ABSTRACT

Trellis and Tree Search Algorithms for Equalization and Multiuser Detection
by
Abdulrauf Hafeez

Chair: Wayne E. Stark

This thesis deals with the detection of digital signals in the presence of inter-symbol in-
terference (ISI) and/or multiple-access interference. We develop a new fractional maximum
likelihood sequence estimation (MLSE) receiver which is suitable for wireless communica-
tion systems with excess signal bandwidth and fast time-varying channels. We investigate
the effect of the receive filter and the branch metric on decision feedback sequence esti-
mation (DFSE) and M-algorithm receivers, which are reduced-complexity alternatives to
MLSE. The analysis leads to the classification of these receivers on the basis of the presence
of untreated interference components, referred to as bias, which dominate the error-rate
performance of the receiver. Bias arises in a DFSE or M-algorithm receiver due to a mis-
match between the receive filter and the branch metric. We show that an unbiased receiver
comprises a front-end filter matched to the overall channel or the transmit filter response
followed by the appropriate noise-whitening or zero-forcing filter and a reduced trellis or
tree search algorithm. Receivers with just a matched filter followed by a reduced trellis or
tree search algorithm belong to the class of biased receivers.

We compare various trellis-based receivers on the basis of the distance of a given er-
ror sequence, which characterizes the probability of the associated error event. We show
that whitening filter DFSE reéeivers maximize the error distance among unbiased DFSE re-

ceivers and truncated-memory MLSE receivers with pre-filtering. For matched filter DFSE



receivers. we describe bias compensation methods employing hard as well as soft tenta-
tive decisions, which significantly enhance performance in most cases without adding much
complexity. Union bounds on the error probability of the various receivers are derived and
evaluated using a modified generating function approach.

We derive an optimum forward-recursjve soft-output algorithm which operates on the
standard matched filter statistics and has complexity that grows exponentially with the
channel memory'only. We also derive a reduced-state soft-output algorithm which provides
good symbol reliability estimates with reduced complexity. The performance of the various
algorithms is compared for equalization of ISI and multiuser detection for direct-sequence

code-division multiple-access systems via simulation and analytical examples.
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CHAPTER 1

Introduction

Bandwidth efficient data transmission over wireline and wireless channels is made pos-
sible by the use of equalization techniques to compensate for the inter-symbol interference
(IS]) introduced by the channel. In wireline channels like telephone lines, time dispersion
results from non-ideal amplitude and phase characteristics of the medium and causes ad-
jacent transmitted pulses to interfere with each other. In radio and undersea channels,
the signal traverses several paths with differing amplitude and delay responses to reach the
receiver. This phenomenon, known as multipath propagation, causes ISI. The problem of
ISI also occurs in magnetic and optical recording channels due to non-ideal characteristics
of the inductive read head. The medium is not always responsible for causing ISI. Band-
width efficient design of signals, known as partial-response signaling, generally introduces
controlled ISI to enable high-rate transmission.

Many wireline and wireless communication systems suffer from the impairment of multiple-
access interference (MAI) in varying degrees. In code-division multiple-access (CDMA)
systems, users share a common physical channel to transmit/receive non-orthogonal signals
which interfere with each other. In hybrid time-division multiple-access/frequency-division
multiple-access (TDMA /FDMA) systems, users reusing the frequency of the desired user in
nearby cells cause co-channel interference. In twisted-pair local subscriber lines, crosstalk
between users occurs due to the coupling of signals in adjacent wires. The problem of MAI
can be alleviated by means of a multiuser detection technique. Such techniques have gained
popularity especially in the case of direct-sequence CDMA (DS-CDMA) systems and are
being considered for the next generation wireless systems as a key to improve capacity. Co-

channel interference cancellation techniques are also being considered for the TDMA/FDMA



system based on the digital advanced mobile phone system (D-AMPS) standard.

The mitigation of ISI has been a prolific area of research for several decades [34]. Sev-
eral techniques have been developed for equalization of ISI for pulse-amplitude modulated
(PAM) systems which have been adopted for related problems. including MAI suppression.
Maximum likelihood sequence estimation (MLSE) [6,13,22,40.43] is an optimal detection
technique for channels with memory and additive noise. It minimizes the probability of
sequence error for a-priort equiprobable sequences. The technique was first proposed by
Forney [13] for optimum equalization of linear finite ISI channels with additive white Gaus-
sian noise (AWGN). Later, other authors discovered applications of the MLSE algorithm to
related problems. Verdu [43] derived an optimum multiuser detector for DS-CDMA systems
by noting that the MAI in a DS-CDMA system can be viewed as cyclo-stationary ISI in a
single-user system. The detector finds the Joint maximum likelihood sequence of symbols
for all users.

Maximum a-posteriori symbol-by-symbol detection (MAPSSD) is an optimal detection
technique for channels with memory and additive noise which minimizes the probability of
symbol error [1,3,23,28,42]. Conventional implementation of a MAPSSD receiver, com-
pared to an MLSE receiver, has the added benefit of obtaining symbol a-posterior: proba-
bilities (APP) which are useful for concatenated systems. Central to an MLSE (MAPSSD)
receiver is a non-linear processor called the Viterbi algorithm (optimum soft-output al-
gorithm). For a channel with delay response with finite length L (measured in symbol
periods) and input alphabet size A, the Viterbi algorithm employs a trellis with AL states
or nodes. The size of the trellis and the computational complexity of the algorithm be-
come prohibitive if the channel has a long delay response. The algorithm can not be
implemented for channels with infinite delay response. The same is true for an optimum
soft-output algorithm (OSA). Thus, several low-complexity linear and non-linear techniques
have been considered for equalization [34] as well as for multiuser detection [44]. Some of the
most powerful complexity reduction techniques are non-linear techniques which are derived
from an MLSE or MAPSSD receiver. These include decision feedback sequence estimation
(DFSE) [7,8,10,11,17,19, 20, 39,50], truncated memory MLSE (TM-MLSE) [12, 26,35,49],
the M-algorithm (2,48, 51] and Bayesian conditional decision feedback estimation (BCDFE)
[18,25]. This thesis deals with analysis and derivation of MLSE and MAPSSD receivers

and some of their most prominent reduced-complexity derivatives. New techniques are de-



veloped for applications in equalization and multiuser detection. Existing techniques are
compared to each other and to the new techniques via analysis and simulation. Most work
in this thesis is focussed on MLSE and related receiver structures. For this purpose, Chap-
ter 2 sets up the system models for a single-user ISI system and a multiuser DS-CDMA
system and describes optimum equalization and multiuser detection methods based on the
MLSE technique. The notation developed there is followed throughout the thesis.

In wireless communication systems, the channel is generally considered as comprising a
time-invariant transmit pulse-shaping filter and a time-varying and dispersive transmission
medium. Forney’s MLSE receiver comprises a front-end filter matched to the overall channel
impulse response (the standard matched filter), followed by a symbol-rate sampler and a
discrete-time noise-whitening filter to whiten the filtered noise affecting the statistics. The
Viterbi algorithm operates on the whitened statistics to search for the most likely sequence
transmitted using the Euclidean distance metric. Ungerboeck [40] derived an alternative
MLSE formulation where the Viterbi algorithm operates directly on the statistics obtained
after standard matched filtering, using a modified metric. In a time-varying environment,
both receivers require an adaptive front-end filter which is not desirable for implementation
purposes. Moreover, if the signal bandwidth is greater than the data rate, sampling at the
symbol rate results in high sensitivity to the sampler timing phase [34]. Many narrowband
communication systems utilize excess signal bandwidth. To handle these problems, Hamied
et al. [22] proposed a receiver with a non-adaptive front-end filter matched to the transmit
filter response (transmit matched filter), followed by a fractional-rate sampler and a fixed
noise-whitening filter. However, due to the presence of nulls in the N yquist band of practical
pulse-shaping filters like the square-root raised cosine filter, the noise-whitening filter has a
long slowly-damped delay response and any practical length truncation results in significant
distortion. In Chapter 3, we derive a new fractional MLSE receiver that does not need a
noise-whitening filter. The receiver is insensitive to the sampler timing phase. It exploits the
knowledge of the pulse-shaping filter at the receiver and requires only one-step prediction for
the medium response coefficients. These features make the receiver attractive for systems
with excess signal bandwidth and fast time-varying media.

DFSE and TM-MLSE are trellis-based techniques where the complexity is controlled
by reducing the memory of the trellis in the Viterbi algorithm. On the other hand, the

M-algorithm is a tree-based technique where the complexity is reduced by pruning the tree



(representing sequence hypotheses) to maintain a given number of branches at each step.
In TM-MLSE [12,35]. the tail of the delay response of the channel is canceled by means of
linear pre-filtering. In DFSE [7,8] and the M-algorithm [2]. the tail of the delay response
is canceled by feeding back past decisions taken from survivor paths in the trellis or tree.
This manner of conditional decision feedback has been shown to alleviate the problem of
error propagation that limits the conventional decision feedback equalizers. DFSE and
M-algorithm receivers have been proposed to operate with whitened as well as standard
matched filter statistics. It has been noted that the receive filter has a profound influence
on the performance of these receivers [37,48, 50]. However, this effect has not been quantified
and understood.

In Chapter 4, we examine the effect of the receive filter and the branch metric on a
generalized receiver comprising a front-end filter followed by a general transversal processing
filter and a reduced trellis or tree search algorithm with conditional decision feedback. We
consider two different formulations for the branch metric — in one case the front-end filter
is the standard matched filter while in the other case, it is the transmit matched filter.
The latter formulation is desirable for fractional equalization in the presence of excess
signal bandwidth. A first error event analysis of the generalized receiver indicates that a
proper combination of the processing filter and the branch metric is necessary to avoid bias
(untreated interference components). The presence of bias severely limits the error-rate
performance of a DFSE or M-algorithm receiver for most channels of interest. The various
receivers are thus classified as biased and unbiased. Bias occurs in a DFSE or M-algorithm
receiver due to a mismatch between the processing filter and the branch metric. We show
that the processing filter must either be the appropriate noise-whitening filter (WF) or
the zero-forcing filter (ZF) in order to achieve unbiasedness. Thus, the well-known DFSE
and M-algorithm receivers with the whitening filter (WF-DFSE and WF-MA, respectively)
belong to the class of unbiased receivers, while the receivers with just the matched filter
(MF-DFSE and MF-MA) belong to the class of biased receivers.

The error-rate performance of the various DFSE and TM-MLSE receivers can be char-
acterized by a parameter called the error distance. The error distance, in our case, does not
merely mean the distance between two hypothesized signal sequences as in Forney [13], but
it also includes the effect of noise enhancement. The distance of a given error sequence for a

DFSE receiver depends on the type of filtering and the branch metric. The distance is max-



imized by the MF-DFSE receiver with the standard matched filter. while it is smaller for
WF-DFSE and ZF-DFSE. This is due to the fact that the standard matched filter maximizes
the output signal-to-noise ratio (SNR) by collecting all the energy of the pulse transmitted
at a given time in the corresponding output sample. The noise-whitening filter spreads out
the signal energy into several output samples in the process of whitening noise. The linear
zero-forcing filter decorrelates all interfering signal components but enhances (and corre-
lates) noise in thé process. The reduced trellis-search algorithms which follow these filters
recover part of the SNR that is spread out but are unable to recover all of it. Unfortunately,
the drawback of MF-DFSE is that the reduced trellis search algorithm, in this case, is un-
able to resolve some anti-causal interfering signal components which generally dominate
the error performance. Since the noise-whitening filter removes only the anti-causal signal
components, which is necessary for unbiasedness, it maximizes the error distance among
unbiased DFSE receivers. ZF-DFSE and TM-MLSE perform additional signal decorrelation
and have lower error distance and thus inferior error-rate performance than WF-DFSE. The
analysis ignores the effect of error propagation on DFSE receivers which, however, is small
for most channels of interest. We obtain upper bounds on the symbol error probability of
the various trellis based receivers assuming no error propagation and describe a generating
function method to evaluate the union bounds.

Despite the unbiasedness and excellent error distance properties of WF-DFSE, its ap-
plicability is limited by the requirement of the noise-whitening filter. In applications where
the noise at the output of the front-end filter is white, the algorithm can be employed
without noise-whitening. However, the error performance in this case is highly sensitive to
channel phase. While the best performance is obtained if the channel has minimum-phase,
the performance may be rather poor if the channel has maximum or mixed phase. An
all-pass filter is needed to get the minimum-phase channel. Computation of the additional
processing filter requires channel inversion and/or factorization operations. This may not
be desirable for applications involving time-varying channels and channels with deep spec-
tral nulls. MF-DFSE is suitable for such applications. However, its performance is severely
limited by the presence of bias as described earlier.

An intuitive solution to the problem of anti-causal interference components in MF-
DFSE is to cancel them by means of tentative decision feedback. This results in bias-

compensated MF-DFSE (BC-MF-DFSE) receivers which are described and analyzed in



Chapter 5. With reliable tentative decisions, the bias can be compensated effectively. As
a result. the performance is no longer dominated by untreated interference coniponents
but rather by the excellent error distance. Tentative decisions can be obtained by using a
decision device which delivers hard or soft decisions based on just the current input sample
or by using a multistage configuration. Linear and non-linear minimum mean square error
estimates of the symbols are considered as soft decisions. We obtain approximate upper
bounds on the error probability for the various BC-MF-DFSE receiver configurations and
describe a generating function technique to evaluate the bounds. Using several simulation
and analytical examples, we find that a MF-DFSE receiver with soft bias compensation
(SBC-MF-DFSE) provides a significant gain over MF-DFSE for most channels of interest
without much added complexity. The receiver is particularly suitable for multiuser detection
in DS-CDMA systems and performs quite well in near-far conditions.

Chapter 6 deals with soft-output algorithms. The optimum soft-output algorithm (OSA)
of Li et al. [28] has complexity which grows exponentially with the channel memory and
linearly with the decision lag. The algorithm operates on discrete-time statistics contain-
ing white noise. The algorithm of Hayes et al. [23] operates on the standard matched
filter statistics but has complexity which is exponential in the decision lag. The optimum
soft-output multiuser estimation algorithm of Verdd [42] requires a backward-forward re-
cursion, due to which it has high latency. We derive an optimum soft-output algorithm
with a forward-only-recursion which operates on the standard matched filter statistics. The
algorithm has complexity similar to the OSA of Li et al.. We derive a reduced-complexity
sub-optimal version of this algorithm which requires add-compare-select operations mostly.
We also derive a reduced-state alternative to the OSA algorithm. The algorithm is obtained
by modifying the algorithm of Lee et al. [25] which fails to generate reliable soft information.
The complexity of the various algorithms is tabulated. The error-rate performance of the
various algorithms is compared via simulation of a DS-CDMA system with convolutional
coding and interleaving.

The thesis is organized as follows. In Chapter 2, we describe the system models for
a single-user system with ISI and a multiuser DS-CDMA system. We describe optimum
equalization and joint equalization/multiuser detection techniques for time-varying trans-
mission media. In Chapter 3, we develop a new fractional MLSE receiver for systems with

excess signal bandwidth and discuss its merits compared to other receivers. Chapter 4 deals



with analysis. classification and comparison of reduced trellis and tree search algorithms.
In Chapter 5, we describe bias-compensation for matched-filter type receivers and compare
the performance of the various receivers via simulation and approximate bounds which are
obtained in this chapter. In Chapter 6, we derive novel soft-output algorithms and compare
their performance via simulation. Conclusions are drawn and future work is discussed in

Chapter 7.



CHAPTER 2

Optimum equalization and multiuser detection

2.1 Introduction

Maximum-likelihood sequence estimation (MLSE) is an optimum detection technique
for signals corrupted with intersymbol interference (1S1) and additive white Gaussian noise
(AWGN). The technique minimizes the probability of sequence error for a priori equi-
probable sequences. Forney [13] provided the first MLSE formulation by noting the ap-
plication of the Viterbi algorithm to equalization over 2 known time-dispersive, linear and
time-invariant channel. Forney’s formulation employs a filter matched to the overall channel
impulse response (the standard matched filter) followed by a discrete-time noise-whitening
filter! to produce discrete-time sufficient statistics which are processed by the Viterbi al-
gorithm. Ungerboeck [40] later derived an alternative MLSE formulation which consists of
just the standard matched filter and the Viterbi algorithm with a modified metric. The
latter formulation was extended for the case of known time-varying channels by Bottomley
et al. [6]. Verdd [43] derived an optimum multiuser detector for direct-sequence code-
division multiple-access (DS-CDMA) channels with AWGN. The detector finds the joint
maximum likelihood sequence of symbols for all users transmitted asynchronously over a
common channel. Verdu’s multiuser receiver is really an extension of Ungerboeck’s MLSE
formulation to joint detection of multiuser signals.

In this chapter, we describe optimum receivers for single-user equalization and joint
equalization/multiuser detection for DS-CDMA systems in a known time-varying environ-

ment. This chapter sets up the system models and notation which is followed throughout

YThe cascade of the two filters is referred to as the whitened matched filter.



the thesis. The chapter is organized as follows. In Section 2.2, we present the model for a
single-user system with ISI1. In Section 2.3, we describe the functionality of an MLSE re-
ceiver. In Section 2.4, we re-derive the Ungerboeck-Bottomley formulation for time-varying
channels. In Section 2.5, we describe the model for a multi-user DS-CDMA system. In
Section 2.6, we obtain an optimum receiver for joint equalization/multiuser detection as an

extension of the Ungerboeck-Bottomley formulation.

2.2 System model

Consider the transmission of linearly-modulated digital data over alinear, time-dispersive
medium. The system model consists of a transmitter, a linear time-varying transmission
medium and a receiver. The baseband transmitted signal is modeled as

N-1

si(t) = Z and(t — nT) (2.1)

n=0

N-1

n=0

where d(t) is the impulse response of the transmit filter and {a,} is a finite sequence
of complex symbols (taken from a finite alphabet A). The radio signal transmitted propa-
gates through the medium to reach the receiver where it is converted to a complex-valued,

baseband signal y(t), given by

y(1) = g(r5t)* s:(t) + w(t)
= [ gt = X0)s(Ndr+ () (2:2)

~ where g(7;1) is the output of the transmission medium at time ¢ when an impulse is applied
at time t —7 and w(t) is a complex white Gaussian noise process with power spectral density
No. Substituting (2.1) in (2.2), we get

N-1
y(t) = 3 anh(t — nT3t)+ w(?) (23)
n=0
where h(7;t) models the overall response of the transmit filter and the transmission medium
and is given by

h(rit) = / g(r = X;)d(A)dA. (2.4)

The received signal y(t) is collected over a finite time interval, denoted I, which is much

larger than [0, (N — 1)T]. The response h(r;t) is assumed to be square integrable over the



interval 1, i.e.

i
Ut

/N |h(r: 1)[2dr < oo for 1€ 1. (-

—0

2.3 Maximum likelihood sequence estimation

A maximum likelihood sequence estimation (MLSE) receiver finds the hypothetical se-
quence of symbols {an} (an € A) that maximizes the likelihood of the received signal y(t)
given that {a,} was transmitted. Assuming equiprobable symbols, an MLSE receiver max-
imizes the log-likelihood function derived from the a posteriori distribution of the received
signal. Ignoring constant scaling factors and additive terms, the log-likelihood function

reduces to

N-1 2
y(t) = Y anh(t —nT3t)| dt, (2.6)

n=0

Jo =~ /tGI‘y(t) —ya()*dt = - /tel

where H is the hypothesis corresponding to the sequence {a,}. It is assumed that y(t) is
band-limited in the receiver front end, using a bandwidth larger than the signal bandwidth,

so that the integral in (2.6) is well defined.

2.4 The Ungerboeck-Bottomley formulation

In this section, we re-derive an MLSE formulation following the development of Bot-
tomley et al. [6]. The receiver is an extension of Ungerboeck’s MLSE formulation [40] to
time-varying channels.

The log-likelihood function Jg can be expanded as

Jy = A+ By +CH, (2.7)
where
A=- [ woPa, (28)
tel :

N-1
By = / 2Re { }: ah*(t — nT;t)y(t)} dt, (2.9)

tel n=0

N-1N-1 ‘
Cy = — / T 3 ajaght(t - nT5 O - KT;t)dt. (2.10)
tel nz0 k=0

10



Since term A is independent of the sequence hypothesis. an MLSE receiver chooses the

sequence hypothesis that maximizes the metric
Ap = By + Cy. (2.11)

Terms Bg and Cy can be written as

N-1
By = Z 2Re {a},2(n)}, (2.12)
n=0

N-1N-1

Cr=-3Y 3 asops(n~ k;n), (2.13)

n=0 k=Q

where {z(n)}fj___'o1 is the sequence of symbol-spaced samples obtained at the output of a

receive filter matched to the channel impulse response h(r;t), as
2(n) = h*(=r3t— 1)k y(t)|pnp = /tEIh*(t — nT;t)y(1)dt (2.14)
and the s parameter is the sampled channel autocorrelation function, given by
s(l;n) = /t Bt =nT;Oh(t - (n - DT; t)d (2.15)

where n € {0,1,...,N — 1} and [ € {0,£1,...,+(N — 1)}. Noting that s*(k — n;k) =

s(n — k;n) and using the following identity for multi-dimensional summation

S f f n—1
ZZ z(n, k)= [z(n, n)+ Z (z(n, k) + z(k, n))} , (2.16)
n=t k=i n=t k=1
the term C'y can be expanded as
N-1 n-1
Cy=- Z [a,";ans(o;n) - Z 2Re{or aps(n — k; n)}} . (2.17)
n=0 k=0

Substituting (2.12) and (2.17) into (2.11) and letting L be the smallest integer such that
s(lyn) = 0 for || > L, we get the metric as

N-1 '
Ag =" Tu(an,0,) (2.18)

n=0
where o,, represents the subsequence hypothesis o, : Qn-1,0n-2,...,0n-f and I'y(ay,0,)

is the branch metric, given by

L
I'n(on,0,) = Re {a; [22(71) - s(0;n)ay, ~ 223(1; n)an_z}} . (2.19)

=1

11



The receiver can be implemented as shown in Fig. 2.1. The front-end filter in the receiver
is matched to the overall channel response h(r;t). The Viterbi algorithm in Fig. 2.1 finds
the sequence {a,} that maximizes the metric of (2.18). It does so by computing recursively

the accumulated metric defined as

&

n—1
M (oy) max an(a;,ai) (2.20)

Q1,02 Qn L1
e i=0

for all subsequence hypotheses (or states) o,. The recursion follows from (2.19) and (2.20)

as
Mu(0ng1) = 213}; Ma(on) + Tnlan, 00)]- (2.21)
The number of states in the Viterbi algorithm is |.A|L, where |A| is the size of the input

alphabet and L is the overall channel memory in symbols (assumed finite). The output of

the Viterbi algorithm is the estimated sequence {a,}.

y(t) h*(_,’.. 1 — 7.) —\ Z(n) 3 Vlterbl &n
g J t=nT |2lgorithm

Figure 2.1: Ungerboeck-Bottomley receiver

2.5 Multiuser DS-CDMA system model

Consider a linear, time-dispersive channel shared by K users who transmit independent
unsynchronized data streams by linearly modulating assigned signal waveforms. The system
model consists of K transmitters, K independent time-varying and dispersive transmission
media and one receiver. The baseband signal transmitted by user k is modeled as

N'-1 :
sek(t) = Y ar(m)dp(t — mT) (2.22)

m=0
where {ak(m)}ﬁ:ol is a finite sequence of complex symbols taken from a finite alphabet
A (common to all users k = 1,...,K). The filter di(t) models the transmit filter for user
k which, in general, includes a pulse-shaping filter common to all users and a signature

waveform (spreading code) uniquely assigned to each user which may be pseudo-randomly
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time-varying over the duration of several svmbols (long code). The radio signal transmitted
by each user propagates through a dispersive transmission medium to reach the receiver.
The receiver sees the sum of the K signals in AWGN. The received signal is converted to a

complex-valued, baseband signal y(?), given by

B
y(t) = S gr(rit) * skt — 7) + w(t) (2.23)
k=1

where g (7;1) is the output of the transmission medium for user k at time ¢ when an impulse
is applied at time t—7, 7y is the relative delay for user k and w(t) is a complex white Gaussian
noise process with power spectral density No. Substituting (2.22) into (2.23), we get

N'-1 K

y@) = 3 3 ar(m)hi(t = mT5t) + w(i) (2.24)

m=0 k=1
where hy(7;t) models the overall response of the transmit filter and the transmission medium

for user k and is given by
hi(T;t) = /gk(r — X ) di(A = T )dA. (2.25)

The above model accurately represents the uplink (mobile station to base station) of a DS-
CDMA cell. The model can be simplified for the downlink (base station to mobile station)
by considering synchronized user transmission over a single transmission medium.

