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ABSTRACT

ITERATIVE ESTIMATION AND DECODING FOR CHANNELS

WITH MEMORY

by

Joseph Hyukjoon Kang

Chair� Professor Wayne E� Stark

In this thesis	 iterative estimation and decoding techniques are considered for

channels with memory� Much of the work is focused on the design and performance

of turbo codes	 a code with an iterative decoding algorithm	 in frequency
hopped

spread spectrum �FH
SS� systems where the data rate is slower than the hop rate� In

such a system	 multiple bits are transmitted over each hop� If the channel conditions

can be assumed to be static over the duration of a hop	 then estimation techniques can

be utilized to estimate unknown channel parameters� In particular	 iterative channel

estimation schemes are considered in conjunction with an iterative decoding algorithm

for the turbo code� Channels considered include the partial
band interference channel	

the Rayleigh fading channel	 and the channel with both partial
band interference and

Rayleigh fading� In addition to the systems with FH
SS	 a more general channel



with memory	 the Gilbert
Elliot burst channel model	 is considered� The channel

estimation scheme paired with the powerful error correction capabilities of turbo

codes are shown to yield signi�cant performance improvements with respect to other

well
known coding schemes�
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CHAPTER �

Introduction

��� The Goal of Communications

A communication system provides the framework which allows two users to both

transmit and receive information over a channel� If the users wish to communicate

without requirements on location	 one system of interest is wireless communications�

In general	 the channel distorts the transmitted information in such a way that the

received signal is di�erent from the transmitted one� Depending on the type and

degree of such distortions	 the transmitted information may be received incorrectly�

The goal of the communications engineer is to design a system which improves the

reliability of such wireless transmissions�

One method of improving the error performance of communication between two

users is to increase the power of the transmitted signal� In such cases	 the receiver can

more easily determine the content of the communicated message� However	 there can

be substantial costs which motivate why other methods of improving communications

�



are usually considered� One cost is the resulting interference to other users within a

system	 for the case of a multiuser system� While the intended target receives the

message more easily	 the ampli�ed message may interfere with the communications

between other users� Another cost is that in the case of the mobile user	 expending

too much power on signal transmission will result in shorter battery life�

An alternative way to mitigate the e�ects of channel distortion is to use error

control coding� Essentially	 by introducing structured redundancy in the data stream	

the receiver can reduce its susceptibility to channel distortion� Hence	 to achieve the

same performance criteria	 error control coding can provide several decibels �dB� of

signal
to
noise ratio �SNR� gain over uncoded systems� It has been said that each

decibel saved is worth one million dollars� In some cases	 the gains of error control

coding over the uncoded case can exceed ��

� decibels�

Error control coding is a relatively young discipline� Its roots are often traced to

Shannon	 who proved in his seminal ��
� paper ��� that data communication with

arbitrarily low error rates can be achieved over a noisy channel by properly encoding

the information� The astonishing result of Shannon�s work is that such limits can be

obtained without sacri�cing the rate of information transmission� While Shannon�s

paper demonstrates the existence of such error control codes	 it does not specify how

to build them� As a result	 a major portion of the work in wireless communications

focuses on developing codes that achieve performance near the Shannon limit with

reasonable complexity�

One form of error control coding is the recently developed turbo codes� First pub


lished in ����	 turbo codes have been shown to yield performance near the Shannon

�



limit� While turbo codes are not the �rst codes to achieve results near this funda


mental limit	 turbo codes are exciting because they achieve such performance with

reasonable complexity� For such reasons	 turbo codes are the focus of this thesis�

While the advantages of error control coding were described above	 it is impor


tant to understand the framework of a wireless communication system in order to

gauge the importance of coding� In the next section	 the building blocks of a generic

communication system is discussed�

��� Building Blocks of a Communication System

The transmission of information over a wireless channel incurs distortion which

alters the transmitted signal in such a way that the information may be received

incorrectly� A well designed communications system can signi�cantly improve the

reliability of such transmissions� A typical communications system is shown in Figure

����

The information source dictates what information is to be communicated� The

output of the information source is transformed by the source encoder to a binary

sequence	 d	 which would ideally represent the information in as few binary digits as

possible� The output of the source encoder	 called the information sequence	 is then

passed to the channel encoder� The channel encoder introduces controlled redundancy

into the data in such a manner that errors caused by the channel can be corrected�

Especially useful for channels which exhibits bursts of errors	 the goal of the channel

interleaver is to permute the coded bits such that a manner that the channel appears

�



Figure ���� Block Diagram of a Generic Communication System






memoryless� The modulator maps each output symbol of the channel encoder to a

set of analog waveforms which are suitable to be transmitted over the channel�

The channel is the physical medium through which the signals are transmitted�

While wireless channels might include free space	 other channels of interest include

telephone lines	 �ber optic cables	 and magnetic tapes� The primary feature of the

channel is that the transmitted signal may be corrupted by factors such as thermal

noise	 multipath fading	 and partial
band jamming� Additive white Gaussian noise

�AWGN� is often used to model thermal noise and is especially pertinent for deep

space communications� Multipath fading occurs for communications over a terrain

which contains objects between the transmitter and receiver� These objects re�ect

the transmitted signal	 causing multiple paths with di�erent phases and delays� The

di�ering phases cause the incoming signals to add constructively or destructively	 thus

resulting in signal attenuation at the receiver� Finally	 jammers describe the group

of hostile communicators which attempt to disrupt the communications of targeted

users by transmitting a signal over the same communication range�

The demodulator processes the channel output and provides an estimate of the

modulated signal� The channel deinterleaver inverses the permutation operation of

the channel interleaver and restores the coded data to its original order� The chan


nel decoder reverses the operations performed by the channel encoder and provides

an estimate of the data sequence	 �d� The source decoder transforms the estimated

sequence �d into the most likely source sequence� Because of channel distortion	 the

received source sequence may be di�erent from the original one�

Because the focus of this thesis is channel coding	 the source encoder will not be

�



considered here� Instead	 it will be grouped with the information source and together

be considered as a digital source which produces a binary information stream which

needs to be communicated�

Having described a generic type of communications	 a speci�c type of communi


cation system used for both commercial and military applications is discussed in the

next section� In addition	 the need for error control coding in this communication

system is motivated�

��� Spread Spectrum Communications and Error

Control Coding

One communication system of interest is spread spectrum communication� A

spread spectrum system can be characterized as a system whose transmitted signal

spectrum is much larger than the bandwidth of the information being transmitted�

One form of spread spectrum is known as frequency
hopped spread spectrum �FH


SS�� Suppose that the data rate is R bits per second and the transmitted power is

P Watts� In FH
SS systems	 the transmission bandwidth	 W Hertz	 is divided into

q nonoverlapping frequency slots� After the signal is modulated to an intermediate

frequency	 a frequency hopper pseudorandomly changes the center frequencies of the

carrier� In other words	 at each point in time	 information is transmitted over just

one of the q frequency slots	 where q may be very large� This is shown in Figure ���

where the vertical axis re�ects the q frequency slots	 the horizontal axis re�ects the

�



transmission time with Th as the hop duration	 and the gray blocks re�ect the slots

where information was transmitted�

Figure ���� Frequency Hopping Pattern

There are many advantages to this seemingly wasteful allocation of bandwidth�

First	 such a system provides resistance to hostile interferers known as jammers whose

primary goal is to interrupt communications� Essentially	 by spreading the transmit


ted signal over a large bandwidth	 the jammer is similarly forced to spread its power

over a large bandwidth in order to guarantee that some hops are jammed� Another

advantage is that spectrum
spectrum modulated signals have a lower probability of

intercept �LPI� and detection �LPD�� For instance	 in the case of FH
SS	 a larger fre


quency band must be monitored� Yet another advantage is the ability to allow several

�



users to simultaneously transmit over a common channel with a minimum amount

of mutual interference �i�e� multiple access communications�� One �nal advantage is

that spreading the signal over a wide range of frequencies reduces the vulnerability

to narrow band interference such as frequency
selective multipath fading channels�

In spite of the many gains associated with spread spectrum systems	 the per


formance of these systems may not be su�cient� First consider the system with

partial
band interference� Assuming that the jammer has �xed total power	 J Watts	

the jammer can either jam the entire bandwidth	W 	 with double
sided power spectral

density	 J
�W 	 or it can jam a fraction of the bandwidth	 �W 	 with double
sided power

spectral density	 J
��W

� An example of a partial
band jammer is shown in Figure ���

for � � 
�q�

Figure ���� Partial Band Jammer
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If the jammer chooses to jam the entire bandwidth	 � � �	 it can be sure to corrupt

every hop� However	 ifW is very large	 the power spectral density of the jammer	 J
�W

	

may be small and its e�ect on the transmitted bits may be minimal� If the jammer

jams some fraction of the bandwidth	 �	 then it can have larger e�ect on the hops

that are jammed	 meanwhile having no e�ect on the unjammed hops� The intelligent

jammer is one which chooses � to maximize the error rate of the system� The worst


case performance from such a jammer is often achieved by a partial
band jammer

�especially at high Eb�N��� Shown in Figure ��
 is the bit error rate �BER� for full


band Gaussian noise jamming and worst
case partial
band Gaussian noise jamming

���� without thermal noise� The energy per bit is a function of the transmitted power

and the data rate	 Eb � P�R	 and the double
sided power spectral density of the

jammer is expressed as NJ

�
� J

�W
� The results assume that the modulation is binary

frequency shift keying �BFSK� and the signal is noncoherently detected�

As shown in the �gure	 worst
case partial
band jamming is e�ective in signi�cantly

degrading performance� At BERs of ����	 the di�erence in performance is over ��

dB� Because the performance of worst
case partial
band jamming decreases inverse

linearly for su�ciently large Eb�NJ 	 this di�erence will increase for increasingly strin


gent BER requirements� Hence	 the performance of spread spectrum alone may be

signi�cantly degraded if worst
case partial
band jamming is applied�

Next	 consider the performance of the Rayleigh fading channel in broadband Gaus


sian noise with double
sided power spectral density	 N���� The BER performance is

shown in Figure ��� for the case where the signals are BFSK
modulated and the

receiver applies noncoherent detection�

�
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Similar to the previous result	 the presence of fading leads to serious degradations

in performance	 with the Rayleigh faded result decreasing inverse linearly for large

SNRs� At BERs of ����	 the degradation is approximately �� dB with respect to the

AWGN channel�

As mentioned in Section ���	 there is a way to recover the performance losses

associated with partial
band interference and fading� By introducing structured re


dundancy in the data	 more errors introduced by the channel can be corrected� This

procedure known as error control or error correction codes has been shown to mitigate

the e�ects of channel distortions caused by partial
band interference and fading� As

an example	 consider a simple error control code called the repetition code� In this

code	 the information bits are repeated L times	 resulting in a rate ��L code� If an

interleaver is used to guarantee that each of the L coded bits are transmitted over

di�erent frequencies and the receiver is assumed to know with certainty which hops

were jammed	 then an upper bound ���� to the performance of this system is shown

in Figure ����

For the repetition code with L � ��	 the gain with respect to the uncoded case

for worst
case jamming is nearly �� dB at BERs of ����� The most surprising result

of Figure ��� is that such large gains can be accomplished with a very simple code� If

a more powerful	 but perhaps more complex code had been applied	 the gains could

be even greater�

Also plotted in Figure ��� is the Shannon limit which is the fundamental lower limit

on the SNR for error
free communications by properly encoding the data� This limit is

a function of code rate� The value plotted in Figure ��� represents the minimumEb�N�
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required to achieve error
free communications across all code rates� This minimum

value is ���� dB and it occurs for a code rate of approximately ���� For this result	 it

is assumed that the decoder knows with certainty which hops have been jammed� If

a code which achieved performance near the Shannon limit was considered	 the gain

over the repetition code with L � �� would be an additional �� dB�

Shown in Figure ��� are the analytical results for a repetition code in the Rayleigh

fading channel� In the results	 it is assumed that each coded bit is sent over a di�erent

hop and that the instantaneous fade amplitudes are independent from hop to hop�

The instantaneous fade amplitudes are not assumed to be known� By using a simple

repetition code of length L � ��	 about �� dB is gained at a BER of ����� Also plotted

is the Shannon limit	 which indicates the minimum Eb�N� needed to achieve error


free performance when side information regarding the instantaneous fade amplitudes

is unavailable� Again	 this limit is shown at its minimum value across all code rates�

This minimumvalue is about ��� dB and occurs at a code rate of approximately �����

If a more powerful code which achieves performance near the Shannon limit were

applied	 another �� dB could be gained�

Thus far	 the need for error control codes to improve bit error performance has

been described� Even the use of a simple code like the repetition code was e�ective in

signi�cantly improving the performance when communicating over the partial
band

interference and fading channels� In the next section	 an error control code which

yields performance near the fundamental limit is introduced�

�




0 5 10 15 20 25 30 35 40 45 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
E

R

Rayleigh Fading, Uncoded
Rayleigh Fading, L = 10
AWGN, Uncoded
Shannon Limit: Rayleigh Fading

Figure ���� Gain of Error Control Codes for the Rayleigh Fading Channel

��



��� Turbo Codes� Near Shannon Limit Coding

Turbo codes are a recently developed channel coding scheme that has been shown

to achieve data communication at signal
to
noise ratios close to the Shannon limit�

The results published in the inaugural paper by Berrou et al ��� were so good that

they were met with much skepticism by the coding community� Since then	 however	

these results have been reproduced and even improved ���� Consequently	 much of

the present research is focused on applying turbo codes to di�erent systems�

The most surprising element of turbo coding success is its simplicity� The encoder

is formed using a parallel concatenation of two or more component encoders� If the

input block has N information bits	 the encoded bit stream is made up of the uncoded

information bits and the parity bits of the component encoders� The key element of

the encoder is the use of an interleaver which permutes the information sequence

and then uses this as the input to the second component encoder� In general	 this

permutation allows low weight outputs of the �rst component encoder to result in

high weight outputs of the second component encoder� Thus	 the combination of the

encoders might contain favorable distance properties	 even if each component encoder

does not�

It is well known that a randomly chosen code of su�ciently large block length is

capable of approaching channel capacity ����� In general	 however	 the complexity of

maximum likelihood decoding such a code increases exponentially with block length

up to the point where decoding becomes physically unrealizable� The encoder mim


ics random codes by making use of a large random interleaver� While turbo coding

��



performance also improves for increasing interleaver lengths	 the decoding complex


ity grows only linearly	 making the decoding of large block lengths possible� Note

that a turbo decoder does not perform maximum likelihood decoding directly	 but

attempts to achieve maximum likelihood decoding in an iterative way� The original

turbo decoder ��� used two decoders which each use the maximum a posteriori �MAP�

algorithm� The MAP decoder is described in Chapter � and is also describedin the

Appendix� There are other less complex algorithms that can be used in place of the

MAP algorithm for each decoder such as SOVA and Max
Log
MAP ����� However	

because these other algorithms are suboptimal	 they reduce the complexity of de


coding at the cost of performance� Hence	 for the purposes of this thesis	 we will

consider the turbo decoder where each component decoder uses the MAP algorithm

to calculate a posteriori likelihood estimates for each bit�

The potential of turbo codes can be best exempli�ed by its successful application

to deep space communications� Using MAP decoders	 turbo codes ��� state con


stituent codes	 overall rate ���� were shown to outperform the concatenated code of

the Voyager	 Galileo	 and Cassini missions� The gain	 for instance	 over the Voyager

code �rate ���	 constraint length � convolutional code concatenated with a ����	����

Reed
Solomon code� is approximately ��� dB at a BER of ����� The large coding

gains of turbo codes exhibited over the complex deep space codes suggest that turbo

codes should be considered for other wireless communication systems� The primary

di�erence between the two codes	 however	 is that the turbo code has greater decoding

complexity�

Thus	 we arrive at the primary disadvantage of using turbo codes with the MAP

��



algorithm� Decoding complexity for turbo codes is proportional to the block length	

the number of decoding iterations	 and the constraint length of the constituent codes�

The MAP decoder is approximately four times more complex than the Viterbi algo


rithm and this must be iterated several times�

It is well
known that turbo code performance generally increases with interleaver

or block length ����� In fact	 Berrou et al showed a bit error rate of ���� at ��� dB	

but needed to use �� decoding iterations and a block length of ��� ��� bits� The

large amount of computation required for turbo decoding explains why some of the

current research is focused on reduced complexity decoders ���� ���� ��
�� By also

taking into consideration the processing delay inherent with large interleavers	 it is

easy to see why turbo codes which use the MAP algorithm may be unsuitable for

voice communications �����

In packet data communications	 the use of error correction codes plays a key

role in achieving low packet error rates� When transmitting speech	 large processing

delay is unacceptable and higher error rates are tolerable� In data communication	

low error rates are more important and delay at the decoder is more acceptable�

Therefore	 it would appear that turbo codes are possible candidates for packet data

communications� In much of this work	 turbo codes are considered in a packet data

communications system�

The motivation for research on turbo codes is clear� As a recently developed

�eld which yields extremely good performance	 it is important to investigate the

performance of turbo codes in di�erent systems� However	 in this thesis	 the iterative

estimation of typically unknown channel parameters is also considered� Many coding

��



schemes require knowledge of the channel� While it is convenient to assume in the

analysis that such information is perfectly available	 often times this is an impractical

assumption� In the next section	 the importance of an iterative channel estimation

scheme paired with the iterative decoding scheme of the turbo decoder is motivated�

��� Iterative Decoding and Iterative Channel Es	

timation

Channel coding schemes have generally been designed to increase the reliability

of information transmission when the errors are statistically independent� However	

there exists many channels such as multipath fading which exhibit bursts of errors� A

common method for dealing with these bursts is to interleave the information in such

a manner that the channel appears memoryless� Thus if interleaving is applied to a

burst channel	 a code devised for independent errors can be applied� Note	 however	

that such a scheme does not make use of the information inherent in the memory�

Because multiple bits have been transmitted over similar channel conditions	 it may

be useful to estimate the channel state and use this information in the decoder�

While the gains associated with channel estimation are clear	 the desire for iter


ative channel estimation must be motivated� Consider a receiver which makes bit

decisions based on the log likelihood ratio

L � log
P �dk � �jy�
P �dk � �jy� �����

��



where dk are the data bits and y represent the respective channel outputs�

If the a posteriori information bit probabilities	 p�dkjy� �or bit estimates�	 can be

improved	 then the error performance will also be improved� One way to improve the

bit estimates is to generate reliable information of the channel� For instance	 consider

the fading channel with diversity� If information regarding the instantaneous fade

amplitudes are available to the receiver	 then maximum ratio combining �MRC� is

optimal� Without any information	 the decoder may perform equal gain combining

�EGC�� It is well known ���� that MRC can yield large performance gains over EGC�

Reliable knowledge of the channel improves the bit estimates and this leads to better

performance� In a similar manner	 channel estimates can be improved if reliable

information of the data bits are available�

Turbo codes use an iterative decoding scheme where after each iteration	 the bit

error rate typically improves� In other words	 because the turbo decoder makes bit

decisions based on a log likelihood ratio like �����	 the a posteriori bit probabilities

or bit estimates also improve� For such reasons	 it might be useful to estimate the

channel after each iteration and run the next decoding iteration using the new channel

estimates� In this way	 better performance and faster convergence might be obtained�

In this thesis	 the joint task of iterative channel estimation and iterative decoding are

considered for channels with memory�

��



��
 Thesis Outline

The outline for the remainder of this thesis is as follows� In Chapter �	 turbo codes

are reviewed	 beginning with a description of the encoding and decoding operations�

In addition	 a survey of recent work on turbo codes is presented	 including important

design issues and describing how performance near the Shannon limit is attained�

In Chapter �	 the turbo codes are investigated in frequency
hop spread spectrum

with partial
band interference� In addition	 full
band thermal noise is present� The

channel model is that of a partial
band jammer in which a fraction of the frequency

band is jammed and the remaining fraction is unjammed� This chapter focuses on

the implementation and performance of a modi�ed turbo decoder for this model�

The perfect knowledge regarding which hops are jammed is referred to as channel

state information� Cases of known or unknown channel state and variable number

of bits per hop are considered� The approach is to modify the calculation of branch

transition probabilities inherent in the original turbo decoder� For the cases with no

side information and multiple bits per hop	 channel state estimates are iteratively

calculated� Analytical bounds are derived and simulation is performed for coherent

and noncoherent demodulation� The performance of turbo codes is compared with

other well known codes such as the convolutional code	 the Reed
Solomon code	 and

the concatenated code comprised of a convolutional inner code and Reed
Solomon

outer code�

In Chapter 
	 the performance of turbo codes is investigated in a frequency
hopped

spread spectrum system with full
band thermal noise and Rayleigh fading� For cases
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where the data rate exceeds the hopping rate �i�e� there exists multiple bits per hop�

and there exists no side information about the fading amplitudes	 the approach is to

iteratively estimate the fading levels� Simulation is performed for coherent and non


coherent reception	 variable number of bits per hop	 and cases where fading side in


formation is available or unavailable to the decoder� It is shown that iterative channel

estimation performed in conjunction with iterative decoding can improve the overall

decoding performance� Finally	 the performance of a FH
SS system using standard

fading assumptions is compared to the performance of a measured fading channel�

Due to di�erences in assumptions	 the measured fading channel yields performance

several decibels higher than the ideal fading channel�

In Chapter �	 the performance of turbo codes are investigated in a frequency

hopped spread spectrum system with partial
band interference	 full
band thermal

noise	 and Rayleigh fading� Two types of channel side information are considered�

knowledge that the transmitted bit is jammed or unjammed and knowledge of the

instantaneous fading amplitudes� For the case with multiple bits per hop and no

side information	 the approach is to exploit the channel memory by computing chan


nel state estimates for unknown parameters� Simulation is performed for coherent

and noncoherent reception	 variable number of bits per hop	 and cases where side

information is available or unavailable to the decoder�

In Chapter �	 turbo codes are investigated in a generic channel with memory	 the

Gilbert
Elliot burst channel model� The Gilbert
Elliot channel is a two state hidden

Markov model where one state represents a bad channel state which typically has

high error probabilities and the other state represents a good channel state which has

��



low error probabilities� For the burst channel model	 turbo code calculations require

knowledge of the hidden Markov state� As in previous chapters	 the approach is

to estimates unknown channel state parameters and use these in the turbo decoder�

For cases with unknown channel state	 the calculation of state estimates requires

knowledge of the hidden Markov model �HMM� transition probabilities� When these

probabilities are unknown	 the Baum
Welch re
estimation procedure is used�

In Chapter �	 the robustness of turbo codes in di�erent channels is considered� In

previous chapters	 it was assumed that certain parameters of the channel were known�

For instance	 in Chapter �	 it is assumed that the power spectral densities of the noise

and the fractional bandwidth of jamming are known perfectly� In this chapter	 the

performance of turbo codes in the presence of mismatched channel parameters is

investigated�

Finally	 conclusions are drawn and topics for future work are discussed in Chapter

��
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CHAPTER �

Turbo Codes

The emergence of turbo codes has had a strong e�ect on how coding theorists

approach the design of codes� Traditionally	 the major design objective for an error

control code was to �nd maximize the minimum distance	 dmin	 amongst codes with

comparable complexity� Yet despite having relatively low dmin	 turbo codes have

been shown to achieve bit error rates �BER� of ���� at SNRs smaller than codes with

higher dmin�

The importance of minimum distance can be explained by applying the union

bound to the AWGN channel� For the AWGN channel with double
sided power

spectral density	 N���	 the union bound on the word error probability for an �n� k�

block code is

Pw �
nX

d�dmin

AdQ�
q
� dREb�N�� �����

where R � k�n is the rate of the code	 Eb is the received energy per bit	 and Ad is

�




the weight enumerator of the code�

Because Q�x� � e�x
��� diminishes quickly for increasing values of x	 ����� is dom


inated by the value of dmin when Es�N� � REb�N� is large� If more than one code

possesses the same value of dmin	 then the code with smaller Admin is chosen�

In the low SNR regime	 however	 weights greater than dmin may provide a strong

contribution to the error rates because Q��� falls o� more slowly� In particular	 if the

values of Ad grow quickly enough in d	 codewords with weight greater than dmin may

contribute more to the error rate than lower weight codewords� For bit error rates	

this e�ect is compounded if higher weight codewords have higher information weight�

Hence	 in the low SNR region	 dmin may no longer dominate code performance� In

other words for low SNRs	 a code with smaller dmin may actually yield better perfor


mance because its distance pro�le beyond dmin is important to code performance�

The above discussion is not new� It is well known in coding theory that dmin

dominates performance at high SNRs	 but is not nearly as important for low SNRs�

The di�erence is that most codes of interest yield their desired performance in the

high SNR domain where dmin plays a key role� Those codes that do yield good

performance in the low SNR region have prohibitively high decoding complexity �����

Meanwhile	 turbo codes with their relatively low dmin have been shown to yield good

performance at low SNRs� In fact	 turbo codes achieve performance near the Shannon

limit and they do so with reasonable decoding complexity� In this chapter	 turbo

codes are described in greater detail	 giving insights regarding their performance at

low SNRs� The encoder and decoder are described in full detail� In addition	 some

design guidelines are presented to achieve the performance described in ����
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��� Turbo Encoder

The encoder is a parallel concatenation of two or more systematic constituent

codes separated by interleavers� Systematic describes a code which takes a vector of

data bits d as input to its encoder and then includes d among its encoder outputs�

The advantage of using systematic codes for the component codes is that the e�ective

rate of the code can be reduced if the systematic information is transmitted just once�

The structure of a generalized turbo encoder is shown in Figure ���� The encoder

takes as input the data sequence d of length N and then produces M � � streams	

each of length N � the information bits d and the parity bits of the M component

encoders p�	 p�	 ���	 pM� The overall rate of the code is
�

M���

Figure ���� Block Diagram of the Turbo Encoder
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If M � � and the constituent codes are constraint length K convolutional codes	

a helical interleaver can be used to guarantee trellis termination ����� The helical

interleaver �also described in the Appendix� essentially constrains the trellises of both

component codes to end in the same state	 allowing a K � � bit tail to drive both

codes to the all
zeros state�

In general	 the constituent codes are recursive systematic convolutional �RSC�

codes� The advantage of using such codes as opposed to conventional nonsystem


atic convolutional �NSC� codes and block codes can be explained by the so
called

interleaver gain which was derived for the AWGN channel� If N is the size of the

interleaver	 then the interleaver gain was shown to be N��wmin ���� where wmin is de


�ned as the minimumweight input sequence of in�nite length which results in a �nite

weight error event� For NSC and block codes	 wmin � �	 whereas for the RSC code	

wmin � �� Hence	 no interleaver gain exists for the NSC and block codes	 whereas

the interleaver gain for the RSC code goes as N��� The interpretation of this result

is that for su�ciently large SNRs	 the bit error performance of a turbo code with

length N� will be a factor of N��N� better than a turbo code with length N� where

N� � N�� Hence	 a length ����� turbo code will perform approximately an order of

magnitude better than a length ���� turbo code�

There exists a more intuitive explanation for the relationship between the recursive

systematic codes and the interleaver� If the component codes are assumed to be

systematic	 then the output codeword weight can be expressed as i � w � z	 where

i is the encoded weight	 w is the weight of the systematic information	 and z is

the parity weight� Clearly	 for systematic encoders	 the input weight	 w	 is correlated
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with the output weight	 i� More importantly �because low weight codewords typically

determine performance�	 low output weights are correlated with low input weights�

First	 consider the parallel concatenated code which uses RSC codes as the con


stituent codes� For the RSC encoder	 low weight input sequences can lead to high

output weight sequences� For example	 the input sequence with weight one and in�


nite length leads to an in�nite weight output sequence� Hence	 for i � w�z and w � �	

the output codeword weight	 i	 is high despite a small weight contribution from the

systematic bits because z is high� Of particular importance are input patterns which

terminate the RSC code� These sequences are important	 because self
terminating

patterns often lead to low parity weights� If the self
terminating patterns also have

low weight	 then because the encoder is systematic	 the resulting codeword will have

low codeword weights which are undesirable� For the RSC code	 however	 these self


terminating patterns are generally speci�c� Thus	 if an RSC code with input d yields

a low weight output	 then the same RSC code with interleaved d as input generally

will not� As a result	 even if each individual code is weak	 the parallel concatenation

of the codes separated by interleavers is quite powerful� The length of the interleaver

is an important parameter for performance because the longer the length of the in


terleaver	 the less chance of permuting to an input sequence which terminates the

encoder�

Consider the example shown in Figure ��� which exhibits a parallel concatenated

code consisting of RSC codes The minimum distance for each component code in

Figure ��� is �	 �	 and �	 respectively� Thus	 the worst case minimum distance for the

concatenated code is �� For each component code	 the input sequence which yields
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the minimum distance is ������������������ Note	 however	 that the presence of the

interleavermakes it unlikely that all three constituent codes will have an input of form

����������������� when d is a weight three sequence� Hence	 the worst case minimum

distance will rarely be achieved�

Figure ���� Example of a Parallel Concatenated Code Consisting of RSC Codes

Next	 consider the concatenated code which uses NSC codes as the constituent

codes� For NSC codes	 low weight input sequences tend to be self
terminating� Hence	

parity weights	 z	 with low weights often result from low weight input sequences	 w�

Thus for a systematic NSC code	 low codeword weights	 i � w � z	 are strongly

correlated with low weight inputs� For the parallel concatenated encoder consisting

of NSC codes	 the interleaved output will have low weight if d has low weight� Hence	
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the encoded bits for each of the component codes will typically have low error weight�

Consider the example shown in Figure ��� which exhibits a parallel concatenated

encoder composed of NSC codes�

Figure ���� Example of a Parallel Concatenated Code Consisting of NSC Codes

Similar to the RSC codes in Figure ���	 the minimum distance of each compo


nent NSC code in Figure ��� is �	 �	 and �	 respectively� The input sequence which

yields the minimum distance for each component code is the weight one sequence

���������������� Each component encoder is preceded by an interleaver which for the

RSC case	 broke up input sequences which yielded low weight� However	 for the weight

one input sequence	 the output of each interleaver output will also be the weight one

sequence� Thus	 the worst
case minimum distance is always achieved when d is a

��



weight one sequence�

To summarize the results of this section	 the turbo code which uses RSC codes

as its constituent codes yields favorable distance properties at least with respect to

the encoder which uses NSC codes as its constituent codes� As the interleaver size

increases	 the turbo code with RSC codes yields performance which improves as N���

In the next section	 the structure and computations associated with turbo decoding

algorithm is described�

��� Turbo Decoder

Because the optimal maximuma posteriori �MAP� decoder is too computationally

complex	 the turbo decoder provides a suboptimal alternative which provides near


optimal performance with signi�cantly reduced decoding complexity� Consider the

rate one
third turbo code with two constituent codes �i�e� M � ��� Rather than

using a single MAP decoder to compute likelihood estimates based on all three coded

bitstreams	 the turbo decoder uses two MAP decoders which are matched to the two

component encoders �i�e� each MAP decoder uses the systematic bitstream and one

of the two parity bitstreams to compute likelihood estimates�� In this way	 each MAP

decoder needs to consider only one trellis structure rather than a concatenation of

trellises�

The turbo decoding algorithm is essentially as follows� Each MAP decoder com


putes a soft output which is the log likelihood ratio of a posteriori information bit

probabilities� This likelihood is then used to initialize the a priori probabilities in
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the following MAP decoder after which a new likelihood ratio is computed� This

procedure is iterated several times	 generally converging to some low bit error rate�

The derivation of this algorithm has been well documented in previous papers

����������� and is also included in the Appendix� For notational purposes	 the algo


rithm is brie�y reviewed here�

Let Sk be the state of the �rst encoder at time k let y��k	 y��k	 and y��k represent

the channel outputs respective to dk	 p��k	 and p��k� Furthermore	 let Lk be the log

likelihood ratio �LLR� of the a posteriori probabilities for the �rst MAP decoder

which makes calculations based on y� and y�� Then as shown in ���	

Lk � log
P �dk � �jy��y��
P �dk � �jy��y�� �����

� log

P
m

P
m� ���y��k� y��k�m��m��k���m��	k�m�P

m

P
m� ���y��k� y��k�m��m��k���m��	k�m�

�����

where the forward and backward recursions can be expressed as

�k�m� �

P
m�
P�

i�� �i�y��k� y��k�m
��m��k���m��P

m

P
m�
P�

i�� �i�y��k� y��k�m
��m��k���m��

���
�

	k�m� �

P
m�
P�

i�� �i�y��k��� y��k���m
��m�	k���m��P

m

P
m�
P�

i�� �i�y��k��� y��k���m
��m��k�m��

� �����

The branch transition probabilities used by the MAP algorithm are calculated as

�i�y��k� y��k�m
��m� � p�y��kjdk � i� Sk � m�Sk�� � m�� �

p�y��kjdk � i� Sk � m�Sk�� � m�� �

P �Sk � mjdk � i� Sk�� � m�� � P �dk � ijSk�� � m�������
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where P �Sk � mjdk � i� Sk�� � m�� � � if bit i is associated with the given state

transition and equals � if it is not�

The branch transition probabilities are of particular interest� The branch tran


sition probability essentially measures the probability of channel outputs given a

particular state transition along a branch in the encoder trellis� The computation of

branch transition probabilities depends on the channel	 so they play a key role in the

design of the turbo decoder for FH
SS�

Note that the a priori information probability	 P �dk � ijSk � m� � P �dk�	 in

����� is independent of the states Sk and Sk��� In addition	 because the encoder is

systematic	 the transition probability	 p�y��kjdk � i� Sk � m�Sk�� � m��	 in ����� is

also independent of the states Sk and Sk��� Hence	 ����� can be factored as

Lk � L�k � L��k � L
���
k �����

where as shown below	 L�k represents the a priori information	 L��k represents the

contribution corresponding to y��k	 and L
���
k represents the contribution from y��

L�k � log
P �dk � ��

P �dk � ��
�����

L��k � log
p�y��kjdk � ��

p�y��kjdk � ��
�����

L
���
k � log

P
m

P
m� ����y��k�m

��m��k���m��	k�m�P
m

P
m� ����y��k�m��m��k���m��	k�m�

������

where ��i�y��k�m
��m� � p�y��kjdk � i� Sk � m�Sk�� � m�� � P �Sk � mjdk � i� Sk�� �

��



m���

L
���
k is termed the extrinsic portion of the log likelihood ratio� It is used to initialize

the a priori data probabilities for the second MAP �MAP�� decoder� The concept

of extrinsic information is important in that it prevents information introduced by

one of the component decoders to be passed back to that component decoder� Note

that while this iterative approach does not yield the maximum likelihood solution	 it

attempts to do so in an iterative way� Let L��� and L��� correspond to the extrinsic

information generated by the MAP� and MAP� decoders	 respectively� For equally

likely transmitted data	 �nal bit decisions for dk are based on

�Lk � L��k � L
���
k � L

���
k � ������

The decoding algorithm is as follows� Initially	 the data is assumed to be equally

likely and L�k � �� The output of MAP� is L��k�L
���
k � For MAP�	 we let L�k � L

���
k �i�e�

we let the extrinsic information generated by MAP� become the a priori information

for MAP� calculations�� The output of MAP� is �Lk� Similarly on the next iteration	

we let L�k � L
���
k � This process is iterated and eventually converges to some low bit

error rate �BER�	 where �nal decisions for dk use ������� The structure of the turbo

decoder is shown in Figure ��
�

Note that because the log likelihood ratio is the ratio of a posteriori information bit

probabilities	 the turbo decoding process can be viewed as the iterative improvement

of a posteriori information bit probabilities� The turbo decoder uses the a posteriori

probabilities generated by the previous MAP decoder as a priori information� This

�




Figure ��
� Block Diagram of the Turbo Decoder

idea will be applied in subsequent chapters to the iterative estimation techniques used

for channels with memory�
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CHAPTER �

Turbo Codes in FH	SS with Partial	Band

Interference

��� Introduction

In this chapter	 turbo codes are considered in a frequency
hopped spread spectrum

system with partial
band interference� In addition	 an iterative channel estimation

scheme is implemented to take advantage of the channel memory� The channel under

consideration has memory if the frequency hopper changes frequencies at a faster

rate than the rate the jammer changes its signal structure� In this case	 it can be

assumed that an entire hop is either completely jammed or unjammed� If multiple

bits are transmitted over static channel conditions	 it may be useful to estimate the

channel state and use this information in the decoder� In this chapter	 an iterative

channel estimation technique paired with the powerful error correction capabilities of

the turbo code will be shown to yield large performance gains over other well
known

codes and decoding algorithms�
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In previous chapters	 it was stated that due to interleaver delay and high decoding

complexity	 turbo codes may be better suited for packet data communications� One

packet data network of interest is slow
frequency hop radios� There has been consid


erable interest in enhancing slow
frequency hop radios so that they can be integrated

into a packet radio network ��������� One such enhancement would be improved error

correction coding� The use of the Reed
Solomon code and the concatenated code

consisting of a Reed
Solomon outer code and a convolutional inner code have been

considered in frequency
hopped spread spectrum in partial
band interference ���� �����

Turbo codes were �rst considered in a frequency
hop spread spectrum system in

���� where performance was analyzed versus spectral e�ciency� The model	 however	

did not include partial
band interference or memory� In this chapter	 the performance

of turbo codes is investigated in a frequency
hop spread spectrum system with partial


band interference and memory�

This chapter is organized as follows� In Section ���	 the systemmodel is presented	

including details of the FH
SS model for the cases of coherent and noncoherent re


ception� In Section ���	 the modi�cations to the turbo decoder necessary for FH
SS

are described� Analytical performance bounds are derived in Section ��
� In Sec


tion ���	 simulation results are presented and compared to the performance of other

well
known coding techniques� In Section ���	 the numerical results of the analytical

bounds are discussed� Finally	 conclusions are drawn in Section ����
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��� System Model

In this section	 the system model is described� In particular	 the transmitter

model is detailed	 including descriptions of the encoder	 relevant interleavers	 and

modulation schemes� In addition	 the channel model is presented�

����� Transmitter

The encoder is formed by concatenating two constituent codes in parallel and

separating the codes by a helical interleaver� As in the original work by Berrou et al

���	 the constituent codes are recursive systematic convolutional codes� The helical

interleaver is used in the encoder to guarantee trellis termination �see Section ���

and the Appendix�� The encoder takes as input the data sequence of length N 	

d � d�� ���� dk� ���� dN	 where dk � f�� �g	 and then produces three streams� the data

sequence d	 the parity sequence p� of the �rst component encoder with input d	 and

the parity sequence p� of the second component encoder with interleaved d as input�

The channel encoded bits are then passed to a channel interleaver� Described in

Section �����	 the channel interleaver is instrumental in breaking up the memory for

channels which exhibit bursts of errors� The modulation considered is binary phase

shift keying �BPSK� for coherent reception and binary frequency shift keying �BFSK�

for noncoherent reception� The resultant signal is frequency hopped� The hopping

patterns of the FH
SS system are modeled as sequences of independent random vari


ables uniformly distributed over the allowable frequency range� Let Rc be the rate of

the code	 Rb be the data rate	 and Rh be the hopping rate� If the coded data rate	
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Rb�Rc	 exceeds the hopping rate	 Rh	 then there exists h �
Rb

RcRh
bits per hop	 where

Rb

RcRh
� �� A block diagram of the transmitter is shown in Figure ����

Figure ���� Block Diagram of the Transmitter

����� Channel Model

The model we assume for the channel consists of a jammer that evenly distributes

its power over a fraction � of the frequency range� Thus	 transmission occurs over a

channel that includes full
band thermal noise with double
sided power spectral density

N�
�
and partial band interference with double
sided power spectral density NJ

��
which

covers a fraction � of the band� As a result	 there are essentially two channel states�

jammed and unjammed� The probability of hopping to a jammed state is � and the

probability of hopping to an unjammed state is �� �� It is assumed that the jammer

stays on for the entire duration of the hop if it is jammed at all� Let �y��k� y��k� y��k� be

the outputs of the channel and let zi�k represent the channel state for yi�k� Jammed

and unjammed states correspond to zi�k � � and zi�k � �	 respectively� For coherent

reception	 the model for the matched �lter outputs is

��



yi�k �
p
E ci�k � 
i�k� i � �� �� �� k � �� ���� N �����

where �c��k� c��k� c��k� � �����dk � ����p��k � ����p��k� maps the values of the binary en


coded bits to f�����g	 and the noise	 
i�k � N��� N�
� � zi�k � NJ

�� �	 is assumed to be a

zero mean Gaussian random variable with variance depending on whether the state

is jammed� If the state is jammed	 the variance is N�
� �

NJ

�� � if the state is not jammed	

the variance is N�
�
�

Next	 consider the case of noncoherent reception� Let ci�k � f�����g denote the

coded bit �input to the BFSK modulator�� Shown in the equations below	 the FSK

matched �lter outputs can be represented as

x
�c����
i�k �

p
E �ci�k ��� cos��i�k� � 


�c����
i�k �����

x
�s����
i�k �

p
E �ci�k ��� sin��i�k� � 


�s����
i�k �����

x
�c����
i�k �

p
E �ci�k ��� cos��i�k� � 


�c����
i�k ���
�

x
�s����
i�k �

p
E �ci�k ��� sin��i�k� � 


�s����
i�k �����

where �a�b � � if a � b and �a�b � � otherwise� the unknown phase �i�k is a uniform ran


dom variable spanning ��� �
�� and 
�c����i�k 	 
�s����i�k 	 
�c����i�k 	 and 
�s����i�k are independent

Gaussian random variables with zero mean and conditional variance N�
�
� zi�k

NJ

��
�

Having described the channel	 the necessary modi�cations to the original turbo

decoder �described in Chapter �� are presented in the next section�


�



��� Turbo Decoder for FH	SS

The turbo decoding algorithm is dependent on what information is available to

the turbo decoder� The cases where knowledge of the channel state �i�e� jammed or

unjammed� is either available or unavailable to the decoder are examined� The case of

known channel state will be referred to as �side information�� In addition	 the cases

of independent and identically distributed �IID� transmission �i�e� one bit per hop�

and transmission over a channel with memory �i�e� h bits per hop� are considered� It

is assumed for all cases that the model order of the hidden Markov model is known�

For all cases in this chapter	 the power spectral densities of the channel noise	

N�
� and NJ

�� 	 are assumed to be known to the decoder� These values are necessary to

compute the branch transition probabilities in ������ Note	 however	 that exact SNR

values are not necessary to achieve good decoding performance� In �
�� and as well

by our own investigation �Chapter ��	 the performance of turbo codes is shown to

be insensitive to SNR mismatch� Thus	 low complexity SNR estimation algorithms

can be employed to achieve similar performance to the case where the SNR is exactly

known�

����� FH�SS without Memory

In this section	 the case of one bit per hop is considered� If the channel state

is unknown	 then the modi�ed turbo decoder for IID FH
SS needs to employ the

appropriate branch transition probabilities� More speci�cally	 ����� is calculated using
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p�yj�kjdk � i� Sk � m�Sk�� � m�� � �����

p�yj�kjdk � i� Sk � m�Sk�� � m�� zj�k � �� � ��

p�yj�kjdk � i� Sk � m�Sk�� � m�� zj�k � �� � �� � ���

If the channel state is known	 the side information is treated as information re


ceived by the decoder� Thus	 for branch transition probabilities computations	 the

joint conditional probability of the channel output	 yj�k	 and the appropriate channel

state	 zj�k	 are calculated�

p�yj�k� zj�k � zjdk � i� Sk � m�Sk�� � m�� �

p�yj�kjzj�k � z� dk � i� Sk � m�Sk�� � m��p�zj�k � z� �����

Note that for coherent reception	

p�yj�kjzj�k � z� dk � i� Sk � m�Sk�� � m�� �
�q
�
��z

exp

�
��yj�k � cj�k�

�

���z

�
�����

where ��� �
N�
� 	 �

�
� �

N�
� � NJ

�� 	 and the coded bit	 cj�k	 is determined by dk	 and the

trellis state transition	 Sk � m and Sk�� � m��

For noncoherent reception	 consider a square law receiver which uses the FSK

channel outputs ����� 
 ����� to compute


�



y
����
j�k � �x

�c����
j�k �� � �x

�s����
j�k �� �����

y
����
j�k � �x�c����j�k �� � �x�s����j�k ��� ������

From ����� and ������	 the branch transition probabilities can be computed as

p�yj�kjcj�k � c� zj�k� � p�y����j�k � y
����
j�k jcj�k � c� zj�k� ������

� p�y����j�k jcj�k � c� zj�k� p�y
����
j�k jcj�k � c� zj�k� ������

where

p�y�l�j�kjcj�k � c� zj�k � z� �

����������
���������

�
���z

exp��y
�l�
j�k�E

���z
�I��

q
y
�l�
j�k E��

�
z � if c � l

�
���z

exp��y
�l�
j�k

���z
� if c �� l�

������

Having described the modi�cations for the one bit per hop case	 the more inter


esting case with multiple bits per hop will be discussed in the next section�

����� FH�SS with Memory

In this section	 the modi�cation to the turbo decoder for the case of multiple bits

per hop is considered� First	 the design of the hopping structure is described� The

hopping structure details which coded bits are transmitted over each hop� Hence	

the channel interleaver should be employed to meet the design requirements of the


�



desired hopping structure� The hopping structure is important for cases with memory

because unlike the IID case where jammed hops a�ect single bits	 jammed hops now

a�ect multiple bits� For instance	 if c��k	 c��k	 and c��k are the coded bits which

correspond to information bit dk	 then it would be bene�cial to send these bits over

separate hops� If they were sent over the same hop and that hop was jammed	 it

would be di�cult to decode the information bit correctly� Because the convolutional

encoders display memory �i�e� c��k is dependent on c��k	 c��k��	 c��k��	 and so on�	

it makes sense for similar reasons to separate consecutive coded bits by as much as

possible� Using L � N�h where h is the number of bits per hop and N is the number

of information bits per packet	 the structure of the hopper is shown in Table ����

HOP � c��� c��L�� c���L�� c��	L�� c��
L�� ���
� � � � � � ���
� � � � � � ���

HOP L c��L c���L c��	L c��
L c���L ���
HOP L� � c��� c��L�� c���L�� c��	L�� c��
L�� ���

� � � � � � ���
� � � � � � ���

HOP �L c��L c���L c��	L c��
L c���L ���
HOP �L� � c��� c��L�� c���L�� c��	L�� c��
L�� ���

� � � � � � ���
� � � � � � ���

HOP �L c��L c���L c��	L c��
L c���L ���

Table ���� Structure of Frequency Hopper

For cases with multiple bits per hop and no side information	 we attempt to com


pensate for the lack of side information by generating estimates of the channel� The

approach is to calculate a posteriori probabilities for each channel state	 p�zkjy��yj�

for j � �� �	 and send this information in addition to p�dkjy��yj� between decoders�







Thus	 information bit estimates and channel state estimates can be iteratively im


proved� The use of channel estimates to calculate branch transition probabilities

should lead to improved error rates�

Note that the structure of the hopper shown in Table ��� allows channel estimates

to be calculated in a manner similar to the way information bit estimates are calcu


lated in the original turbo decoder� For instance	 each MAP decoder in the original

turbo decoder calculates a posteriori probabilities of the information bits given two of

the three received observation vectors� This information is passed to the next MAP

decoder which uses this information as a priori information bit probabilities� Sim


ilarly	 by using the structure of the hopper in Table ���	 two
thirds of the relevant

observation sequence is available to each MAP decoder so that a posteriori probabil


ities for each hop can be calculated� This information can be passed between MAP

decoders and be used as a priori channel state probabilities�

R is de�ned as the vector of received channel outputs that is available to the MAP

decoder	 Rk as the subset of R that has been received over a given hop with state

zk	 and �Rk as the subset of R that has not been received over the hop with state zk�

Thus	 R � Rk 	 �Rk where Rk � �Rk��	 ���	 Rk�h�� The calculation of state estimates

is shown below�

p�zk � zjR� �
p�Rjzk � z� � p�zk � z�

p�R�
����
�

�
p�Rkjzk � z� � p��Rkjzk � z� � p�zk � z�

p�R�
������

� p�Rkjzk � z� � p�zk � z� � p�
�Rk�

p�R�
������


�



� p�Rkjzk � z� � p�zk � z� �K ������


 p�Rkjzk � z� � �p�zk � zjRk� �K ������

where K is a normalizing factor chosen to make the probability density function sum

to � and �p�zk � zjRk� is the channel estimate provided by the previous MAP decoder�

In the above equation �p�zk � zjRk� is used in place of p�zk � z� to take advantage

of the state estimate provided by the previous MAP decoder� In order to compute each

state estimate	 the conditional joint probabilities of Rk in ��
� must be computed�

This can be calculated by performing total probability on p�Rkjzk � z� over the

respective coded bits�

p�Rkjzk � z� �
X
ck

p�Rkjck � c� zk � z� p�ck � c� ������

where ck represents the vector of coded bits respective to Rk�

This will require a priori probability knowledge of the coded bits� But	 the MAP

decoders are already sending log likelihood ratios that give p�dk � djR�� Using this

information	 p�cj�k � c� 
 p�cj�k � cjR� can be calculated� Thus	 as the MAP

decoders re�ne their estimates of p�dkjR�	 estimates of p�zkjR� are also getting more

re�ned�

Note that as h	 the number of bits per hop	 increases	 the complexity of directly

computing p�Rkjzk � z� � p�Rk��� ���� Rk�hjzk � z� rises exponentially� To overcome

this problem	 the following recursion was developed�


�



�� Initial Case

p�zk � zjRk��� �
p�Rk��jzk � z� � p�zk � z�

p�Rk���
������

�
�X

c��

p�Rk��jzk � z� ck�� � c�p�ck�� � c� � p�zk � z�

p�Rk���
������



�X

c��

p�Rk��jzk � z� ck�� � c�p�ck�� � c� � �p�zk � zjRk�

p�Rk���
������

where �p�zk � zjRk� is the channel state estimate of the previous MAP decoder�

�� Recursion

p�zk � zjRk��� Rk��� ���� Rk�i��� Rk�i�

�
p�Rk�ijzk � z�Rk��� ���� Rk�i��� � p�zk � zjRk��� ���� Rk�i���

p�Rk�ijRk��� ���� Rk�i���
������


 p�Rk�ijzk � z� � p�zk � zjRk��� ���� Rk�i���
p�Rk�ijRk��� ���� Rk�i���

����
�

Note that ����
� is an approximation since Rk�i is lightly correlated with Rk�i��	

���	 Rk���

Once the state estimates have been computed	 they are ready to be used in a

turbo decoder� State estimates are used in a manner analogous to the way that a

turbo decoder uses information bit estimates� When there is no SI	 the a priori state

probabilities are replaced by the a posteriori state probabilities for branch transition

probability calculations� As in the IID case	 the appropriate a priori probability is

used for cases with side information� Thus	 for the MAP� decoder with j � �� �


�



p�yj�kjdk � i� Sk � m�Sk�� � m��

� p�yj�kjdk � i� Sk � m�Sk�� � m�� zj�k � �� � p�zj�k � �� �

p�yj�kjdk � i� Sk � m�Sk�� � m�� zj�k � �� � p�zj�k � �� ������


 p�yj�kjdk � i� Sk � m�Sk�� � m�� zj�k � �� � p�zj�k � �jy��y��� �

p�yj�kjdk � i� Sk � m�Sk�� � m�� zj�k � �� � p�zj�k � �jy��y��� ������

when there is no side information and

p�yj�k� zj�k � zjdk � i� Sk � m�Sk�� � m��

� p�yj�kjzj�k � z� dk � i� Sk � m�Sk�� � m�� � p�zj�k � z� ������

when there is side information�

��� Analytical Bounds

It is often impractical to generate simulation results for extremely low BERs� As

a result	 bounds are often calculated� First	 the bounds for the case of coherent

reception are discussed�


�



����� Coherent Reception

Turbo codes are linear	 so without loss of generality	 it will be assumed that the

all
zeros codeword was transmitted� For the case of coherent reception	 the union

bound is used to form an analytical expression for the probability of error� Note that

the union bound applies to the optimal decoder	 while the MAP iterations of the

turbo decoder are suboptimal� If Ad is the weight enumerator of the code and P��d�

is the pairwise error probability between the all
zeros codeword and a codeword of

weight d assuming maximum likelihood decoding	 the union bound for an �n� k� block

code is

Pword �
nX

d�dmin

Ad P��d�� ������

The only known way to exactly calculate Ad is via an exhaustive search involving

all possible input sequences� One solution is to calculate an average upper bound by

computing an average weight function over all possible interleaving schemes ����� The

average weight function in ���� was calculated as

Ad �
kX
i��

�
BBB	
k

i



CCCA p�dji� ������

where p�dji� is the probability that an interleaving scheme maps an input of weight

i to produce a codeword of total weight d and

�
BBB	
k

i



CCCA is the number of input frames


�



with weight i� Thus	

P word �
nX

d�dmin

kX
i��

�
BBB	
k

i



CCCA p�dji�P��d�� ������

The average upper bound to the word error probability	 Pword is computed by sum


ming over the weights of the input sequences	 i	 and the weights of the resultant

codewords	 d� A lower bound on the bit error probability can be computed in a simi


lar fashion by noting that for each summed value	 there can be no greater than i bit

errors out of the k total information bits�

P bit �
nX

d�dmin

kX
i��

i

k

�
BBB	
k

i



CCCA p�dji�P��d�� ������

An algorithm for calculating p�dji� is given in ���� and is described in the Appendix�

Thus	 in order to compute this bound	 we need only calculate P��d�� Over a channel

with both full
band thermal noise and partial
band jamming noise	 the pairwise error

probability can be calculated by conditioning on the number of jammed symbols�

P��d� �
dX
l��

P �error j El� � P �El� ������

where El is the event that l symbols are jammed and

P �El� �

�
BBB	

d

l



CCCA �l�� � ��d�l� ������

��



The fundamental approach to calculating pairwise error probabilities is to compute

log likelihood ratios� For the case where the decoder has no side information	 this is

di�cult since the receiver does not know which bits have been jammed� Thus	 for

analytical purposes	 the suboptimal decoder that makes bit decisions based on the

sum of the channel outputs will be considered� For this suboptimal decoder	

P �error j El� � Q

�
	
vuut EbRd

N�
�
� l

d
NJ

��



A � ����
�

If the decoder has side information	 log likelihood ratios are calculated in the normal

way and then calculate the probability of error�

P �error j El� � Q

�
B	
vuuutEbR

�
	 l

N�
� � NJ

��

�
d� l
N�
�



A


CA ������

����� Noncoherent Reception

For the case of noncoherent reception	 the approach is similar� Instead of invoking

the union bound	 however	 the Union
Bhattacharrya Bound is used	 where D is the

Bhattacharrya parameter and P��d� � Dd� Thus	

Pword �
nX

d�dmin

Ad P��d� ������

�
nX

d�dmin

AdD
d ������

��



and

Pword �
nX

d�dmin

kX
i��

�
BBB	
k

i



CCCA p�dji�Dd� ������

It was shown in ���� that with noncoherent reception	 optimal decoding with side

information leads to

D �

�����
����
�
R�
� ue�u

���I
���
� �u

q
�Es�NJ �du�

� Es�NJ � �����

��
�

Es�NJ

Es�NJ � ������

������

Square
law combining is a suboptimal method of decoding in AWGN	 but has been

shown to have an approximate performance loss of ���
 dB for reasonable SNRs �����

Because square
law combining is suboptimal	 an upper bound on its performance will

also be an upper bound to the performance of optimal decoding� The Bhattacharrya

parameter for square
law combining in worst case jamming is � � Es�NJ �

D �

�����
����
� �
���� expf� ��

�����g�  � �


e��

�  � �

���
��

� �

q
�� �  �� � � � �� �  �



� ���
��

��



��� Simulation Results

In this section	 the simulation results are presented for the cases of coherent and

noncoherent reception	 multiple bits per hop	 and cases with and without side infor


mation�

����� Coherent Reception

In this section	 the simulation results are described for cases with coherent de


tection� In the simulations	 the component encoders are rate �
�
recursive systematic

convolutional encoders with memory 
 and octal generators ���� ���� The packet size

is ��
� bits and the number of turbo code iterations is ��� The SNR of the full
band

thermal noise	 Eb�N�	 is set to �� dB� Cases with memory are simulated using � and


� bits per hop �BPH��

Figure ��� shows the plot of Eb�NJ needed to achieve a packet error rate �PER�

of ���� as a function of �� As would be expected	 cases with side information �SI�

performed better than their counterparts with no SI �NSI�� The SI and NSI curves

only meet when � � ���� In this case	 all states are jammed	 so side information

provides no additional information�

The plots in Figure ��� exhibit a tradeo� as the number of bits per hop increases�

For any memory	 no SI case	 where channel states are iteratively estimated	 per


formance cannot be better than that of the corresponding memory SI case� Because

channel state estimates will improve if the number of bits per hop increases	 we should

be able to get arbitrarily close to the corresponding memory	 SI result by increasing

��
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the memory� This is shown in Figure ��� by examining the performance di�erences

between corresponding SI and no SI cases for variable bits per hop� For memory	 no

SI cases	 reliable state information was computed� These state estimates provided

useful information which in turn aided the decoding process�

The downside of increasing the memory can be seen by analyzing the SI cases in

Figure ���� For all SI cases	 knowledge of the channel state nulls out the advantage

of more e�ective estimation� As a result	 one might expect the performance of SI

cases to be similar� However	 as shown in Figure ���	 this is clearly not the case� The

performance of SI cases degrades as the memory increases� The reason for this trend

in performance is that the number of independent hops per packet decreases as the

number of bits per hop increases �for �xed packet length�� Fewer independent hops

means less hopping diversity and therefore reductions in performance� Thus	 while

increased memory leads to improved channel estimates in cases without SI	 the best

possible performance of no SI cases appears to e�ectively decrease�

In order to gauge these results	 we refer to the application of convolutional codes

to a FH
SS system with one bit per hop� Using a rate ���	 memory 
 convolutional

code with maximal free distance	 this result for PER � ���� is shown in Figure ����

Performance of FH
SS systems is often measured by the worst case Eb�NJ across all

�� Using this criterion	 turbo codes show a gain of ��� � ��� dB over convolutional

codes	 depending on whether SI is available to the decoder�

��
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����� Noncoherent Reception

In this section	 simulation results for the case of noncoherent reception is pre


sented� For these simulations	 the component encoders are rate �
�
recursive system


atic convolutional encoders with memory 
 and octal generators ���� ���� The packet

size is ���� information bits and the number of decoder iterations is �� A helical

interleaver ���� is used to guarantee trellis termination �see Appendix�� The SNR of

the full
band thermal noise is set to �� dB� Cases with memory are simulated using

��	 ��	 and ��� bits per hop �BPH��

Figure ��
 shows the plot of minimumEb�NJ needed to achieve a packet error rate

�PER� of ���	 as a function of �� The results are similar to the coherent case� The

main result is the tradeo� which exists as the number of bits per hop increases� As the

memory increases	 the channel estimation improves because there are more channel

outputs which can be used to estimate the channel� However	 this improvement is

o�set because for �xed packet lengths	 increasing memory results in fewer independent

hops per packet� This tradeo� implies that for the NSI case with state estimation	

there should be exist an optimal number of bits per hop that yields best performance�

For � � �� this value was found to be on the order of ���

Due to inaccurate state estimation for large values of �	 there is not a dwell interval

length that is optimal for all values of �� To see this	 �rst consider the results of the �

bit per hop �IID� case in Figure ��
� While it is expected that the SI case outperforms

the NSI case without state estimation	 it is interesting to compare these results with

the IID NSI case when state estimation is performed� For low values of �	 the NSI

��
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case with state estimation yields better results than the NSI case without estimation�

Even with a single bit of observation	 state estimation is valuable if the disparity

between the SNRs of the estimated states �N�
�
and NJ

��
� is large� For larger values of �	

however	 it becomes di�cult to distinguish between the two states� Inaccurate state

estimates lead to an improper weighting in branch transition probability calculations

and thus	 overall performance degrades�

Next	 consider the results for the �� bits per hop �BPH� case� In Figure ���	

simulation results for four decoding cases are presented� SI	 NSI with iterative state

estimation	 NSI with state estimates computed once before the decoder �i�e� prior

to decoding	 p�zkjR� is calculated� these probabilities are then used for all decoder

branch transition probability calculations�	 and NSI with no state estimation� Note

that for cases without SI	 state estimation is bene�cial for � � ��� At higher values

of �	 however	 it becomes di�cult to discern between the two channel states� Thus	

channel state estimates become inaccurate and yield worse performance relative to

the decoder which does not uses state estimation� However	 because the NSI	 no

state estimation decoder shows a loss of less than � dB with respect to the SI case

for � � ��	 one solution is to use a hybrid decoder which decides whether or not to

calculate state estimates based on a threshold at � � ��

In addition	 note that when state estimates are computed	 the �� BPH case per


forms more poorly than even the IID case for � � ��� Clearly	 more observations will

lead to more reliable state estimates� However if these estimates are inaccurate	 they

adversely a�ect the decoder calculations for multiple bits� Thus for each value of �	

state estimation is bene�cial only when there is a su�cient number of observations

��
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to guarantee a reliable estimate�

While the results obtained when using �ve turbo decoding iterations have been

discussed	 it is interesting to note the performance of the decoder after each iteration�

The fast convergence of the turbo decoder is exhibited in Table ��� where the ��� BPH

cases both use � � ��	 Eb�NJ � ��� dB	 the � BPH NSI case without state estimation

uses � � ��	 Eb�NJ � ��� dB	 and the � BPH SI case uses � � ��	 Eb�NJ � ��� dB�

PER After ��� BPH� NSI ��� BPH� SI � BPH� NSI � BPH� SI

�st iteration ���e� �� ���e� �� ���e� �� 
��e� ��
�nd iteration ���e� �� ���e� �� ���e� �� ���e� ��
	rd iteration ���e� �� ���e� �� ���e� �� ���e� ��

th iteration ��
e� �
 ���e� �
 ���e� �
 ���e� �

�th iteration ��
e� �
 ��
e� �
 ���e� �
 ���e� �


Table ���� Performance of Turbo Codes By Iteration

The above results show that it is possible to bridge the gap between cases with and

without side information by iteratively computing state estimates for a large number

of bits per hop� However	 the performance improvements may still be unsatisfactory�

In the case of noncoherent reception	 one possible improvement would be to perform

phase estimation� If the phase during a hop is assumed to move very slowly and

an orthogonal signal set is used	 phase estimation can be performed using a method

analogous to state estimation� In this manner	 joint decoding and phase tracking can

be achieved�

In order to gauge these results	 we refer to the application of other coding methods

to FH
SS systems� In particular	 Pursley and Frank investigated the use of the Reed


Solomon code and the Reed
Solomon!convolutional concatenated code �RS
CC� in

��



����� For the Reed
Solomon code with no inner code	 they used a ���� ��� errors


only RS code over GF ���� with noncoherent reception and �� codewords per packet�

Thus	 the code had rate ��� and the total number of information bits per packet was

����� There were ��� binary symbols per dwell period� For the concatenated code	

they used a ���� ��� RS code for the outer code and a rate ���	 constraint length

� convolutional code with erasure threshold � � � for the inner code� In addition	

the convolutional code used soft decisions� The dwell interval spanned ��� binary

symbols and there were �� codewords per packet� The overall rate of the code was

��� and the number of information bits per packet was ����� Requiring a PER of

���		 these results are shown in Figure ����

Because the turbo code system with ��� BPH matches the parameters shown in

Figure ��� quite closely	 this system will be used for comparison� Notice the large

performance di�erence between the turbo code and the coding schemes of Figure

���� Comparing the worst
case performance of the turbo code system without side

information with the RS and RS
CC systems	 the turbo code system shows a gain of

��� and ��� dB	 respectively� Note that to achieve worst
case performance for turbo

codes	 the jammer needs to jam the entire band �� � ��	 while for RS and RS
CC

codes	 the jammer needs to jam only a small fraction of the band �about � � ��� and

� � ���	 respectively�� Another performance measure of FH
SS systems is ��	 the

minimum fractional jamming bandwidth required to induce any decoding errors� In

this case	 turbo codes save about �� and �� respectively�

While turbo codes seem to signi�cantly outperform the RS and RS
CC codes	

it is unfair to directly compare these results� First	 the coding rates of the coding

��
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systems are di�erent� ��� for the turbo code and ��� for the RS and RS
CC codes�

However	 this minor di�erence in code rate is not su�cient to explain the contrast in

performance� Another di�erence is in the treatment of the memory case without side

information� For turbo codes	 the memory of the channel is exploited by estimating

channel states and using this information in the branch transition probability calcula


tions� For the RS
CC code	 Pursley and Frank also use the memory to predict which

hops have been jammed	 but they do so in a very di�erent way� The goal is to declare

an erasure if the jamming in a dwell interval is su�ciently severe that many of the RS

symbols are likely to be in error� The metric they use to estimate the channel is the

Hamming distance between the binary code sequence chosen by the Viterbi decoder

and the binary sequence that results from making hard decisions on the output of

the demodulator� The resulting distance represents their estimate of the number of

errors produced by the demodulator	 �� The di�erent methods at which the turbo

code and RS
CC systems treat the uncertainty of the channel state makes it di�cult

to compare the performance of the systems� The �nal di�erence between the coding

systems is that the turbo decoder is more computationally complex� Even with the

recursions of the MAP decoders	 these calculations are iterated many times� Thus	 we

arrive at the familiar tradeo� between computational complexity and performance�

�




��
 Numerical Results

��	�� Coherent Reception

The numerical results of the bounds are shown in Figures ��� and ���� The bounds

are known to diverge for SNRs below � or � dB ����	 a range close to the area of

interest� Thus for coherent reception	 we cannot concretely determine the precision

of the bounds� Note	 however	 that for the case with SI	 the general shape of the

bounds conform to what is expected� At low SNRs	 the jamming noise power is

su�ciently high	 so the code performs most poorly when � � ���� At high SNRs	 the

jamming power is so low that spreading it across more frequencies e�ectively makes

the noise negligible� Thus	 coding performance is best at � � ��� for high SNRs�

For the NSI case	 a similar result is obtained at high SNRs� At low SNRs	 however	

the � � ��� case performs the best� There are two reasons these analytical results may

not be accurate� First	 recall that for analysis of the NSI case	 a suboptimal decoder

was used to calculate pairwise error probabilities� It is possible that the bound to the

optimal decoder might have a di�erent shape� A second explanation is that bounds

are generally loose at low SNRs� Thus	 the results of the bounds at low SNRs are

unreliable�

Figures ��� and ���� show BER bounds for rate ���	 memory 
 convolutional codes

with maximal free distance� These were calculated by using standard techniques� The

results show similar form to those of the turbo code	 but yield a higher BER for a

given Eb�NJ �

��
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��	�� Noncoherent Reception

Figure ���� shows the numerical results for noncoherent reception when side infor


mation is available to the receiver� In addition	 some simulation results are included

for reference� Note that the Bhattacharrya parameter	 D	 was calculated assuming

worst case jamming� As shown in Figure ����	 the average upper bound calculated for

noncoherent reception is tight for � � ���	 the value which yields worst case jamming�
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��� Conclusion

In this chapter	 the design and performance of turbo codes in frequency
hop spread

spectrum systems with partial
band interference has been described� The approach

was to adapt the calculation of branch transition probabilities inherent in the turbo

decoder� In particular for the case with multiple bits per hop	 the memory of the chan


nel was exploited by calculating reliable channel state estimates and used these esti


mates in the turbo decoder� After presenting analytical bounds and simulation results	

turbo codes were compared with other well known coding schemes and demonstrated

the superior performance of turbo codes in frequency
hop spread spectrum systems

with partial band interference� In the next chapter	 a frequency
hop spread spectrum

system is again considered	 but with slow Rayleigh fading rather than partial
band

interference�

��



CHAPTER �

Turbo Codes in FH	SS with Rayleigh Fading

��� Introduction

In the previous chapter	 turbo codes were considered in a frequency
hopped spread

spectrum system with partial
band interference� An iterative channel estimation

procedure was derived to determine which hops had been jammed and the iterative

decoding scheme associated with turbo codes was used to mitigate the e�ects of

jamming�

In this chapter	 the performance of turbo codes is investigated in a slow Rayleigh

fading channel� In particular	 a frequency
hopped spread spectrum system with full


band thermal noise and Rayleigh fading is considered� For cases where the data rate

exceeds the hopping rate �i�e� there exists multiple bits per hop� and there exists no

side information about the fading amplitudes	 the approach is to iteratively estimate

the fading levels� If these estimates are reasonably accurate	 they can be utilized by

the turbo decoder in the calculation of bit likelihoods to improve overall performance�

��



Simulation is performed for coherent and noncoherent reception	 variable number of

bits per hop	 and cases where fading side information is available or unavailable to

the decoder� It is shown that iterative channel estimation performed in conjunction

with iterative decoding can improve the overall decoding performance� Finally	 the

performance of a FH
SS system using standard fading assumptions is compared to the

performance of a measured fading channel� Due to inaccuracies in the assumptions	

the measured fading channel yields performance several decibels higher than the ideal

fading channel�

The remainder of this chapter is organized as follows� In Section 
��	 the system

model is presented	 including descriptions of the transmitter	 channel	 and the original

turbo decoder� In Section 
��	 the iterative decoding and iterative channel estimation

schemes are presented for the given system model� Analytical bounds are described

in Section 
�
� Simulation and analytical results are presented in Section 
��� In

Section 
��	 the methods are applied to a measured fading channel and the results

are compared to those described in the previous section� The results of Section 
��

are extended to a concatenated code consisting of a turbo code and a repetition code

in Section 
��� Finally	 the work is summarized in Section 
���

��



��� System Model

����� Transmitter

The transmitter is exactly the same as described in the previous chapter �Section

������	 thus it will not be repeated here�

����� Channel

Transmission occurs over a channel that includes full
band thermal noise and slow

Rayleigh fading� The thermal noise has power spectral density N�
� and is assumed

to take on a Gaussian distribution� The fading is assumed to be slow relative to the

hopping rate such that the instantaneous fade amplitude is constant over each hop�

In addition	 it is assumed that the frequency separation between frequency slots is

large relative to the coherence bandwidth� The coherence bandwidth is the smallest

frequency separation such that the channel response is uncorrelated at that frequency

separation� Thus	 if the frequency separation between frequency slots is large relative

to the coherence bandwidth	 the fade amplitudes can be assumed to be independent

between hops� Let �y��k� y��k� y��k� be the demodulator outputs that correspond to

dk	 p��k	 and p��k	 respectively� For the case of coherent detection	 the model of the

modulating channel and demodulator is

yi�k �
p
E ai�k ci�k � 
i�k� i � �� �� �� k � �� ���� N �
���

�




where the random variable ai�k represents the fade level for yi�k and takes on the nor


malized density	 f�a� � �ae�a
�
� In addition	 �c��k� c��k� c��k� � �����dk � ����p��k � ����p��k �

maps the binary encoded bits to f�����g	 and 
i�k � N��� N�
�
� represents the Gaus


sian thermal noise�

Next	 the channel outputs are described for the case of noncoherent detection�

Let ci�k � f�����g denote the coded bit input to the BFSK modulator� Then	 the

FSK matched �lter outputs can be expressed as

x
�c����
i�k �

p
E ai�k �ci�k ��� cos��i�k� � 


�c����
i�k �
���

x
�s����
i�k �

p
E ai�k �ci�k ��� sin��i�k� � 


�s����
i�k �
���

x
�c����
i�k �

p
E ai�k �ci�k ��� cos��i�k� � 


�c����
i�k �
�
�

x
�s����
i�k �

p
E ai�k �ci�k ��� sin��i�k� � 


�s����
i�k �
���

where the unknown phase	 �i�k	 is a uniform random variable from � to �
� ��x� y� �

� if x � y and ��x� y� � � otherwise� and 

�c����
i�k 	 


�s����
i�k 	 


�c����
i�k 	 and 


�s����
i�k are

independent Gaussian random variables with zero mean and variance N�
� �

��� Turbo Decoder for FH	SS

In this section	 the modi�cations to the turbo decoder for the FH
SS system is

described� The turbo decoding algorithm is dependent on what information is avail


able to the turbo decoder� Perfect knowledge of the instantaneous fade amplitudes

is referred to as fading side information �SI�� The design and performance of turbo

��



codes is investigated when fading SI is available or unavailable to the decoder� Al


though fading SI is generally unavailable to a decoder	 it is interesting to consider

the design and performance of systems with fading SI� In particular	 if a receiver

tries to estimate the instantaneous fading amplitudes	 its BER performance will be

lower bounded by the performance of the system with fading SI� In addition to con


sidering cases with and without fading SI	 the cases of independent and identically

distributed �IID� transmission �i�e� one bit per hop� and transmission over a channel

with memory �i�e� h bits per hop� are considered�

����� FH�SS without Memory

In this section	 FH
SS with one bit per hop is considered� The approach is to adapt

the calculation of the branch transition probabilities in ������ The modi�cations to

these calculations are dependent on the forms of SI available to the decoder� First

consider the case of coherent detection with and without fading side information

Coherent Detection� No Fading Side Information

The �rst case considered is the one where no fading side information �NSI� is

available to the turbo decoder� With just one bit per hop	 the estimation of fade

amplitudes would be unreliable� Hence	 for this case	 branch transition probability

calculations ����� are simply averaged over the fading density�

p�yj�kjdk � i� Sk � m�Sk�� � m��

�
Z �

�
p�yj�kjaj�k � a� dk � i� Sk � m�Sk�� � m�� p�aj�k � a� da �
���

��



�
Z �

�

�p

N�

e
� �yj�k�

p
E acj�k�

�

N� � a e�a
�
da �
���

�

p
N�p


�E �N��
e
� y�

N� �
�
p
E cj�k yj�k

�E �N��	��
e
� y�

E�N� Q

�
�
s
�E

N�

cj�k yj�kp
E �N�

�
�
���

where the data bit	 dk	 and the trellis state transition	 Sk � m and Sk�� � m�	 deter


mine the associated coded bit	 cj�k�

Coherent Detection� Fading Side Information

Next	 the case with fading SI is considered� In this case	 the channel outputs are

the side information and the matched �lter outputs� Hence	 in computing �����	 the

following joint conditional probability of information received is used�

p�yj�k� aj�kjdk � i� Sk � m�Sk�� � m��

� p�yj�kjaj�k� dk � i� Sk � m�Sk�� � m�� p�aj�k� �
���

�
�p

N�

e
� �yj�k�

p
Eaj�kcj�k�

�

N� � aj�k e
�a�j�k �
����

Noncoherent Detection� No Fading Side Information

As in the case of coherent detection	 fading estimation is not performed for the

IID	 NSI case� If the fading level and received phase are unknown �random�	 the

signal portion of the BFSK receiver output is also Gaussian� Thus	 if

y
����
j�k � �x

�c����
j�k �� � �x

�s����
j�k �� �
����

��



y
����
j�k � �x�c����j�k �� � �x�s����j�k �� �
����

then y����j�k and y
����
j�k are chi
square random variables with two degrees of freedom�

p�y
�l�
j�kjcj�k � c� �

������
�����

�
N���

e
�

y
�l�
j�k

N��� if c � l

�
N�

e
�
y
�l�
j�k
N� if c �� l

�
����

In addition	 if yj�k � fy����j�k � y
����
j�k g	 then

p�yj�kjcj�k� � p�y
����
j�k � y

����
j�k jcj�k� �
��
�

� p�y
����
j�k jcj�k� p�y����j�k jcj�k�� �
����

Thus	 branch transition probabilities in ����� can be computed using �
���� and �
�����

Noncoherent Detection� Fading Side Information

If fading side information exists	 then �
���
�
��� assume a form similar to the nonco


herent reception of BFSK modulated signals in AWGN with �E � a�kE� In this case	

the branch transition probability can be calculated using a noncentral chi
square

density�

p�y
�l�
j�k� aj�kjcj�k � c� � p�y

�l�
j�kjcj�k� aj�k� p�aj�k� �
����

�

�������
������

�
N�

e
�
y
�l�
j�k

� �E

N� I�

�
	�

q
y
�l�
j�k

�E

N�



A p�aj�k� if c � l

�
N�

e
�
y
�l�
j�k
N� p�aj�k� if c �� l

�
����
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Similar to the previous case	 branch transition probabilities can be computed using

a combination of �
���� and �
�����

����� FH�SS with Memory

In the previous section	 estimates of the fading levels were not explicitly computed

for the IID	 NSI case since it was assumed that estimates based on just one channel

output would be unreliable� In this section	 the modi�cation to the turbo decoder for

FH
SS with h bits per hop	 h � �	 is considered�

First	 the design of the hopping structure is detailed� The hopping structure is

important for cases with memory because unlike the IID case where deeply faded

hops a�ect single bits	 such hops now a�ect multiple bits� For instance	 if c��k	 c��k	

and c��k are the encoded bits corresponding to information bit dk	 then it would be

bene�cial to send these bits over separate hops� If they were sent over the same

hop and that hop was deeply faded	 it would be di�cult to decode that information

bit correctly� In addition	 because the convolutional encoders display memory �i�e�

c��k is dependent on c��k	 c��k��	 c��k��	 and so on�	 it makes sense for similar reasons

to separate consecutively coded bits by as much as possible� Using L � N�h	 the

structure of the hopper which satis�es the above requirements is identical to the one

described in Table ���� Thus	 it will not be repeated here�

For cases with multiple bits per hop and no side information	 the lack of side infor


mation is compensated by generating estimates of the channel� In Chapter �	 turbo

