront to be undetectable and not provide sufficient energy for estimation of amplitude
and traveltime.

It is important to understand the relations between range, internal wave field strength,
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acoustic frequency, and receiver coherent integration time for the design of successful un-
derwater acoustic propagation experiments. This issue is currently important to the U.S.
Navy for performance evaluation and design of both active (high-frequency) sonar systems
and passive systems. This issue is currently important to long-range low-frequency acoustic
propagation experimentalists, where current models predict an internal wave imposed range
curtain near 3 Mm at acoustic frequencies where acoustic propagation over 10 Mm has been
demonstrated successfully.

How do internal waves impact detection and estimation of acoustic receptions after
propagation through an internal wave field as a function of internal wave field parameters,
ocean waveguide parameters, range, acoustic frequency, integration time, receiving array
geometry, and acoustic waveform design?

To offer initial insight into this problem, the components contributing to a loss of acoustic
energy are described. There are four mechanisms that cause increased acoustic attenua-
tion as range increases after propagation through the deep ocean. These mechanisms are
absorption, geometric spreading, micromultipath combining loss (MMCL) and coherent in-
tegration loss (CIL). Table 5.1 summarizes these loss mechanisms as a function of range,

acoustic frequency, and internal wave field strength.

range frequency internal wave strength
absorption loss 1} linearly | {} exponentially in dB independent
geometric spreading loss || 1} linearly independent independent
MMCL 1} linearly 1t linearly 1t linearly
CIL 1t linearly 1 linearly 1 linearly
Table 5.1: Loss mechanisms; {} = increases

We are interested in loss mechanisms imposed by the internal wave field; moreover, we
are interested in dynamic loss mechanisms imposed by the internal wave field. Any static
losses, such as absorption, geometric spreading, and possibly MMCL can be recouped via
increased coherent integration time. With respect to long-range acoustic propagation, ocean
properties do not change with time scales of seconds or minutes, but hours days and years.

If coherent integration loss is the only catastrophic loss mechanism, then a simple loss

model is worth investigating and expanding. Coherent integration loss is due to the fluctu-
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ation of the time-domain phase of the resultant wavefront during coherent integration. It
is assumed that sufficient energy cannot be accumulated to track the changes in the time-
domain phase and subsequently correct the phase to aid in coherent integration. Assuming
the received time-domain phase linearly sweeps across a fraction of the center-frequency
cycle and the acoustic amplitude is stable within this time frame. The coherent integra-
tion gain! can be represented by the sinc function, where the peak of the sinc represents
no loss and absolute phase stability and the first null represents complete loss of acoustic
energy where the phase has swept exactly through one acoustic cycle resulting in complete
cancelation. Figure 5.1 shows the coherent integration loss. Two observations are that
the time-domain phase can fluctuate and result in little loss, but if the time-domain phase
sweeps near or over a full cycle great losses are incurred. Also, in the case of large time-
domain phase sweeps, this measure can no longer be used to estimate arrival times, and

one must result to methods based on peak picking the received acoustic envelope.
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Figure 5.1: Coherent integration gain as a function of time-domain phase
spread.

What causes an increase in the sweep rate of the time-domain phase? If the transmitter

1The coherent integration gain is valued between 0 and 1, where 1 relates to “no loss” and 0 relates to
“complete loss” in the energy of the received and processed signal. Coherent integration loss is the reciprocal

of the coherent integration gain.
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and receiver are rigidly moored, one can assume this is due to the fluctuations of the internal
wave field. From results in this work, the acoustic propagation can be fairly modeled using
ray tracing; thus, changes in time-domain phase were directly the result of changes in
traveltime scaled by the acoustic center frequency. We are assuming caustic phase changes
are not an issue. Also, we have seen in preliminary studies that the time-domain phase
sweep rate is linearly related to the internal wave field strength and range. Therefore, it
is reasonable to suggest that the abscissa of Figure 5.1 may be range X internal wave
strength + acoustic frequency. This is the beginning of relating these quantities in a
physically based manner that would aid in the design of many acoustic experiments and

underwater acoustic equipment.
5.3.2 Normal-mode domain versus ray domain

One of the previously unstated motivating factors for the work presented in this disser-
tation is to make acoustic signal processors aware that simple stochastic models? do not
fairly represent the ocean acoustic channel. Thus, signal processing algorithms based on
these models have little hope of being “optimal” in any sense.

There is no description of the acoustic reception which exactly describes it. The two
descriptions typically used are rays and modes. Rays represent the acoustic energy in
terms of attenuated, delayed, and phase shifted replicas of the transmitted signal. Modes
represent the the acoustic energy in terms of horizontally propagating modes decomposed
in frequency and mode number.

When signal processors initiate the development of an algorithm, regardless of the goal,
they enter one framework and not the other: rays or modes. For the purposes of long-range
acoustic propagation through range-invariant oceans, ray and mode modeling can be seen
as equivalent as unveiled in this thesis. However after propagation through an internal wave
field, it is not immediately clear which decomposition of the acoustic arrival (rays or modes)
is more robust. This thesis studied internal wave induced fluctuations of early acoustic
arrivals and found that their time-domain amplitude fluctuates coincident with relatively

stable time-domain phase. These early wavefront arrivals correspond to the higher-order

2Guch as describing the channel as a Rayleigh slow fading channel.
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normal modes. There is no guarantee, and a matter of fact it is not expected, that the
terminal ray arrivals maintain stable time-domain phase after propagation through internal
waves. However, the normal mode arrivals may be a more stable decomposition of the
reception. It has gone without saying that in most signal processing algorithms, amplitude
variations are typically tolerable, while phase variations are typically not tolerable.