From the viewpoint of joint multiuser detection/equalization, the multiuser system
model of (2.24) can be represented equivalently in a single-user form as

N-1
y(t) = Y pm)(1(n)he(my(t = n()T52) + w(?) (2.26)

n=0
where k(n) and n(n) represent the user index and the time index respectively and are given
by
k(n) = (nmod K) +1 (2.27)

n(n) = l%J | (2.28)

and N = N'K is the length of the combined data stream of all users {aﬂ(n)(n(n))}ggol

which is ordered in increasing user and time indices assuming 7x < Tk+1 Vk, without loss of
generality . Henceforth, we will use the notation {an}ﬁ’;ol for the combined data sequence

of all users for brevity.
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Note that the above model has the same form as the single-user model of Section 2.2.
This allows us to provide a unified treatment for problems of single-user equalization and
multiuser detection. Throughout this thesis, we will consider receivers for single-user equal-
ization which also find applications in multiuser detection. A special mention will be made

where different considerations apply.

2.6 Joint équalization/ multiuser detection

Noting the similarity between the multiuser system model of (2.26) and the single-user
model of (2.3), it can be seen that a receiver that performs joint equalization and multiuser
detection for DS-CDMA systems has the form of the Ungerboeck-Bottomley receiver of
Section 2.4. The receiver is shown in Fig. 2.2. It consists of a bank of filters each of which is
matched to the overall channel impulse response of a user. The sequence of joint statistics

obtained at the output of the bank of filters is given by

#(n) = K-t =)y, o= /t Pt = m(m)Ts u(2)d. (2.20)

The receiver processes the joint sequence of matched filter statistics using the Viterbi al-
gorithm which hypothesizes the symbols of all users jointly using the recursion of (2.21),
where the branch metric is given by (2.19). The sampled channel autocorrelation function

in this case is given by

s(lym) = /tez R (ny(t = n(n)T5 ) hy(t — m(n — DT; t)dt. (2.30)

The receiver is a generalization of Verdu’s optimum multiuser detector [43] to linearly
dispersive and time-varying transmission media. Note that the number of states in the
Viterbi algorithm is |.4|%, where the memory L is defined as the smallest integer such that
s(l;n) (given by (2.30)) equals zero for |{| > L. For non-dispersive media, L = K — 1, while
for dispersive (frequency-selective) media, L > K — 1.

For the case of non-dispersive and time-invariant AWGN channels, a baseband asyn-
chronous DS-CDMA system, with symbol-length (short) spreading codes and rectangular
transmit pulses, is generally specified in terms of a code partial—correlation matrix polyno-

mial known as the channel spectrum S(D), given by
S(DYy=STD™ 4+ 5o+ 8D (2.31)
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t=n(n)T
hi(—7:t ~
y(1) ot Viterbi
I algorithm
I
1 I ,
| | 7
t=n(n)T 7
hi (-7t —171) 4

Figure 2.2: Multiuser receiver

where 5S¢ is a K’ x K Hermitian matrix and $; is a K x K upper-triangular matrix, assuming
that the users are ordered in increasing delay. The element So(2, 7) of the matrix Sy is the
partial correlation of the code of user : with the code of user J for the current symbol period,
ie.

Solin) = [ di(t = )yt - 7). (2.32)

The element $1(4,7) of the matrix S; is the partial correlation of the code of user § with

the code of user j for the past symbol period, given by
$1(i, ) = / di(t — 7)d;(t — 7, + T)dt. (2.33)

In this case, the normalized sampled channel correlations 5(L;n) = s(I;n)/s(0;n) are
given by
Si(k(n),k(n) =1+ K) k(n)-1<1
S(hn) =14 So(a(n),k(n)—=1) 1<k(n)—I<K . (2.34)
S1(s(n) =1~ K,k(n)) «k(n)-1>K

The memory of the multiuser channel is K — 1 and there is no ISL
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CHAPTER 3

Fractionally-spaced MLSE receivers

3.1 Introduction

In wireless communication systems, the channel is generally considered as comprising
a time-invariant transmit (pulse-shaping) filter followed by a time-varying transmission
medium. Forney and Ungerboeck’s maximum-likelihood sequence estimation (MLSE) re-
ceivers [13,40] employ an analog front-end filter which is matched to the overall channel
impulse response. If the transmission medium is time-varying or unknown at the receiver,
the front-end filter has to be adaptive. This is not desirable for implementation purposes.
Ungerboeck also described an adaptive receiver in [40] which uses a discrete-time transversal
filter at the front end to synthesize matched filter characteristics. The receiver, however,
does not take advantage of the fact that the transmit filter is generally known at the receiver
and this information can be exploited to improve channel estimation.

Many wireless radio systems transmit signals with a bandwidth more than the data
rate. Narrowband TDMA systems based on the 15-54/1S-136 and PDC standards employ
35% and 50% excess bandwidth, respectively. In the presence of excess signal bandwidth,
fractional sampling is effective due to its insensitivity to the sampler timing phase [34].
Some authors [30,33] have considered using an analog front-end filter which is matched
to the transmit filter response (transmit matched filter) followed by a fractional sampler.
They, however, assume that the noise affecting the sampled statistics is white. The branch
metric of the Viterbi algorithm ignores the correlation in the noise samples. As a result the
performance improvement is marginal.

Hamied et al. [22] derived an MLSE receiver for systems that employ at most 100%
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excess bandwidth. Their receiver employs a transmit matched filter followed by a fractional
sampler and a fixed noise-whitening filter. The sequence of statistics thus obtained has white
noise. However, we note that practical pulse-shaping filters like the square-root raised cosine
filter have nulls in the Nyquist spectrum, due to which the noise-whitening filter has a long
slowly-damped delay response. Any practical length truncation of the filter leads to severe
distortion.

Following the development in [6], we derive an Ungerboeck-type receiver which does
not need noise-whitening. The branch metric of the Viterbi algorithm accounts for the
correlation in the noise samples affecting the fractionally sampled statistic obtained at the
output of a transmit matched filter. An adaptive algorithm exploits the knowledge of the
pulse-shaping filter and adapts just the fractionally-spaced medium response coeflicients.
However, the branch metric for the receiver depends on future medium response coeflicients
up to the span of the medium response. The prediction (adaptation) of these future co-
efficients using decision feedback would result in excess estimation error and thus degrade
performance. We derive an alternative formulation for the branch metric which depends on
causal medium response coefficients only. Thus, only one step prediction is needed to adapt
the medium response coefficients. The receiver is suitable for systems with excess signal
bandwidth and rapidly time-varying channels.

The chapter is organized as follows. In Section 3.2, we describe the channel mode] for
a single-user system with excess signal bandwidth. A fractional Ungerboeck-type receiver
is then derived in Section 3.3. In Section 3.4, we discuss the receiver of Hamied et al.. A
new fractional MLSE receiver that does not need noise-whitening and minimizes channel

prediction is described in Section 3.5.

3.2 Channel model

Consider the single-user system model of Section 2.2. If the baseband transmitted signal
s¢(t) has bandwidth W < v[2T, where v is an integer, then an arbitrary medium response
g(7;t) can be modeled as a fractionally-spaced tapped delay line [41, pp. 488]

9(rit) = > e(§T/v;)8(r — 5T /v) (3.1)

J
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where

c(jT/u;t):c(j;t):/g(T:t)sinc (I—%—f]/—:l—r/—/—l—) dr. (3.2)

Assuming that the medium response can be well-approximated by Lc+1 fractionally-spaced
taps (i.e. ¢(j;t) =0 for j > L.), the overall channel impulse response can be written as

L.
h(rit) = g(rst) + d(7) = ) c(G;1)d(T — iT/v). (3.3)

i=0

Typically, % < WT < 1 for full-response signaling and WT < % for partial-response sig-
naling (continuous phase modulation) used in narrowband mobile communication systems.
Symbol-spaced channel models have been used to develop MLSE receivers [24,38]. Symbol-
spaced MLSE receivers yield close to optimum performance if the excess signal bandwidth
(WT in excess of %) is small. However, the performance of these receivers is highly sensitive
to the timing phase [22] in the presence of excess bandwidth. This is due to the inability of
a symbol-spaced transversal filter to invert a null in the sampled signal spectrum without
excessive noise enhancement [34]. Fractionally-spaced MLSE receivers, on the other hand,
are insensitive to the timing phase as aliasing does not occur in the sampled signal spectrum

in the case of a fractionally-spaced transversal filter.

3.3 A fractional Ungerboeck-type receiver

Adaptation of channel parameters is usually needed for an MLSE receiver on time-
varying channels. Ungerboeck’s adaptive receiver [40] consists of a fractionally-spaced
transversal filter followed by a symbol-rate sampler and a Viterbi algorithm. The coef-
ficients of the front-end filter and the sampled channel autocorrelation function ‘s’ are
adapted using a stochastic steepest descent algorithm. The s parameters are needed to
compute the branch metric (2.19) in the Viterbi algorithm. Note that the s parameters
depend on the transmit filter response and the medium response. Since the transmit fil-
ter response is known at the receiver, channel estimation can be improved by adapting the
medium response coefficients directly instead of adapting the s parameters. The formulation
of Section 2.4 can be modified for this purpose as shown in [6] for the case of symbol-spaced
channel models. ‘

Substituting (3.3) in (2.14) and (2.15), and assuming that the medium response coefli-
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cients ¢(j:1) are fixed (time-invariant) over the span of the transmit filter response! d(1).

we get
ST AN
z(‘n)zf\;;c (];n+;>)' <n+;>, (3.4)
.s(l;n)f’::iﬁ—ic*(j;n—l——];)c(k;n—l+£>d>(lz/+j—-k), (3.5)
7=0 k=0 v v

where the discrete-time medium response coefficients are defined as ¢(j;¢) = ¢(jT;:T) for
values of ¢ in multiples of T'/v and {Y(-)} is the sequence of fractionally-spaced samples

obtained at the output of a receive filter matched to the transmit filter response d(t), as

Y (n + %) - /teld* (t - <n + %) T) y(1)dt (3.6)

and ¢(1) is the fractionally-sampled autocorrelation function of the transmit filter, given by

)
v

8(3) = /t &0 (t 4 E) 1. (3.7)

y(1) FEEny J (" + '5)

w { - ; Z() 1 i An
o - - )
- v

Figure 3.1: A fractional Ungerboeck-type receiver.

The receiver is shown in Fig. 3.1. It has a front-end filter matched to the transmit filter
response d(t), followed by a fractional-rate sampler. The fractionally-sampled statistic is
filtered by an adaptive discrete-time filter and fed to a Viterbi algorithm. The Viterbi
algorithm uses the branch metric of (2.19) with the s parameters given by (3.5). Note that
the receiver in Fig. 3.1 has a fixed analog front-end filter unlike the receiver of Fig. 2.1,
where the front-end filter is adaptive.

Note from (3.4) and (3.5), that the branch metric at time nT given by (2.19), depends
on medium response coefficients for times up to (n+ L./v)T. Thus, medium response coeffi-
cients have to be predicted (for L.+ 1 future steps) in the adaptive receiver of Fig. 3.1. The

accuracy of prediction decreases in general with the number of steps over which prediction

*The assumption makes sense when the time variation in the channel coefficients ¢(7;1) is slow relative
to the span of the transmit filter.
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is required. This makes the adaptive receiver of Fig. 3.1 unsuitable for channels with rapid

time variation.

3.4 Hamied’s fractional MLSE receilver

An alternative receiver is obtained by noting that the statistic given by (3.6) can also
be expressed as -
AU AR j
Y (n+—> :Zc(i;n-{— —) Z ¢(l)an+z_'-z +v (n-}- —) (3.8)
v prd v) 23, v v

where {v(+)} is a complex Gaussian noise sequence with autocorrelation

E [v (n + %) V" (m + 5)] = Nod((n — m)v +j — i), (3.9)
a; if k=1, ¢ is an integer ,
gy = (3.10)
0 otherwise

and L, is the smallest integer such that ¢(:) = 0 for |:] > Lg. Thus, it is assumed that
the transmit filter has a finite impulse response. In practice, transmit pulse-shaping filters
like the square-root raised cosine (SRRC) filter are truncated to a span of several sym-
bols. Let the D-transform of the transmit filter autocorrelation function ¢(n) (the sampled
autocorrelation spectrum) be defined as

Ly

(D)= > ¢(n)D" (3.11)
n=—Lqg

where D stands for fractional symbol duration.
Hamied et al. [22] obtain an adaptive MLSE receiver by assuming that the statistic
{Y(-)} obtained at the output of the front-end filter in Fig. 3.1 can be whitened by using
a fixed noise-whitening filter. The noise-whitening filter is determined by factoring the

sampled autocorrelation spectrum @(D) as
&®(D) = F'*(D™Y)F'(D). (3.12)

In case the transmit filter spectrum has no roots on the unit circle, the factor F'(D) =
Zﬁ’ig f'(n)D™ is chosen such that all its roots are outside the unit circle. The anti-causal
noise-whitening filter is then given by F'*(D~1))~! which is stable in the sense that its

coefficients are square summable.
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Figure 3.2: Sampled autocorrelation spectra for SRRC pulses truncated to 500 symbols (a)
B=0,(b)s =035/ () =1
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Figure 3.3: Sampled autocorrelation spectra for SRRC pulses truncated to 10 symbols (a)
B=0,(b)s=035(c)B=1.
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For many practical pulse-shaping filters like the SRRC filter. the sampled autocorrelation
spectrum has zeros on the unit circle. This is illustrated in Fig. 3.2 which shows the
amplitude of the sampled autocorrelation spectrum for SRRC pulses (truncated to a span
of 500 symbols) with various roll-off factors. The spectrum exhibits nulls in the Nyquist
bandwidth 1/T (corresponding to v = 2). This is true for all SRRC pulses with roll off
factor B € [0,1]. The noise-whitening flter does not exist for these pulses as the nulls in
the Nyquist band can not be inverted. Fig. 3.3 shows the sampled autocorrelation spectra
for the same SRRC pulses but with a truncation of 10 symbols. Note that the nulls are
less severe in this case. Strictly speaking, the noise-whitening filter exists for all practical
finite-length transmit pulse-shaping filters. However, due to the presence of zeros near the
unit circle, the noise-whitening filter has a long slowly-damped impulse response and any
practical length truncation results in severe distortion. Fig.3.4 shows the effect of truncation

of the noise-whitening filter. The squared error Tesulting from truncation is given by
1F(D) = F'(D)II (3.13)

where F'(D) is the whitened channel spectrum obtained from using a truncated noise-
whitening filter W(D™') as /(D) = Ww(D1)®(D). Fig. 3.4 shows the squared error for
the SRRC pulse of Fig. 3.3 (truncated to 10 symbols) with g = 0.35 and v = 2. Note that
the squared error exhibits damped oscillations and is significant even with 500 taps of the
noise-whitening filter (spanning 250 symbols). The error would increase with the length of

the SRRC pulse because the nulls would be deeper as demonstrated in Fig. 3.2.

3.5 A new fractional MLSE receiver

In this section, we derive an alternative fractional MLSE receiver that does not require
noise-whitening unlike the receiver of Hamied et al. [22]. Moreover, it does not require
extra prediction for the medium response coefficients, unlike the Ungerboeck-type receiver
of Fig. 3.1.

Substituting (3.4) into (2.12) and making a change of variables gives

N-1v-1 L.
x e m\ +, m
By = Z Z 2Re {Zoaﬂ‘l'z'fic (];n-{-—l—/-)l <n+ 7)} (3.14)
J=

n=0 m=0
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Figure 3.4: Squared error due to truncation of the noise-whitening filter for SRRC pulse

truncated to 10 symbols with 5 = 0.35.

Substituting (3.5) into (2.13) and making a change of variables gives

(N-1)v L, (N-1)v L,

D DD DD DED P T T, <J, ) (l;g)qﬁ(n—k). (3.15)

n=0 j=0 k=0 [=0 ¥

Using (2.16), Cy can be written as

- - B R Sl (e D)t 05 (14 )

n=0 m=0 7=0
-\ m-—t
+ 2Z¢(z)2c<l;n+ ” )an+m—i—l } (3.16)
=1 1=0 Y
Thus, the metric Ay in (2.11) can be written as
A = Z T’ (an,0n) (3.17)
n=0

where I'} (ay,,0,) is the branch metric, given by

I‘;Z(aﬂao.n) =
v—1 L. _ i
;ZR{ (it 3 atma [27 (4 7))
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Le m . Lo L m—i .
- Q(O)ZC Lin+ — on+ﬂ_._z—2 o(z)Z(- Lind+ ——]a,  mo- (3.18)
=0 v v 1=1 1=0 v i

Again using (2.16) for the term involving ¢(0) in (3.18). the branch metric can alternatively

be written as

T!(Qny0n) =
5 Strefe (s 2 e [2 (4 3) o0 (e (504 7)o
L 2 Re ity e [P n ) m O (Tt ) O
Lc“j m Ld LC m_1
+2> ¢ <j+l;n+ ‘,,‘) Q. mej-t 23" 9(1)Y ¢ (1;n+ T) o, m=i=t | /(3.19)
=1 v i=1 1=0 v

The receiver is shown in Fig. 3.5. It employs a fixed front-end filter matched to the
transmit filter response. The output of the front-end filter is sampled at the fractional-rate
and fed to a Viterbi algorithm. The number of states in the Viterbi algorithm is |A|E, where
L= [#i.l is the overall channel memory in symbols. The Viterbi algorithm processes
v samples of the input statistic every symbol time 7. The branch metric given by (3.18)
or (3.19) has v terms corresponding to each sample. Note that an v step prediction of
medium response coeflicients is needed to compute the branch metric at each recursion. An
alternative approach is to process one sample of the input statistic every T/v seconds by
computing one component (of the v components) of the branch metric at each recursion
followed by an update of the medium response coefficients. An advantage of this method
is that the medium response coefficients can be estimated more accurately as only one step

prediction is performed at the fractional rate.

i .
y(?) v N (" + ) | Viterbi an_
: algorithm
1= (n + i—) T

Figure 3.5: A new fractional MLSE receiver

For a symbol-spaced channel model (v = 1), the branch metric given by (3.19) simplifies

to
I‘;(an,an) =
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L. Le—j
ZRe {c“ (Jim)ag_; {2)'(71) - 0(0) (c(j:n)an_j +2 Z c(j-{-l:n)a,,_j_;)
=1

J=0
Ld Lc

=23 #(i)Y e(lin- z‘)an_,»_l] } (3.20)
1=1 =0

which reduces to the “Partial Ungerboeck” formulation of Bottomley [6] for the case of

Nyquist pulse-shaping (i.e. ¢(n) = é(n)).

3.6 Conclusions

In this chapter, we derived a new MLSE receiver for linearly-dispersive time-varying
channels with additive white Gaussian noise. The receiver consists of a fixed analog front-
end filter matched to the transmit pulse-shaping filter, a fractional sampler and a Viterbi
algorithm. The branch metric of the Viterbi algorithm accounts for the correlation in the
noise samples (due to fractional sampling) which is known at the receiver. The branch
metric depends on causal fractionally-spaced medium response coeflicients which can be
adapted using only one step prediction. The receiver is suitable for communication systems

with excess signal bandwidth and rapidly time-varying channels.
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CHAPTER 4

Reduced Trellis and Tree Search Algorithms

4.1 Introduction

Maximum-likelihood sequence estimation (MLSE) [6, 13,40,43] is an optimum detection
technique for channels with memory and additive noise. As the complexity of the various
MLSE algorithms is exponential in the channel memory, several low-complexity suboptimal
methods have been proposed. One method is to ignore the tail of the delay response or to
select a subset of states in the Viterbi algorithm for reduced state detection [14,45]. The
residual interference that remains limits the performance of.these methods even at modest
intersymbol interference (ISI) levels [32]. Another approach is to pre-cancel the tail of the
delay response using a linear or a decision feedback equalizer (DFE). The DFE approach
[26,49] suffers from severe error propagation on channels where the tail contains a significant
fraction of the total energy in the channel while the linear pre-filtering approach [12,35]
enhances noise.

Decision feedback sequence estimation (DFSE) [7,8,10,11,17,19,20,39,50] and the M-
algorithm [2,48,51] are two well-known reduced-complexity alternatives to MLSE. These
algorithms find applications in equalization of ISI [7,8,10,17,19,20,39,50], detection of
partial response signals, trellis-coded modulation [8,10,11] and multiuser detection [17,19,
20,48,51]. DFSE is a trellis-based method where the complexity is controlled by reducing ‘
the memory of the trellis in the Viterbi algorithm. On the other hand, the M-algorithm
is a tree-based method where the complexity is reduced by pruning the tree (representing
sequence hypotheses) to maintain a given number of branches at each step. Both schemes

feed back conditional decisions taken from survivor paths to cancel the tail of the delay
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response. This manner of decision feedback has been shown to alleviate the problem of
error propagation that arises in the conventional DFE approach.

DFSE and M-algorithm receivers were originally proposed and thoroughly investigated
for discrete-time statistics containing white noise for which case they have been thoroughly
investigated {2,8,10,39,48]. However, receivers that operate on matched filter statistics
have also been proposed for various applications [7,17,48,50,51]. The main advantage of
these receivers is that they do not require noise-whitening. Computing the noise-whitening
filter involves channel inversion and/or factorization operations which may not be feasible
for time-varying, cyclo-stationary or bidirectional channels, or for channels with deep spec-
tral nulls. Applications that particularly involve such channels include multiuser detection
for direct-sequence code-division multiple-access (DS-CDMA) systems [19], bidirectional
equalization for the global system for mobile communications (GSM) system [50] and frac-
tional equalization for narrowband systems with excess signal bandwidth. An investigation
of the DFSE and M-algorithm receivers with matched filter statistics is given in [20] and
[48] respectively. It has been noted that the receive filter has a significant influence on the
bit-error performance of these receivers.

In this chapter, we consider DFSE and M-algorithm receivers operating on the out-
put of a general transversal processing filter which follows a front-end matched filter. We
provide two different formulations of the branch metric — one for the case of standard
matched filtering (front-end filter matched to the overall channel response) and the other
for the case of transmit matched filtering (front-end filter matched to the transmit filter
response). The latter formulation is desirable for fractional equalization in the presence of
excess signal bandwidth. We conduct a first event error analysis of the various receivers
which indicates that error events in certain receivers depend on the transmitted sequence.
The error-rate performance of such receivers is affected, and generally dominated, by un-
treated interference components which we call bias. Bias occurs in a DFSE or M-algorithm
receiver due to a mismatch between the processing filter and the branch metric. This leads
to the classification of the various receivers as biased and unbiased, where the notion of
“unbjasedness” means that error events are independent of the transmitted sequence given
the error sequence.

We find that there exist only two processing filters for each type of matched filtering

(i.e. standard and transmit) that result in unbiased receivers, namely the filter that whitens
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(or partially decorrelates) the effect of the matched filter and the filter that zero-forces (or
completely decorrelates) the effect of the matched filter. The whitening filter DFSE (WF-
DFSE) and whitening filter M-algorithm (WE-MA) receivers with a standard matched
filter are the well-known receivers described in [2.8, 10,39,48]. The zero-forcing DFSE (ZF-
DFSE) receiver with a standard matched filter was derived in [37]. The class of biased
receivers includes matched filter DFSE (MF-DFSE) and matched filter M-algorithm (MF-
MA) receivers where the matched filter statistic is fed directly into the reduced trellis or
tree search algorithm without further processing. The MF-DF SE(S)! receiver was proposed
in [7,50]. The MF-MA(S) receiver was proposed in [51] for multiuser detection.

We find the probability Pr(¢) of the occurrence of a given first event error ¢ for the various
DFSE receivers. The probability Pr(¢) in the case of unbiased DFSE receivers is completely
characterized by the error distance 6(¢) of the receiver. We use a broader definition for the
error distance (than given in [13]) that includes the effect of noise enhancement. In the
case of BPSK modulation, the probability Pr(¢) for an unbiased DFSE receiver is equal
to the error probability of a memoryless system with signal amplitude equal to 268(e).
We show that the error distance is maximized by the MF-DFSE(S) receiver. However,
the error performance of the MF-DFSE(S) receiver is dominated by untreated interference
components (bias) for most channels of interest and is therefore not very good. Among
unbiased DFSE receivers, the error distance is maximized by the WF-DFSE receivers for
each type of matched filtering. We also show that the error distance of truncated memory
MLSE receivers that employ pre-filtering to reduce memory [12,35], is lower than the error
distance of WF-DFSE. Thus, WF-DFSE receivers have the best error performance among
these unbiased trellis-based receivers, not considering the effects of error propagation.

We obtain approximate upper bounds on the symbol error probability of the various
DFSE receivers assuming absence of error propagation. We show that these bounds can be
evaluated using a generating function method similar to MLSE, clearing the misconception
that a generating function method is not applicable to DFSE receivers due to the use of
decision feedback [39)].