��



codes for FH
SS with partial
band interference was considered� Letting zk represent

the state of the channel �i�e� whether the channel is jammed or unjammed�	 the ap


proach in Chapter � was was to calculate a posteriori probabilities for each jamming

state	 p�zkjy��yj� for j � �� �	 and send this information in addition to p�dkjy��yj�

between decoders� Thus	 information bit estimates and jamming state estimates were

iteratively improved� If it is assumed that the fading amplitude is constant over the

entire hop	 the analogous task of computing a posteriori probabilities for quantized

values of fading amplitudes can be performed�

Note that the structure of the hopper shown in Table ��� allows channel estimates

to be calculated in a manner similar to the way information bit estimates are calcu


lated in the original turbo decoder� For instance	 each MAP decoder in the original

turbo decoder calculates a posteriori probabilities of the information bits given two of

the three received observation vectors� This information is passed to the next MAP

decoder which uses this information as a priori information bit probabilities� Sim


ilarly	 by using the structure of the hopper in Table ���	 two
thirds of the relevant

observation sequence is available to each MAP decoder so that a posteriori probabil


ities for each hop can be calculated� This information can be passed between MAP

decoders and be used as a priori channel state probabilities�

If the iterative fade estimates can be computed reliably	 they can be used in the

turbo decoder to improve performance� The turbo decoder computes likelihoods es


timates based on the channel outputs	 yi�k �
p
E ai�k ci�k � 
i�k	 which are in turn a

function of the transmitted data and the channel conditions� If reliable information

regarding the channel is known	 the turbo decoder will be more successful in esti


��



mating information bits� In a similar fashion	 channel estimates can be improved if

reliable estimates of the information bits are available� Thus	 in addition to potential

improvements in error performance	 joint iterative decoding and channel estimation

may also improve the convergence rate� Quicker decoder convergence is equivalent to

fewer decoder iterations which may o�set the complexity introduced by the iterative

estimation scheme�

The general procedure is as follows� At each component decoder	 the information

bit estimates generated by the previous component decoder will be used to compute

fading estimates� Next	 the decoder will compute a new bit likelihood using these

fading estimates and pass this information to the next component decoder� This

process will be iterated several times� Having summarized the iterative decoding

and estimation process	 the details of computing fading estimates and using these

estimates in the turbo decoding algorithm can be described�

The calculation of fading estimates is analogous to the manner in which jamming

state estimates were computed in Chapter �� Let R be the vector of �N received

channel outputs available to the MAP decoder and let k � �� ���� 	N
h
enumerate each

hop� Furthermore	 let R � Rk 	 �Rk where Rk � fRk�ighi�� are the channel outputs

received over hop k and �Rk � f �Rk�ig�N�hi�� are the channel outputs which are not

received over hop k� Finally	 let ak be the fade amplitude for all information received

hop k� Consider the quantization of the fading amplitudes into Q regions	 B�� ���� BQ	

and the corresponding Q output levels or centroids	 l�� ���� lQ where li � Bi� The

Lloyd
Max quantizer is utilized to obtain the quantized levels and regions� Then	 the

calculation of a posteriori fading probabilities is as follows for i � �� ���� Q�

��



p�ak � BijR� �
p�Rjak � Bi� � p�ak � Bi�

p�R�
�
����

� p�Rkjak � Bi� � p�ak � Bi� � p�
�Rk�

p�R�
�
����

� p�Rkjak � Bi� � p�ak � Bi� �K �
����


 p�Rkjak � Bi� � �p�ak � BijRk� �K �
����

where K is a normalizing factor chosen to make the probability density function sum

to � and �p�ak � BijRk� is the fading estimate based on the previous MAP decoder�s

information bit estimates�

Note that as h	 the number of bits per hop	 increases	 the complexity of directly

computing p�Rkjak � Bi� rises exponentially as a function of the coded bit sequence

ck�

p�Rkjak � Bi� � p�Rk��� ���� Rk�hjak � Bi� �
����

�
X

ck������ck�h

p�Rk��� ���� Rk�hjak � Bi� ck��� ��� ck�h� p�ck��� ��� ck�h��
����

To overcome this problem	 the following approximation was developed�

�� Initialize

p�ak � BijRk��� �
p�Rk��jak � Bi� p�ak � Bi�

p�Rk���
�
��
�

�
X

c�f�����g

p�Rk��jak � Bi� ck�� � c� p�ck�� � c� p�ak � Bi�

p�Rk���
�
����

��




 X
c�f�����g

p�Rk��jak � Bi� ck�� � c�p�ck�� � c��p�ak � BijRk�

p�Rk���
�
����

�� Recursion

p�ak � BijRk��� Rk��� ���� Rk�i��� Rk�i�

�
p�Rk�ijak � Bi� Rk��� ���� Rk�i��� p�ak � BijRk��� ���� Rk�i���

p�Rk�ijRk��� ���� Rk�i���
�
����


 p�Rk�ijak � Bi� p�ak � BijRk��� ���� Rk�i���
p�Rk�ijRk��� ���� Rk�i���

�
����

where �
���� is approximate because memory in the encoder causes the matched �lter

outputs	 Rk�i	 to be correlated� Note	 however	 that the hopping structure separates

consecutive bits by �L � �	 thus reducing the correlation between bits received over

a given hop�

Once the fading estimates have been computed	 they can be used in the turbo

decoder� When there is no SI	 the a priori probabilities of the fade levels are replaced

by the respective a posteriori probabilities for branch transition probability calcula


tions� As in the IID case	 the appropriate a priori probabilities are used for cases

with SI�

Fading NSI

First consider the case without fading side information� The fade amplitudes are

quantized to Q regions	 B�� ���� BQ and then fade estimates are computed� These

estimates are used by the turbo decoder in the calculation of branch transition prob


��



abilities� Note that the apriori probabilities of the fade levels are replaced by the

estimates generated by the previous MAP decoder� The branch transition probabil


ity calculation for the MAP� decoder is shown below�

p�yj�kjdk � i� Sk � m�Sk�� � m��

�
QX

m��

p�yj�kjaj�k � Bm� dk � i� Sk � m�Sk�� � m�� p�aj�k � Bm� �
����



QX

m��

p�yj�kjaj�k � Bm� dk � i� Sk � m�Sk�� � m�� p�aj�k � Bmjy��y�� �
����

Fading SI

For the case where fading side information is available	 branch transition proba


bilities are calculated using the same equations as the IID case	 �
���� for coherent

reception	 and both �
���� and �
���� for noncoherent reception�

p�yj�k� aj�k � ajdk � i� Sk � m�Sk�� � m�� �

p�yj�kjaj�k � a� dk � i� Sk � m�Sk�� � m�� p�aj�k � a� �
����

��� Analytical Bounds

It is often impractical to achieve simulated results for extremely low BERs� As a

result	 bounds are often calculated� Here	 the union bound is invoked to obtain an

upper bound on the probability of error�

�




Turbo codes are linear	 so without loss of generality	 it will be assumed that the

all
zeros codeword was transmitted� Let Ad be the weight enumerator of the code

and let P��d� be the pairwise error probability between the all
zeros codeword and a

codeword of weight d assuming maximum likelihood �ML� decoding� Note that this

bound applies to the optimal ML decoder while the turbo decoder which attempts to

achieve ML decoding with iterative MAP decoding is suboptimal� The bound for an

�n� k� block code is

Pword �
nX

d�dmin

Ad P��d�� �
����

The only known way to exactly calculate Ad is via an exhaustive search involving

all possible input sequences� One solution is to calculate an average upper bound by

computing an average weight function over all possible interleaving schemes ����� The

average weight function in ���� was computed as

Ad �
kX
i��

�
BBB	
k

i



CCCA p�dji� �
����

where p�dji� is the probability that an interleaving scheme maps an input of weight i

to produce a codeword of total weight d and

�
BBB	
k

i



CCCA is the number of input sequences

with length k and weight i� An algorithm for calculating p�dji� was described in �����

��



Thus	

P word �
nX

d�dmin

kX
i��

�
BBB	
k

i



CCCA p�dji�P��d�� �
��
�

The average upper bound to the word error probability	 Pword	 is computed by

summing over the weights of the input sequences	 i	 and the weights of the resultant

codewords	 d� A lower bound on the bit error probability can be computed in a

similar fashion by noting that for each summed value	 there can be no greater than i

bit errors out of the k total information bits�

P bit �
nX

d�dmin

kX
i��

i

k

�
BBB	
k

i



CCCA p�dji�P��d�� �
����

In order to compute the bounds in �
��
� and �
����	 the calculation of pairwise

error probabilities must be described� For the case of coherent detection with fading

side information	 the pairwise error probability conditioned on each of the independent

fading amplitudes is calculated below assuming the ML decoder	 maximum ratio

combining	 is employed�

P��dja�� a�� ���� ad� � Q

�
	
vuut�Es

N�

dX
k��

a�k



A � �
����

By applying the upper bound Q�
p
x� y� � �

�Q�
p
x�e�y�� and averaging over the

respective independent fading distributions	 the following upper bound ���� on the

pairwise error probability can be obtained�

��



P��d� �
Z
a�
���
Z
ad
pA�a�� ���� ad�Q

�
	
vuut�Es

N�

dX
k��

a�k



A da����dad �
����

� �

�

�
��



 

� �  

������ �

� �  

�d��
�
����

where  � Es
N�
�

For the case of coherent detection without fading side information	 it is di�cult

to analyze the exact pairwise error probability due to the complexity of �
���� As a

result	 two upper bounds on the pairwise error probability are considered� The �rst

bound that is considered was derived by Hagenauer ����� Consider the approximation

of the conditional probability density function �pdf� found in �
��� by a Gaussian pdf�

p�yj�kjdk � i� Sk � m�Sk�� � m�� 
 �p

N�

exp �yj�k �
q
EsE�a�ck�

��N� �
����

where E�a� is the expectation of each independent fading amplitude with normalized

Rayleigh density� Then the following upper bound on the pairwise error probability

can be calculated �����

P��d� � ed�����

�
�
q
� � �

�
� �q

� � �
�
� �

�
�
d

�
�
��

where 	 �
p
 � � ��

The second bound that is considered is the mismatch Cherno� bound ����� Con


sider a discrete memoryless channel with input alphabet X	 output alphabet Y 	 and

��



true transition probabilities p�yjx� where x � X and y � Y � In addition	 consider a

block code of length N which consists of M codewords x�	 ���	 xM� The maximum

likelihood receiver computes the following decisions regions

"m � fy � p�yjxm� � p�yjxm�� for all m� �� mg� m � �� ����M �
�
��

and chooses codeword xm if y � "m�

There are many instances when the true transition probabilities are not used in the

receiver� Conventional receivers are often designed for the ideal linear channel with

additive white Gaussian noise	 although the actual channel may have nonlinearities

and other forms of interference� Another reason for considering mismatched channel

statistics is because there are occasions when statistics are di�cult to track	 perhaps

because they are quickly time varying� In any case	 assume that the decoder uses

p��yjx� as the transition probabilities instead of p�yjx�� For such cases	 the mismatch

Cherno� bound can be used to upper bound the pairwise error probability�

Consider a block code of length N which consists of M codewords x�	 ���	 xM�

Based on the mismatched channel statistics the following decision regions can be

computed�

"m � fy � p��yjxm� � p��yjxm�� for all m� �� mg� m � �� ����M �
�
��

In the above equation	 the codeword xm is chosen if y � "m� Now assume without

loss of generality that codeword x� is transmitted� If y � "m	 then

��



� �
�
p��yjxm�
p��yjx��

��
� � � � �
�
��

and the probability of error can be upper bounded as

PE� �
MX

m��

X
y�
m

p�yjx�� �
�

�

�
MX

m��

X
y�
m

p�yjx��
�
p��yjxm�
p��yjx��

��
�
�
��

�
MX

m��

X
y

p�yjx��
�
p��yjxm�
p��yjx��

��
�
�
��

�
MX

m��

NY
n��

X
y

p�yjx�n�
�
p��yjxmn�

p��yjx�n�

��
�
�
��

where �
�
�� assumes a discrete memoryless channel �i�e� p��yjx� � QN
i�� p

��yijxi���

The overall error probability can be computed by minimizing over � the error

associated with each codeword	 PEi for i � �� ���M 	 and averaging the errors over

all codewords� In this section	 the pairwise error probability of coherent reception

without fading side information is determined�

Assume that a binary repetition code of length d is employed and the codewords	

fx�k � �gdk�� and fx�k � �gdk��	 are transmitted with probability p� and p�	 respec


tively� The mismatched receiver considered here is the equal gain combiner� Thus	

p��yk jx�k�
p��yk jx�k� � ey and p�ykjxlk� is given in �
���� For i �� j	 the error probability of

transmitting fxikgdk�� is

��



Pe�i �
dY

k��

Z
p�ykjxik�

�
p��ykjxjk�
p��ykjxik�

��
dyk �
�
��

�

��
�
Z
p�ykjxik�

�
p��ykjxjk�
p��ykjxik�

��
dyk

��
�
d

� �
�
��

The bound in �
�
�� is computed using numerical integration� The pairwise error

probability is computed by minimizing �
�
�� over � � � and averaging the error

probabilities over both codewords�

P��d� �
�X
i��

pi min
�

Pe�i� �
����

For the case of noncoherent detection without fading side information	 the Cher


no� bound yields the well
known result ����

P��d� �
�

 �� �  �

�� �  ��

�d
� �
����

��� Simulation and Numerical Results

In the simulations	 the component encoders are rate �
� recursive systematic con


volutional encoders with memory 
 and octal generators ���� ���� Each packet has

���� information bits and the number of turbo decoding iterations is ��� Cases with

memory are simulated using �� and �� bits per hop �bph�� The fading amplitudes

were quantized to � levels �Q � ��� Simulation results for the cases with coherent

��



detection are shown in Figures 
��	 
��	 and 
��� Figure 
�� contains the results for

cases with � bph	 Figure 
�� contains the results for �� bph	 and Figure 
�� contains

the results for �� bph�

First	 consider the simulation results for cases with � bph� As expected	 the

case with fading side information performs better than the cases without fading side
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information� The gain of side information is approximately � dB at a BER of �����

For cases without fading side information	 one of two methods were applied� The �rst

method calculated branch transition probabilities directly	 using ���� In the second

method	 fading estimates were computed using the iterative procedure outlined in

Section ���	 and these channel estimates were used in the iterative decoder� Note that

��



for � bph	 the performance of these two methods are comparable� Fading estimates are

inaccurate when based on just one bit of information and thus yield no performance

gains� The performance	 in fact	 is slightly worse despite the additional complexity

of iteratively computing fading estimates�

Also shown in Figure 
�� are the analytical bounds for cases with fading side infor


mation and without fading side information �no channel estimation�� The Cherno�

NSI bound yields an improvement of approximately � dB over the Hagenauer NSI

bound for BER � ����� This gain	 however	 comes at greater complexity due to the

minimization of the bound across di�erent SNRs� The bound for fading SI is both

tight and simple to compute�

Next	 consider the plots with �� bph shown in Figure 
��� In this case	 the gain of

computing fade estimates is approximately ��� dB at a BER of ���� with respect to

the NSI	 no estimation case� In fact	 the estimation procedure is virtually computing

perfect side information	 as it yields results just a couple tenths of a dB from the

SI case� It is also interesting to note that fade estimation for �� bph yields better

performance than the estimation case for � bph� Increasing the number of bits per hop

increases the reliability of the fading estimates	 which in this comparison	 improves the

system performance� However	 it remains to be seen whether increasing the channel

memory yields better performance in general for cases without side information for a