An open research question is “Are acoustic normal modes or ray arrivals more robust to
internal wave effects with respect to the success of signal processing algorithms based each

method.”
5.3.3 Internal wave propagation direction

As discussed in Chapter 4, internal wave modes that are spatially synchronized to the
acoustic arrival have the potential to strongly influence the received acoustic amplitude.
Other internal wave modes have been found to insignificantly impact the received amplitude.

By modeling long-range sound propagation through a single internal wave, we have
discovered that spatially synchronized internal waves cause canted areas of power gains and
fades spatially across the propagating acoustic front. Since an internal wave is synchronized
with respect to a specific arrival’s acoustic cycle length, different arrivals will interrogate
the ocean with different cycle lengths. Studying all resolvable arrivals may yield the internal
waves’ direction of propagation in the ocean. To begin in this direction, we observe that
the cant of the transverse focusing area is solely a function of the internal-wave propagation
direction angle, 8. For cases when a spatially synchronized internal wave is traveling near
normal to the direction of acoustic propagation the focusing pattern is nearly vertical. This
is seen in the lower right plot of Figure 4.9. Other plots in Figures 4.9, 4.10, and 4.11 show
evidence that the cant angle of the focus area is related to the internal wave propagation
direction.

Since the canting angle will most likely need to be measured from a 2D array of hy-
drophones in the YZ, Az is not a measurable quantity. Relating Az to a measurable
quantity Az, where Az/Ay is the slope of the focused acoustic energy canting angle in the
projected Y Z plane is highly dependent on the sound speed profile. However, the rela-

tion between AX and Az is monotone and this method can be used to roughly asses the
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direction of spatially synchronized internal wave propagation. When the internal wave is
propagating nearly normal to the nominal acoustic direction, the focusing or defocusing is
nearly vertical in the Y Z plane as example in the bottom right plot of Figure 4.9. When the
internal wave is propagating in approximately the same direction as the acoustic signal the
focusing is the vertical direction as example in top right plot of Figure 4.11. It is believed
that these methods could be used in the Atlantic to determine if internal waves have a
preferred direction of propagation by transmitting sound parallel or orthogonal to a coastal
boundary.

The community has only recently moved to vertical arrays, but it appears inevitable
receiving arrays will be composed of 2D or 3D grids of hydrophones. A detailed study of
the cant angle relation to specific spatially synchronized internal wave parameters maybe

reasonably timed with future multi-dimensional array experiments.
5.3.4 Stochastic computational ocean model

The research presented in this dissertation studied the deterministic impact of internal
wave modes. For many reasons, it would be of interest to model the internal wave field
as a random field. By generating realizations of the random field and simulating acoustic
propagation through the realized field using the methods described in this dissertation,
Monte-Carlo simulations could be run to gather sample statistics and statistically describe
acoustic propagation through internal waves.

One way to compose a stochastic realization of the internal wave field is to generate the
4D (z,y, z,t) internal wave induced change in sound speed using a 4D innovation sequence
and a 4D filter whose parameters describe the physical parameters of the internal wave field.
This method was implemented on a modern computer workstation. Three-dimensional
propagation of an early arriving acoustic ray over a 500 km path and two-hour time period
was simulated for various internal wave strengths. This simple simulation took 8 days of
dedicated computer time. The result, although grandly inconclusive, was to achieve acoustic
amplitude fluctuation the internal wave field strength had to be increased to the point that
acoustic time-domain phase instability was incurred. A more thorough investigation of

modeling random internal wave fields is an open problem and would receive great interest

105



from the current research community.
5.3.5 Range-variant model benchmarking

In Section 3.7 is was illustrated that the leading propagation methods yield signifi-
cantly different simulated received acoustic signals after propagation through internal-wave
fields. In Chapter 4, it was demonstrated that it is necessary that 3D computational ocean
models be used to accurately simulate acoustic propagation through internal wave fields.
In this work, we established agreement in ray and normal mode propagation methods for
2D long-range deep ocean (range-invariant) ocean models. It is important to establish
such a benchmarking report for 3D range-variant computational ocean models. Just as for
the 2D range-variant case presented in this dissertation, the strengths and weaknesses of
the different propagation methods will be uncovered and possible modifications to existing
propagation methods will be developed and/or new propagation methods will be derived,

addressing the specific short comings of existing methods.
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APPENDIX A

Normal mode propagation method

The purpose of this appendix is to discuss the validity of the normal mode solution
of the wave equation for 2D long-range, range-invariant, deep-ocean sound speed profiles
(Equation 3.1). The validity is discussed by classifying the normal mode functions and
discussing their contribution to long range acoustic receptions. The classification procedure
leads to a ray interpretation of bound modes, which the author believes is enlightening
without claiming that it is strictly novel.

The normal mode solution is referred to as a “ground truth” solution because it solves the
wave equation exactly for 2D range invariant models, under the assumptions that the acous-
tic signal is a separable function in range and depth, and the source is a point source[16][38].
Two additional assumptions are required for standard implementation, namely the Hankel
function power series is approximated by a complex exponential function, and only a finite
number of the uncountably infinite number of normal modes are used. Since the goal is
to maintain a ground truth solution without representation of all modes, it is of interest
to classify the modes to help determine which modes are most significant for simulating

long-range deep-ocean acoustic propagation.

A.1 Mode classification

Two classes! of normal modes are evanescent modes and bound modes. Evanescent
modes have complex wavenumbers; therefore, these modes are attenuated as a function of

range at a rate greater than cylindrical spreading. Bound modes are attenuated solely by

1The word classes is used to mean groups that are mutually exclusive and as an aggregate complete.
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cylindrical spreading. These modes have (positive) real wavenumbers.