The chapter is organized as follows. The system model is given in Section 4.2. MLSE
receivers that consist of a front-end matched filter followed by a general transversal process-

ing filter are described in Section 4.3. The corresponding DFSE and M-algorithm receivers

'Where ‘S’ stands for standard matched filtering.
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are described in Sections 4.4 and 4.5, respectively. In Section 4.6. we conduct a first event
error analysis of the various receivers. Sections 4.7 and 4.8 deal with unbiased and biased
receivers, respectively. In Section 4.9, we discuss truncated memory MLSE receivers that
employvs pre-ﬁlte'ring to reduce memory. In Section 4.10, we derive bounds on the symbol
error probability of the various trellis-based receivers and in Section 4.11, we compare the
error distance of the various receivers. In Section 4.12, we show how the bounds can be
evaluated using ;'tn error state diagram. We compare the error-rate performance of the
various receivers in Section 4.13 for a symbol-sampled system and a fractionally sampled

system via simulation and analysis for some example channels.

4.2 System model

In this chapter, we assume the same system model as in Section 2.2 except with a
time-invariant transmission medium. Thus, the baseband received signal is given by

N-1
y(t) = Z anh(t — nT) + w(t) (4.1)

n=0
where h(t) represents the overall response of a transmit filter d(t) and a time-invariant
transmission medium, which is modeled as a tapped delay line with L. complex-valued
symbol-spaced tap coefficients ¢(7),

Lc

h(t) =S c(i)d(t - iT). (4.2)

=0
4.3 A generalized MLSE receiver

Maximum likelihood sequence estimation (MLSE) is an optimal detection algorithm
that minimizes the probability of sequence error for a priori equiprobable sequences. In
this section, we describe an MLSE receiver with a general transversal processing filter. The
processing filter has no influence on MLSE performance as we will see in the next section.
However, the expressions developed in this section will be useful when we consider the effect
of the processing filter on reduced trellis and tree search algorithms.

It is well-known [6,13,40] that the sequence of symbol-spaced samples {z(n)}"-! ob-

tained at the output of a receive filter matched to the overall channel impulse response h(t)

N-1

n—o given the

forms a set of sufficient statistics for detecting the transmitted sequence {a,}
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received signal y(f). The matched-filter statistic z(n) is given by

z(n) = A=) *y()|,mpr = /h'(i —~nT)y(t)dt (4.3)
= D s(i)an—i + un. . (4-4)

1

In vector notation, the sequence of matched-filter statistics can be written as

=Sa+u (4.5)

133

where ¢ = [ag,a1,...,an-1]7, z = [2(0), 2(1),...,2(N — DT, w = [w(0),u(1),...,u(N —
1))7, and S is an N x N Hermitian Toeplitz? matrix known as the channel spectrum. The

(,7)-th element of S is given by
s(i,) = s(i — j) = / R (Dh(t + (i — 5)T)dt. (4.6)

The elements s(¢) are samples of the autocorrelation function of the overall channel response
which is assumed to have finite span. The smallest integer L such that s(:) = 0 for |¢{| > L
is known as the channel memory. We assume that the channel memory L is much smaller
than the length N of the transmitted sequence. The matrix S is thus banded. The vector

u is a discrete Gaussian noise vector with elements
w(n) = / R*(t — nT)w(t)dt (4.7)
tel

and autocorrelation E[uf u] = NyS.
Consider a transversal processing filter P which processes the output of the matched

filter. The output of the processing filter, which is an N x N matrix, is given by
z= Pz = P(Sa+u). (4.8)

From (4.5), it follows that z = [z(0),2(1),...,z(N —1)]7 is a Gaussian random vector with
mean PSa and autocovariance NoP.SPH, given the information sequence a. Assume that
the inverse processing filter P~1 exists. Then, it is possible to recover the original sequence
z from the filtered sequence z. Thus, the sequence z forms a set of sufficient statistics for
detecting the transmitted sequence g given the received signal y(t).

Consider the receiver shown in Fig. 4.1. The receiver finds the hypothetical sequence

of symbols {a,} (a, € A) that maximizes the likelihood of the received signal y(t) given

2j.e. the elements of S satisfy s(z,7) = s(i — 7).
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y(t) - ) (Processing|_2(1) Viterbi an
—— )= ﬁnerPg——"_—*

Figure 4.1: A generalized MLSE receiver

that {a,} was transmitted. Assuming equiprobable symbols, the receiver maximizes the
log-likelihood function derived from the a posteriori distribution of the received signal.

Ignoring constant scaling factors and additive terms, the log-likelihood function reduces to
Jy = —(2 - PSa)¥(PSPH¥) (g - PSa) (4.9)

where the superscript H stands for Hermitian transpose and the subscript H corresponds
to the hypothesized sequence a. Neglecting terms common to all hypotheses, the metric to

be maximized by the Viterbi algorithm can be written as
Ag = 2Re{g_HP_1§} —af Se. (4.10)

Assume that the matrix S is positive definite. Then, it can be decomposed into its unique

Cholesky factors as
§S=FHF (4.11)

where F is an N x N invertible lower-triangular matrix. For N > L, the matrix F is near
Toeplitz®. Also note that
§S=FEF, (4.12)

where Fy is an (N + L) x N matrix with elements

i-7) 0<i—-j<1I
i) = fli—=3) 0<i-35< | (4.13)

0 otherwise

obtained from the inverse z-transform of the minimum-phase Cholesky factor F(z) of the

z-transform of {s(7)}. Then, the metric in (4.10) can be written as

A = 2Re{a® P71z} - || Fyal®. (4.14)

®The matrix has constant elements along each diagonal except the elements in some bottom rows.
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The metric can be approximated as
Ay = 2Re{a” P72} - ||Fa)? (4.15)

where F'isan N x N lower-triangular Toeplitz matrix with elements given by (4.13). The
approximation in (4.15) is a result of premature trellis termination in the Viterbi algorithm
at the tail of the transmitted sequence. We adopt the approximate expression for the
total metric (415) rather than (4.14) for simplicity of notation and analysis. In order to
be consistent then, we let § = FHF throughout the rest of the chapter, without loss of
generality.

The two expressions for the total metric (4.10) and (4.15) lead to two different additive
decompositions (branch metrics). In order to obtain a general expression for the branch

metric, we write the channel spectrum as
S =RQ (4.16)
where Risan N x N upper-triangular Toeplitz matrix with elements

T(i ) T(i_j) —lrSi—jSO (4 17)
yJ) = .
0 otherwise

where I, is either O or L and Q isan N x N Toeplitz matrix with elements

iy q(i-Jj) ~L+L<i-j<1
q(4,7) = (4.18)
0 otherwise
In (4.10), R= I and Q = $ while in (4.15), R = Q¥ = FH,
Assume that the inverse processing filter consists of Ip+15+1 coefficients (I, + 1 causal
and Iy anti-causal). The elements of the N x N banded Toeplitz matrix P~! are given by
Pli-j) -l<i-j<l,

P(i,) = | (4.19)
0 otherwise

This structure for the inverse processing filter encompasses many filters of interest, including
the zero-forcing filter and the noise-whitening filter.

Using (4.17), (4.18) and (4.19), the total metric in (4.10) can then be written as
An = 2Re{a”[(P™")a]} + 2Re{[a™ (P™)"P)z} - [o¥ RI[(Q) ] - [o¥ R(Q)"Pla (4.20)
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where the superscripts L, U and D denote the lower-triangular. the upper-triangular and
the diagonal part of a matrix, respectively. The above form for the total metric leads to

the additive decomposition

N-1
A=) T(an.04) (4:21)
n=0
where I'(a;, 0,) is the branch metric corresponding to the state o, : ap_q, ..., On-r, (Ly=

max(L,ly)) in the trellis of the Viterbi algorithm, given by
IP

ly
I'(an,0,) = 2Re {a:‘l Zp'(l):c(n -0+ x(n)Zp’(—l)a;_,}
1=0

I=1

I L I L-1,
- (Z r(—l)a;_z) (Z q(l)an-z) =y r(=1) Y q(=k)ap__x (4.22)
=1 k=0

=0 1=0
where a, = 0 for N —1 < n < 0 and z(n) = 0 for n < 0. The Viterbi algorithm recursively

computes the accumulated metric given by
M(opy1) = max M(on) + T(an,0n)]. (4.23)

for all subsequence hypotheses (or states) o,. The number of states in the Viterbi algorithm
is |A|%* (note that the memory of the Viterbi algorithm L, may be greater than the channel

memory L). The output of the Viterbi algorithm is the estimated sequence {a,}.

y(t) Z'(n) Processin z'(n) Vi i an
S g iterbi
——|d*(-t) t\_:? filter P |~ [algorithm |

Figure 4.2: An alternative MLSE receiver

An alternative MLSE receiver is shown in Fig. 4.2. It differs from the receiver of Fig. 4.1
in that it has a front-end filter which is matched to just the transmit filter response d(t)
instead of the overall channel response A(t). The transmit filter matched-filter statistic z'(n)

is given by

Il

(1) + YOlenr = [ (¢ = nTIu(t)dt
La L.

}: Zc(i)¢(n, n—an_j—; +u'(n) (4.24)

I=—Lg4i=0

Z'(n)

il
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which can be written in vector notation as
E’:@Cg_-{-gl (4.23)

where 2/ = [2/(0), 2/(1),..., 2/(N — DT, o = [v'(0), w'(1),...,u' (N - 1)]T. The matrix C is

a lower-triangular Toeplitz matrix with elements

c(i—7) 0<i—-5<
e(i, ) = (=) 0si-js e (4.26)
0 otherwise

and the matrix ® is a Hermitian Toeplitz matrix with elements which are samples of the

transmit filter autocorrelation function
#iri)=9li= )= [ Wt + (i - )Tt (427)

Let ¢(i) = 0 for |i| > L;. The overall channel memory is then I = Le+ Ly. The vector

u' is a Gaussian random vector with mean zero and autocorrelation E[u'# '] = No®. Note

that the statistic z can be obtained from the statistic 2/ as z = CHz'. The sequence z’,

thus, forms a set of sufficient statistics for detecting the transmitted sequence given y(t).

The statistic 2’ input to the Viterbj algorithm is given by
z'= Pz = P(®Ca+ o). (4.28)
The log-likelihood function in this case is given by
Jg = ~(z' - P8Ca)" (P& PH)-1(y' _ P3Ca) (4.29)
which yields the likelihood metric to be maximized by the Viterbi algorithm in F ig. 4.2, as
Ay = 2Re{a”CH P15} -a"#CHeCq. (4.30)

Again two different additive decompositions of the above metric are possible correspond-

ing to the two decompositions of the matrix ®,ie.
®=RQ (4.31)
where the elements of R’ are given by

(i —j 1 <i—-3<0
r'(i,5) = =9 (4.32)
0 otherwise
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where [,s is either 0 or Ly and the elements of Q' are given by

o ¢'(i - j) ~Lg+l <i—j< Ly
¢'(i.7) = . (4.33)
0 otherwise

In one case R’ = I, Q' = & and in the other case R/ = Q" = F'H. The matrix F' is a
lower-triangular Toeplitz matrix with elements f'(2) given by the inverse z-transform of the
minimum-phase ACholesky factor F'(z) of the z-transform of {#()}. Then, (4.30) can be
written as Nt
Ay =" IMag,0,) = 2Re{a"CH P13/} - oHCH R Q'Ca (4.34)
n=0

where the branch metric I'(an, 0n) is given by

Lc IP Lc If
I(an,00) = 2Re { (Z C*(l)a:-z) (Zpl(l)x'(n - l)) +2'(n) Y e ()Y Pl(‘k)a;—l-—k}
1=0 =1 =0

k=0
L. 1 L Ly
- (Z (1) Z T,("k)a;—1~k> <Z c(!) Z q,(k)an~l—k)
1=0 k=0 =0 k=1
L. I La=l,) L.
— (Z c*(l) Z T’(—-k) Z q,(—m)a;—l—k-—m) (Z C(l)an_[) . (4.35)
=0 k=0 m=0 1=0

The memory of the Viterbi algorithm in this case is L, = max(L,L; + I;). Note that
the receiver of Fig. 4.2 can be easily extended for the case of a fractionally-spaced medium
response model. In this case, the output of the transmit matched filter in Fig. 4.2 is sampled
at a multiple of the symbol rate (say v/T). The memory of the Viterbi algorithm is [L/ /v]
and the branch metric is modified by replacing o, in (4.35) by m,, given by

o n/v integer
pp = d ol /v integer (4.36)

0 otherwise

4.4 Decision Feedback Sequence Estimation

Decision feedback sequence estimation (DFSE) is a reduced complexity alternative to
maximum likelihood sequence estimation which provides an adjustable performance /complexity
tradeoff. Proposed by Duel-Hallen et al. [7,8]* and Eyuboglu et al. [10], the scheme em-
ploys a reduced trellis search algorithm to search through a subset of sequence hypotheses

searched by the full-blown Viterbij algorithm. The complexity is controlled by a parameter

*The algorithm is referred to as Delayed Decision Feedback Sequence Estimation in [7,8]
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called the memory order J, which is chosen arbitrarily smaller than the memory of the
Viterbi algorithm. The trellis in the reduced trellis search algorithm then comprises | A’
states corresponding to the J most recent symbol hvpotheses. Survivor paths or sequences
are chosen in the reduced trellis search algorithm on the basis of the same cost function
as in MLSE (i.e. the accumulated likelihood metric). A transition in the reduced trellis
specifies the J + 1 most recent hypothesized symbols. The remaining L — J symbols needed
to compute the branch metric are obtained from decisions taken from the survivor history

(past decisions) of the path.

y(t) , \ z(n)’ Processin z(n)a Reduced trellis an R
h*(-1) = nT filter P 8 [search algorithm

Figure 4.3: A generalized DFSE receiver

The DFSE algorithms proposed by Duel-Hallen ef al. operate on matched-filter and
whitened statistics obtained from conventional matched filtering and whitened matched
filtering respectively. Here we generalize the DFSE algorithm to operate with a general
transversal processing filter. The receiver is shown in Fig. 4.3. The reduced trellis search

algorithm has memory order J chosen such that 0 < J < L,. It employs the recursion:
M(ﬁn+1) = g}‘% [M(ﬂn) + r(an,ﬂn)] (4'37)

where (3, : @p—1,0n_2,...,0n_7 Tepresents states in the reduced trellis at time n, M(4,) is
the accumulated metric of the survivor path associated with state 8, and I'(ay, 8,) is the

corresponding branch metric given by

Iy I
I(on,Pn) = 2Re {a’; > P(Dz(rn—1)+z(n) Zp’(—l)n;‘-z}
I=1 1=0

=0 1=0 k=0

Ir L lr LI,
- (Z T("l)ﬂz—z) (Z Q(l)ﬂn—l) —an Y (=) Y a(—k)mi_i_y (4.38)
=1

where at time n

Qi 0<i<J
Taei = . (4.39)
d’n—i(ﬁn) J+1 < 1< L,
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In (4.39), {Gi(3,)} are tentative conditional decisions on svmbols more than J samples in

the past obtained from the history of the survivor path associated with state J,. as
dn-—J(ﬂn) = argglaw}' [/M(dn) + r(ann@n)] . (4.40)

The reduced trellis branch metric I'(a,,, 3,,) of (4.38) corresponds to the full trelljs branch
metric I'(ay, on) given by (4.22). Note that the (whitened matched filter) DFSE algorithm
of [8] is obtained by substituting P~1 = R = QH = pH and the DFSE algorithm with the
standard matched filter, proposed in [7], is obtained by substituting P-1 = g — 1,Q=25.

In the first case, the whitened channel F' with coefficients {f(n)} is minimum-phase.

y(1) - z'(n) Processing | '(n) Reduced trellis | @x
M—_t\:z? filter P El—> [sea,rch algorithgﬂ

Figure 4.4: An alternative DFSE receiver

An alternative DFSE receiver shown in Fig. 4.4 corresponds to the MLSE receiver of
Fig. 4.2, in that the front-end filter is matched to the transmit filter response. It follows

the recursion:

M/(ﬂnﬂ) = g}j’f [Ml(ﬂn) + F/(amﬂn)] (4-41)

where the memory order is chosen in the range 0 < J < I/, and the reduced trellis branch

metric I'(a,,, Br) is obtained by replacing Qn-i in (4.35) by

, iy 0<i<J
i = (442)

dn—i(ﬂn) J+1 <z < L:,
where {4/(8,)} are tentative conditional decisions obtained ag
&y 7(Bn) = arg gné)j[M/(ﬂn) + (o, Bn)]- (4.43)

The branch metric js given by

Le lp L. Ly
I(an,0,) = 2Re { (Z C*(l)n'*.,') (Zp’(l)z’(n - l)) + w’(n)ZC*(l)ZP'(-k)nI?‘_z_k}
=0 =1

1=0 k=0
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Lc La
(Zc 1)2 QLA L) (Zc(/)Zq’(k)n;-z,k)

=0 k=1

Ld-—ll L
(Zcmz "=k) Y 4 m)n:;‘.,-k_m) (Zc(l)n:,-l)- (4.44)

m=0 =0

With P = R’ = Q' = I, we get the case of Nyquist pulse-shaping® at the transmitter
and transmit-filter matched-filtering at the receiver. This results in the DFSE receiver
of [8] where the statistic is white without any linear processing and the channel C with
coefficients {c¢(n)} may have any phase (minimum, mixed, or maximum phase). With
P~ = R' = Q'F = F'H  the whitened channel F'C with coefficients { f’(n)*c(n)} has mixed
phase in general. With P~! = R’ = I, Q' = ®, we get the DFSE receiver corresponding to
the new fractional MLSE formulation of Section 3.5.

4.5 M-Algorithm

The M-algorithm (MA) [2] is well-known as another reduced complexity alternative to
MLSE. The scheme was originally proposed to operate on white (or whitened) statistics.
However, it has also been used with the standard matched filter (see for example [48,51]).
The M-algorithm is essentially a reduced tree search algorithm. At each step, M survivor
paths (hypothesized sequences) are extended to M.A paths, of which the M paths with the

best accumulated likelihood metric are retained and the rest are discarded.

~

an

-—ﬁ(-t—)—» h*(-t) ___.\__f_(_n_)_, Processing _M, Reduced tree
t =nT filter P search algorithm

Figure 4.5: A generalized M-algorithm receiver

In this section, we extend the M-algorithm to operate with a general transversal process-
ing filter. The receiver is shown in Fig. 4.5. Let o,,(j) = (20, 01,...,0n-1) be one of the M
survivor paths (j = 1,..., M) at time n. At time n + 1, the reduced tree search algorithm

extends each survivor into A paths a,,; = (2,(j), @) and computes their accumulated

5Using transmit pulses that satisfy the Nyquist criterion for ISI free transmission.
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likelihood metric using
M(Qn+1)=M(Qn(J))+I‘(an,an(j)) (4.45)

where the branch metric I’(an,an(j)k) which depends on the last L, hypothetical svmbols
0.(J) in the survivor path a, (j), is given by (4.22). The M paths with the highest accu-
mulated metric are then selected.

An alternative M-algorithm receiver has a front-end filter matched to the transmit filter

Tesponse and uses the branch metric of the MLSE receiver of Fig. 4.2, given by (4.35).

4.6 First Event Error Analysis

tion 4.5 (Fig. 4.5). We say that a first event error is made in the reduced trellis or tree
search algorithm (at time 7) if the correct path is abandoned for the first time in favor of 5
competitor path or paths that diverge from the correct path at time j. Note that our defi-
nition of a first event error is different from the definition given in [29], in that we consider

the start time of an €ITor event as the time of its occurrence as opposed to the end time as

transmitted and {b,} (by, : Qn1,0n_o,.. -3@n_7) be the sequence of states in the path of
{ar} in the reduced trellis of the DFSE receiver (with memory order J ). Let {@,} be a

hypothetical sequence of symbols and {Zn} be the corresponding sequence of states in the

with it at a later time (say k), i.e.

by = b, for n = 0,k and b, Fby, for 0<n <k, (4.46)

the survivor sequence over {a.}. It follows from (4.37) that the event occurs if the metric
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accumulated on the incorrect path is greater than the metric accumulated on the correct

path i.e.
k-1 . k=1
> T(an,b,) > > T(an.ba) (4.47)
n=:0 =0 :
where {I'(a,,b,)} and {P(&n,l—)n)} are branch metrics corresponding to the paths {a,} and
{@n} respectively, computed using (4.38). Note that the conditional decisions {@n—i(b,)}
and {@,_;(,)} which are fed back to compute the branch metrics, are taken from the paths

corresponding to the sequences of states {b,} and {b,} respectively. Thus, @n_;(bn) = an_;

and é,_;(b,) = @p_; and (4.47) can be written in matrix notation as
2Re{af (P! ~alf a H(p-1 ;|
@ (P77 )kze} — & RiQrly > 2Re{ay (P )izy} — af RiQray (4.48)

where a; = [ag,ay,...,a5-1]%, &; = [0, dy, .. y85-1)T and z, = [z(0),z(1),...,z(k - 1)T.
The matrices (P~');, Ry and Qy are principal submatrices® of dimension k of the matrices
P~', R and Q respectively given by (4.16), (4.17), (4.18) and (4.19). Defining e, = d, — g,

as the error sequence and noting that R Q) = QP RH, (4.48) can also be expressed as
2Re{et/ (P )ezy} > eff RiQrey + 2Re{el RiQray}. (4.49)

From (4.8), it follows that
zy = Pexn(Sa+u) (4.50)

where Piyn is the k X N matrix comprising the top k rows of the matrix P. Using (4.50),

(4.49) can be written as
2Re{ef/ (P~ Pexnu) > ef RiQrer + 2Re{ef RiQray} — 2Re{efl (P™)4 Peun Sa} (4.51)

which is the condition for the error event ¢ : g, is eliminated in favor of a; + e (with g,
and e given, i.e. non-random). The error event ¢ is associated with the error sequence e;.
The length of the error event is k¥ — J symbols, not counting the last J components of ¢,

which must be zero as b = by according to (4.46).

MLSE

In the case of maximum likelihood sequence estimation, the memory order is J = L,

(Viterbi algorithm). Thus, we have ex_; = 0 for i = 1,2, .. .y Ly. Using the fact that RrQ}

SThe principal submatrix of dimension k of a square matrix A (with dimension > k) is obtained by
erasing all but the first & rows and columns of A.
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Is a square banded matrix with L < L, elements in the right band”. we get

H ..

el RiQrer = efl 1 Siopeiep, (4.52)

e RiQuay = el | Si_1,nra, (4.53)

where e, _; = [eg,e€y,.. v €k—L,-1)7 and Sk—Loxk is a (k= L,) x k matrix comprising the

top k — L, rows of Si. Since (P~1); is a banded matrix with ly < L, elements in the right

band), the top k ~ L, rows of (P~1); Pixn are given by [Iy_1,|Ok_r,xN+L,-k] and we have
et (P )ePexnSa=efl | Si_p.wras (4.54)

Combining (4.52), (4.53) and (4.54) with (4.51), we see that the error event ¢ occurs in an
MLSE receiver if

2Refefl pupr,} > el [ Sior.en s, (4.55)

Given the error sequence e, the left hand side of (4.55) is a Gaussian random variable with

mean 0 and variance 4N0§£{—Lv Sk-L,ek—r,- Thus, the probability of the error event ¢ is

H
Pr(e) = Q (%\/gk-Lv Sl;\;OLqu—LT) (4.56)

It follows from (4.46) and (4.56) that the first event error probability can be over-bounded

given by

using a union bound, as

é(e) >
P, < = 4.57
FEE < ;GEPQQ (2 VAT (4.57)
where F is the set of all error sequences ¢ = ep, €1, ..., €1 (such that 7 > 0, ¢;_, # 0) with

less than J consecutive zeros in the midst of the sequence, p, is the a prior: probability of
the error sequence e and d(e) is known as the distance of the error sequence e and is given

by

i~11-1

§e)=\efiSie= |3 S ers(i— g)e;. (4.58)

t=0 j=0
Notice that the first event error probability given by (4.57) is independent of the pro-
cessing filter P and the form of the branch metric used. It is the same as obtained by Forney
[13] and Ungerboeck [40] for MLSE receivers with specific processing filter and branch met-

ric combinations. Our result validates the fact that the Viterbi algorithm does in fact yield

"The elements on the right hand side of (but not including) the diagonal.

41



maximum likelihood sequence estimates regardless of the form of the processing filter as
long as the inverse processing filter P~1 exists and the trellis is expanded by /; — L symbols

if the number of anti-causal taps Iy of P~! is greater than the channel memory L.