Another two classes of normal modes are continuous modes and discrete modes. There
is an uncountably infinite number of modes whose wavenumbers are described on a con-
tinuous path through complex wavenumber space?. These are the continuous modes. It is
assumed that all continuous modes have complex wavenumbers and are completely mem-
bers of the evanescent modal class. There is a countably infinite number of discrete modes.
These modes have wavenumbers which are both purely real and complex.

The bound modes have real discrete wavenumbers. The bound modes can be categorized
into two classes: reflected modes and refracted modes. These terms are taken from ray
theory. Reflected modes correspond to modes which interact with the ocean boundaries
(surface and/or bottom) and hence correspond to rays which would reflect off the boundary.
Refracted modes correspond to rays which are totally refracted by the deep ocean waveguide.

Figure A.l summarizes the normal mode classifications.

( All normal modes
( continuous mode§ Cdiscrete modes )

( evanescent mo@

bound modes

@nescent m0d99 reflected modes refracted modes

Figure A.1: Normal mode classification. Each layer of classes in the fig-
ure forms the complete grouping of modes (e.g. evanescent, re-
flected, and refracted modes represent all modes)

To implement a “ground truth” solution using Equation 3.1, some manageable number

of normal modes must be used; thus, only a subset of the modes can be used. It is reasonable

2for any single acoustic frequency
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to discard the evanescent modes based on their decay with range®. With only bound modes
remaining, it is reasonable to discard the reflected modes citing boundary absorption and
scattering?. This leaves the refracted modes. It is common to use the refracted modes in
Equation 3.1 and declare this a ground truth solution. It is commonly believed that this
solution is very accurate beyond a few acoustic wavelengths from the transmitter, since this
is where the exponential approximation to the Hankel function is very accurate. However,
one is ignoring a potentially larger assumption, the neglect of all evanescent and reflected
modes.

The normal mode and ray tracing constructed waveform comparison in Section 3.5.1 (see
Figures 3.9 - 3.13) gives some credibility to ignoring the evanescent modes. In this case,
only 65 refracted mode were used, and comparisons between ray and mode computations
were excellent, only with small error. One may conjecture the error in the comparison is due
to the neglect of the evanescent modes. It has not been ruled out that there are significant
errors in ray tracing that are not unveiled by a comparison with a bound normal mode
solution because these errors are represented by evanescent normal modes, a part of the
actual ground truth solution. This seems unlikely to the author, but should not go without
stating.

The remainder of this appendix considers only bound modes in terms of rays and explores

the classification of reflected and refracted modes.

A.2 Reflected & refracted modes and rays

Consider a range-invariant sound-speed profile csso(z) defined in Chapter 2. In this
case, the surface was modeled as pressure release interface, and the (rigid) bottom depth
was 5110 m. The totally refracted rays were surface limited.

The group slowness curves for the first 200 modes (every fifth mode) were plotted in
Figure A.2. The group slowness of mode m of acoustic frequency f is denoted sy( f|m) and is

the reciprocal of the group velocity. The curves were coded to represent the modal slowness

3However, evanescent modes with wavenumbers having a small imaginary component will survive long

ranges and may significantly contribute to the acoustic reception.
4Heard Island Feasibility Test and MIMI (Michigan Miami) experiments in the straits of Florida are

examples of experiments where the acoustic energy survived long-distances of repeated surface reflections.
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Dispersion curves for modes 1,5,10,15,...,200

(N T T 7 1 7 7 7 1 1 T v vt v LU VT TR N
N [ N

0.688
0.686
0.684

0.682

0.68

slowness (ms/m

0.678

0.676

0.674

0.672

0.67 L v
15 20 25 45 75 105

frequency (hz)

Figure A.2: Normal mode group slowness curves

above (solid) and below (dashed) cutoff. For this situation where the first derivative
(EE%JE) is monotone increasing, “below cutoff” means a negative derivative, “cutoff” a
zero derivative, “above cutoff” a positive derivative. Nothing is “cut off”. It simply
is the boundary of a phenomenological regime. The modes above cutoff are referred to
as refracted modes and the modes below cutoff are referred to as reflected modes. The
description of Figure A.3 demonstrates the rationale for this mode-ray relation.

Figure A.3 (top) shows the envelope of a 75 hz Q=2.5 transmission at a range of 1 Mm
calculated using all 200 normal modes. The absolute time on all plots was arbitrarily chosen.
The source and receiver were on the sound channel axis. The surface reflected arrivals are
well resolved and visible after the crescendo. The early arrivals are shown in Figure A.3
(middle), but they are not in the standard triplet sets of small-large-small expected for
the axial source-receiver configuration. Figure A.3 (bottom) shows the envelope of the
same reception except that the refracted modes are included to construct the solid-line
envelope and the reflected modes construct the dashed-line envelope (in correspondence
with Figure A.2). The reflected mode waveform corresponds to rays that have reflected
off the ocean surface and have longer traveltimes than the earliest totally refracted arrival.
The refracted mode arrivals correspond to the channeled totally refracted ray energy. The

reflected arrivals overlap in time with the totally-refracted arrivals, interfering with the well
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Figure A.3: Envelopes of acoustic reception including reflected and re-
fracted rays (composed using normal modes). Top: complete
arrival, Middle: early arrivals, Bottom: reflected modes/rays
(dashed) and refracted modes/rays (solid).
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resolved totally-refracted rays. Not shown, but true, is that the reflected arrivals interfere
with the crescendo (axial arrivals) and persist after the crescendo as shown in Figure A.3
(top). Lower bandwidth sources have wider time-domain pulses and the interfering reflected

wavefronts are more damaging to the refracted resolved arrival.
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APPENDIX B

Ray tracing propagation method

The purpose of this appendix is derive the 3D ray tracing equations in the notation and
form used in this dissertation, as well as detail the extension of the differential equation
amplitude calculation method from 2D computations to 3D computations. The ray tracing
equations are derived in Section D.1, following [51] and implementation of the equations
follows the philosophy described in [53]. In Section D.2, the extension of the 2D differential

equation amplitude calculation method to three dimensions is presented.

B.1 Derivation of ray tracing equations

The derivation of the ray tracing equations from the wave equation is presented starting

with the homogeneous wave equation in three-dimensional rectangular coordinates.

. L2
V p - C2 at2 (B.l)

where V = Ed; + -dd—y + %. The acoustic pressure, p, and sound speed field, ¢, are functions

of space and time.

The acoustic pressure is assumed to be of the form
p= AT (B.2)

where A represents the amplitude across space and Q(t — T) represents the phase. The
acoustic amplitude A is solely a function of space. T' is a scalar field, zero at the origin
and increasing in all directions. T is solely a function of space. Contours of constant

T represent the position of the waveform after a fixed traveltime. This is precisely the
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concept of timefronts. This means we are implying a sufficiently broadband and high
acoustic frequencies for ray tracing.

The form of the assumed solution (Equation B.2) states that the acoustic amplitude and
phase are separable. Substituting the assumed solution into the left-hand side of Equation
B.1 yields

V2p = V2A — 2iQVAVT — Q*VT - VT A — iAQ*V?T (B.3)

Substituting the assumed solution into the right-hand side of Equation B.1 yields

1 0% Q2
Rl s Iy | B
c* gt? c? (Bid)
In both Equations B.3 and B.4 the phase term, ¢'?(t=T) has been suppressed. Combining

the right and left hand sides of the above equations and considering only real terms yield

2
VZA - Q?VT -VTA+ -?—ZA =0 (B.5)

For “large” acoustic angular frequencies, only the last two terms of Equation B.5 will
be significant. Recall, we have already assumed the existence of timefronts, so we have met
this condition, but to obtain an interpretation of how large is “large” we compare the first

and third term from Equation B.5, and ask under what conditions
QZ
| VA |« c_2A (B.6)

Dividing both sides of Equation B.6 by the positive term AQ? and defining the acoustic

wavelength, A = 27¢/Q, yields

= (B.7)

| A
Equation B.7 holds for cases when the rate of change of the acoustic amplitude does not
change significantly with respect to an acoustic wave length. We continue under the as-

sumption Equation B.7 holds; thus, Equation B.5 contains only two significant terms. This

gives the relation called the eikonel equation.

1
VT-VT =5 (B.8)

Since rays travel perpendicular to the acoustic wavefront, VT is a vector in the direction

of ray propagation. We see the rate of change along a ray is equal to the sound speed as
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represented by
1
| VT |= £ (B.9)
where the “+” refers to rays traveling in each direction along the ray path. Equivalently

we can state Equation B.9 in terms of the rate of change along the ray path

dr

where 7 is the ray coordinate. Integrating Equation B.10 between arbitrary points along

the ray yields
T1
T = / LT (B.11)

At this point, we will temporarily use the symbol s to represent the slowness field equal
to the reciprocal of the sound speed field, c. Equation B.11 is rewritten in terms of the

slowness field
T = / ' sidr (B.12)

Next, we take the gradient of each side of Equation B.12
T1
vT =/ Vs dr (B.13)

Since, VT = 7‘ we have

—r —/ Vs dr (B.14)

Differentiating along the ray path with respect to distance yields

d .dT dh

=V B.15
dr[ dr dr N ( )
where h is a position vector from some reference point to the ray end point. Since, 7 = %
d dh
—]=V B.16
53, s (B.16)
Using the relations, % = dig— = sd% we can state
d, ,dh 1
e —] = B.l
dt [s dt SVs {B14)

Returning to use of the sound speed field, we have

d 1dh 1
Rl il PR B.1
dt(c2 dt) cVC (B.18)
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Rewriting Equation B.18 in its expanded form yields

d 1 .0z 0y .0z 1.,,.0c _.0c _Oc
'd—t[c—g(xg‘*'ym'*za)]— —z[($§£+ya—y+25)] (B.19)
Based on our use of an orthogonal coordinate system, the equations can be integrated

separately. For example, consider the equation along the z coordinate.

d 1dzr 1 0c

We define the bracketed term by an auxiliary parameter
1dz
A= =T (B.21)

This leads to an update equation for the range ray coordinate for a small step in time.

‘% =c*A (B.22)
The auxiliary parameter is updated by
% - —%;% (B.23)
Similarly we have the equations,
Z—j- =c’B (B.24)
Cfi—}j = —%% (B.25)
% =¢'D (B.26)
2 - -%% (B.27)

Where the initial conditions are the source location, (Z,, Yo, 2,), the transmission time t,,

and initial auxiliary parameters defined in Equations B.28 - B.30.

cos a, cos Y,

Ay = ——==2 (B.28)
Cs

Bo _ Sin &, (B29)
Cs

D, = €os @, sin Yo (B.30)
Cs
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The above suite of equations can be transformed into having range as an independent

variable by the triangle relation

dz
p i cos f cos (B.31)

This leads to

d
d_at: = ccosfcos P = Ac? (B.32)

which is a restatement of Equation B.22.
The standard ray tracing equations with an independent variable of range are defined

in Equations B.33 - B.38.

% = (B.33)
Z—z - g (B.34)
% = % (B.35)
% = -%%3—; (B.37)
‘fi—f - -%g—;j—; (B.38)

The ray tracing equations are numerically integrated using a fourth-order Runge-Kutta
algorithm. For example, when using time as an independent variable, the equations are
integrated to yield an update to the current ray position and amplitude.

For implementation, one ray is traced at a time. The step size of the independent
variable was decreased until the final solutions converged. The computer code was written

in FORTRAN as is included in Appendix C.