DFSE

For a memory order J < L, the first term on the right hand side of (4.51) depends on the
error sequence g; only, while the other two terms depend, in addition, on the transmitted
sequence g. These terms do not cancel for a general transversal processing filter P and
thus represent “raw or untreated” interference. The error performance of a DFSE receiver
thus depends on the processing filter unlike the case of an MLSE receiver. Moreover, the
error performance also depends on the branch metric formulation employed by the reduced
trellis-search algorithm. This can be seen by noting that the two branch metric formulations:
R, = QF = Fﬁ and Ri = I, Qr = Sy result in different error distance and interference
terms as Fff F, # Si. Note that the asymptotic equivalence of the matrices § and FHF
(for N large) assumed in Section 4.3 does not apply here, as error events are generally short,
ie. kK N.

In view of the above discussion, it is desirable to have a processing filter plus branch
metric combination which eliminates the problem of untreated interference and maximizes
the error distance. We devise the notion of “unbiasedness” to describe such DFSE receivers
whose error performance is not affected by untreated interference (or bias). Let E’ be the

set of all error sequences in the set E with J zeros appendid at the tail.

Definition 4.6.1 A DFSE receiver is termed “unbiased” if each error event ¢ (correspond-
ing to an error sequence in E’) is conditionally independent of the transmitted sequence a

given the error sequence e, for any memory order 0 < J < L,.

It can be expected that an unbiased DFSE receiver would have good error performance
for any memory order. On the other hand, a biased DFSE receiver would be affected by
untreated interference components and could thus exhibit an error floor. In order to obtain
an unbiased DFSE receiver, one must find a processing filter that causes the cancelation
of the interference terms in (4.51) for any memory order. It follows that such a processing

filter P must satisfy the condition:
(P_:l Ve PexnS = RiQr[lk|Okxn-k] Y1<k<N (4.59)
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or equivalently (noting that RyQx = QY RH for the cases in hand):
(P ')kPixn = QF(Q Fhixnw YISk <N (4.60)

where the matrix (Q~ )rxn comprises the top k rows of the matrix Q™.
It follows from (4.51) and (4.59) that the probability of the error event ¢ for an unbiased
DFSE receiver is given by

H
Pr(e) = Q ( & FiQrey ) . (4.61)
2,/ Noel! RxQi(S )k RiQues

The first event error probability for an unbiased DFSE receiver can then be overbounded

as

6(e)
P, < Q| —== (4.62
FEE gél Pe (2\/7-\/3) )

where 6(e) is the distance of the error sequence ¢ defined, in general, as

s eTRiQre

) \[QHRka(S'l)kRkaQ

6(e) (4.63)

where the subscript k denotes the length of the composite error sequence g. Note that the
above definition of the error distance includes the effect of noise enhancement (the term in
the denominator of (4.63)).

A first event error analysis of the alternative DFSE receiver of I'ig. 4.4 is similar to the

analysis presented above and is given in Appendix A.

4.6.2 Tree Search Algorithms

Consider the generalized M-algorithm receiver of Fig. 4.5. Let {a,} be the sequence of
symbols transmitted. Let ax(s) (¢ € {0,1,...,MA - 1}) be the M A paths extended at a
time unit k > log4 M, including the correct path a,(0) = g;. A first event error occurs
at time 0 in the M-algorithm receiver if the tree search algorithm eliminates the path g;.
It follows from (4.45) that the error event occurs if the metric accumulated on the correct

path is less than the metric accumulated on at least M of the other extended paths, i.e.

M(a) < M(ax(2)) (4.64)

43



for at least M values of 1 € 7 = {1,2..... MA=1}}. Let {o.(1) *~1 be the sequence of

states® in the path of g.(7). Then. using (4.45), (4.64) can be written as

k-1 k-1
S” T(an(i), oali)) > Y Tlan.on(0)). (1.65)
n=0 n=0

Defining €,(i) = ax(i) — a) as an error sequence and following the development of (4.51),

we get equivalently

WRe{ex(i)T (P~ ePixvu} > ex())” RiQrer(i) + 2Re{en(D)” ReQrai}
—2Re{e () (P~V )i Pexn Sa} (4.66)

for at least M values of i € Z. This is the condition for the error event ¢’ : a; is eliminated
in favor of M of the extended paths a; + e(7) (with g, and e,(¢) given, 1 € T).

Notice that like the case of the DFSE receiver, the error performance of the general-
ized M-algorithm receiver depends on the processing filter and is, in general, affected by
untreated interference components. Thus, the concept of “unbiasedness” also applies to
M-algorithm receivers. Specifically, we define a class of unbiased M-algorithm receivers as

follows

Definition 4.6.2 An M-algorithm receiver is termed “unbiased” if each error event €' (for
each depth k) is conditionally independent of the transmitted sequence a given the error

sequences e (1) (¢ € I).

Clearly the processing filter P of an unbiased M-algorithm receiver must satisfy (4.60) as in
the case of unbiased DFSE receivers. The probability of the error event ¢’ for an unbiased

M-algorithm receiver is, thus, given by
Pr(¢’) = Pr (X(_e_k(z)) > er())T RpQrex(i), for M values of i € I) (4.67)

where X(ei(i)) are jointly Gaussian random variables with mean zero and covariance
E[X (e ()X *(ex(5))] = 4Noee ()7 RiQi(S e ReQrex(5)-
4.7 TUnbiased receivers

In Appendix B, we show that the processing filters that satisfy the unbiasedness condi-
tions of (4.60) and (A.4) (corresponding to the case where the front-end filter is matched

8The notion of state in a tree search algorithm is as defined in Section 4.5.
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to the overall channel response and where it is matched to the transmit filter response

respectively) are unique (within a scaling factor) and are given by
P=Q"H (4.68)

and

pP=QH" (4.69)

respectively. In the first case, the processing filter P that results in an unbiased receiver
when used with a reduced trellis or tree search algorithm with branch metric formulation
R = Q¥ = FH is the noise-whitening filter F~H_ while for the formulation R = I and
Q@ = S, it is the zero-forcing filter §~1. In the second case, the processing filter in the case of
branch metric formulation B’ = Q'H = F'H  is the appropriate noise-whitening filter F” -H
while for the formulation R’ = I and Q' = ®, it is the appropriate zero-forcing filter oL
Note that the processing filters in both cases correspond to the autocorrelation spectrum

of the front-end filter in the receiver. The processed statistics given by
z=Ra+Q Mu (4.70)

in the first case, and

:’lll — RIHCQ_+ Ql_H_'l_l:_, (4.71)

in the second case, depend on the past transmitted symbols only and not on any future
transmitted symbols. Thus, the statistics fed to a reduced trellis or tree search algorithm
must have causal dependence only, for unbiased operation. Note that it is also necessary to
match a given processing filter with the proper branch metric of the reduced trellis or tree
search algorithm in order to achieve unbiasedness.

We considered two additive decompositions of the likelihood metric in each case of
the front-end filter, which led to two different unbiased receivers. The two branch metric
formulations correspond to the two decompositions of the front-end filter autocorrelation
matrix (S or ®)- one actually being no decomposition and the other being the unique
Cholesky decomposition. Note that there is no other decomposition of a positive definite
and banded matrix of the form RQ (or equivalently RHEQH), where the matrix R is upper-
triangular and both matrices R and @ are banded. The matrix R is constrained to be

upper-triangular to get a causal form for the additive metric. Both R and ¢ are constrained
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to be banded in order for the branch metric to have finite complexity. Thus. our treatment
of unbiased receivers is complete in this sense.

In the case of an infinite length transmitted sequence. the processing filters described
above have infinite impulse responses. In practice. these filters can be implemented by
truncating the impulse response at a sufficient length. However, this leads to some bias
(untreated interference) in the receiver. Thus, there is no truly unbiased DFSE or M-
algorithm receivér for an infinite length transmitted sequence. An exception to this is the
case of Nyquist pulse-shaping at the transmitter and transmit-filter matched-filtering at the

receiver. No processing filter is required in this case for unbiased operation.

4.7.1 Receivers with a noise-whitening filter

One type of unbiased DFSE and M-algorithm receivers have a noise-whitening filter.
Henceforth, they will be referred to as whitening filter DFSE (WF-DFSE) and whitening
filter M-algorithm (WF-MA) receivers. For the case where the front-end filter is matched to
the overall channel response with autocorrelation spectrum S (standard matched filtering),
the noise-whitening filter is given by F~H_ The branch metric for the WF-DFSE(S) and
WF-MA(S) receivers? is obtained by replacing P~! = R = Qf = FH in (4.38) and (4.22)
respectively. An upper bound on the first event error probability of the WF-DFSE(S)
receiver is given by (4.62), with the error distance obtained by substituting Ry = QI = F, H

in (4.63) and noting that
(S = (FHF ) = (FO(F ) = (F) ' (Fo)~ (4.72)

where the second and third equalities follow from the following identity.
I X and Y are N x N matrices and Y is upper-triangular (or X is lower-triangular),
then
(XY)e = XiYe (4.73)
where (XY )y is the principal submatrix of dimension k < N of the matrix XY.

The error distance is then given by
8(¢) = || Fiell (4.74)

For the case where the front-end filter is matched to the transmit filter response with

autocorrelation spectrum & (transmit matched filtering), the noise-whitening filter is given

9Where ‘S’ stands for standard matched filtering.
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by F'~H. The branch metric is obtained by replacing P™' = R’ = Q"F = F'H in (4.44) and
(4.35) respectively for the WF-DFSE(T)!® and WF-MA(T) receivers. The error distance
for the WF-DFSE(T) receiver follows from (A.6) as

6(e) = || F(Ckell. (4.75)

Note that the two expressions for the error distance of WF-DFSE receivers (4.74) and
(4.75) differ from each other due to the different phase characteristic of the whitened channel
in each case. In the first case, the whitened channel {f(n)} has minimum-phase while in
the second case, the whitened channel {f'(n) * ¢(n)} has mixed phase, in general. We will
see later that the error distance and hence the error probability is superior in the case of
the minimum-phase channel. Note that the first event error probability expressions derived

here are equivalent to the expression obtained in (8].

4.7.2  Receivers with a zero-forcing filter

The other type of unbiased DFSE and M-algorithm receivers consist of a zero-forcing
filter. Henceforth, they will be referred to as zero-forcing filter DFSE (ZF-DFSE) and zero-
forcing filter M-algorithm (ZF -MA) receivers. For the case of standard matched filtering, the
zero-forcing filter is given by $~1. The branch metric for the ZF-DFSE(S) and ZF-MA(S)
receivers is obtained by replacing P~ = Q = § » R =1 in (4.38) and (4.22) respectively.
Substituting these values in (4.63) gives the error distance for the ZF -DFSE(S) receiver as

e Se
Ve Sk(S1)Ske

For the case of transmit matched filtering, the zero-forcing filter is given by ®~1. The branch

6(e) = (4.76)

metric is obtained by replacing P~! = Q' = &, R’ = I in (4.44) and (4.35), respectively
for the ZF-DFSE(T) and ZF-MA(T) receivers. The error distance for the ZF-DFSE(T)
receiver follows from (A.6) as

eHCH®Cre
\/QHC/{{Qk(Q_I)k@kaQ‘

Note that the zero-forcing filter ®~! in the latter case does not null out inter-symbol in-

é(e) = (4.77)

terference entirely. It decorrelates only the part due to the autocorrelation of the front-end
filter response while the part which is due to the dispersion caused by the medium response

{c(n)} is left untouched.

1®Where “T” stands for transmit matched filtering.
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4.8 Biased receivers

Several biased receivers are possible. One example is a DFSE receiver considered in
[37]. It comprises a front-end filter matched to the overall channel response followed by
the noise-whitening filter P = F~H. The reduced trellis search algorithm uses the branch
metric formulation R = I, @ = S. To see that the receiver is biased, note that F,f’Fk £ Sk
(k< N). It follows from (4.51) that the error event £ depends on the transmitted sequence
a through (S; ~ F,S{Fk)gk.

Note that a transversal processing filter adds complexity to a receiver. The computa-
tion of a noise-whitening or zero-forcing filter requires channel inversion and factorization
operations. Moreover, the filter has to track the variation in the channel if the channel is
time-varying. One solution to this problem is to omit the processing filter and pass the out-
put of the matched filter directly to the trellis or tree search algorithm, resulting in a class
of receivers which we refer to as matched filter receivers. Matched filter receivers, however,
are biased. In other words, their error performance is limited by untreated interference

components. Some useful matched filter receivers are described in the following sections.

4.8.1 Matched filter receivers

An important type of matched filter DFSE (MF-DFSE) and matched filter M-algorithm
(MF-MA) receivers have a front-end filter matched to the overall channel response followed
by a reduced trellis or tree search algorithm with branch metric obtained by replacing
P'=R=1I,Q = S in (4.38) and (4.22) respectively. The MF-DFSE receiver of this type
was proposed in [7,50]. The MF-MA receiver of this type was considered in [48,51]. An
upper bound on the first event error probability of the MF-DFSE(S) receiver was derived
in [19,20]. Using P! = R =1, Q = S in (4.51), note that the error event ¢ occurs in the
MF-DFSE(S) receiver if

2Re{ef u;} > eff Skey, — 2Re{E7SE ;4,} | (4.78)
where @; = [ag,-..,aky1—7-1]7, £ is the tail of the error sequence ¢; comprising the last

L — J non-zero components of ¢, given by!l

E=ler-r, ., ek—g-1]" (4.79)

"1n (4.79), e; = 0 for i < 0.
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and §is an L x L matrix given by

[ S(I) - s2) s
o - :
S = : (1.80)
DT (D) s(L—1)
[0 0 s(2)

It then follows that the first event error probability can be upperbounded using the union

bound as
Prgg < 922, PeEs [Q (é%—:/—%g’—g“—))] (4.81)

where é(e) is the error distance given by

o(e) = /el Sre (4.82)

and (e, a) is the untreated interference given by
(e a) = 2Re{€7 ST ;0,1 /6(e). (4.83)

McLane investigated truncated-state Viterbj detectors (TSVD) with standard matched
filters in [32]. The difference between the TSVD algorithm of [32] and the MF-DFSE
algorithm is that the MF-DFSE algorithm uses conditional tentative decisions to cancel
the tail of the channel response while the TSVD algorithm simply ignores it. The error
bounds obtained by McLane indicate the presence of untreated interference. However, the
untreated interference in his bounds arises due to ignoring the tail of the channel response
in the TSVD algorithm. Such an interference term does not appear in the bounds for DFSE
as it is canceled by means of tentative conditional decisions in the DFSE algorithm. The
untreated interference component that appears in the DFSE bound of (4.81) is, however,
absent in McLane’s bounds. The cause of this latter untreated interference component can
be intuitively explained as follows. The matched filter statistics at the input of a reduced
trellis search algorithm depend on L past and L future transmitted symbols (cf. (4.5)). The
reduced trellis search algorithm (with memory order J ) selects survivor paths extending
up to time n on the basis of the metric accumulated up to time n + J. This premature
elimination of candidate paths does not account for the interference arising from the I — J

future transmitted symbols. Clearly, this type of untreated interference affects both the
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DFSE and TSVD algorithms. Hence. the bounds in [32] should be corrected to include this
interference component.

A second type of matched filter receivers is obtained in the case where the front-end filter
is matched to the transmit filer response. The reduced trellis and tree search algorithms
of MF-DFSE(T) and MF-MA(T) receivers employ the branch metric given by (4.44) and
(4.35) respectively with P=! = R/ = I, Q" = &. Substituting these values in (A.2), we see
that an upper b'ound on the first event error probability of the MF-DFSE(T) receiver is

given by (4.81), where the error distance é(e) is given by
§(e) = Cll 8 Che (4.84)
and the untreated interference (e, @) is given by
1(e ) = 2Re{¢" (Crox1-0)"8C i} /6(e) (4.85)

where &, = [ag-_,.. .,ak,...,ak_,.Ld_l]T and C and & are Ly x L and Ly x Ly matrices

respectively, given by

(L) - e(1) c(0) 0 - 0

&= , (4.86)
| 0 - 0 (L) -+ (1) c(0) |
(6(-La) - #-2)  g(-1) |

. 0o - :

6= . (4.87)

: e ¢(=Lg) ¢(—La+1)

0 -0 ¢(—La)

The matrix C’L axL—J comprises the first L — J columns of the matrix . In the case of
fractional sampling, the MF-DFSE(T) receiver corresponds to the fractional MLSE receiver
of Section 3.5.

Note that for a given error sequence e, the untreated interference v(e,a) in (4.81) has
zero mean in the case of i.i.d. transmitted symbols. The interference, thus, increases or
decreases the error distance of the MF-DFSE receivers with equal probability. Due to

the convexity of the Q(-) function, the error performance is, however, dominated by the
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destructive effect of the untreated interference and is. thus. rather poor. Without giving
an expression for the error probability of the MF-MA receivers, it can be noted that the

ME-MA receivers also suffer from untreated interference.

4.9 Truncated memory MLSE receivers

Linear pre-filtering was proposed in [12,35] as a means to truncate the memory of the
Viterbi algorithm in an MLSE receiver. In [12], the overall response of the channel/pre-
filter combination is forced to a truncated and causal desired impulse response (DIR) of
acceptably short span (say J symbols). Pre-filtering colors the noise in the output statistic.
However, the Viterbi algorithm is used on the pre-filtered statistic as if the noise were white.
An important difference between this approach and our generalized DFSE approach is that
the receive filter in the case of DFSE is not specifically designed for a memory order. This
allows one to vary the memory order of the trellis search algorithm without changing the
receive filter. In the following, we look at the error performance of the pre-filtering method.

Let z be the statistic obtained after matched filtering /noise-whitening, i.e.
z=Fa+w (4.88)

where w is a white Gaussian noise sequence with covariance Elww] = NoI. Let G be an
N x N lower-triangular banded Toeplitz matrix (with band width J < L) representing the
DIR and H be the corresponding pre-filter matrix, given by HF = (. The statistic at the
output of the pre-filter is given by

z? = Ga + w? (4.89)

where wP = Huw is the filtered noise.

Consider a path {@,} in a truncated memory MLSE (TM-MLSE) receiver that diverges
from the correct path {a,} at time 0 and remerges with it at a later time k. A first event
error occurs at time 0 if {@,} is picked as a survivor path. The error event occurs if the
metric accumulated on the incorrect path is greater than the metric on the correct path,
ie.

—llzf = Granll® > ~llz} — Gray|”. (4.90)

Using (4.89), we get
2Re{ef/ GHul} > [|Greyl? (4.91)
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where ¢, = &, — a; is the error sequence. Note that H is a lower-triangular matrix.

Therefore, E[u’i'_tng] = :\'OHka and the probability of the error event &: the sequence gy,

is eliminated in favor of the sequence g + €. is given by
8(e) )
Pr(s) = — 4.92
(6= Q (54 (492)
where 6(¢) is the distance of the error sequence € (we drop the subscript k), given by
IGrel®
\/QHGfHkaGkQ

é(e) = (4.93)

4.10 Symbol error probability

Consider a path in the reduced-state trellis of a DFSE receiver that diverges from the
correct path at time n; and remerges with it at alater time ny. Due to feedback incorporated
in the reduced trellis search algorithm, the event that the correct path is eliminated in favor
of the incorrect path (an error event) depends on previous error events. The effect of the
error propagation is, however, small in DFSE receivers as compared to simple decision
feedback equalizers (DFE). This is because the decisions fed back in DFSE are conditioned
on the state of the reduced trellis unlike the decisions in DFE. Moreover, the effect of error
propagation is small at medium to high signal-to-noise ratio (SNR). This was shown to be
the case for WF-DFSE receivers in [8,9]. Assuming no error propagation (i.e. a separation
of more than L — J correct decisions between error events), the probability that an error
event occurs in a DFSE receiver can be upperbounded by the first event error probability
[29]. The symbol error probability for unbiased DFSE receivers can then be upperbounded
as [8,13]

§(e)
ENCE (Gom) (4.94)

where w(e) is the number of symbol errors entailed by the error sequence g, 6(¢) is the
distance of the error sequence and p, is the probability that a transmitted sequence can
have e as an error sequence. For i.i.d. transmitted sequences and input alphabet A =
{£1,43,...,£(A] — 1)} (for |A| even), we have

K1 1A Sl

= 1L =

n=0

(4.95)

which reduces to
pe =27 (4.96)
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in the case of BPSK modulation. The error distance é(e) is given by (4.74) and (4.75)
for WF-DFSE receivers with the standard and transmit matched filters. respectively. The
error distance for ZF-DFSE receivers given by (4.76) and (4.77), depends on the location
and length of the error event. This is because the correlation in the noise samples given by
5-1 varies over the length of the data sequence. However, note that the noise correlation
is constant in the middle of a long sequence (i.e. $~1 is nearly Toeplitz except at the edges
for N >» L). In Appendix C, we obtain expressions for the error distance that assume the
noise correlation to be constant. The error distance in the case of standard and transmit
matched filtering is given by (C.5) and (C.6) respectively. The symbol error probability
bound of (4.94) also holds for the truncated memory MLSE receiver of Section 4.9 with the
error distance given by (4.93). In this case, it is a strict upper bound as there is no decision
feedback and thus no error propagation.

For moderate SNRs, the upper bound given by (4.94) is dominated by the term

Q(;22) ¥ wom (4.97)
2vNo e€E!

min

where E7 . is the set of error sequences in E’ that achieve the minimum distance (known

as minimum distance sequences)

Smin = min &(e). (4.98)

The symbol error probability for MF-DFSE receivers can similarly be upperbounded as
.5 3 wonk, [0 (e (4.99)

where the error distance 6(e) and the untreated interference v(e,a) are given by (4.82)
and (4.83) for the case of standard matched filtering and (4.84) and (4.85) for the case of
transmit matched filtering respectively. Due to the presence of untreated interference, the
upper bound in (4.99) is not dominated by the minimum distance error sequences only,
unlike the bound for unbiased DFSE receivers. Higher distance error sequences should also

be considered with worst case interference.

4.11 Error distance

The various DFSE receivers derived in the previous sections can be compared on the

basis of their error distance. In the case of an unbiased DFSE receiver, the minimum error
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distance squared per noise spectral density can be considered as its effective SNR [8]. For
a given channel and memory order, the distance of a given error sequence depends on the
type of the DFSE receiver. Specifically, it depends on the receive filter and the branch
metric. In this section, we compare the error distance for various receivers.

Let e = [eg, €1,-.-,€k_1-7,0,...,0]T be an error sequence of length k belonging to the
set E; (the set E’ of allowable error sequences for a DFSE receiver with memory order
J <L) Let e, - [eT,0,...,0)7 (length { = k+ L —J). Then, e, € E}, the set of allowable
error sequences for an MLSE receiver. The distance of this sequence in the case of an MLSE

receiver is given by

ber) = €l Siey = € Sie (4.100)

which is equal to the distance of the corresponding error sequence in the case of a MF-DFSE
receiver with the standard matched filter. Let E be the set of all error sequences in EY
appended by L —J zeros (L > J). Note that E/; C Ef,i.e. the upper bounds given by (4.94)
and (4.99) for DFSE receivers are determined using only a subset of the error sequences
considered for an MLSE receiver'?. Thus, if the untreated interference in the case of MF-
DFSE(S) could be removed ideally with the aid of a genie, the upper bound for the receiver
would be lower than MLSE. In fact, the error rate performance of the genie-aided receiver
is generally better than MLSE in moderate SNRs where error propagation is negligible.
For the other DFSE receivers, we will show that the error distance is smaller, in general,

compared to the MF-DFSE(S) receiver (or an MLSE receiver).