B.2 Derivation of differential equation amplitude calculation
method

The derivation of the differential equation amplitude calculation method in two dimen-
sions is contained in [54]. The wave equation is converted into a ray centered coordinate
system (7, w) defined in Equations 3.16 and 3.17. After a significant amount of mathematical
manipulation, the following relation is obtained

9%¢ 0cdq %
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The acoustic amplitude along a ray is proportional to 1/,/q, and q is interpreted as the
height of the ray tube. For implementation it is desirable to represent Equation B.39 as a

system of two first-order linear differential equations.

9q _
or
Os 1 0%

or _c_zawzq

cs (B.40)

(B.41)

Converting these equations to have range as the independent variable yields,

dg s
ds —q 9%
& = A3 0u? (B.43)

which are precisely the Equations 3.20 and 3.21. Here s is an auxiliary parameter and not
the slowness field. For a Cartesian coordinate implementation we define the curvature along

the wavefront as
d%c %e .,
Bm(‘)zAB + _6z2A ) (B.44)

0%c

Jw?

0%

2 2

=e(z=B"“+2

( dz? b
It is the curvature of the sound speed field along the wavefront coordinate w that controls

the update to the value of the ¢ parameter.

For 3D computations, the orthogonal component (width) of the ray tube can be derived

in a directly analogous manner to obtain

dv

u
== (B.45)
du —v 0%
e T (B.46)

The acoustic amplitude is proportional to 1/,/gv, and u is an auxiliary parameter. We
have assumed that the ray remains in the nominal acoustic plane, or equivalently ¢ = 0°.
The errors resulting from this assumption have been investigated and are insignificant for
the results contained in this dissertation. Exact expressions are easily obtained, but their
employment is at the expense of increased computation time.

The exact expressions to track the height and width of the ray tube in 3D are given.
The derivation simply conducts a change in 3D coordinates between the Cartesian coordi-

nates (z,v,z) and the adjusted Cartesian coordinates (z,9,2). The adjusted coordinates
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change with angle 9 along the ray path; so that, z = Z cos® and y = ysin 9.

computations under this new coordinate system are

dg _ s
dz =~ A
ds 2 0%¢ 0%c
dz_—(8z2B 970z 922 )
dv _u
dz A
e
dz _ Ac3 o2

The proper

(B.47)

(B.48)

(B.49)

(B.50)

For implementation, the second-order derivatives in (z, 7y, z) must be expressed in terms

of (z,y,2). Another change of coordinates is applied using the chain rule to obtain

0%c 0% Oz 0% 0%c Oy

55 = 0758 T (a )(3')8x8y 9y2°0 9z

where %% = sin and % = cos .

d%c 3c8y2 dz 0% 9% 0z,
O = G + 23D (G 50s + 55y
where 8—; = sin ¢ and %% = cos .
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APPENDIX C

Computer code

This appendix contains the computer code written to simulate and analyze acoustic
propagation through deep-ocean internal waves. The appendix is divided into three sections
to cover ray, normal-mode, and PE propagation methods. The computer code was

written in either FORTRAN or MATLAB.

C.1 Ray code

This section contains the general 3D ray tracing code written in FORTRAN. Also, this
section contains 2D range-invariant ray tracing code written in FORTRAN and output

process written in MATLAB.
C.1.1 3D ray propagation code

DOUBLE PRECISION x(20),X0(10),E(10),D(10),RAD,TH1,DTH
DOUBLE PRECISION W(0:5000),C,delc,k,omg,kx,ky

NI = number of variables to integrate

NI =6
T = time
T=20

DX = range steps
DX = 50.0
pi=3.14159265358979

RAD = pi / 180
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AMP = 0.2

omg = internal wave angular frequency
omg=2*pix*(1.31/3600.0)

k internal wave wavenumber

k = 2.046213%2.0%pi/1000.0

internal wave phase in radians

ph

ph = -1.4762

theta = internal wave propagation direction wrt acoustic signal

theta = 88.9951%pi/180.0

kx = k*cos(theta)

ky = k*sin(theta)

Munk profile parameters

B = 520.

CO = 1480.0

EPS = .006

AX = 1200.0

x(11)=AX

x(12)=C0

x(13)=EPS

sd = source depth
sd=1200.

Bounds for launch angles and step size, 3D
thla=-12.65

TH2a=-11.85

dtha=0.1

th1f=-0.01

TH2£=0.01

dthf=TH2f*2/4.

TT = range of propagation

TT=748050.0
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NTOT = NINT(TT / DX)

NRAYS

NINT((TH2a - thia) / dtha)

NRAYF = NINT((TH2f - thif) / dthf)

TH1 = thla * RAD

DTH = dtha * RAD
THF = thif * RAD
DTF = dthf * RAD

Open data containing internal wave mode
open (UNIT=18,FILE=’iw14.dat’ ,STATUS=’0ld’)
DO I=0,5000

READ(18,*)W(I)

ENDDO

close(16)

FE (sd*1.0 - AX) / B

EF

EXP(-FE)

C=CO* (1+EPS* (EF+FE-1))

datal = traveltime; data2 = depth; data3 = transverse
open (UNIT=11,FILE="datal.dat’ ,STATUS=’0ld’)
open (UNIT=12,FILE=’data2.dat’,STATUS=’old’)
open (UNIT=13,FILE="data3.dat’ ,STATUS=’0ld’)
10 format(£24.10)