4.11.1 WEF-DFSE

Consider the case of WF-DFSE(S) receiver. Note that

el Sie, = ellSen = |[Fen|? = || Fie, || = || Frel® + || ¥€)1? (4.101)

12The error sequences excluded have more than J — 1 consecutive zeros in the midst and hence cause a
reduced trellis encoder with memory J to flush.
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where ey = [¢T0.....0]T (length N'). £ is given by (4.79) and ¥ isan L —J x L — J matrix

given by
L) g
. 0o . ‘:
¥ = . (4.102)
DT () flL-1)
| 0 -~ 0 f(L) ]

The matrix ¥ is illustrated in Fig. 4.6. The distance of a given error sequence is thus

0 k-1
L
k-1 '
7
-1
k—1-J -1

Figure 4.6: Hlustration of ¥ within B

smaller for WF-DFSE(S) as compared to MF-DFSE(S). The loss in squared distance is
given by
19g)”. (4.103)

Now consider the case of the WF -DFSE(T) receiver. Let

t~

v(ii—J) 0<i—-35<
v(i,7) = ( ) (4.104)
0 otherwise

be the coefficients of the lower-triangular Toepltiz matrix V = F'C. Then, similar to

(4.101), we can write

el Siey = | F{Ciey|f? = || FCrel® + || (4.105)
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where ¥ is an L — .JJ x L — J matrix given by

. 0o - :
¥ = . (4.106)
: s w(l) v(L-1)
0 - 0 v(L) |

The loss in squared distance in this case is given by
e (4.107)

Note that the matrix F' of the whitened channel coefficients {f(n)} (in the case of
standard matched filtering), is invertible since F(z), the z-transform of { f(n)}, is minimum-
phase (has all roots inside the unit circle). Similarly, F'(z), the z-transform of {f'(n)},
is minimum-phase. However, the z-transform C(z) of the medium response coeflicients
{¢(n)} may be non-minimum phase. Therefore, V(z) = F'(2)C(z), the z-transform of the
coefficients of the whitened channel {v(n)} (in the case of transmit matched filtering), is
mixed-phase in general. The whitened channels in the two cases have the same magnitude
response, as

F(z"YF(z) = V(") (2) = §(2) (4.108)
where S(z) is the z-transform of the sampled channel autocorrelation function {s(n)}. Note
that channels with identical magnitude response but different phase responses have different
energy distribution among tap coefficients. The minimum-phase channel has most of its
energy contained in the leading tap coefficients, while the maximum-phase channel (with all
roots outside the unit circle) has most of its energy contained in the lagging tap coefficients.
As a result, the coefficients of the matrix ¥ (belonging to the minimum-phase channel F)
have smaller magnitude, in general, than the coefficients of the matrix ¥. Thus, the loss in
squared distance compared to MLSE in the case of standard and transmit matched filtering

given by (4.103) and (4.107) respectively is smaller in the first case.

4.11.2 ZF-DFSE

Next, consider ZF-DFSE receivers. In Appendix C, we show that the error distance for

the case of ZF-DFSE(S) can be written as
ef Sre 3 el Sre
\/QHSk(S‘l)kSkQ \/£H5k£+§H5'£{_J(5§2)L5'L—J§

(4.109)
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where (57,)7 is a submatrix of the matrix $~! and is thus positive definite. Note that the
second term in the denominator of the RHS of (4.109) is greater than zero as the matrix
S is full rank (since s(—L) # 0). Thus, the error distance for ZF-DFSE(S) is less than
MF'DFSE(S)‘. Similarly, it can be shown that the error distance for ZF-DFSE(T) is smaller
than that for MF-DFSE(T).

4.11.3 Optimum unbiased DFSE receivers

In this section, we show that WF-DFSE receivers are optimum in the sense that they
minimize the first event error probability of unbiased DFSE receivers. Equivalently, we
show that WF-DFSE receivers maximize the distance of a given error sequence in the class

of DFSE receivers that satisfy the unbiasedness condition, i.e.

"R Qe
\/QHRka(S—l)kRkaQ
with equality only if Q) = F, where (R,Q) = (I, S) or (FH,F) and

< || Frell (4.110)

e"CHRLQ\Cre

< |FCel (4.111)
Ve CH R, QL(271)LR,Q} Cre

with equality only if Q}, = F{, where (R',Q") = (I, ®) or (F'H F).
To prove Proposition (4.110), we note that

e"RiQie = e”(F)H(F)"H RyQre

< |[Fellll(Fr) ™ ReQuel|
= (| Frelly/e QF RE(S1)xRiQxe (4.112)

where the inequality in (4.112) is the Schwartz inequality which becomes an equality only
if Ry = Qf = FF. The last equality in (4.112) follows from (4.72). Proposition (4.111)
can be shown similarly. '

Comparing the error distance of the WF-DFSE receiver with the truncated memory

MLSE receiver of Section 4.9 (with the same memory order), we note that

e"GHGre = HGHH Fe

IA

| HH Grelll| Frell (4.113)
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where G = (HF) = HiFy follows from (4.73) as H is a lower~lriangular matrix and we
again use the Schwartz inequality. Thus, we get

|Grel)?

< || Fiel. (4.114)
\/QHGfHkH}f{GkQ

In conclusion, we see that the distance of a given error sequence for a DFSE receiver
depends on the type of filtering and the branch metric. The distance for the MF-DT'SE(S)
receiver is the same as in the case of an MLSE receiver. For the unbiased DFSE receivers -
WF-DFSE and ZF-DFSE, the distance is smaller. This is due to the fact that the standard
matched filter collects all the energy of the pulse transmitted at a given time in the corre-
sponding output sample (in other words, it maximizes the output SNR, given by [5(0)]2/No).
The noise-whitening filter spreads out the signal energy into L + 1 output samples in the
process of whitening noise ( ZL: [f(D)]? = [5(0)|?). The linear zero-forcing filter decorrelates
all interfering signal comporzlzgts but enhances (and correlates) noise in the process. The
reduced trellis-search algorithms that follow these filters recover part of the signal energy
(or SNR) that is spread out but are unable to recover all of it. Thus, WF-DFSE and ZF-
DFSE suffer from a loss of the effective SNR, while MF-DFSE(S) does not. Of course, the
drawback with MF-DFSE is that the reduced trellis search algorithm is unable to resolve
some anticausal interfering signal components. This problem is alleviated in BC-MF -DFSE
where the untreated components are canceled using tentative decisions. If reliable tenta-
tive decisions can be obtained, the BC-MF-DFSE receiver presents an advantage over the
unbiased DFSE receivers in terms of SNR.

The noise-whitening filter removes only the anti-causal signal components which is nec-
essary for unbiasedness. The causal signal components forming the tail of the channel
Tesponse are equalized using decision feedback which does not enhance nojse. The zero-
forcing filter on the other hand performs complete signal decorrelation. This leads to noise
enhancement and a further loss of the error distance. Similarly, the use of pre-filtering
to remove some of the causal signal components in a truncated memory MLSE receiver
enhances noise. Thus, WF-DFSE has greater error distance than ZF-DFSE and truncated
memory MLSE receivers with pre-filtering. Practically, error propagation slightly degrades
DFSE performance at moderate SNRs. Error propagation, however, does not occur in a

truncated memory MLSE receiver with pre-filtering as there is no decision feedback.
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4.12 Bound evaluation

In this section, we describe a generating function method to evaluate the symbol error
probability bounds given in Section 4.10 for unbiased DFSE receivers. Note that a generat-
ing function method has never been considered for the well-known WF-DFSE receiver. In
[10] and [8], the minimum distance was used to approximate the symbol error probability.
However, the approximation may not be very good depending on the system, even at high
SNRs [39]. In [39], a stack algorithm was proposed to obtain a chosen number of the largest
terms in the union upper bound of (4.94). It was stated in [39] that a generating functijon
method can not be applied to the case of DFSE because unlike MLSE, branch distances in
DFSE can not be uniquely determined from pairs of error states due to decision feedback
incorporated in the branch metric calculation. We note that the problem with the approach
in [39] is that the branch distance depends on L + 1 error symbols (where L is the channel
memory) while the states in the error state diagram of [39] represent J + 1 error symbols
(where J < L is the memory order of DFSE). In the following, we show how an error state
diagram used to obtain error distances in MLSE, can be modified in the case of DFSE.

An error state diagram (ESD) in the case of DFSE enumerates the distance é(e), the
number of symbol errors w(e) and the a prior; probability p(e) of all error sequences ¢ in the
set of allowable sequences E'. Each path through the ESD corresponds to an error sequence
in E'. For WF-DFSE, ZF-DFSE and MF-DFSE, the branch distance (defined later for each
case) depends on L + 1 error symbols identified uniquely by a pair of error states, where an
error state is defined as the value of J, consecutive error symbols: {ej-1, €jmL+15+ -+, €51}
Since, an error symbol can take on any of 2|A4| — 1 values (including zero), the diagram
has (24| - 1) error states or nodes, as in MLSE [46]. The nodes are connected to each
other through branches. Since an €ITor sequence in the set E’ can have no more than J -1
consecutive zeros in the middle of the sequence, the nodes and branches that correspond to
J or more consecutive zeros in the middle of the error path are expurgated.‘ The modified
error state diagram is shown in F ig. 4.7 for the case of a binary symbol alphabet, channel
memory L = 3 and memory order J = 1. The error states or nodes are ternary L-tuples
that take values in {0,42,~2}. The pairs of error states that are negative of each other
have been combined, as in [46]. This is because the branch distances for such error states

are identical, as we will see later. Note that with L = 3, there should be (33 -1)/2 =13
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Figure 4.7: Error state diagram for DFSE (L = 3,J = 1).

non-zero error state pairs in the ESD. However, the nodes +0+ and 10F do not appear
in the ESD of Fig. 4.7. Moreover, the nodes 0 + 0, & £ 0, &+ F 0 and £00 have only one
outgoing branch each. This is because the nodes and branches that correspond to a zero
in the middle of the error path, have been eliminated because with J = 1, an allowable
error sequences can not have any zeros in the middle of the sequence. The branches are
labeled with the branch distance parameter A and the number of symbol errors entailed by
the transition as the exponent of dummy variable I. A factor of 1 /2 is used to account for
the a-priori probability of error if the transition involves an error.
For the case of WF-DFSE, the error distance (squared) §%(e) is given by

k—14L-J
&)= 3 b | (4.115)

=0

where k is the length of the error sequence e = {eo,e1,...,ex-1} € E’; and b; is the branch
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Table 4.1: Branch distance parameters for WI-DI'SE (L = 3..J = 1)

Ao = D1/(0)

A\ = DI O+I)F

Ay = DASO=F(VP

A3 = D)

Xg = DAFO+S()+f(2)F

As = DAS+I@)F

g = DAFO=10)=F(2)F

A = DAFO+1(1)-5(2)2

Ag = DS)-F(2)P

Ag = DAO)~F()+7(2)?

Ao = DO+ M+5(+5 )P

A = DAFO)-1(1)-1(2)-s(3)7

Ay = DATO=F)=1)+I )P

A1z = DAFO+I(1)-1(2)-1 @)1

Mg = DA O+(1)-F(2)+fB)F

Ays = DALFO)-1(1)+1(2)-7(3)

Mg = DAFO+F()+5(2)-F(3)F

A7 = DAFO-F()+1(2)+53)P

Mg = DAFO)HI(2)+5 )

Mg = DAFW+f(2)-1(3)

Ago = DA )=1(2)~F )P

Agp = DA =F(2)+f3)P

A22 = Az = Agg = Ags =1

distance given by3

b =
0

L 2
(;0 f(i)ej_i) 7=0,1,..

k-1

otherwise

(4.116)

Note that the segment of an error path e between the node {€k-Ly--€r-1-7,0,. ..,0}

(ex-1-J # 0) and the all-zeros node corresponds to the tail of the error sequence £. Note

from (4.116) that the branches within this segment of an error path (which we refer to as

tail branches) have distance zero. This is in accordance with (4.101) and (4.105), where the

loss in squared distance (compared to MLSE) as given by II\I!§||2 and ”‘Il§ 12, respectively,

occurs on the tail branches.

Table 4.1 lists the branch distance parameters \; for Fig. 4.7 for the case of WF-DFSE

(also see footnote 13). The branch distance appears as the exponent of a dummy variable

D. Let T(D,I) be the generating function for the error paths for WF-DFSE, found by

solving the state equations in the ESD of Fig. 4.7 simultaneously. The generating function

1% In the case of transmit matched filtering, f(3) should be replaced by ().
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can be expanded in a series as
a . 52(1 ‘ —
—_~T(D,])) =Y N D (4.117)
o1 I=1 ;

where Ny is the number of error path pairs (negative of each other) with distance é(l), per
the number of symbol errors and the number of the corresponding input sequences. Then.

the symbol error probability bound of (4.94) for WF-DFSE can be computed as!®

P, < Y 2N D) (4.118)

!

D==Q(\/z/2N5)
In the case of ZF-DFSE(S), the squared error distance is given by 6%(e) = b2 /by, where

k—1+4+L-J

bn= > b (4.119)
7=0
is the numerator distance and
k=14L—-J
ba= D by (4.120)
7=0

is the denominator distance, and bn,; and by ; are the corresponding branch distances which

follow from (C.5) as

bn; = Re {e}-‘ (S(O)ej + 22%3(2')@4)} (4.121)

=1
b, 7I=0,1,...,k-1
baj = ETSH 1St yS-s€ i=k (4.122)
0 otherwise

Note that the numerator and denominator branch distances differ only at the tail branches
according to (C.5).

Table 4.2 lists the branch distance parameters A; for Fig. 4.7 in the case of ZF-DFSE(S).
Dummy variables D; and D; are used to enumerate the numerator distance and the de-
nominator distance, respectively. Let T(Dy, Dy, I) be the generating function for the error

paths in this case, which can be expanded in a series as

0
WT(Dh DZ,I)

=3 MDD phald), (4.123)
I=1 1

where M; is the number of error path pairs with numerator distance b,.(!) and denominator

distance by(!), per the number of symbol errors and the number of the corresponding input

' Note that for real symbol alphabet, the noise is real with power spectral density Np/2.
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Table 4.2: Branch distance parameters for ZF-DFSE(S) (L =3,J = 1)

X _D4\1 D4/\2
= s(0) A = 8(0) + 2s(1)
/\12 =38 O)—?S(l) /\1,4 :S(O)+28(1)+2S(2)
/\1 6 =38 /\1,7 = S(O) -+ 25(1) - 23(2)

(
(0) — 25(1) — 25(2)
(

/\1 9 =38 0) 28(1) -+ 28(2)

/\1le = S(O) + 23(1) + 23(2) + 28(3)

Avr = s(0) — 25(1) — 25(2) — 25(3)

A1z = 5(0) ~ 2(1) - 25(2) + 25(3)

Az = s(0) + 2s(1) — 25(2) — 25(3)

Ar,14 = 5(0) + 2s(1) — 25(2) + 25(3)

A5 = 8(0) = 2s(1) + 25(2) — 25(3)

A1,16 = 3(0) + 2s(1) + 25(2) — 25(3)

Ar17 = 5(0) — 25(1) + 2s(2) + 25(3)

A3 =A15=A1s = A 18-95 = 0

Azi=Ay;fori=0,1,...,21,25

Az22 = (5(2) + 5(3))[s'(0)(s(2) + s(3)) + 25'(1)s(3)] + 5/(0)s(3)?

A2,23 = $(2)[s'(0)s(2) + 25'(1)(3)] + 5'(0)s(3)?

A2.24 = (5(2) = 5(3))[s'(0)(s(2) — s(3)) + 25'(1)s(3)] + 5/(0)s(3)?
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Figure 4.8: BER performance of various receivers in Example 1.

sequences. Then, the symbol error probability bound of (4.94) for ZF-DFSE(S) can be

computed as

P, < S 2m Dl i) . (4.124)
1 Dy D¥=Q (\/z2/2Noy)

A similar approach can be applied to evaluate the symbol error probability bound for

ZF-DFSE(T). A generating function method for MF-DFSE(S) was described in [20].

4.13 Performance results

In this section, we compare the performance of the various receivers described in this
chapter via simulation and analysis. We consider BPSK modulation and single-user static
time-dispersive AWGN channels. We consider the cases of a symbol-spaced channel model
(symbol-rate sampling) and a half symbol-spaced channel model (fractional sampling). The
receiver is assumed to have perfect estimates of the symbol timing and the impulse response
of the channel. Each simulation was run for a count of 600 errors.

The first example is taken from [39]. The overall channel response is given by symbol-
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spaced tap coefficients!® f = (0.6335.0.5456.0.4479.0.3167). The channel has memory
L = 3 and is minimum-phase. Nyquist pulse-shaping is assumed. Fig. 4.8 shows the
bit-error rate (BER) performance of various receivers for the channel in Example 1 with
standard matched filtering. The memory order for the DFSE receivers is set to J = 1. With
memory order one, the minimum distance in the DFSE receivers is achieved by the error
sequences £(2, ~2,0). For the MF-DFSE, WF-DFSE and ZF-DFSE receivers, the minimum
distance as given' by (4.82), (4.74) and (C.5) respectively, equals 0.7322, 0.6470 and 0.5936
respectively!®. The minimum distance loss for WF-DFSE as compared to MLSE is about
1 dB while that for ZF-DFSE, it is 1.8 dB. Fig. 4.8 shows the upper bound (UB) on the
symbol error probability given by (4.94) and the minimum distance bound (MB) given by
(4.97) for WF-DFSE and ZF-DFSE. Note that the bounds were obtained assuming absence
of error propagation. The simulated BER is marginally higher than the upper bound for
both receivers. In the simulations, final decisions were obtained at a lag of 30 symbols. The
minimum distance bound converges to the upper bound at high SNR as minimum distance
sequences dominate the performance.

Also shown in Fig. 4.8 is the simulated performance of an optimum two-tap TM-MLSE
receiver with desired impulse response (0.7071,0.7071) taken from [12]. Note that the WF-
DFSE receiver performs better than the ZF-DFSE and TM-MLSE receivers at all SNRs
as discussed in Section 4.11.3. Although the zero-forcing filter in the case of ZF-DFSE,
performs more signal decorrelation (which results in noise enhancement) than the prefilter
of TM-MLSE, ZF-DFSE performs better than TM-MLSE in this example. This is because,
~ unlike the case of TM-MLSE, the trellis search algorithm in the case of ZF-DFSE takes into
account the correlation in the noise samples and is thus able to recover some of the lost
signal energy.

The MF-DFSE receiver achieves the maximum error distance equal to that of the MLSE
receiver. However, it performs quite poorly due to the presence of untreated interference
components. Also shown in Fig. 4.8 is a biased WF-DFSE receiver with the configuration
P~ = FH Q = §,R = I, considered in [37]. Again the effect of untreated interference is
evident. The untreated interference arises due to a mismatch between the processing filter

and the branch metric as discussed in Section 4.8.

L
*Normalized so that Y |f({)|* = 1.
1=0

16 After dividing by two.
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Figure 4.9: BER performance of various receivers in Example 1.

Fig. 4.9 shows the simulated BER performance of the WF-MA, ZF-MA and MF-MA
receivers for the channel in Example 1. The number of paths in the M-algorithm receivers
is set to M = 2. The WF-MA receiver obtains the best performance. The MF-MA re-
ceiver exhibits a (high) error floor like the MF-DFSE and the biased WF-DFSE receivers,
all of which belong to the class of biased receivers. Fig. 4.9 also shows the BER perfor-
mance of WF-DFSE(T) receivers on mixed-phase channels with symbol-spaced medium
responses ¢ = (0.4930,0.6745,0.3693,0.4070) (#1) and ¢ = (0.4070,0.3693,0.6745,0.4930)
(#2). The channels have the same magnitude response as the channel in Example 1, which
is minimum-phase. Note that the performance deteriorates as the channel phase increases.
The deterioration in performance is due to two factors: the increase in the distance loss with
the channel phase as discussed in Section 4.11 and the increase in error propagation. The
latter effect is not captured in the upper bound, so the bound diverges as error propagation
becomes significant. The loss in the minimum distance for mixed phase channels 1 and 2
as compared to MLSE is 1.6 dB and 3.1 dB as given by (4.103) and (4.107) respectively.

For our second example, the medium response is given by half-symbol spaced tap co-

efficients ¢ = (0.6335,0.5456,0.4479,0.3167) (same as the minimum-phase channel of Ex-
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ample 1 but with fractional spacing). The medium response memory is L. = 3. We
consider two different transmit filters specified by the sampled autocorrelation function o =
(0.045,0.0.0.4053.1.0,0.4053.0.0.0.045) (T1) and ¢ = (0.33,0.33,0.33.1.0.0.33.0.33.0.33)
(T2). The first one is a Nyquist-1 pulse (truncated to seven half-symbol samples) taken
from [4, (5.5)] while the second one is arbitrarily chosen. The transmit filter memory is
Lq = 3. The overall channel memory is thus L = (L. + Lq)/2 = 3. The memory order is
chosen as J = 1 for the DFSE receivers.

Fig. 4.10 shows the BER performance of various receivers for the two transmit filters
(T1 and T2) with transmit matched filtering. In the case of T1, the WF-DFSE receiver
achieves close to MLSE performance while the performance of MF-DFSE is less than a dB
worse. ZF-DFSE is not shown for the case of T1 asits BER is very close to WF-DFSE at all
SNRs. Note that the zero-forcing filter in ZF-DFSE(T) decorrelates only the transmit filter
response, unlike ZF-DFSE(S) where the zero-forcing filter decorrelates the overall channel
response. For the case of T2, we show upper bounds for WF-DFSE and ZF-DFSE which are
marginally lower than the simulated results due to error propagation. Note that WF-DFSE
performs better than ZF-DFSE at all SNRs as in Example 1. MF-DFSE in the case of T2
is much worse than MLSE as the sampled correlations in the case of T2 are more severe

than T1.

4.14 Conclusions

We have presented a unified analysis of DFSE and M-algorithm receivers for channels
with finite memory that examines the role of the receive filter and the branch metric. The
analysis indicates that the error performance of certain receivers (called biased receivers) is
affected by untreated interference components (bias) which arise due to a mismatch between
" the receive filter and the branch metric. We have shown that an unbiased receiver consists
of a front-end filter (matched to the overall channel response or the transmit filter response)
followed by the appropriate noise-whitening or zero-forcing filter and a reduced trellis or tree
search algorithm. We have shown that the DFSE receivers with the noise-whitening filter
(and the proper branch metric) are optimum among unbiased DFSE and truncated memory
MLSE receivers (with pre-filtering) in the sense that they maximize the error distance. We

have obtained novel receiver structures which employ transmit matched filtering and are
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Figure 4.10: BER performance of various receivers in Example 2.

thus suitable for adaptive channel estimation in the presence of excess signal bandwidth. We
have obtained upper bounds on the symbol error probability of the various DFSE receivers
and described a generating function approach to evaluate the bounds. Simulation and
analytical results were presented for the various receivers using a symbol-spaced channel
model and a fractionally-spaced channel model. The bounds were found to be tight in each

case.
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receivers were identified in Chapter 4 using an event error analysis. It was found that the
interference arises due to a few anti-causal transmitted symbols. Thus. an intuitive solution
to the problem of bias is to cancel it by means of tentative decision feedback. With reliable
tentative decisions, the bias can be compensated eflectively. As a result. the error-rate
performance is no longer dominated by untreated interference components and is improved
significantly for most channels of interest. A bias-compensated MF-DFSE (BC-MF-DFSE)
receiver was pro4posed in [20]! for the case of standard matched filtering. In this chapter,
we describe this receiver and obtain a similar receiver for the case of transmit matched
filtering. We also discuss an extension of this approach to the case of M-algorithm.

Tentative decisions needed for bias compensation can be obtained by employing a con-
ventional symbol-by-symbol decision device. In a multistage scheme, the decisions obtained
in the first stage can also be used to cancel bias in the next stage. On channels with severe
intersymbol interference (ISI) or multiple-access interference (MAI), it is not possible to
obtain reliable decisions by means of symbol-by-symbol detection. However, by using a
minimum mean square error (MMSE) estimator (an optimal symbol-by-symbol soft deci-
sion), one can always reduce the mean square error after bias compensation no matter how
severe the interference. In practice, we find that a MF-DFSE receiver with soft bias com-
pensation (SBC-MF-DFSE) provides a significant gain over MF-DFSE for most channels of
interest without much added complexity.

We analyze the performance of the MF-DFSE receiver for the case of standard matched
filtering without and with bias compensation using hard as well as soft tentative decisions.
In the case of hard tentative decisions, we obtain approximate semi-analytic upper bounds
on the error probability by assuming independence between the main and tentative decision
errors. In the case of soft linear tentative decisions, we apply a Chebyshev type technique
to upper-bound the error probability in the presence of residual interference. We outline
a generating function method to evaluate union bounds on the error probability of the
various receivers. The bounds are relatively simple to compute when the memory order of
the DFSE receiver and the channel memory is small. For channels with large memory, we
use monte carlo simulations to compare the performance of the various receivers.

The chapter is organized as follows. In Sections 5.2 and 5.3, we describe the BC-MF-

DFSE receiver for the case of standard (S) and transmit (T) matched filtering respectively.

The algorithm is referred to as modified unwhitened DFSE (MUDFSE) in [20].
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In Section 5.4. we brieflv discuss bias compensation for matched-filter M-algorithm. In
Section 5.5. we analyze the BC-MF-DFSE(S) receiver. In Section 5.6. we describe bias
compensation using soft decisions and obtain various estimators. We analyze the SBC-MF-
DFSE algorithm with linear soft decisions in Section 5.7. Simple Chebyshev type bounds
for MF-DFSE and SBC-MF-DFSE are described in Section 5.8. In Section 5.9, we describe
a generating function approach to evaluate the various bounds. The performance of the
various receivers is compared via simulation and analysis in Section 5.10, where we give

examples of equalization for IS channels and multiuser detection for DS-CDMA channels.

5.2 The BC-MF-DFSE(S) receiver

The rteceiver consists of a front-end filter, which is matched to the overall channel im-
pulse response, followed by a reduced trellis search algorithm. The trellis search algorithm
computes path metrics as in MF-DFSE(S) i.e. using (4.37) and (4.38) with the formulation
P! = R =1,Q = S. Conditional decisions are made (and the corresponding survivor

paths are chosen) using the modified rule:

én—J(ﬂn) = arg E&Ei)j [M(/Bn) + I'(an, 511) - blas(ﬁn)] s (51)

where M(8,) and T(an,,) are the accumulated metric and the branch metric of MF-

DFSE(S) respectively and the bias term is given by
bias(f,) = 2Re {y_nHS'g_JQn_,_l} (5.2)

where p_ = [Gn-r+1(Bn),- - .,dn_J_l(ﬁn),an_J]T are the L — J most recent symbols in the
survivor path associated with state Gy, Sy is the principal submatrix of dimension L — J
of the matrix S given by (4.80) and @, 4y = [dnt1,- - ->dntr—J)T are tentative decisions on
L — J future symbols obtained using conventional matched filter detection. In the case of

antipodal transmitted symbols, the tentative decisions are obtained as
@y, = sign(zy)- (5.3)

The algorithm is delayed by L — J symbols as the statistic up to time n + L — J is needed
in the nth step to obtain tentative decisions. Note that the bias term follows from the
expression for the untreated interference given by (4.83). The bias is used for survivor

path selection only and does not contribute to the accumulated path metric. The bias
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in (5.2) depends on the symbol a,_, (which is falling out of the state) and the symbols
Gn—L41,--.;@n—j-1 for which conditional decisions, taken from the survivor path history
of state 3,, are used. The bias can be simplified to include the leading term only. which

depends on a,_ 7, as follows:

i=J+1

L
bias(f,) =~ bias(a,_s) = Re {QQZ_J Z S(—i)&n_J+i} . (5.4)

Note that the approximate bias is independent of the state. It does not add significantly
to the computational load and storage requirement of the MF-DFSE algorithm which is on
the order of (K — J)|.A]7, where K is the decision lag. This reduced-computation form of

the algorithm was first proposed in [17].

5.2.1 Multistage BC-MF-DFSE(S)

The above algorithms can be run in a multistage configuration where decisions obtained
at the output of the first stage are fed back to compute the bias in the second stage and so
on, i.e.

(@n)1 = sign(z,) and (@n); = (@n)imy, i > 1
where {(@,);} are decisions obtained from the ith stage at lag K; (K; > L). Note that the
decisions {(@y)1} are likely to be much more reliable than the tentative decisions {(an)1}.
The complexity and delay of an M-stage scheme is given by S M, (K~ J;)M% and M K+
L — J; respectively.

5.3 The BC-MF-DFSE(T) receiver

A bias-compensated MF-DFSE receiver can also be obtained for the case of transmit
matched filtering (BC-MF-DFSE(T)). In this case, the algorithm computes path metrics as
in MF-DFSE(T) using (4.41). Conditional decisions are made using the modified rule:

&;—J(ﬁn) = arg g}lﬁ[MI(ﬁn) + I‘I(amﬂn) — bias'(8,)] (5.5)

where M’(8,) and I'(apn,B,) are the accumulated metric and the branch metric of MF-

DFSE(T), respectively, and the bias term is given by
bias'(5,) = 2Re { W (Crox1-) 7 8C | (5.6)
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. A P ! / T . H .
where ¢! = [, _; 1o mp_y_y-M,~y)" are the L —J most recent symbols in the survivor
path associated with state 3, and @/, = [1];~LC+1.....1);.Z1;1+1,....ﬁ'n+Ld]T. where {a/ }
are tentative decisions obtained as @), = sign(z). in the case of antipodal transmitted

svmbols. The bias term follows from (4.85).

5.4 Bias compensation for M-algorithm

Note that a bias-compensated MF-MA can also be derived on the same principle as
described above for BC-MF-DFSE i.e. using tentative decisions to cancel untreated inter-
ference components. The untreated interference in the case of MF-MA (with the standard
matched filter) follows from (4.66) as 2Re{€(:)# SHa,}/6(e(3)), where £(3) = [ex—r(7),. - -,
ex—1(1)]7 is the tail of the error sequence ¢(7) corresponding to the ith contender path and
& = lag, .. .,ak+L_1]T. The interference can be canceled by choosing survivor paths in the
M-algorithm on the basis of the accumulated metric minus a bias term, computed using
tentative decisions. Note that the bias term in this case depends on the last L symbols
of the survivor path rather than the last L — J, as in the case of BC-MF-DFSE. This is
because unlike DFSE, the M-algorithm is a tree search algorithm where contender paths
are not constrained to merge. Since contender paths in DFSE always agree on the J most
recent symbols, the bias term does not depend on them. However, this is not the case with
the M-algorithm. Consequently, bias compensation requires more computation for MF-MA
as compared to MF-DFSE. Moreover, as the number of interference components that need
to be canceled is more in the case of MF-MA, the residual interference arising from tentative
decision errors is more significant in the case of MF-MA. Thus, bias compensation does not

look very attractive for MF-MA.

5.5 Analysis of BC-MF-DFSE(S)

Let {a,} be the sequence of symbols transmitted and {b,} be the sequénce of states
in the path of {a,} in the reduced trellis of the BC-MF-DFSE(S) receiver (with memory
order J). Let {@,} be a hypothetical sequence of symbols and {b,} be the corresponding
sequence of states in the reduced trellis that diverges from the correct sequence of states at
time unit 0 and re-merges with it at a later time (say k). A first event error occurs at time

0 if the reduced trellis search algorithm picks {@,} as the survivor sequence over {a,}. It
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follows from (5.1) that the error event occurs if

k-1 k=1
> T(@n.by) — bias(hi_;) > D I(an.by) ~ bias(by_y) (
=0

n=0

(b1}
-1
~—

where the bias term bias(-) is given by (5.2). Using (4.78) and (5.2), we see that the error
event occurs if

2Re{ef u;} > eff Skey + 2Re{eH SH 1) (5.8)

where ¢, = g, — @y is the error sequence with the tail £ = (ej—L,.. .,Ek_J_l)H and t;, =
4y — a; are tentative decision errors in bias cancellation. To simplify analysis, we assume
here that tentative decision errors are independent of main decision errors. This is not true
in general because noise samples affecting the sampled statistic, obtained at the output of
the matched filter, are correlated. However, independence can be assumed if the sampled
channel correlations are small. Then, the probability of the error event £: the sequence g,

is eliminated in favor of the sequence 8 + e (for given g, and ¢;), is approximated as

Pr(c) = E, [Q ( ek’ Skey + QRe{éHSE—JI})} (5.9)

2/ Noef Sie,

where the expectation is taken over all possible values of the tentative decision error vector

t having L — J components. It follows that the first event error probability of the BC-MF-

DFSE(S) receiver can be approximately upper-bounded as

Prep < EE’PEEA [Q <é@;\/—%&£—)>] (5.10)

where E’ is the set of all error Sequences e = €g, €1,-..,€-1,0...,0 (of length I + J, [ > 0,.
ei—1 # 0) with less than J consecutive zeros in the middle of the sequence and the last L

components? equal to (§T, 0,...,0). The quantity 6(e) is the distance of an error sequence

é(e) = \/e# Sye, | (5.11)

De is the probability that a transmitted sequence can have e as an error sequence and 7(e 1)

€ € E' of length k, given by

is the residual interference arising from tentative decision feedback, given by

7(e,t) = 2Re{¢7SH_ ;1) /5(e). | (5.12)

Ze; =0, fori < 0.
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The residual interference can be viewed as a normalized projection of the tentative decision
error vector { onto the main decision error vector € as determined by the sampled channel
autocorrelation spectrum 5. The symbol error probability can be approximately upper-

bounded using the union bound as

p< PIpIETE E (‘5—(%—:/—%—%‘?—’—))] (5.13)

where w(e) is the number of symbol errors entailed by the error sequence e. As discussed
in Section 4.10, the above bound does not include the effect of error propagation.

In Appendix D, we derive expressions for the probability Pr(e) for a two-stage BC-
MF-DFSE receiver, with and without assuming independence between tentative and main

decision errors.

5.5.1 Genie-aided MF-DFSE

Assume that perfect information is provided by a genie on the future inputs needed to
compute the bias in BC-MF-DFSE i.e. ¢, = 0 w.p.1. The symbol error probability in this

case is given by

o(e
Py < > wie)peQ (2&}%) ' (5.14)

eEE’
Note that the above expression for the symbol error probability of genie-aided MF.-DFSE

(GA-MF-DFSE) is the same as in the case of MLSE. The difference is that the ensemble
average is taken over fewer error sequences for GA-MF-DFSE than for MLSE. The set E’
does not contain error sequences with more than J — 1 but less than L consecutive zeros in
the middle. However, these sequences are included in the case of MLSE. Thus, the upper-
bound on the symbol probability of GA-MF-DFSE given by (5.14) is lower than MLSE.
With the memory order J chosen as zero, all error sequences have length k = 1 symbol.
This implies that the error distance squared is given by eH Sye = le[*s(0). In other words,
zero-th order GA-MF-DFSE achieves the performance of the ISI-free channel. This makes
sense since we assumed absence of error propagation from previous error events (by limiting
ourself to first error events only) which accounts for all past interference in the case of zero
memory order. In reality, zero-th order GA-MF-DFSE approaches ISI-free performance
asymptotically at high signal-to-noise ratio for channels where the eye is not entirely closed,

as error propagation becomes negligible.
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5.6 Soft-input BC-MF-DFSE receivers

Instead of using hard tentative decisions to cancel bias in the BC-MF-DFSE receivers.
soft tentative decisions can be employed to reduce the mean square error in the bias com-

pensated output. Consider a memoryless AWGN channel, i.e.
zn = Epa, + wy, (5.15)

where {w,} is an independent and identically distributed (ii.d.) Gaussian random pro-
cess with mean zero and variance o2 and a, € {£1}. An optimum soft decision &, that

minimizes the mean square error

MSE = E[(a, — @,)%] (5.16)
is given by [15]
ay, = tanh(z,\/E,/02). (5.17)

5.6.1 Optimum soft decision

Given the standard matched filter statistic z, (4.4), the (one-shot) minimum mean

square error (MMSE) estimator of a, is given by [27]
dn = Ela,|z,]. (5.18)

For a channel with memory as in (4.4), the above estimator does not turn out to be a simple
function of the statistic as in (5.17). A simplified estimator can be obtained by invoking the
central limit theorem [27] to approximate the sum of the post and pre-cursor interference
components as Gaussian. For i.i.d. equiprobable and antipodal symbols @y, assuming that
2_iz05(1)an-; is a Gaussian random variable with mean zero and variance Yizo [5(2)[%, the

following estimator is obtained?

(5.19)

2
a, = tanh = - .
(‘Ng‘“ + 3(_107 2oi%0 |3(1)|2)
The above estimator replaces the hard decision of (5.3) in a Soft-input BC-MF-DFSE(S)
(SBC-MF-DFSE(S)) receiver. '

®Note that for real symbol alphabet, the noise is real with spectral density No/2 instead of No.
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5.6.2 Optimum linear soft decision

Given the statistic z,, (4.4), we determine the (one-shot) linear minimum mean square
error (MMSE) estimator of a,, i.e. we find @, as a linear function of z, such that the mean
square error given by (5.16) is minimized. Assuming i.i.d., equiprobable antipodal symbols

an, we get the linear MMSE estimator as

G, = =~ (5.20)
X
where x is a normalization factor, given by
X=—+ — ls(2)]°. 5.21)
» 2 5(0) i=§-:L ®) (
The mean square error of this estimator is given by
MSE=1- ‘—9-@ (5.22)

X
which is always less than 1. Thus, the estimator guarantees that the mean square error is
reduced at the output of the estimator no matter how severe the interference components.
Note that the MMSE estimator of (5.19) is obtained by using a simplifying assumption,
which may not be accurate especially for small channel memory I. However, the linear

MMSE estimator of (5.20) is a true optimum estimator.

5.7 Analysis of SBC-MF-DFSE(S)

In this section, we examine the error performance of a SBC-MF-DFSE(S) receiver that
employs the linear optimum soft decisions of (5.20) to cancel bias in the case of real antipodal
signals. Following the development of (5.8), we see that a first event error, corresponding

to the error sequence g, occurs at time 0 in a SBC-MF-DFSE(S) receiver if
2k w, > ef Shex + 267 ST (& - &) - (6w

where d; = (@k,...,ak+0— J_l)T are soft tentative decisions given by (5.20). Substituting

(4.4) and (5.20) in (5.23), we get

2l uy, — 267 ST_yin/x > € Skey + 267ST_ San/x (5.24)
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where @ = (aQp—[.Gk-L4+1+---»Cky2L-J—1

J) x (3L — J) matrix given by

(L) - s(1) (1-x)s(0)  s(=1) - s=L) 0 - 0 |
- 0 (L) --- s(1) (1= x)s(0) s(—1) s(=L) °
0
0 0 s(L) s(1) (1=x)s(0) s(=1) -+ s(=L)
(5.25)

Note that the quantity on the left-hand side of (5.24) is a Gaussian random variable with

mean zero and variance given by
2No (€] Skey — 2lIS-s€12/x + €757 ;S1-380-2€/x%) » (5.26)

where we use the fact that the last L components of e, are (§T, 0,...,0). Thus, the prob-
ability of the error event ¢ corresponding to the error sequence g; of length k can be

upper-bounded as

ef Sey +267ST_;Sa/x

Q
2o (€T Suee = 2SLosblPlx + €787 S1-s81-1€/C)

Pr(e) < E; (5.27)
where the expectation is taken over the 3L — J components of & independently of the error
sequence e,. Since some of the first L — J components of @ may be uniquely identified by
specifying the error sequence e, the expectation is taken over a slightly broader set than
needed to obtain Pr(¢). Thus, (5.27) is an upper bound and not an exact expression. The
symbol error probability can be upper-bounded using the union bound by assuming absence

of error propagation from previous error events, as

T T&T &=
P, < Y w(e)peEs e Ske + 26" 57_;5a/x

Q :
g€l \/QNo (QTSI:Q ~2/|5-s€I12/x + §T5'}5_J5L—J5L-J§/x2)
(5.28)

5.8 Simple upper bounds for MF-DFSE and SBC-MF-DFSE

The bounds of (4.99) and (5.28) for MF-DFSE and SBC-MF-DFSE receivers require
ensemble averaging over the untreated interference components. In the case of the MF-

DFSE(S) receiver, the expectation is taken over L — J interference symbols while in the
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case of the SBC-MF-DFSE(S) receiver with linear soft tentative decisions. the expectation is
taken over 3L —.J symbols. The latter is cumbersome to evaluate even for very short channel
memory L. Simpler upper bounds can be obtained by extending the results of Glave [16]
and Matthews [31] which upper and lower bound the probability of error of a thresholding
detector in the presence of ISI. The Glave bound was also applied by Mclane [32] to upper
bound the error probability of truncated-state Viterbi detectors. In the following, we apply
the Glave bound to the case of MF-DFSE and SBC-MF-DFSE receivers.

Let w be a Gaussian random variable with mean zero and variance o2 and z be an
arbitrary random variable subject to the constraints: z € [~I, ] almost surely and E[22] <
ol. Glave showed in [16, theorem 3] that the probability Pr(jw + | > K) can be upper-

bounded as

Pr(|w + z| > K) < 9—;2- [Q (Ka‘ I) +Q (K hi I)] +2 (1 - -;-f-) Q Gﬁ-) (5.29)

-1 w Ow w

provided that K — I > v/30,,. For a system with antipodal signals and symbol-by-symbol
detection in the presence of ISI, I can be considered as the peak interference, K as the
signal amplitude and /' — [ as the eye opening.

Now we apply the above result to upper-bound the probability of a particular error event
for the MF-DFSE(S) receiver obtained in Section 4.8.1. Given an error sequence € € E’ of

length k with tail £, the error probability given by

Pr(e) = E, [Q (@—#ﬂ , (5.30)

for a, € {1} (noise spectral density Np/2), where (e, a) is given by (4.83), is upper-

bounded as

provided that

6(e) — L = V6N, | (5.32)

where?* 6(e) = VelSie, I = 2|5'L_J_.f_|/6(g) and of = 4[|.§'L_J§||2/62(§_). A similar bound
can be obtained for the MF-DFSE(T) receiver.

2
Hyl = o luil
T
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In the case of the SBC-MF-DFSE(S) receiver analyzed in Section 5.7. the error proba-

bility bound given by (5.27) can be further upper-bounded as
o3 6%(e) - I, 8 (e)+ I o2 6%(e)
P =2 = L 1 - 22 e 5.33
M) S5 [Q ( vee? ) TN amer | U1 ) @ oz )0 o)

provided that
8*(e) — I > 1/6Noa, (5.34)

where Ip = 2|STS5._s€|/x, 0F = 4]|5TSL_s€|*/x* and 02 = 6%(e) - 201SL-s€II2/x +
&5 ySp-aSL-s€/X%

Note that the matrix § is given in terms of the sampled channel correlations and the
normalization factor x which depends on the noise spectral density No/2. The dependence
on the noise spectral density means that the matrix § has to be computed for each value of
the signal-to-noise ratio (SNR). The extensive numerical computation can be avoided as the
noise spectral density approaches zero. Thus, assuming high SNR, we use the approximation

~ 5 > O (5.35)

i=—L
The condition (5.34) is evaluated for the approximate value of y although it does not

guaréntee that the condition is met for the actual value of y. Using the approximate value
of x in the analysis, we, in fact, upper-bound the error probability for a SBC-MF-DFSE(S)

receiver that employs the soft decision
Zn
L .
o Sk SO

to cancel bias instead of the optimum linear soft decision (5.20).

Ay =

(5.36)

In order to determine the union bound on the probability of symbol error, one must
take an ensemble average over all possible error sequences ¢ € E' (4.99), (5.28). In order
to apply the Glave bound, the corresponding conditions (5.32) and (5.34) must hold for all
error sequences ¢ € E’. Since the peak untreated interference I; and I, depend on the tail
of the error sequence &, it is not sufficient to check the conditions for the minimum distance
sequences (€,,;, = arg '];Ié_IEI‘II 6(e)) only. In practice, the conditions have to be checked for a
few of the higher distance sequences as well.

Glave’s upper bound applies only at high SNR values and when the eye (due to the
untreated interference) is open. Matthews [31] determined upper and lower bounds on the
probability of error for a thresholding detector for the entire range of SNR. His bounds can

also be applied to our case in a similar manner.
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5.9 Bound evaluation

In this section, we describe a generating function method to evaluate the svmbol er-
ror probability bounds for MF-DFSE, BC-MF-DFSE and SBC-MF-DFSE derived in Sec-
tions 4.10, 5.5 and 5.8, respectively for the case of standard matched filtering. Previously,
the error probability of DFSE receivers was approximated by considering minimum distance
error sequences and may be some higher distance sequences, which were found empirically.
In Section 4.12, we described a generating function method that can be used for unbiased
DFSE receivers. In [20], we proposed a generating function method to evaluate an approx-
imate bound for the BC-MF-DFSE(S) receiver. This section includes treatment for the
MF-DFSE(S), BC-MF-DFSE(S) and the SBC-MF-DFSE(S) receivers.

An error state diagram (ESD) enumerates the distance §(¢), the number of symbol
errors w(e) and the a priori probability p(e) of all error sequences e in the set of allow-
able sequences E’. Each path through the ESD corresponds to an error sequence in E’.
As in Section 4.12, an error state is defined as the value of L consecutive error symbols:
{€j-L,€j—L+1,---,€j—1}. There are (2|.4]—1)¥ error states or nodes connected to each other
through branches. The nodes and branches that correspond to J or more consecutive zeros
in the middle of the error path are expurgated as in the case of unbiased DFSE receivers.
The modified error state diagram is shown in Fig. 5.1 for the case of binary symbol alpha-
bet, channel memory L = 3 and memory order J = 1. The pairs of error states that are
negative of each other have been combined. Each branch is labeled with a branch distance
parameter A; and the number of symbol errors entailed by the transition as the exponent
of a dummy variable I.

For MF-DFSE(S), BC-MF-DFSE(S) and SBC-MF-DFSE(S), the distance squared of an
error path through the ESD is given by (4.115), where the branch distance is given by

b; = Re {e’; (S(O)Ej + 2is(i)ej_,-) } (5.37)
i=1
which follows from (4.82). The branch distance parameters ); are listed in Table 5.1. The
branch distance appears as the exponent of a dummy variable D.
Note that the difference between the ESD of Fig. 4.7 and that of Fig. 5.1 is that the tail
branches (corresponding to the tail £ (4.79) of an error sequence) have been expurgated in
Fig. 5.1. This is because for biased and bias-compensated MF-DFSE receivers, the untreated

and the residual interference components, respectively, depend on the tail of the error path.
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In order to take an ensemble average over these components or apply the Glave bound.
we have to enumerate the error paths that terminate in each tail sequence { separately.
Noting that the interference term is insensitive to the sign of the tail sequence, we seek
(2]A] - 1)E=7-1 generating functions (J < L), in generé.l, corresponding to the error paths
that terminate with a given tail { such that the last component of £, ex—1- # 0.

Let T;(D, I) be the generating function for the error paths which terminate in the tail §].
(j=1,2,...,35=7-1) found by solving the state equations simultaneously. Each generating

function can be expanded in a series as

9 52(1
ETTj(D,I)Ilz = zlj N; 5" (5.38)

where N;, is the number of error sequence pairs with distance §;(!) that terminate in the tail
éj, per the number of symbol errors and the number of the corresponding input sequences.
Then, the symbol error probability bound of (4.99) for MF-DFSE(S) can be computed as
L—~J~1 . . ]
32 Z Z 1Q 6J(l)+7(§j76](l)>g) (5 39)
|A|L - N V2No '

=1 l aeAl-J

where we use the fact that the untreated interference y(e, a) given by (4.83) depends on the
error sequence ¢ only through the tail of the error sequence £ and the distance of the error
sequence §(¢). The input symbols are considered i.i.d. equiprobable and the interference
is averaged for all possible values of L — J input symbols. When L is relatively large and
J is small, it leads to several terms in the summation. In this case, the Glave bound can
be employed which requires averaging for only three values of interference. Note that the
parameters I; and o2 as given in Section 5.8 depend on the error sequence only through its
distance and the tail sequence. Thus, the Glave bound for MF-DFSE(S) can be evaluated

as

<5 o (M) (M08

1
1 6;(D)
1, _ %y ( ) . ’ 5.40
+ 2( If,J,)Q V2N, } (5.40)
where the subscripts | and j are for the Ith error sequence with the jth tail in the ESD.
Similarly, the Glave bound for the SBC-MF-DFSE(S) receiver described in Section 5.8

can be evaluated as

3 o3 82(1) - I, 8(1) + I
P, < Nigd o2l Q[ L= | +Q | L
jgl ; ! {2122,_7',1 ,/2N00‘ oy ,/QNOO' gy
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o3, 631
+ (1~ _~._§J-1) Qf—0 )1 (5.41)
I35 2N002

The approximate symbol error probability expression for BC-MF-DFSE(S) given by

(5.13) can be computed as

(5.42)

N 3 &)+ (€.,6;().1
P, <2 ZZNJ;IQ(’ \/;(2}—,0] ))Pz

i=1 l

where 7y (_{J., 6;(1), 1) is the residual interference arising from tentative decision errors ¢, given
by (5.12). In order to compute (5.42), we assume that the sequence of tentative decision
errors is an i.i.d. sequence which is independent of the sequence of main decision errors unde

and has distribution

0 1-p
=4 +1 %p (5.43)
-1 %p

where p is the probability of tentative decision error which, in the case of a single-stage
BC-MF-DFSE(S) receiver, is the symbol error probability of a conventional matched-filter
(thresholding) detector.

As the noise is correlated, tentative decision errors are correlated with each other as
well as with main decision errors. Our assumptions are thus optimistic because errors in
the tentative detector will tend to occur in bursts, inducing errors in the main detector.

Nevertheless, independence can be assumed in case noise correlations are small.

5.10 Performance results

In this section, we compare the performance of the various receivers described in this
chapter and Chapter 4 via simulation and analysis. First, we we give some examples of
equalization for BPSK modulated signaling on static time-dispersive AWGN .channels. The
receivers employ standard matched filtering and are assumed to have perfect knowledge
of the symbol timing and the impulse response of the channel. Later, we give examples
of multiuser detection for BPSK modulated signals on symbol-asynchronous DS-CDMA
channels with AWGN. In the case of multiuser detection, the receiver has knowledge of the

spreading codes, signal powers and the relative timing of all users.
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Figure 5.2: BER performance of various receivers in Example 1.