Loop integration for each ray

do 90 nrr= O, NRAYF

do 100 nr = O, NRAYS

thet = TH1 + nr * DTH

phi = THF + nrr * DTF

c setup the initial conditions for a new ray x(2) = sd

x(1) = 0.0
x(5) = 0.0
delc = AMP*W(NINT(sd))*C0S{(ph)
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CW = Cx(1.0+delc)

x(3) = SIN(thet) / CW
x(4) = COS(thet)*C0S(phi) / CW
x(6) = COS(thet)*SIN(phi) / CW

do 50 NST = 1 ,NTOT

call rungek(E,D,x,XO,NI,DX,T,W,AMP,B,omg,kx,ky,ph)

endif

50 continue

x(1) = traveltime; x(2) = depth; x(5) = transverse
write(11,10)x(1)

write(12,10)x(2)

write(13,10)x(5)

100 continue

90 continue

close(11)

close(12)

close(13)

end
C@0@@@@@@@@Q@@@Q@@Q@@@Q@@@Q@@@@Q0@@QQQ@@Q@@@Q@@@@@@@@@@@@@@@@@@@
Runge-Kutta integration routine

subroutine rungek(E,D,x,XO,NI,DX,T,W,AMP,B,omg,kx,ky,ph)

DOUBLE PRECISION D(10),x(20),X0(10),E(10)

DOUBLE PRECISION W(0:5000),kx,ky,omg

do 1000 I =1, NI

Xo(I) = x(I)

1000 continue

call sysspec(x,D,W,T,AMP,B,omg,kx,ky,ph)

do 2000 I = 1, NI

E(I)
x(I)

D(I) * DX

X0(I) + .5 * E(I)
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2000 continue
T=T+ .5 x DX
call sysspec(x,D,W,T,AMP,B,omg,kx,ky,ph)

do 3000 I =1, NI

E(I) = E(I) + 2 * D(I) * DX

x(I) X0(I) + .5 * D(I) * DX

3000 continue

call sysspec(x,D,W,T,AMP,B,omg,kx,ky,ph)
do 4000 I = 1, NI

E(I) E(I) + 2 * D(I) * DX

x(I)

X0(I) + D(I) * DX

4000 continue

T=T+ .5 *x DX

call sysspec(x,D,W,T,AMP,B,omg,kx,ky,ph)

do 5000 I = 1, NI

x(I) = X0(I) + (E(I) + D(I) * DX) / 6.0

5000 continue

RETURN

end
C000000000eQQeeQQ0eQ0QAC0QAACERQACCQARECAQACQQALCERQACCQAQEQQAQQQALCQCQ0LQ
Routine to compute derivative information

subroutine sysspec(x,D,W,T,AMP,B,omg,kx,ky,ph)

DOUBLE PRECISION D(10),x(20),CC(5),C,W(0:5000) ,WW,AX,CO,EPS
DOUBLE PRECISION CW,C2,CI,INTW,kx,ky,omg

DOUBLE PRECISION DCZ,DCX,DCY

AX=x(11)

C0o=x(12)

EPS=x(13)

itag=2

do 1i=0,4
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xx=x(2)+1.0%(ii-itag)

WW=W (INT (xx) )+ (xx-INT (xx) ) * (W(INT (xx+1) ) -W(INT (xx)))
INTW=AMP*WW*COS (ky*x (5) +kx*T+omg*x (1) +ph)

FE=(xx-AX) / B

EF=EXP (-FE)

C=CO* (1+EPS* (EF+FE-1))

CC(ii+1)=Cx(1.0 + INTW)

enddo

DCZ = (CC(1) - (8%CC(2)) + (8%CC(4)) - €C(5))/12.0
CW = CcC(3)

WW=W(INT (x(2)))+(x(2)-INT(x(2)))* (W(INT(x(2)+1))-W(INT(x(2))))
do ii = 0,4

xx=T+(1i-2)

INTW = AMP*WW*COS (ky*x(5)+kx*xx+omg*x (1) +ph)
CC(ii+1) = CWx(1.0 + INTW)

enddo

DCX = (CC(1) - (8.%CC(2)) + (8.%CC(4)) - €C(5))/12.0
do ii=0,4

xx=x(2)+1.0*(ii-itag)

WW=W (INT (xx) )+ (xx-INT(xx) ) * (W(INT (xx+1) ) -W(INT (xx)))
INTW=AMP*WW*COS (ky*x (5) +kx*xxx+omg*x (1) +ph)
FE=(xx-AX) / B

EF=EXP (-FE)

C=COx (1+EPS*(EF+FE-1))

CC(ii+1)=Cx(1.0 + INTW)

enddo

do ii = 0,4

xx=x(5)+(ii-2)

INTW = AMP*WW*COS (kx*T+ky*xx+omg*x(1)+ph)

CcC(ii+1) = CWx(1.0 + INTW)
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enddo

DCY = (CC(1) - (8.%CC(2)) + (8.xCC(4)) - CC(5))/12.0

C2 = CW * CW
CI=1/CW
D(1) = 1.0/(x(4) * C2)

D(2) = x(3)/x(4)

D(3) = -CI * DCZ * D(1)
D(4) = -CI*DCX * D(1)
D(5) = x(6)*C2*D(1)
D(6) = -CI*DCY*D(1)
RETURN

end

C.1.2 2D range invariant propagation code

This FORTRAN code is essentially a subset of the full 3D code. All variables use
the same convention as with the previous FORTRAN program which was excessively com-
mented. It computes the amplitude using the differential equation method. A MATLAB

post-processor code follows to construct the envelope and phase of the acoustic reception.

DOUBLE PRECISION x(10),X0(10),E(10),D(10),DTH,TH1,thet,C,EF,FE

REAL ocean
NI =565
T=0
DX = 30

C Munk profile parameters B = 520.

EPS = 0.006
AX= 1200.0
CO = 1480.0

C sd = source depth sd=1200.
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thila=-15.

TH2a= 15.
dtha=0.10
C TT = propagation range TT = 185000.0

NTOT = NINT(TT / DX)

NRAYS = NINT((TH2a - thia) / dtha)

RAD = 1. / 57.29577951
TH1 = thla * RAD
DTH = dtha * RAD

do 100 nr = 0, NRAYS

thet = TH1 + nr * DTH
x(2) = sd
x(1) =0

FE = (x(2) - AX) / B

EF EXP(-FE)

C=CO* (1+EPS* (EF+FE-1))

C x(3) is tangent of ray inclination angle

x(3) = TAN(thet)

C x(4) is the q paramenter in dynamic ray tracing / Gaussian Beams
x(4) =0

c x(5) is the p parameter in dynamic ray tracing / Gaussian Beams
x(5) =1/ C

c x(6) is the Snell’s Law constant

x(6) = C0S(thet) / C

C datal.dat stores the time co-ordinate for each ray after TT meters
C of propagation

C data2.dat stores the depth co-ordinate ....

C data3.dat stores the number of caustics crossed

C data4.dat stores the amplitude .....

open (UNIT=1,FILE=’data1.dat’,STATUS=’old’)
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open (UNIT=2,FILE=’data2.dat’ ,STATUS=’0ld’)
open (UNIT=3,FILE=’data3.dat’,STATUS="0ld’)
open (UNIT=4,FILE=’data4.dat’ ,STATUS=’0ld’)
ocean=0.0

toc=0.0

do 50 NST = 1 ,NTOT

x01d=x(3)

call rungek(E,D,x,DX,X0,NI,CO,B,CEB,AX,EPS)
if(toc.gt.0)then

if(x(3)*x0ld.le.0.0)then

ocean=ocean+1

toc=-5.0

endif

endif

toc=toc+1

x0ld=x(3)

50 continue

c plotting for time fronts

write(1,10)x(1)

write(2,10)-x(2)

write(3,10)x(4)

write(4,10)ocean

10 format(£16.8)

100 continue

close(1)

close(2)

close(3)

close(4)

end

C Runge-Kutta integration routine subroutine rungek(E,D,x,DX,XO,NI,CO,B,CEB,AX,EPS)
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DOUBLE PRECISION D(10),x(10),X0(10),E(10)
do 1000 I = 1, NI

Xo(I) = x(I)

1000 continue

call sysspec(x,D,AX,B,EPS,CEB,CO)

do 2000 I =1, NI

E(D

x(I)

D(I) * DX

X0(I) + .5 * E(I)

2000 continue
call sysspec(x,D,AX,B,EPS,CEB,CO)
do 3000 I = 1, NI

E(I) = E(I) + 2 * D(I) * DX

x(I) = X0(I) + .5 * D(I) * DX
3000 continue

call sysspec(x,D,AX,B,EPS,CEB,CO)
do 4000 I = 1, NI

E(I) = E(I) + 2 % D(I) * DX

x(I) = X0(I) + D(I) * DX

4000 continue

call sysspec(x,D,AX,B,EPS,CEB,CO)

do 5000 I = 1, NI

x(I) = X0(I) + (E(I) + D(I) * DX) / 6.0

5000 continue

RETURN

end

C Computation of derivatives subroutine sysspec(x,D,AK,B,EPS,CEB,CO)
DOUBLE PRECISION D(10),x(10),FE,EF,CI,C2,C,DCY
c Profile parameters

FE = (x(2) - AX) / B

EF = EXP(-FE)
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CEB = CO * EPS / B

C=COx (1+EPS* (EF+FE-1))

DCY = CEB*(1-EF)

DCYY
c2 =
CcI =
D(1)
D(2)
D(3)
D(4)

D(5)

RETURN

(CEB*EF/B)

* C

/ C

1./(x(6) * C2)

x(3)

-CI * DCY * D(1)/x(6)
x(5) / x(6)

-DCYY * x(4) * x(6)/C

end
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C.1.3 Output processor code

This is the MATLAB code which forms the time-domain envelope and phase of the

reception from the ray tracing data generated using the previous FORTRAN code.

clear all

x=datal;

z=-data2;

R=3000000. ;
data3=data3+10.0*1logl0(R);
amplitude=10.(-data3/20);
ocean=data4;

N=4096;
f=([0:N-1]-N/2)*240/4096;
arg=£/15.0;

S=sinc(arg);
bandlimit=(sign(15-abs(f))+1)/2;
S=S.*bandlimit;

j=sqrt(-1);

depth = 800.0

flip=-1.0;

if x(1) < depth

f1lip=1.0;

end

for i=1:length(x)-1

if flip*(z(i) - depth) > 0.0
if flip*(z(i+1) - depth) < 0.0
flip=-1.0%flip;

c=c+1;

tw(c)=x(i) + ((depth - z(i))/(z(i+1)-z(i)))*(x(i+1)-x(1));

ophase(c)=ocean(i);
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amp(c)=amplitude(i)+ ((depth - z(i))/(z(i+1)-z(i)))* ..
(amplitude(i+1)-amplitude(i));

end

end

end

sig=zeros(size([1:N]));

t=([0:N-1]1/240.0);

Sexp=0;

for i=1:length(tw)

Sexp=Sexp + amp(i)*S.*exp(-j*z*pi*(75+f)*tw(i))*exp(j*pi*ophase(i)/2);
end

sig=(ifft(fftshift(Sexp)));

plot(t,abs(sig))
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C.2 Normal mode code