5.10.1 Equalization examples

We give four examples of equalization for a single user system. For our first example, we
consider the symbol-spaced impulse response f; = (0.9617, —0.2005, 0.1551, —0.1040). The
channel has memory L = 3. Fig. 5.2 shows the bit-error rate (BER) of various receivers
on channel 1. Each simulation was run for a count of 600 errors. The memory order J for
the DFSE receivers is set to be one and final decisions are made at a lag G of 30 symbols.
Note that the channel has much smaller ISI components than the channel in Fig. 4.8. As a
result, the untreated interference in the case of MF-DFSE, given by (4.83), is small and the
performance of MF-DFSE is not much worse than MLSE. Bias compensation using hard
tentative decisions (BC-MF-DFSE) provides a gain of about a dB at moderate SNRs. Bias
compensation using optimum linear soft tentative decisions (SBC—MF-DFSE’) (5.20) shows
improvement over compensation using hard tentative decisions at high SNR. This is because
the mean square error after bias compensation is reduced and the effect is more significant
as the noise diminishes.

The analytical results shown in Fig. 5.2 were obtained using the generating function

method described in Section 5.9. The minimum error distance for the DFSE and MLSE
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Figure 5.3: BER performance of various receivers in Example 2.

receivers in Fig. 5.2 is found to be one. For MF-DFSE, we evaluate the upper bound of
(5.39), where we take ensemble average over the untreated interference components. For BC-
MF-DFSE, we evaluate the semi-analytical bound of (5.42), where we assume independence
between tentative and main decision errors and obtain the probability of tentative decision
error, p in (5.43), from simulation (the matched filter detection curve in F ig. 5.2). For SBC-
MF-DFSE, we evaluate the Glave bound of (5.41) using the approximate normalization
factor of (5.35). For channel 1, the Glave bound holds for Ey/No > 6.6 dB. All bounds in
Fig. 5.2 are approximate in the sense that they do not consider error propagation inherent
in DFSE receivers. However, error propagation is not significant for channels with moderate
dispersion. All bounds are tight for the entire SNR range shown.

For our second example, the channel response is given by f, = (0.84,-0.30, 0.40, 0.21).
This channel also has memory L = 3 and the memory order for the DFSE receivers is
chosen as one. The channel, is however, more dispersive than the channel in Example 1 (the
sampled channel correlations s are larger in Example 2). The BER for various receivers
is shown in Fig. 5.3. Bias compensation using hard tentative decisions (BC-MF-DFSE)
actually deteriorates performance at moderate to high SNRs due to the lack of reliability of
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Figure 5.4: BER performance of various receivers in Example 3.

these decisions. However, by using optimum soft linear tentative decisions, SBC-MF-DFSE
gains more than a dB over MF-DFSE. WF-DFSE, being an unbiased receiver, performs
much better than the other DFSE receivers on the minimum phase channel as discussed in
Chapter 4.

The analytical results shown in Fig. 5.3 were obtained in the same manner as described
in Example 1. The Glave bound for SBC-MF-DFSE holds for Ey/No > 9.6 dB for this
channel. Notice that the semi-analytical approximate bound for BC-MF-DFSE does not
seem to be consistent with the simulation curve. The simplifying assumptions used to
obtain the semi-analytical expression are unrealistic when the sampled channel correlations
are relatively large as in this case. The bounds for MF-DFSE and SBC-MF-DFSE are tight,
the former being tighter as we performed ensemble averaging for the untreated interference
components in the former case.

The channel for our third equalization example is a memory 9 minimum-phase chan-
nel with impulse response f3,min = (0.861,0.258,—0.100, —0.274,0.130,0.100,-0.038,0.112,
—0.114, -0.228). A channel with the same magnitude response as f3 min but a mixed phase

response is given by f3 i, = (0.5347,0.6543, -0.1310, —0.2710,0.0574,0.0661, 0.1225, —0.1132,
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0.1566. -0.3679). Fig. 5.4 shows the BER. performance of various detection schemes indexed
with the memory order and the decision lag (J.G'). Each simulation was run for a count of
1000 errors. Ideal noise whitening is assumed for WF-DFSE in the case of minimum-phase
channel while transmit-matched filtering with Nyquist pulse-shaping at the transmitter is
assumed in the case of mixed-phase channel.

Fig. 5.4 shows that BC-MF-DFSE (with hard tentatjve decisions) gains 1.0 — 1.5 dB
over MF-DFSE’with memory order 5 in the SNR range shown. With linear optimum
soft decisions, SBC-MF-DFSE gains further over MF-DFSE and the gains increase with
increasing SNR. The two-stage scheme 2BC-MF-DFSE described in Section 5.2.1 closely
approaches MLSE performance and obtains a gain of 4 dB over MF-DFSE at an error
rate of 107%. Note that the combined number of states in the two stages of 2BC-MF-
DFSE is kept the same as in (5,45) MF-DFSE. The schemes with soft and two-stage bias
compensation even perform better than (7,45) MF-DFSE (with higher memory order but
no bias compensation) for this channel. The performance of WF-DFSE for the minimum-
phase channel is close to MLSE. However, it’s worse for the mixed-phase channel. The
performance of MF-DFSE and other receivers that operate on matched filter statistics, is
insensitive to channel phase. Note that the delay incurred from anti-causal noise-whitening
needed to obtain a minimum-phase channel for WF-DFSE can be compared to the delay of
a two-stage BC-MF-DFSE scheme.

Fig. 5.4 shows the simulated BER for (5, 45) GA-MF-DFSE which is slightly lower than
MLSE due to the reasons discussed in Section 5.5.1. Also shown in Fig. 5.4 is the Glave
bound for single error sequences in SBC-MF-DF SE, which is good for E,/Ny > 11 dB.
Since the performance on this channel is dominated by single error sequences, considering
only single error sequences in the analysis is well justified. In spite of this, we find that the
bound is very loose. This can be explained by noting that the channel has a large memory
= 9. In the analysis in Section 5.8, the distribution of a linear combination of interference
components that appear as an argument to the Q function in (5.27), is replaced by the
worst case interference distribution concentrating at the three points of no interference,
peak constructive interference and peak destructive interference (5.33). With the large
number of significant interference components in this example: 3L — J = 22, the worst-case
distribution leads to quite pessimistic results.

For our last equalization example, the channel impulse response is taken from [12, Ex-
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Figure 5.5: BER performance of various receivers in Example 4.

ample B]. The channel has memory 14 and is highly dispersive. Fig. 5.5 shows simulation
results for various schemes with memory order 5 and decision lag 45 after a count of 600
errors. The performance of WF-DFSE is highly sensitive to channel phase. On this chan-
nel, symbol-by-symbol decisions are highly unreliable as the eye opening is —200%. Still,
by using linear soft tentative decisions to cancel bias, significant performance improvement
is obtained over MF-DFSE. Further improvement is obtained by using the following soft

decision

3, = tanh Zn .
iy = tan (ﬁz‘l " CS(O)) (5.44)

where ( is a scale factor which is selected empirically. We found that the MMSE estimator
of (5.19) which was obtained by assuming the interference as Gaussian, did not perform
as well as the linear optimum estimator for any of the example channels considered in this
section. In this example, { = 5.0 while F(Tlmyz_g)ls(i)l? = 1.94, which is the corresponding
factor for the MMSE estimator of (5.19).

The bias compensation schemes shown in Fig. 5.5 use the reduced computation (RC)
form of the bias term (5.4) which is independent of the state. In case of binary signaling, only

two bias terms need to be computed at each recursion regardless of the trellis size. Thus,
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Figure 5.6: BER performance of various detection schemes for DS-CDMA channel 1.

the added complexity is very low for moderate trellis sizes. We found that the performance

loss due to the approximation of the bias term was not more than a fraction of a dB for

any of the channels considered in this section.

5.10.2 Multiuser detection examples

We simulate a BPSK modulated asynchronous DS-CDMA system on an AWGN channel

with eight users whose signature waveforms are derived from Gold sequences of length 31.

The spreading codes are short i.e. symbol-length. The relative delays of users are fixed for

the simulation and are in an increasing order. All receivers have a bank of filters each of

which is matched to the spreading code of a user followed by a synchronized symbol-rate

sampler. The multiuser channel is static and has the spectrum

90



[ 31 8§~ D T 6+D -34+2D —-6+5D ~3+4+2D -2+ D

8~ D1 31 -D 9-2D -6-3D ~7T-2D -D 9-2D

T -D-1 31 -D -1 -D -1 -2+ D
1 6+D"1 9-_2p-1 _p-1 31 -D -1 -D -1
3490t _g-3pt 1 _pa1 g -D -1 -D
-6+5D"! ~7-2p"1 _p-! -1 -D™1 31 -D -1
-3+2D"t _p-1 -1 -D-1 -1 -D-! 31 -D

| -2+ D7 9-2D7! —24p-t ) -D! -1 ~D-1 3T

Fig. 5.6 shows the BER of user 1 for various detection schemes when all users have
identical SNR. Each simulation was run for a count of 500 errors. It is evident that even
with ideal power control, the performance of the conventional matched filter detector that
makes symbol-by-symbol decisions independently for all users, is significantly worse than
optimum MLSE. With a four state trellis, MF-DFSE, that operates on the matched filter
statistic of all users jointly, provides some improvement over the matched filter detector.
The four-path MF-MA is 2 — 3 dB worse than MLSE. The linear-decorrelator®, that nulls
out all multiple-access interference, loses about 0.5 — 1.0 dB compared to MLSE due to
noise enhancement. WF-DFSE that operates on the equivalent whitened minimum-phase
channel obtains near MLSE performance. Not shown in F ig. 5.6, WF-MA with four survivor
paths is also found to obtain near MLSE performance. However, WF-DFSE, WF-MA and
the linear-decorrelator require multiuser channel inversion and/or factorization which has
complexity quadratic in the number of users. The M-algorithm receivers require sorting
of survivor paths at each recursion which is not needed by the DFSE schemes as they are
trellis based.

The single-stage BC-MF-DFSE receiver which employs hard tentative decisions to cancel
bias, obtains the best performance on this channel (next to MLSE). With foﬁr states only,
BC-MF-DFSE closely approaches the performance of MLSE which requires 128 states in
the Viterbi algorithm. Bias approximation in this case does not result in any appreciable
loss of performance.

Fig. 5.7 shows the BER of user 1 versus the SNR of the rest of the users. The SNR of

*The linear-decorrelator comprises a zero-forcing filter followed by a thresholding device.
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Figure 5.7: Near-far performance of various detection schemes for DS-CDMA channel 1.

user 1 is held constant at 7.0 dB. It can be seen that the matched filter detector, MF-DFSE
and MF-MA do not perform well in a near-far situation. Such a situation occurs as an
example when interfering users are closer to the base station than the desired user in the
uplink and can thus get most of their signal power through to the base station in the absence
of a (good) power control algorithm. In this case, the untreated interference dominates the
performance of the sub-optimal matched filter type receivers as the ratio of the interference-
to-desired signal power increases. However, WF-DFSE, WF-MA and the linear-decorrelator
perform well as they do not suffer from untreated interference components.

Note that although the symbols of the desired user are not detected reliably by the
matched filter detector, the symbols of the interfering users are detected quite reliably as
their SNR increases. Thus, even in the severe near-far situation, the untreated interference
(that affects MF-DFSE) is removed reliably by means of hard tentative decisions. As
a result, BC-MF-DFSE outperforms all other methods, including MF-DFSE with higher
memory order, and converges to MLSE in high SNR of interfering users, for this system.

For our second multiuser detection example, we consider another eight-user BPSK-

modulated DS-CDMA system with short Gold spreading codes of length 31. The multiuser
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Figure 5.8: BER performance of various detection schemes for DS-CDMA channel 2.

channel spectrum is given by

5(D) =
[ 31 -D -9 6+ D 5-6D 4+3D -5+4D -2+D
-D1 31 -D 3+4D —6-3D -1 10-3D 1-2D
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Fig. 5.8 shows the average simulated BER of users for various detection schemes when all
users have identical SNR. Note that the spreading codes in this system have higher partial
correlations than the system in Example 1. The conventional matched filter detector does

not perform very well. As a result, bias compensation using hard tentative decisions provides
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some gain at moderate SNR, but causes a loss at high SNR. By using linear MMSE estimates
for bias compensation in SBC-MF-DFSE, the loss can be converted to a significant gain at
high SNR.

The multiuser detection results presented in this section were obtained for DS-CDMA
systems with short (symbol-length) spreading codes. In current DS-CDMA systems, long
spreading codes are generally employed which have periods much longer than the sym-
bol interval. Loﬁg codes are preferable over short codes as they have better autocorre-
lation and cross-correlation properties. However, long codes are difficult to deal with for
multiuser detection schemes that perform some kind of linear filtering like zero-forcing or
noise-whitening. This is because the multiuser channel changes every symbol interval in
the presence of long codes. Even with short codes, the multiuser channel changes with user
arrival and departure. These variations in the channel are difficult, if not impossible, to
track for a linear filter. Symbol-asynchronism also poses a problem. However, it is quite
easy to generate user code partial correlations at the base station by means of a bank of
on-line correlators that are properly synchronized to each user’s code. The tracking of the
medium responses of users has become a standard for Rake receivers used in conventional
DS-CDMA receivers. These are the only requirements for a multiuser receiver like MF-
DFSE that operates on joint matched filter statistics. Thus, MF-DFSE with hard or soft
bias compensation is quite attractive for asynchronous DS-CDMA systems with short or

long spreading codes.

5.11 Conclusions

In this chapter, we considered bias compensation (cancellation of untreated interference
components) for reduced trellis and tree search algorithms that operate on matched filter
statistics. Our main emphasis was on bias-compensated matched-filter decision feedback
sequence estimation (BC-MF-DFSE) receivers with standard matched filters. Cancellation
of future interfering components is performed by using tentative decision feedback. We
considered using hard and soft tentative decisions for this purpose as well as multistage
schemes. As soft tentative decisions, we considered optimum symbol-by-symbol linear and
non-linear MMSE estimates of symbols.

We examined the error-rate performance of MF-DFSE with and without bias compen-
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sation by conducting a first event error analvsis. We obtained union bounds on the svmbol
error probability of the various receivers and described a generating function method to
evaluate the bounds. The bounds were evaluated for equalization examples for channels
with relatively small memory and were found to be generally tight. Simulation results were
provided for some example channels with large memory. It was found that bias compensa-
tion using soft tentative decisions provides signiﬁcaht gains over no compensation for most
channels of practical interest. It was also found that a reduced-complexity scheme which
compensates for the most significant interference components only, retains most of these
gains.

We also compared the performance of various receivers for multiuser detection via sim-
ulation of BPSK-modulated asynchronous DS-CDMA systems. It was found that the bias-
compensated MF-DFSE scheme performs very well, even in a severe near-far situation. The
scheme is ideal for multiuser detection in the case of short as well as long spreading codes

and asynchronous signals.
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CHAPTER 6

Soft-output algorithms

6.1 Introduction

The various algorithms considered in the previous chapters generate hard decisions at
the output. Such algorithms are fine as long as one is interested in minimizing the error rate
for a single system. For concatenated systems with memory, however, the performance of
the outer system can be significantly enhanced by providing it with soft decisions in the form
of likelihoods, symbol a-posteriori probabilities (APP) or erasures. One example of such a
system is error control coding for intersymbol interference (ISI) channels. Another example
is multiuser demodulation for a direct-sequence CDMA (DS-CDMA) system with error
control coding and interleaving. In order to make the most of the code, the demodulator
must provide soft information to the decoders. Unfortunately, most multiuser detection
algorithms ignore the possibility of generating this reliability information and concentrate
instead on minimizing the demodulated error rate.

Recently, a considerable amount of work has been done in symbol-by-symbol detection
techniques for channels with ISI [1,3,21,23,25,28]. Li et al. [28] showed that optimum soft-
output equalization can be performed with a forward-only recursion with complexity that
grows exponentially with the channel memory. An earlier algorithm proposed by Abend
et al. [1] requires complexity which is exponential in the decision lag, which is generally
chosed to be much larger than the channel memory. The optimum soft-output algorithm
(OSA) of Li et al. operates on discrete-time statistics containing white noise. On the
other hand, the optimal symbol-by-symbol detection (OSSD) algbrithm of Hayes et al. [23]

operates on standard matched filter statistics. They and other authors, however, over-
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estimate the complexity of this algorithm. We derive a forward-recursive matched-filter
optimum soft-output algorithm (MF-OSA) following their development. The complexity of
this algorithm is at par with the OSA. The MF-OSA can be reduced to add-compare-select
operations mostly like the sub-optimum soft-output algorithm (SSA) of (28], resulting in
the MF-SSA.

The OSA can be applied to the problem of multiuser estimation, but this requires noise
whitening,. Despite the strides made in the noise-whitening technique [47], it requires siz-
able complexity and is not very suitable for long spreading sequences and dynamic channels.
The algorithm of Verdi [42] operates on standard matched-filter statistics like the MF-OSA.
However, it has high latency as it requires a backward-forward recursion like the BCJR. al-
gorithm [3]. The MF-OSA is, thus, attractive in this case. It is an optimum demodulator
for a coded multiuser DS-CDMA system with ideal interleaving, in the sense that without
exploiting any information about coding in the demodulation process, it supplies each indi-
vidual decoder with as much information as possible about the sequence of modulator-input
symbols for the corresponding user while suppressing the irrelevant information about other
user’s sequences. This is called user-separating demodulation in [36].

Bayesian Conditional Decision Feedback Estimation (BCDFE) proposed in (25] for ISI
channels is a reduced-complexity symbol-by-symbol estimation technique that employs an
efficient method for trellis memory reduction like the DFSE algorithm. The scheme is
designed to produce symbol APP estimates to enhance outer decoding. However, we note
that while the scheme is capable of providing good hard decisions on symbols, it fails to
deliver reliable estimates of symbol APPs. Fortunately, this can be fixed by a modification
of the algorithm. The modified BCDFE algorithm recursively updates conditional symbol
APP estimates (conditioned on the reduced state) and averages them over the state at a
smoothing lag to obtain reliable symbol APP estimates.

The chapter is organized as follows. Sections 6.2 and 6.3 describe the MF-OSA and MF-
SSA respectively. The modified BCDFE algorithm is derived in Section 6.4. We compare
the complexity of the various algorithms in Section 6.5. The algorithms are considered for
soft-output multiuser estimation with error control coding in Section 6.6. Simulation is un-
dertaken to compare the performance of the various algorithms with the soft-output Viterbi
algorithm (SOVA) [21] for a DS-CDMA system with four asynchronous users. Simulation

results are presented in Section 6.7.
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6.2 A matched-filter optimum soft-output algorithm

In this section, we derive an optimal forward-recursive soft-output algorithm that oper-
ates on standard matched filter statistics. We consider the system model of Section 2.2. The
baseband received signal is given by (2.3). The algorithm finds the set of symbol a-posteriori
probabilities (APP) {p(aznly(t))},ﬂt_O , for o, € A. From the log- _likelihood function given
by (2.6), it follows that

pla,u(t)) = Cexp{ I

where ay = [@o,01,-- ) ON= 1) is a sequence of hypothesized symbols Wthh is assumed

N-1
y(t) — Z anh(t — nT;t)

n=0

2
df} play) (6.1

to be independent and identically distributed with probability p(ay) = ﬂ an and C is a
constant independent of the sequence hypothesis. From (2.6), (2.11) a,nd (2 18), it follows
that

plan, ¥(1) = C1exp [Alzn, en)/2No] plan) (6.2)
where zy = [20, 215 - -5 zN_l]T is the sequence of standard matched statistics given by (2.14)
and C; is another constant independent of the sequence hypothesis. The log-likelihood

metric! A(zy,an) is given by

A(—.N'/ ) = Z [ (zn’ Qn, 0',-,_) (63)
n=0
where the branch metric T'n(2n, @n,0n) corresponding to the state on : Qn-1,0n-2,--+» ¥n-L

and the input symbol ay, is given by

Tn(2n,n,0n) = Re {a [22(77,) — s(0;n)op — 223(1 n)an_l}} (6.4)

1=1
Forn:O,l,...,N—l,OSiSn—-L—1andaE.A,deﬁne

znr0n) £ T exp[Alzar 20)/2No] P(20), (6.5)
Yn—~L
Uz om@) 2 Y exp[Alzn, 20)/2Nol Pl2n); (6.6)
o, _plai=a
where? z,, = [zo, 71, - .,xn_l]T. Then, for 0 < i< n— L, we have
A Zny Oy + T'n(2ns @nyOn)
Qi(zat1,0n41,0) = > eXP[ ( ) 2No( )] p(Qn1)

Q- pp1loi=a

1The notation is modified slightly to indicate the functional dependencies.
2The notation single bar | means ‘given’.
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i

nl{Zn, an. 0y Az,
Y. exp [E—(—;%—U-—)] plag) D exp [_(_77%_)] )

Opopla,=a ap_plo=a

= Y exp[Talzn, an.00)/2N0] plan )il zns 0. ) (6.7)

on-Ljo=a
where the first equality follows from (6.3) and the second equality follows from the fact that
the branch metric I';(zp, @, 04,) is independent of the hypothetical symbols a,_r. In (6.7),
it is understood that Q,_r(z,,0n, @) = Q(z,,5,), where 6, = on|an_r = a. Similarly, it
can be shown that

Mzpg1>0n41) = Z exp [['n(2n, an, 0n)/2No] p(an )z, 00)- (6.8)

An—1

By substituting (6.5) and (6.6) in (6.2), note that

p(UNv y(t)) = Z p(Q_Nay(t)) = CIQ(iNvo-N) (69)

aN-L

and for 0 < i< N~ L -1,

plon,ai = ey y(t)) = Y plan,y(1) = C1%(zn, oN, a). (6.10)

ay_ploi=a
Thus, for 0 <7< N — L ~ 1, we get the symbol APPs as

_ ZUN Qi(-z-NvO'Nva)

pla; = aly(t)) = > Qwion) (6.11)

The last L symbols are assumed known at the receiver. Equations (6.8), (6.7) and (6.11)
complete the recursion of the matched-filter optimal soft-output algorithm (MF-OSA) with
forward-only recursion. The algorithm was first derived in [18] for soft-output multiuser
detection using a bank of matched filters. In [18], the algorithm is referred to as optimal
soft-output multiuser estimation (OSOME).

It is not necessary to observe the entire signal in order to obtain close to optimum
estimates of symbol APPs. In general, good estimates can be obtained at a sufficient
decision lag as in the case of an MLSE algorithm. For a decision lag G > L, the MF-
OSA(G) algorithm consists of the following steps. For each time n = 0,1,...,N -1,
compute and store the state metrics given by (6.8). Foreachn > L,i=n—~G,...,n— L
and® a € A’, compute and store the symbol metrics given by (6.7). For each n > G and
a € A, estimate symbol APPs as

Zan_H Q71.—Cv'(§n+l s Ont1, a)
Zan+1 Q(éﬂ-{-l ] Un+l)

P(an-¢ = aly(t)) = (6.12)

A’ is the set of all but one symbol (say a') in the alphabet A.
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Plan—c = a'ly(1)) = 1 = Y plan_c = aly(1)). (6.13)
aE A’

Note that the symbol a priori probabilities p(a,) can be dropped from all computations if

the symbols are equally likelv a priori.