This is MATLAB code used to construct normal mode acoustic arrivals from the Scripps
modemaker code.
R=3000000.0;
N=4096;
numdeep=512;
delf=freq(2)-freq(1);
f=([0:N-1]-N/2)*240/N;
arg=(£/15);
S=sinc(arg);
bandlimit=(sign(15-abs(f))+1)/2;
S=S.*bandlimit;
f=f+75.0;
isource=81;
irec=81;
P=zeros(size(S));
c=0;
for i=1:length(S)

if bandlimit(i) > .1

=min(abs(freq-£(i)));
a=f(i)-freq(oo);

if a <O

b=f (i)-freq(oo-1);
uu=oo-1;

else
b=freq(oo+1)-f(i);

uu=oo+1;
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end
UU1=reshape(U(oo,:),maxmode,numdeep);
UU2=reshape(U(uu,:),maxmode,numdeep);
UU=UU2 + (UU1-UU2)*(b/delf);
USource=UU(:,isource);

Kni=K(oo,:)’;

Kn2=K(uu,:)’;

Kn=Kn2 + (Kn1-Kn2)*(b/delf);
Urec=UU(:,irec);
temp1=USourca.*(ones(size(Kn))./sqrt(Kn)).*exp(—j*Kn*R);
temp2=( (2*pi) (0.5) ) *exp(j*pi/4)/sqrt(R);
temp=temp2*templ;
P(i)=S(i)*sum(temp.*Urec);

end

end
p=fftshift(ifft(fftshift(P),length(P)));
t=[0:1length(£f)-1]/240.0;

plot(t,fftshift(abs(p)),’g--")

C.3 PE code

This program uses PE to simulate acoustic propagation. The program is written in
FORTRAN. The standard split step FFT (sin transform) is used with a Gaussian starting
field. This program is for single frequency / range invariant but can easily be adjusted
to include range variant perturbations and broadband sources, as well as coded for use an
the IBM SP2. The algorithm is based on 4 references: 1) Computational Acoustics[16]
(Chapter 6); 2) Numerical Recipes[22] (Chapter 12); 3) The technical paper[29]; 4) Email

conversations with Paul Book[50].

integer Nz,f
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COMPLEX Kfac(1024), SSPfac(1024), Phi(1024), i, P

real range,depth,kO,Zb,Zs,dist,delr,freq,co,c(1024),iwph
real eps,ax,B,eta,ssp,temp,atten(1024),delf,flow,iwk,iwomg
real W(0:5000) dist = 748050.0

c source depth

Zs = 1200.0

delr = 50.0

Zb=5115.0

Nz=1024

deld = Zb/(Nz-1.0)

cO = 1480.0

eps = 0.006

ax = 1200.0

B 1040.0

i = cmplx(0,1)

pi = 3.141592653589793d0

¢ internal wave set up

AMP = 0.23

RAD=pi/180.0
iwomg=2*pi*(1.31/3600.0)*0.0

iwk = 2.046213%2.0%pi/1000.0

iwph = 0.42014522198833-pi

theta = 86.02607907245563%pi/180.0
iwk = iwk*cos(theta)

open (UNIT=4,FILE=’iw14.dat’,STATUS="0ld’)
D0 Iiw=0,5000

READ (4, *)W(Iiw)

ENDDO

close(4)

open (UNIT=1,FILE=’peout.dat’,STATUS=’old’)

136



Nf = 513

delf=0.05859375000000

flow=60.0

£c=75.0

do f=1,Nf

open (UNIT=3,FILE=’pestat.dat’,STATUS=’old’)
write(3,*)f ,Nf

c write(6,*)f ,Nf

close(3)

freq=(f-1.0)*delf+flow

if(freq.eq.fc) then

S =1.0

else

S = sin(pi*(freq-£c)/15.0)/(pi*(freq-fc)/15.0)

c write(6,%)S

endif

kO = 2*pixfreq/cO

do k = 1,Nz

depth = (k-1)*deld

eta = 2%(ax - depth)/B

c(k) = cO%(1.0 + eps*(exp(eta) - eta -1 ))

ssp=ssp + AMP*W((k-1)*5+1)*C0S(iwph)

temp=exp (- ((depth-Zb)/(0.04%Zb))**2.0)
atten(k)=exp(-0.05%delr*temp)

Kfac(k) = exp((—i*delr/(2*k0))*((pi/Zb)*(k-i.0))**2.0)
SSPfac(k) = atten(k)*exp((i*k0/2)*((c0/ssp)**2.0 - 1)*delr)
Phi(k) = (kO*%0.5)*exp(-((k0%%2.0))*((depth-Zs)**2.0) /2.0)
enddo

dom = 1,NINT(dist/delr)

range = mkdelr

137



do k = 1,Nz

ssp=c(k) + AMP*W ( (k-1) *5+1) *C0S ((iwk-iwomg/cO) *range+iwph)
SSPfac(k)=atten (k) *exp((ixk0/2)*((cO/ssp)**2.0 - 1)*delr)
Phi(k) = (2./Nz)*Phi(k)*SSPfac(k)

enddo

call work(Phi,Nz,Kfac)

enddo

do k = 1,Nz

P=S*Phi (k) *exp (i*kO*range - pi/4)*sqrt(2*pi/range)
write(1,10) real(P),imag(P)

enddo

enddo

10 format(f24.20,XXX,£24.20)

close(1)

end

SUBROUTINE work(y,n,fac)

INTEGER n

REAL tempi(n),temp2(n),temp

COMPLEX y(n),i,fac(n)

i = cmplx(0,1)

do k = 1,n

tempi(k) = real(y(k))
temp2(k) = imag(y(k))
enddo

call sinft(templ,n)

call sinft(temp2,n)

do k = 1,n
temp = templ (k)
temp1(k) = real(fac(k)*(tempi(k) + i*temp2(k)))

temp2(k) = imag(fac(k)*(temp + i*temp2(k)))
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enddo
call sinft(templ,n)

call sinft(temp2,n)

do k = 1,n

y(k) = tempil(k) + i*temp2(k)
enddo

return

end
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