6.3 A matched-filter sub-optimum soft-output algorithm

The MF-OSA algorithm described in the previous section requires a large number of
multiplication and exponentiation operations which lead to high implementation complexity.
In this section, we simplify the MF-OSA algorithm so that it requires mostly add-compare-

select operations, like an MLSE algorithm. For this purpose, we define

(20, 0%) 2 max [A(zn, @)/2No + log(p(a)], (6.14)
zn 0m @) S max_ [Alz 0,)/2No + log(p(a,))]- (6.15)

-qn—Llai:‘a

A derivation similar to (6.7) can be used to show that for 0 <: < n - L,

Qizp41:0nt1,0) =  max  [Tn(zn, an,00)/2N0 + Qi(2,,, 00, @)] + log(p(en))  (6.16)

an-plei=a

and
V(zng1,0n41) = max [Tr(2ny @n, 00)/2No + Q' (2, 00)] + log(p(an)). (6.17)

Note that (6.17) is similar to the recursion of the MLSE receiver of Section 2.4. By substi-
tuting (6.14) in (6.2), we see that

o X plan,y(t)) = Crexp [Q(zy, 0N, )] - (6.18)
Comparing the above equation with (6.10), note that the sum of exponentials of positive
quantities is dominated by the term with the largest exponent. Thus, symbol APPs can be

approximated as

ZcrN €xXp [Q:‘(-Z-Nv IN, a)]
z:UN,il?EA exp [Q:'(-‘ZNa IN, :ZI)] .
For a decision lag G > L, the matched-filter sub-optimal soft-output algorithm MF-SSA(G)

(6.19)

p(a; = afy(t)) =~

consists of the following steps. For each time n = 0,1,..., N — 1, recursively compute and
store the state metrics given by (6.17). For each n > L, keep the history of the best surviving

path é&,-g(0n),. - ., Gn-r(0n) leading to each state on, as in the Viterbi algorithm. For each
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n>L.i=n~-G,....n~ L and a # a;(0,). compute and store the svmbol metrics given
by (6.16) (note that Ql(z,.0,.64i(0,)) = ¥'(z,,0,). so there is no need to compute and

store it separately). For each n > G and a € A, estimate symbol APPs as

2 ons1 ©XP | _(20415Ons1, Q)
S U EL ) (6.20)

plan-c = aly(t)) ~ - .
On41, €A €xXp [Qn—G(§n+l 1 Ond1, I)]

Note that the above algorithm avoids the multiplication operations of the MF-OSA(G)
algorithm of Section 6.2. Exponentiation operations are needed, however, in the last step.
The algorithm was proposed in [18] for multiuser detection, where we refer to it to as
sub-optimal soft-output multiuser estimation (SSOME). A variation of the above algorithm

estimates symbol APPs as

' .
exp [Qn-G(inH ’ 0’:1+1 s a)]

E.‘L‘E.A exp [Q;—G(§n+1 v Ot "3)]

P(en-c = aly(t)) =~ (6.21)

where 0 = arg max . This algorithm requires only two exponentiation operations in the

ZpiOn

last step. The alggrithm is referred to as SSOMEL in [18]. It is similar in construction to
the sub-optimal soft-output algorithm (SSA) of [28].

6.4 A reduced-state soft-output algorithm

In this section, we describe a forward-recursive reduced-state soft-output algorithm
which operates on whitened-matched filter statistics. The algorithm can be considered
as a reduced-complexity alternative to the optimal soft-output algorithm (OSA) of Li et al.
[28]. It was obtained by modifying the algorithm of Lee et al. [25], which is referred to as
Bayesian conditional decision feedback equalization (BCDFE). The BCDFE algorithm does
not produce good soft outputs. The modified algorithm derived here was first proposed in
[18] where we refer to it as modified BCDFE (MBCDFE).

The algorithm operates on whitened-matched filter statistics which may be obtained by
applying the noise-whitening filter to the discrete-time matched filter statistics zn. The
equivalent whitened discrete-time system model is given by

L
Yo =Y f(iin)an—i + wy, (6.22)
i=0
where wy, is a sample of a complex white Gaussian noise process with mean zero and variance

No and f(4;n) are whitened channel coefficients (possibly time-varying in index n).
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Let (J.G') be the memory order and the decision lag for the algorithm. respectively
chosen arbitrarily in the range 0 < J < L < G. Let y, = [yo. y1-- - -- Yn1)? be the
sequence of statistics received up to time n—1 and 3, : @n_1.Qn_2.....0a,_J represent the
reduced state at time n. The algorithm recursively estimates the probabilities p( ﬁnign) and

pla,—; = a]gn,ﬁn) for J4+1< i< G and a € A. For this it employs the recursive relations:

Zan—J P(,Bn-H s Cn—J, yn‘gn)
an—.hﬁn-}-l p(ﬂTH‘I’ Qp_J, ynlgn) ’

P(5n+1|yn+1) = > (6.23)

P(Brt1,@n-g = &, Ynly,)
p(an—J = al.‘y.n+l’ ﬁn-i—l) = - - “en

= 6.24)
Zan—] p(IBTH-l yOn—J, ynl}in) (

and

Plan-i = aly, ;s Bnt1) = D Plan—i = aly, | Brt1 @n-3)P(@n-ly, 1> Bnt1)

UneJ

Z p(an-i = aly,,; ﬂn)p(an—J|Qn+1 3 ﬂn+1) (625)

An.

Q

for J 4+ 1 < ¢ < G, where in (6.25) we assume that given y, and B,, the symbols a,_;
(J+1 <t < @) are conditionally independent of the statistic y, and the input sym-

bol a,. The assumption is true for J = L, i.e., a full-state algorithm. The probability

P(Br+1,@n-J,Ynly, ) is given by
P(Brt1s An-a,YnlY, ) = P(YnlY, > @ns Br)p(Baly, )p(an) (6.26)

where using the assumption following (6.25), the probability p(yn|g_n, a, Br) is given by

Pnly, amBa) = X P (vn|anBus {on-iYhsar ) P ({on-itisis|9,08.) (6:27)

{o‘"—‘};L:JH

which is approximated by the Gaussian density

Qn, B, {&n-i(ﬂn)}fl:J-i—l) (6'28)

P(Ynly, > s ) % P (3n
where {Gn—;(8n)}E +1 are conditional decisions (conditioned on state 3,) obtained as
dn-i(Fn) = argmax p(an—ily,, fn)- (6.29)

The modified BCDFE (J,G) algorithm consists of the following steps. For each time
n = 0,1,...,N — 1, compute and store the state probabilities for each reduced state g,

using (6.23), (6.26) and (6.28). Foreach n > J, J+1 < i < G and a € A, compute and
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Algorithm Compare Add Multiply Divide | Exp Storage
MF-0SA 1 XRAr+ G- L43) |22 G- L1y 1 |2 2+ f(G = L))
ME-SSA | 259G - L+1) | 25241 +2G - 2L + 4 0 T[22 ol (f 4 1)(G =~ L)
MF-SSA1| 2M(G - L+2) [25(24r +2G - 2L + 2) 0 1 1| 2Mf+ (f+10(G = L))
SOVA | 25(G ~ L+ 2) 2%(2Ar + 3¢ + 4) 2141 () bbb 2 4 (f 4 1)(G - L))
BCDFE | 274G ~ J) +1 27(2Ar + 4) 27(3) 2741 2741 (f+G-1)
MBCDFE | 2/(L-J)+1 27(2Ar + G - J +4) 27(2G —2J 4+ 3) | 2741 |a/9 [f(G=-T+1)+ L=

Table 6.1: Complexity in number of operations per iteration (f = #bits required to store a
floating point number, e = #places where the hypothesized symbols of two merging paths

differ.)

store the conditional symbol APPs using (6.24), (6.25), (6.26) and (6.28). For each n > J

and J <¢ < L~ 1, obtain and store conditiona] decisions using

@n—i(Bri1) = argmax p(anily, . |, Bns1)- (6.30)

Note that these decisions will be used in (6.28) in the next recursion. Finally, for each
n 2 G, estimate symbol APPs using
Planc=aly )= ﬁZ P(an- = aly, .\, fns1)p(Brraly, . ,)- (6.31)
41
"The number of multiplication and exponentiation operations required in the above algorithm
can be cut drastically by operating in the log domain as in the algorithm described in
Section 6.3.

Note that the BCDFE algorithm proposed in [25] recursively obtains conditional hard
decisions instead of conditional symbol APPs in the modified algorithm (6.25). This results
in a significant loss of the soft information. The modified algorithm uses conditional hard
decisions in (6.28/) only to truncate the state, in the same manner as in DFSE. This does

not have much effect on the quality of soft decisions as we observe from simulation.

/

6.5 Complexity comparison

Table 6.1 compares the complexity of the various algorithms discussed in this chapter
for binary symbol alphabet. It is assumed that Ar add operations are needed to compute

the branch metric I'(.) in (6.8) (or the Gaussian density (6.28) for the BCDFE algorithms).
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Figure 6.1: Multiuser receiver for a coded DS-CDMA system.

Note that the complexity of MF-OSA(G), where G is the decision lag, is on the order of
2L(G—L). MF-SSA does not require any multiplication operations. However exponentiation
operations are needed for soft-output generation. MF-SSA1 avoids most of the exponenti-
ation operations as well. The complexity of MBCDFE(J,G), where J is the memory order
chosen, is on the order of 2/(G — J). The modified algorithm requires some extra storage

and computational complexity as compared to the original algorithm.

6.6 Application to multiuser estimation

The algorithms described in this chapter are considered for multiuser estimation with er-
ror control coding. Fig. 6.1 shows a multiuser receiver for a coded asynchronous DS-CDMA
system. The multiuser estimator operates on the discrete-time matched-filter statistics of
all users jointly and produces a-posteriori probabilities for the coded symbols of all users at
the output. These soft outputs are de-interleaved for each user and then fed into the soft-
decision decoder for each user separately. The original and modified BCDFE algorithms
operate on whitened-matched filter statistics. The corresponding receiver is similar to the
receiver of Fig. 6.1 except that it includes a noise-whitening filter which follows the matched

filter bank.

6.7 Simulation results

We simulated an asynchronous DS-CDMA system with four users that employ BPSK

modulation and rate -12—, memory 4 convolutional encoding over an AWGN channel. Code
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Figure 6.2: BER performance of various algorithms in ideal power control.

symbol sequences of all users are interleaved by a 30 x 30 interleaver. Each user is assigned
a short Gold spreading sequence with 7 chips/coded symbol. The relative delays of users
are arbitrarily chosen in an increasing order and are fixed for the simulation. The multiuser

channel has the spectrum

7 —4-D 1+2D ~-D
1| -4-D1 7 —4-D 3
S(D) = = (6.32)
142D —4- p-1 7 -2+ D .
| -D! 3 —24 D1 7]

Fig. 6.2 shows the BER of user 1 versus the signal-to-noise ratio (Es/Np) in perfect
power control. Each simulation was run for a count of 500 errors. It can be seen that the
BER curves of OSOME(3), 0SOME(12), SSOME(3), SSOME(12) and MBCDFE(2,3) lie
in a band of width 0.2 dB. The OSOME(12) algorithm loses about 1.2 dB over coded single
user performance. SSOME(3) achieves a 0.4 — 0.5 dB gain over SOVA(12) in the range
3~ 6 dB. Note that SSOME(3) requires only state metrics (and no symbol metrics) to be
computed. We have not plotted the BER performance for SSOME1 because SSOME1(3)
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Figure 6.3: BER performance of various algorithms in near-far situation.

(the case of no symbol metrics) is identical to SOVA(3) and SSOMEI1(12) approaches the
performance of SSOME(12). This shows that for small smoothing lags, it is beneficial to
average the output symbol soft information over the states in the trellis, as in the case of
SSOME. However, for large lags, it is sufficient to obtain the soft information from the most
likely state in the trellis, as in SSOME1. The modified BCDFE algorithm with reduced-
state trellises gains 1.0 —2.0 dB over the original BCDFE algorithm because the soft outputs
of the later are no better than hard decisions.

Fig. 6.3 shows the BER of user 1 versus Ey/Ng of interfering users (with Ey/Ng of
user 1 fixed at 3.0 dB). 10° data symbols were used for each simulation. The BER curves
of all schemes tend to single user performance under extreme conditions of multiple-access
interference. Thus, Fig. 6.2 depicts almost worst case performance for user 1 given its Ey /No.
Note that MBCDFE(1,3) outperforms SOVA(12) under power control in moderate Ej,/Nq.
Although the application of MBCDFE requires noise-whitening, its performance/complexity

tradeoff is highly desirable.
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6.8 Conclusions

In this chapter, we derived soft-output algorithms for channels with memory which op-
erate on standard matched-filter statistics. The new optimum and sub-optimum soft-output
algorithms (MF-OSA and MF-SSA respectively) are similar in structure and complexity to
the OSA and the SSA proposed earlier for whitened statistics. The algorithms have low
latency as they employ a forward-only recursion. They were considered for multiuser de-
tection in the presence of error control coding. The algorithms are especially suitable for
asynchronous DS-CDMA systems with long spreading sequences. Adaptive complexity re-
duction techniques like the T-algorithm and T-algorithm with soft-limiting, can be applied
to reduce the exponential complexity of these algorithms.

We also derived a reduced-state forward-recursive soft-output algorithm that operates
on whitened matched-filter statistics. The algorithm generates good quality soft information
with reduced complexity. It is obtained by modifying an algorithm proposed earlier which

fails to generate good soft information.
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CHAPTER 7

Conclusions

In this thesis, we have considered optimal and reduced-complexity techniques for equal-
ization and multiuser detection. New techniques were developed, motivated by analysis of
existing techniques and spurred by practical applications. One problem that was tackled
was optimal! equalization for a wireless communication system with excess signal band-
width and a fast time-varying medium. A new receiver was proposed which comprises
a filter matched to the transmit pulse-shaping filter followed by a fractional-rate sampler
and an adaptive Viterbi algorithm. The front-end filter is non-adaptive which is desirable
for implementation. The receiver is insensitive to sampler timing phase due to fractional
sampling. The Viterbi algorithm exploits the knowledge of the pulse-shaping filter to ac-
count for the correlation in the sampled statistics and requires only one-step prediction for
medium-response coefficients.

We have presented a unified analysis of decision feedback sequence estimation (DFSE)
and M-algorithm receivers for systems with finite memory that examines the effect of the
receive filter and the branch metric of the reduced trellis or tree search algorithm. We
considered receivers with a front-end filter matched to the overall channel response (standard
matched filter) or the transmit filter response (transmit matched filter) and a symbol or
fractional-rate sampler. An event error analysis indicates that interference components
(bias) arise if there is a mismatch between the receive filter and the branch metric. These
components can not be resolved by the trellis or tree search algorithm in a biased receiver
and severely limit its error-rate performance. We have shown that an unbiased receiver

consists of a standard or transmit matched filter followed by the appropriate noise-whitening

10Optimal in the sense of a known time-varying channel.
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or zero-forcing filter and a reduced trells or tree search algorithm with the appropriate
metric.

We have compared various trellis-based techniques on the basis of the distance of a
given error sequence which characterizes the probability of the associated error event. Our
definition of the error distance includes the effect of noise enhancement which is inherent in
trellis-based techniques operating on statistics containing non-white noise. This allowed us
to compare trellis-based techniques with various receive filters on a fair basis. We showed
that whitening filter DFSE (WF-DFSE) has higher error distance than zero-forcing filter
DFSE (ZF-DFSE) and truncated-memory MLSE (TM-MLSE) with pre-filtering. Matched
filter DFSE (MF -DFSE), in the case of standard matched filtering, achieves the same error
distance as an MLSE receiver. Unfortunately, matched-filter type receivers belong to the
class of biased receivers. Thus, their error-rate performance is dominated by untreated
interference components for most channels in spite of their excellent error distance. After
identifying the anti-causal interference components affecting MF-DFSE, we proposed several
schemes that utilize tentative decisions to cancel these components. For this purpose, we
considered hard and soft tentatjve decisions obtained in a symbol-by-symbol fashion as well
as a multistage configuration.

We have obtained union bounds on the symbol error probability of the various receivers
assuming no error propagation. In the case of MF-DFSE, with and without linear soft-
input bias-compensation, we “:;j;wm“i{%ﬁfbyshev technique for upperbounding the error
probability in the presence of untreated or residual interference. We have outlined modi-
fied generating function methods to evaluate the union bounds. Simulation and analytical
results were presented for equalization of inter-symbol interference and multiuser detection
for direct-sequence code-division multiple-access (DS-CDMA) systems. The bounds were
found to be tight in general for channels with relatively small memory. It was found that
soft bias compensation enhances the performance of MF-DFSE for all channels of practical
interest. Compensation of Jjust the dominant bias term for MF-DFSE, obtains most of the
gain without increasing complexity significantly. The scheme does not require any process-
ing filters like the noise-whitening or zero-forcing filter and is insensitive to channel phase.
These attributes make it attractive for multiuser detection for asynchronous DS-CDMA
systems and bidirectional equalization for the GSM system.

We have derived soft-output algorithms for channels with memory which operate on
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standard matched-filter statistics. The new optimum and sub-optimum algorithms emplov
a forward-only recursion and have complexity which is exponential in the channel memory
only. These algorithms are suitable for soft-output demodulation for a coded multiuser DS-
CDMA system. We have also derived a reduced-state soft-output algorithm which operates
on whitened statistics. The algorithm provides reliable soft decisions with an adjustable
performance/complexity tradeofl. It was obtained by modifying the BCDFE algorithm

which fails to provide reliable soft decisions, as we find by means of simulation of a coded

DS-CDMA system.
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An upper bound on the first event error probability is given by (4.62) with the error distance

6(¢) in this case defined as

HH
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APPENDIX B

Filters that satisfy unbiasedness

Let ¥ be an N x N Toeplitz matrix with elements

1 i=j
y(i,5)=1 y(i—7) 0<|i—-j] <L, (B.1)
0 otherwise

Let P~1 be the N x N Toeplitz matrix defined in (4.19) with the diagonal element p'(0)

set to 1. Assume that the inverses of the submatrices Yy and (P~1); exist forall £ < N.
Proposition B.0.1 Let max(Ly,lf, 1)+ 1< N < o0. If
(P_l)kkaN = Yk(Y—l)kxN Vk=1,2,....N—-1 (B.2)

then
P=Y"1, (B.3)

In order to prove the above proposition, we make use of the following lemma [5]:

Lemma B.0.1 Let T be an m X m invertible Toeplitz matriz subdivided into k x k, k X
(m—k), (m—k) Xk and (m = k) x (m — k) submatrices Ty1, Ty2, To1 and Tsy as shown

below. Then § = T is partitioned similarly into S11, S12, S21 and Szs:

T11 T12 S Sll 512
T21 T22 521 522
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where, assuming Ty, is invertible.

Sn = T + T To(Tay = Tn T Th2) ' Tn T
S12 = =T Tho(Tos — Ty T Tha) 7Y

Sa = ~(Taz = Tn Ty Th2) 1 T T3,

S22 = (T2 =TTy Th2) ™"

Let the matrices P~! and Y be subdivided into k x k, k x (N — k), (N — k) x k and
(N — k) x (N — k) submatrices P{,, P{,, P}; and P}, and Y11, Y12, Y21 and Y5, respectively
as shown below

p-1 = Py P yo 11 Y2 ’ (B.4)

Py P Yo Yoo
for k=1,2,..., N — 1. Then, using Lemma B.0.1, (B.2) can be broken into two equations
concerning the first k£ and the last N — k columns of the k x N matrices on either side of

(B.2), given by
PLIPIT + BT Pla( Py — Py Py P) T P Py =
Y[V + V7' Via(Yae — Yo ¥y1 ' Yag) "1V Vi) (B.5)
and
PL[=PT  Ply(Pyy = Py PIT Pp) 7Y = Yu =Y Yia(Yar — Ya1Yy7 ' Ya2) '] (B.6)
respectively for k = 1,2,..., N — 1. Substituting (B.6) into (B.5) and simplifying, we get
PpPiy’ =YaYy' (B.7)

Let k¥ = 1, then P}; = Y;; = 1 and (B.7) implies that the first column of the matrix
P~1 is equal to the first column of the matrix Y. Since P! and Y are Toepltiz matrices,
all elements in the lower triangle of P~! are equal to the corresponding elements of Y, i.e.

Py, =Yy forall k=1,2,...,N — 1. Thus, (B.7) implies that
Pii=Yn (B.8)

forallk =1,2,...,N—1. Since N > max(Ly,1;,1,)+1, (B.8) involves all non-zero elements

of the matrices P~! and Y. Thus,
P=Y™. (B.9)
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Note that the diagonal elements of the matrices P~} and ¥ were set to 1 to factor out

a scaling factor. In general, we have
P=cy™! (B.10)

where ¢ is a constant scaling factor.
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APPENDIX C

Error distance for ZF-DFSE

Let the matrices § and §~! be subdivided into k x k, k x (N — k), (N — k) x k and
(N — k) x (N — k) submatrices S1;, Si2, S21 and So, and 5111, 51[2» 5{1 and 5212 respectively

as shown below

Si1 S St Si
S=| T g | TR (C.1)
521 S22 Sh 53,
Then, using Lemma B.0.1, we get
Sk(S™ESk = Sk + S12(S22 ~ 52157 S12) " S0
= Sk + 51251, 59:. (C.2)
For k > L, we have
Or-r 0
Sk(S™ Sk = Sk + . (C.3)

0 SH(SL)LS
Note that for N > L, 5§71 is near Toeplitz in the middle of the matrix. Thus, we can replace
the matrix (54,)r in (C.3) by the principal submatrix St of an N x N Toeplitz matrix S’
with elements s'(¢,7) = s'(¢ — j), given by the inverse z-transform of 1/5(z). Thus, for an

error sequence ¢ € E' with tail £ as defined in (4.79), we have
e Si(S M nSre~ e Ske + €M SH 181181 st (C.4)

The error distance for ZF-DFSE(S) given by (4.76) can then be approximated as

eflSke

\/QHS"Q + éHSﬁ—JS;:—JSL—Jé.

d(e) = (C.5)
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The above expression is approximate for error events occurring near the edges of the data
burst where the noise correlation is not the same as in the middle. while it is exact Tor short
error events occurring toward the middle of the burst.
Similarly, it can be shown that the error distance for ZF-DFSE(T) given by (4.77) can
be approximated as
eCHeCre
\/_‘ZHCE@kaQ + EF(CLyxr-2)HOH(8"),,8C x1-s€

6(e) ~ (C.6)

where 9’ is an N x N Toeplitz matrix with elements ¢/(3, j) = ¢/(i — j) obtained from the

inverse z-transform of 1/®(z) (where ®(z) is the z-transform of {¢(i)}).
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APPENDIX D

Error probability of two-stage BC-MF-DFSE(S)

In this appendix, we derive expressions for the probability of a particular error event in
a two-stage BC-MF-DFSE receiver with standard matched filtering. The first stage of the
receiver is MF-DFSE(S) with memory order J; and the second stage is BC-MF-DFSE(S)
with memory order J;. The second stage uses the final decisions of the first stage to cancel
bias. A valid error sequence in the first (second) stage does not have J; (J2) consecutive
zeros in the middle of the sequence and has J1 (J2) consecutive zeros at the end of the
sequence. Let F; (E;) be the set of all valid error sequences in the first (second) stage.

It follows from (4.78) that an error event beginning at time /; and ending at time I,
(corresponding to the error sequence t = [t;,,t),11,...,4, 1]7 € Ey, | = l2 — 1) occurs in

the first stage (assuming no error propagation from previous error events) if
2Re{£Hy_’} >t ot - 2Re{1’H5£{_Jg'} (D.1)

T
where u' = [uln ey u12_1] , V= [tlz-L’ .. .,t12_J1._1]T and ¢ = [al:n ce s Qb L~y _1]T.
Given errors " = [ty,.. o tktL—g,—1]T in the first stage, an error event occurs between
times 0 and k (corresponding to the error sequence e = [ep,ey,...,e,1]7 € E;) in the

second stage if

2Re{eu"} > ¥ Spe + 2Re{e"SH 1"} : (D.2)

where u” = [ug,...,u4_1]7 and ¢’ = lex-L,...,ex—y,—1]T. Note that the sequence of
tentative decision errors ¢ can be the result of several contiguous error events! in the first
stage. We assume that t” can result from at most one error event in the first stage. This

assumption is actually true for J; > L — J, — 1.

Error events in the first stage are separated by at least J; consecutive correct decisions.
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Let T be the set of all error sequences 1 € E; that include 1 as a subsequence. Let
X = 2Re{cfu"} and ¥ = 2Re{t"u'}. Givene € E,,t € Tand @’ € AL X and ¥
are jointly Gaussian random variables with means zero, variances a_{» = 4;\'OQH5k§_ and
a;“’,- = 4Not" St respectively, and covariance

k—1 I>—1

E[XY"] =) Y 4NoRe{e}s(n — m)ty}. (D.3)

n=0 m=l;
The joint probability of occurrence of e € E; and t € T is given by

Priet= % [ [ frvteded) B (D.4)

a'€AL-N 1 Y0

where z; = e Sre + 2Re{g”H.§f_J1"} and 4, = tH St ~ 2Re{1’H5'f_Jg'}. The probability

that the error event ¢: e € E3 occurs in the second stage is thus given by

Pr(e) = Q (% g’“;\;ikg) Pr(t" = 0)+ 3 Pr(e,1) (D.5)

teT’

where T is a subset of the set T which includes all error sequences in T except those for

which ¢ = 0. Note that Pr(¢” = 0) can be over-bounded by 12. Thus, we get

Pr(e) < Q (—;- ﬁkg) + 3 Pr(e,1). (D.6)

teT’

Assuming independence between errors occurring in the two stages (i.e. independent X and

Y), we get

~ 1 [eHSLe e Sre + 2Re{e" SH 1"}
Pr(e) < Q% [852ke g
re) < Q (2 o ) + Z Z Q ( 0/ NoeH 5.

teT’ EIEAL—JI
9 tA 5t — 2Re{t'H SE_ 0’}
2v/NotH Sit

Py (D.7)

?The bound becomes asymptotically tight at high signal-to-noise ratio.
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