�xed block length�

Finally	 consider the performance for cases with �� bph shown in Figure 
���

The SI case and the NSI case with fading estimation yield performance curves that

are virtually indistinguishable� With �� bits of information	 fading estimates yield

��
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nearly perfect SI� Note	 however	 that while fading estimation at �� bph yields better

performance than estimation at � bph	 it yields worse performance in comparison

with estimation at �� bph�

The channel memory�s bene�cial and adverse e�ects on performance can be ex


plained as follows� Increasing channel memory yields more accurate channel estimates

since the estimates are based on more observations� Hence	 NSI cases perform more

closely to their respective SI cases as the channel memory grows� Increasing the

channel memory	 however	 reduces the total number of independent hops used per

packet if the packet size is assumed constant� Fewer independent hops per packet lead

to a degradation in performance� This corresponds to the results shown in Figures


��	 
��	 and 
�� where cases with SI yield progressively worse performance as the

number of bits per hop increase� Hence	 if the number of bits per hop is large such

that the estimation process yields virtually perfect SI	 increasing the channel memory

further will lead to performance degradation� This tradeo� for NSI cases implies the

existence of an optimal number of bits per hop to achieve best performance� For this

case	 this number was approximately ���

The performance of turbo codes in FH
SS with noncoherent reception is shown

in Figures 
�
	 
��	 and 
��� The results are similar to that of the coherent case� As

the number of bits per hop increase	 the iterative estimation process performs better	

bridging the gap with side information cases� However	 as the number of bits per hop

increase	 BER performance deteriorates because there are fewer independent hops per

packet� Here	 �� bits per hop yields the best performance among the performances

of �	 ��	 and �� bits per hop�

��
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��
 Performance of Turbo Codes in FH	SS with

Realistic Fading

In this section	 the coded performance of frequency
hopped spread spectrum is

considered in a measured fading channel� Often times	 idealistic channel assumptions

are made for analytical convenience� For instance	 in previous sections	 it was assumed

that the fade amplitudes were constant over a hop and independent between hops�

While results using such assumptions are important	 they may not mimic realistic

situations closely� For instance	 there may exist time selectivity due to vehicle motion

and frequency selectivity depending on the multipath fading pro�le� The existence

of time selectivity means that the fade amplitudes will not be constant over a hop�

Depending on the fading pro�le and the bandwidth of the FH
SS system	 it may or

may not be a good assumption to assume independence of fade amplitudes between

hops� In this section	 the performance of two measured channels is considered in

order to gauge the relevance of channels which make idealistic fading assumptions�

The section is concluded by comparing the measured channel performance of turbo

codes to the performance of RS codes used in the Single Channel Ground and Airborne

Radio System �SINCGARS� which is a military packet radio network�

��	�� System Model

The encoder is the same as the one described in Section ��� with M � �	 where

a data sequence of length N is put into the encoder and for each information bit	

three coded bits are produced� The encoded bits are then channel interleaved to

��



guarantee the hopping structure shown in Table ���� BPSK modulation is considered

with coherent detection� The resultant signal is frequency hopped� It is assumed that

the frequency hopper will choose each of q frequencies or subchannels with uniform

probability� If Rb is the data rate	 then the bandwidth of each subchannel is Wsc �

Rb�Rc where Rc � ��� is the rate of the code� The transmission bandwidth of the

system is W � q �Wsc�

As mentioned above	 two measured channels are considered� The �rst measured

channel	 called Pine Street �PS� is taken from an urban area and has �� independent

paths ����� American Legion Drive �ALD� is the second measured channel and it is

taken from a suburban area and has � independent paths ����� The delay spreads

of ALD and PS are �����s and �����s	 respectively� The average delay pro�les are

shown below in Tables 
�� and 
�� where the values are rounded to the nearest tenth�

Excess ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����
Delay ��s


Amplitude ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

Table 
��� Delay Pro�le for Pine Street

Excess Delay ��s
 ��� ��� 
�� 
�� ��

Amplitude ��� ��� ��
 ��� ���

Table 
��� Delay Pro�le for American Legion Drive

The channel model	 shown below	 takes the standard form for coherent detection	

but the fade amplitudes	 are taken from the measured channel� Similar to before	

���



�c��k� c��k� c��k� � �����dk � ����p��k � ����p��k ��

yi�k �
p
E ai�k ci�k � 
i�k� i � �� �� �� k � �� ���� N �
����

where ai�k is the measured fading amplitude and 
i�k is IID with density N��� N�����

If Wsc exceeds the hopping rate	 Rh	 there exist multiple bits per hop� The

coherence time is de�ned as the separation in time for which the channel response is

uncorrelated at that time separation� If the coherence time is larger than the duration

of each hop	 then the bits transmitted over a hop will be correlated �i�e� the fading

amplitudes change slowly over a hop�� If both of the above conditions are satis�ed	

fading estimation is employed using the recursion described in Section 
����� Note

that di�erent from the previous application	 the instantaneous fade amplitudes are

not constant over each hop� However	 because they are assumed to move slowly	

the estimation technique can treat them as being constant without much loss in

performance� Thus at the receiver	 the tasks of joint channel estimation and turbo

decoding will again be employed�

��	�� Simulation Results

The simulations for the realistic fading channels of ALD and PS used a trans


mission bandwidth of approximately �� MHz with �� subchannels and a data rate

of �
��� bits per second� The packet size is ���� information bits per packet and

cases with �	 ��	 and �� bits per hop are considered� The carrier frequency is set to

�� MHz� For cases with no fading side information	 the estimation technique uses �

���



levels of quantization �i�e� Q � ��� Ten decoding iterations are considered�

In Figure 
��	 the simulation results for the Pine Street channel at a velocity of ��

meters per second is shown� In order to achieve a BER of ���� for cases with fading
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side information	 between � and � dB is necessary	 depending on the number of bits

per hop� In contrast	 previous results which made �idealistic fading assumptions� �i�e�

constant fade over each hop	 independence between hops� needed ��
 dB to achieve a

BER of ���� �see Figures 
��	 
��	 
���� The root of the approximately � dB di�erence

in performance is the level of frequency and time diversity in the channels� Previous

results assumed independence between frequency slots	 whereas for the measured

channels	 there is at times strong correlation between slots� Hence	 the FH
SS system

���



with measured channels exhibits less frequency diversity� In addition	 the idealistic

fading cases assumed constant fades over the duration of a hop	 but independence

between hops� Hence	 for these cases	 the correlation time can be approximated by

the hop duration	 which for �	 ��	 and �� bits per hop are � �s	 ��� �s	 and 
�
 �s	

respectively� In contrast	 the coherence times of the Pine Street and American Legion

Drive channels at �� meters per second are both approximately �� ms� Hence	 the

measured channels have considerably less time diversity as well�

The simulation results for the American Legion Drive channel at a velocity of

�� meters per second are shown in Figure 
��� In order to achieve a BER of ����	

approximately �
 � �� dB is needed for cases with fading side information� Hence	
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even with respect to the Pine Street Channel	 performance has degraded about �

dB at BER of ����� While the coherence time of ALD and PS are approximately

the same at �� ms	 the coherence bandwidth for ALD is considerably larger than

that of PS� The reason for this can be seen in the delay pro�les of the two measured

channels shown in Tables 
�� and 
��� ALD essentially has two dominant paths with

amplitudes ��� and ���� If these two paths are deeply faded	 the entire frequency

spectrum is brought down� Thus for the ALD channel	 �deep fades� not only occur

with more regularity	 but the extent of the fades is also broadened�

For both the PS and ALD channels	 the tradeo� described for the idealistic channel

is evident in Figures 
�� and 
��� While channel estimation for �� bits per hop yielded

performance virtually identical to that of the case with perfect SI	 its performance is

worse than that of the NSI	 �� bits per hop case since there are fewer hops per packet�

In the simulations for the PS and ALD measured channels	 the bit errors were

extremely bursty� In fact	 the vast majority of the packets were corrected within a

single iteration� This information can be exploited by adding a cyclic redundancy

code �CRC� to detect after each iteration if the packet was decoded correctly� When

a packet is decoded error
free	 the decoder accepts the next packet for input� Thus	

while slightly reducing the e�ective code rate	 a CRC substantially reduces the de


coder complexity by saving unnecessary decoder iterations�

While comparisons have been drawn between the performance of turbo codes in

ideal and measured fading channels	 it would be interesting to compare the per


formance of turbo codes to the performance of other codes in a measured fading

channel� For this comparison	 simulations were run over the measured channel called

��




San Diego Street� The transmission bandwidth of ������ MHz is composed of ���

frequency slots with ����� kHz per slot� The data rate is ���� bits per second� The

turbo
coded system is similar to the one described above	 but instead uses a packet

size of �
�� information bits and ��� coded bits per hop� Hence	 there are a total

of �� frequency hops per packet� Its performance is compared to the performance of

several RS codes�

First	 a ���� ��� errors
only Reed
Solomon �RS� code with �
 codewords per packet

�i�e� �

� information bits per packet� is considered� This rate ��� code is assumed to

transmit �
 RS symbols per hop� Each RS symbol spans � bits	 so there are ��� bits

per hop and a total of �� hops per packet� In addition	 the packet is interleaved across

codeword symbols so that each hop contains a symbol from each of the codewords�

This code is referred to as RS
�� Table 
�� shows the hopping structure for the

RS
based codes where �i� j� represents the jth symbol of the ith RS codeword�

HOP � ��	�� ��	�� ��� ���	�� ��
	��
HOP � ��	�� ��	�� ��� ���	�� ��
	��

� � � � � �
� � � � � �

HOP �� ��	��� ��	��� ��� ���	��� ��
	���
HOP �� ��	��� ��	��� ��� ���	��� ��
	���

Table 
��� Structure of Frequency Hopper for RS
Based Codes

The second RS code is a ���� ��� errors and erasures RS code where each � bit

symbol has a parity bit added� This rate ���� code also transmits �
 codewords per

packet and �
 RS symbols per hop but now has �

 bits per hop� Two strategies of

declaring erasures are considered�

���




 If the number of parity check errors within a hop exceeds some threshold	 �T 	

then all the symbols within the hop are erased� Call this code RS
�� The RS
�

code is similar to the error control code used in SINCGARS	 a frequency
hop

packet radio network used in the military�


 Each RS symbol with a parity check error is erased� Call this code RS
��

Figure 
�� shows the simulation results for turbo and RS
based codes in San Diego

Street� First	 consider the simulation results of the turbo
coded systems� For ��� bits

per hop	 the performance of the turbo
coded systems is approximately � dB at a BER

of ����� The gain of side information at this BER is approximately ��� dB�

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

O
 (dB)

B
E

R

RS−1
RS−2
RS−3
Turbo NSI
Turbo SI

Figure 
��� Performance of Turbo Codes and Reed
Solomon Codes in Coherent FH
SS
with Measured Fading� San Diego St�

���



Next	 compare the performance of the turbo code to the RS
based codes� At BERs

of ����	 turbo codes show a gain of approximately � dB� It is interesting to note that

the RS
� code	 an errors and erasures decoder	 which erases entire hops performs

worse than RS
�	 the errors only decoder� Plotted in Figure 
�� is the performance

of the best threshold	 �T 	 for RS
�� Erasing entire hops is an e�ective procedure if

the channel memory is long� However	 in this channel	 deep fades do not span entire

hop durations� Thus	 the �T which yields best performance �typically some number

around ��� is the one which guarantees that no hops are erased� In e�ect	 RS
� is an

errors
only decoder which performs worse than RS
� because it expends extra energy

transmitting the parity check bits� The more e�ective errors and erasures decoder is

RS
� which shows a gain of approximately � dB with respect to RS
� at a BER of

���
� This performance	 however	 is still far from the performance of the turbo
coded

systems� Note that it is not fair to directly compare RS and turbo codes� The turbo

decoding algorithm is fairly complex and requires knowledge of channel statistics�

The RS code	 on the other hand	 is a hard decision code which is simpler to decode

and does not require any knowledge of the channel�

��� Performance of a Concatenated Turbo Code

in FH	SS with Realistic Fading

In this section	 a concatenated code consisting of a turbo code and a repetition

code are considered for a frequency
hopped spread spectrum system� For this system	

���



the performance of the concatenated turbo code is compared to the performance of a

concatenated code consisting of a Reed
Solomon outer code and convolutional inner

code�

��
�� System Model

The turbo encoder is the same as the one described in Section ��� with M � �

where a data sequence of length N is put into the encoder and for each information

bit	 three coded bits are produced� The turbo
coded bits are then encoded using a

length L repetition code� This can alternatively be viewed as a spreading process

where each encoded bit is spread using an L chip sequence� These chips are passed

through an interleaver which guarantees that each chip within an L chip sequence

is transmitted over a di�erent hop� BPSK modulation is considered with coherent

detection� The resultant signal is frequency hopped� It is assumed that the frequency

hopper will choose each of the q frequencies or subchannels with uniform probability�

If Rb is the data rate and Rc is the rate of the code	 then the bandwidth of each

subchannel can be expressed as Wsc � L�Rb�Rc� The transmission bandwidth of the

system is W � q �Rc� A block diagram of the transmitter is shown in Figure 
����

Two measured channels are considered� Pine Street and American Legion Drive�

Both are described in greater detail in the previous section� The channel model shown

below takes a standard form	 but the fade amplitudes	 are taken from the measured

channel� Similar to before	 �c��k� c��k� c��k� � �����dk � ����p��k � ����p��k � and fyi�k�lgLl��

���



Figure 
���� Block Diagram of the Transmitter for the FH
SS System

are the L chips corresponding to each coded bit ci�k�

yi�k�l �
p
E ai�k�l ci�k � 
i�k�l� i � �� �� �� k � �� ���� N � l � �� ���� L �
����

where ai�k�l is the fading amplitude and 
i�k�l is i�i�d� with density N��� N�����

Because the turbo decoding algorithm is dependent on what information is avail


able to the decoder	 multiple cases will again be considered� In the �rst case	 it

will be assumed that the fading amplitudes are perfectly known to the decoder� In

the second case	 such side information is assumed to be unavailable and thus fade

estimates need to be computed�

First	 consider the case where fading side information �SI� is available to the de


coder� For the system with diversity and known fade levels	 maximumratio combining

is optimal� If

xi�k �
LX
l��

ai�k�l yi�k�l i � �� �� �� k � �� ���� N �
��
�

���



then branch transition probabilities ����� can be computed using

p�xi�kjfai�k�lgLl��� dk � i� Sk � m�Sk�� � m�� �
�q

�
��xi�k
e
�

�xi�k��xi�k �
�

���xi�k �
����

where

�xi�k �
p
E ci�k

LX
l��

a�i�k�l i � �� �� �� k � �� ���� N �
����

��xi�k �
N�

�

LX
l��

a�i�k�l i � �� �� �� k � �� ���� N� �
����

For the second case	 there is no fading side information �NSI� available to the

decoder� As before	 the approach is to use the information inherent in the memory to

compute estimates of the instantaneous fade amplitudes� If fade estimates are com


puted using the same procedure detailed in Section 
����	 maximum ratio combining

can be performed using the estimated fading value	 �ai�k�l�

�ai�k�m �
QX

n��

ln p�ai�k�m�BnjR�� i � �� �� �� k � �� ���� N � m � �� ���� L� �
����

��
�� Simulation Results

The simulations for the realistic fading channels of ALD and PS use a transmission

bandwidth of approximately �� MHz with �� subchannels	 data rate of ���� bits per

second	 hopping rate of ���� hops per second	 and a spreading factor of L � �� Thus	

the chip rate is �

 Kchips per second	 the chip duration is about ��� microseconds	

and there are �� chips per hop� Two velocities are considered� �� meters!second

���



�m!s� and � m!s� The coherence time of the channels at �� m!s is about �� ms

while at � m!s	 the coherence time is in�nity� The carrier frequency is set to �� MHz�

For cases with no fading side information	 the estimation technique use � levels of

quantization �i�e� Q � ��� The simulation results are shown in Figure 
��� and Figure


��� for various levels of side information and di�erent velocities �shown in meters per

second�� Also shown in the �gures are simulation results for a FH
SS system which

consists of a ���� �
� RS outer code	 a rate ���	 constraint length � convolutional

code	 and ���� �� biorthogonal modulation�
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���� Comparison of Codes in FH
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At BERs of ����	 the turbo code �TC� shows performance improvements ranging

from 
 � � dB for Pine Street and � � 
 dB for American Legion Drive over the
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concatenated code �CC� consisting of the Reed
Solomon and convolutional codes� The

gain was larger for cases without SI due to reliable channel estimates� Finally	 note

that the performance of an outer turbo code concatenated with an inner repetition

code could be improved if a more powerful rate ��L code was considered instead of

the repetition code�

��� Conclusion

In this chapter	 the performance of turbo codes in FH
SS with Rayleigh fading was

investigated� The approach was to exploit the channel memory by calculating channel

state estimates for unknown channel parameters� Simulation results con�rmed that

such an approach may be useful in mitigating the e�ects of fading for FH
SS� In

addition	 measured fading channels were considered� They were found to yield results

considerably worse than that of �ideal� fading channels	 which were de�ned to have

constant fade amplitudes over a hop	 but independent amplitudes between hops�

Further investigation into the performance of channel coding in time and frequency

selective channels is needed to properly assess the performance of real fading channels�

Finally	 turbo codes were shown to yield signi�cant improvement over the codes used

for SINCGARS� Such results explain why turbo codes are being considered for next

generation military radios�
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CHAPTER �

Turbo Codes in FH	SS with Partial	Band

Interference and Rayleigh Fading

��� Introduction

Iterative channel estimation paired with the iterative decoding algorithm associ


ated with turbo codes have been shown to yield large performance gains over other

commonly known error control codes and decoding algorithms� In Chapter �	 the

e�ective use of jamming state estimates for channels with partial
band interference

was demonstrated� In Chapter 
	 fading estimates were shown to improve decod


ing performance� In this chapter	 these techniques are applied to FH
SS with both

partial
band jamming and slow Rayleigh fading�

The outline for this chapter is as follows� In Section ���	 the system model will

be discussed and in Section ���	 the turbo decoder subject to this model will be

described� Simulation results are presented in Section ��
� Finally	 a brief conclusion

is made in Section ����

��




��� System Model

����� Transmitter

Because the transmitter is exactly the same as the one described in Section �����	

the description will not be repeated here�

����� Channel

The description of the jammer is analogous to Section ������ In addition to partial


band interference and full
band thermal noise	 the channel has slow Rayleigh fading�

The thermal noise has double
sided power spectral density N�
� and the partial
band

interference has double
sided power spectral density NJ
�� which covers a fraction �

of the band� Both types of interference are each assumed to be Gaussian random

variables� It is assumed that over each hop	 the fading amplitude is constant and

that between hops	 the fading amplitudes are independent� In addition	 each hop

is assumed to be entirely jammed if it is jammed at all� For the case of coherent

detection	 the model for the demodulator outputs is

yi�k �
p
E ai�k ci�k � 
i�k� i � �� �� �� k � �� ���� N �����

where ai�k is a normalized Rayleigh random variable with density f�a� � �ae�a
�
	

�c��k� c��k� c��k� � �����dk � ����p��k � ����p��k �	 and 
i�k � N��� N�
�
� zi�k � NJ

��
��

For the case of noncoherent detection	 the FSK outputs can be represented as the

sum of the attenuated signal and Gaussian noise�

���



x
�c����
i�k �

p
E ai�k �ci�k ��� cos��i�k� � 


�c����
i�k �����

x
�s����
i�k �

p
E ai�k �ci�k ��� sin��i�k� � 


�s����
i�k �����

x
�c����
i�k �

p
E ai�k �ci�k ��� cos��i�k� � 


�c����
i�k ���
�

x
�s����
i�k �

p
E ai�k �ci�k ��� sin��i�k� � 


�s����
i�k �����

where ai�k is a normalized Rayleigh random variable with density f�a� � �ae�a
�
	 ci�k

is the input to the FSK modulator	 �i�k is a uniform random variable from � to �
	

�a�b � � if a � b and �a�b � � otherwise	 and 

�c����
i�k 	 


�s����
i�k 	 


�c����
i�k 	 and 


�s����
i�k are

Gaussian random variables with zero mean and variance	 N�
�
� zi�k

NJ
��
	 which depends

on whether the state is jammed�

Note that if the phase and fading amplitudes are unknown �random�	 the signal

portion of the FSK receiver output is Gaussian� Thus	 if

y
����
j�k � �x�c����j�k �� � �x�s����j�k �� �����

y
����
j�k � �x�c����j�k �� � �x�s����j�k �� �����

then y����j�k and y
����
j�k are chi
square random variables with two degrees of freedom�
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��� Turbo Decoder for FH	SS with Partial	Band

Interference and Rayleigh Fading

The turbo decoding algorithm is dependent on what information is available to

the turbo decoder� In this chapter	 two forms of side information �SI� are consid


ered� Jamming side information reveals perfect knowledge as to which bits have been

jammed� Fading side information yields perfect knowledge of each fading amplitude�

We examine cases where jamming and!or fading side information is available �SI� or

unavailable �NSI�� In addition	 the cases of independent and identically distributed

�IID� transmission �i�e� one bit per hop� and transmission over a channel with memory

�i�e� h bits per hop� are considered�

����� FH�SS without Memory

In this section	 the case of one bit per hop is considered� The approach is to adapt

the calculation of the branch transition probabilities in ������ The modi�cations to

these calculations is dependent on the forms of side information available to the

decoder�

Jamming SI and Fading SI

First	 consider the case where both jamming and fading side information are

available to the turbo decoder� In this case	 ����� is calculated using ������

p�yj�k� aj�k� zj�kjdk � i� Sk � m�Sk�� � m��

���



� p�yj�kjaj�k� zj�k� dk � i� Sk � m�Sk�� � m�� p�aj�k� p�zj�k� �����

For coherent detection	

p�yj�kjaj�k� zj�k� dk � i� Sk � m�Sk�� � m�� �
�q

�
��zj�k
e
� �yj�k�aj�kcj�k��

���zj�k �����

where ��zj�k �
N�
� � zj�k

NJ

�� �

For noncoherent detection	

p�yj�kjcj�k� zj�k� � p�y
����
j�k � y

����
j�k jcj�k� zj�k� ������

� p�y
����
j�k jcj�k� zj�k� p�y����j�k jcj�k� zj�k� ������

and

p�y
�l�
j�kjcj�k� zj�k � z� �

����������
���������

�
���z

exp��y
�l�
j�k�

�E

���z
�I��

q
y
�l�
j�k
�E���z � if cj�k � l

�
���z

exp��y
�l�
j�k

���z
� if cj�k �� l

������

where �E � a�j�k E�

Jamming SI� Fading NSI

The second case is the one where jamming side information is available to the de


coder	 but fading side information is unavailable� For this case	 the branch transition

probability calculations ����� for coherent reception are calculated using

���



p�yj�k� zj�kjdk � i� Sk � m�Sk�� � m��

�
Z �

�
p�yj�k� zj�kjaj�k � a� dk � i� Sk � m�Sk�� � m��p�a� da ������

�
Z �

�
p�yj�kjaj�k � a� zj�k� dk � i� Sk � m�Sk�� � m�� �ae�a

�
p�zj�k� da ����
�

�
Z �

�

�q
�
��zj�k

e
� �

���zj�k

�yj�k�a cj�k��
�ae�a

�
p�zj�k� da ������

�
�p�zj�k�

�
e
�

y�
j�k

���zj�k

�
B	 �zj�kp

�

�
yj�kcj�kp

�
e

y�
j�k

����zj�k Q

�
	� yj�kcj�k

�zj�k
p
�



A


CA ������

where � � ���zj�k � ��

For the case of noncoherent reception	 y
����
j�k and y

����
j�k are chi
square random vari


ables with two degrees of freedom �Section �������

p�y
�l�
j�kjcj�k� zj�k� �

��������
�������

�
����zj�k

� �
� �
e
�

y
�l�
j�k

����zj�k
� �
� � if cj�k � l

�
���zj�k

e
�

y
�l�
j�k

���zj�k if cj�k �� l�

������

Again	

p�yj�kjcj�k� zj�k� � p�y����j�k � y
����
j�k jcj�k� zj�k� ������

� p�y
����
j�k jcj�k� zj�k� p�y����j�k jcj�k� zj�k�� ������
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Jamming NSI� Fading SI

For the third case	 jamming side information is assumed to be unavailable to the

decoder	 but fading side information is available� In this case	 the calculation of

branch transition probabilities	 shown below	 includes a mixture of Gaussians which

uses ����� for coherent detection and uses ������ and ������ for noncoherent detection�

p�yj�k� aj�kjdk � i� Sk � m�Sk�� � m��

� p�yj�kjaj�k� zj�k � �� dk � i� Sk � m�Sk�� � m�� p�aj�k� p�zj�k � �� �

p�yj�kjaj�k� zj�k � �� dk � i� Sk � m�Sk�� � m�� p�aj�k� p�zj�k � �� ������

Jamming NSI� Fading NSI

The �nal case that is considered is the case where neither jamming nor fading

side information is available to the turbo decoder� Branch transition probabilities are

calculated using the equation below and a weighted sum of either ������ for coherent

detection or ������ and ������ for noncoherent reception�

p�yj�kjdk � i� Sk � m�Sk�� � m��

�
Z �

�
p�yj�kjaj�k� zj�k � �� dk � i� Sk � m�Sk�� � m�� p�aj�k� p�zj�k � �� da �

Z �

�
p�yj�kjaj�k� zj�k � �� dk � i� Sk � m�Sk�� � m�� p�aj�k� p�zj�k � �� da������

���



����� FH�SS with Memory

In this section	 the modi�cations to the turbo decoder for the case of multiple

bits per hop are discussed� Much of the setup is similar to the cases with memory

in Chapters � and 
� For cases with multiple bits per hop and no side information	

we attempt to compensate for the lack of side information by generating estimates

of the channel� In this chapter	 both p�zkjy��yj� and p�zkjy��yj� for j � �� � will be

computed and sent in addition to p�dkjy��yj� between decoders� Thus	 information

bit estimates and channel state estimates will be iteratively improved�

The calculation of jamming and fading estimates is exactly the same as described

in Sections ����� and 
����� Once both the fading and jamming estimates have been

computed	 they are ready to be used in the turbo decoder� Fading and jamming

estimates are used in a manner analogous to the way that the turbo decoder uses

information bit estimates� When there is no SI	 the a priori probabilities are replaced

by the respective a posteriori probabilities for branch transition probability calcula


tions� As in the IID case	 the appropriate a priori probabilities are used for cases

with side information� Thus	 for the MAP� decoder	 we can again consider the four

cases with varying degrees of side information	 using ����� for cases with coherent

detection and using both ������ and ������ for cases with noncoherent detection�

���



Jamming SI� Fading SI

For the case with both jamming and fading side information	 branch transition

probabilities use the same equations as in the IID Case ������

p�yj�k� aj�k � a� zj�k � zjdk � i� Sk � m�Sk�� � m�� ������

� p�yj�kjdk � i� Sk � m�Sk�� � m�� aj�k � a� zj�k � z� p�aj�k � a� p�zj�k � z�

Jamming SI� Fading NSI

For the case with jamming side information	 but no fading side information	 the

fading amplitudes are quantized to Q levels	 l�� ���� lQ	 and utilize the fading estimates

provided by the previous MAP decoder�

p�yj�k� zj�k � zjdk � i� Sk � m�Sk�� � m��

�
QX
t��

p�yj�kjdk � i� Sk � m�Sk�� � m�� aj�k � lt� zj�k � z�p�aj�k � lt�p�zj�k � z�������



QX
t��

p�yj�kjdk � i� Sk � m�Sk�� � m�� aj�k � lt� zk � z�p�aj�k � ltjy��y��p�zj�k � z�

����
�

Jamming NSI� Fading SI

For the case where the decoder has fading side information	 but no jamming side

information	 calculation of branch transition probabilities uses the jamming estimate

calculated by the previous MAP decoder�

���



p�yj�k� aj�k � ajdk � i� Sk � m�Sk�� � m��

�
�X

z��

p�yj�kjdk � i� Sk � m�Sk�� � m�� aj�k � a� zj�k � z�p�aj�k � a�p�zj�k � z� ������



�X

z��

p�yj�kjdk � i� Sk � m�Sk�� � m�� aj�k � a� zj�k � z�p�aj�k � a�p�zj�k � zjy��y��

������

Jamming NSI� Fading NSI

Finally	 for the case where neither jamming nor fading side information is available	

both the jamming and fading estimates calculated by the previous MAP decoder are

used in branch transition probability computations�

p�yj�kjdk � i� Sk � m�Sk�� � m��

�
QX
t��

�X
z��

p�yj�kjdk � i� Sk � m�Sk�� � m�� aj�k � lt� zj�k � z�p�aj�k � lt�p�zj�k � z�

������



QX
t��

�X
z��

p�yj�kjdk � i� Sk � m�Sk�� � m�� aj�k � lt� zj�k � z� �

p�aj�k � ltjy��y��p�zj�k � zjy��y�� ������

Note that in the IID �one bit per hop� case	 state estimates were not computed�

This would be impractical	 since estimates would be based on only one bit of infor


mation� With memory	 there are more bits of information	 thus allowing for more

reliable estimates�
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��� Simulation Results

In this section	 the simulation results are presented� The component encoders are

rate �
�
recursive systematic convolutional encoders with memory 
 and octal gener


ators ���� ���� The packet size is ���� information bits and the number of decoder

iterations is �� A helical interleaver ���� is used to guarantee trellis termination� The

SNR of the full
band thermal noise	 Eb�N�	 is set to �� dB� Cases with memory are

simulated using ��� bits per hop �BPH�� The number of quantization levels	 Q	 for

the fading amplitudes is either 
 or ��

Figure ��� shows the simulation results for the coherent reception of turbo codes

in frequency
hop spread spectrum with Rayleigh fading and partial
band interference�

The plots show the minimum Eb�NJ required to achieve a packet error rate of ���	

for di�erent values of �� Note that �F NSI	 J SI �Q�
�� translates to the case where

there is no fading side information	 there is jamming side information	 and the fading

amplitudes were quantized to 
 levels for the estimation procedure�

First	 consider the case of one bit per hop� At � � �	 all hops are jammed	 so the

decoder which is assumed to know � essentially has jamming side information� Thus	

it is not surprising that the performance curves for the F NSI	 J NSI and F NSI	 J SI

cases meet at � � �� Similar results holds for the F SI	 J NSI and F SI	 J SI cases�

Note that at � � �	 the gain of having fading side information is about � dB�

Next	 consider the results for the IID case when � � �� While it is expected that

the F SI	 J SI case outperforms the F NSI	 J NSI case	 it is interesting to compare

the importance of having either fading side information �i�e� F SI	 J NSI� or jamming

��
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side information �i�e� F NSI	 J SI� for each value of �� For � close to �	 the decoder

essentially has jamming side information	 so the F SI	 J NSI outperforms the F NSI	

J SI case in this region� Alternatively for decreasing values of �	 NJ
��

increases in

magnitude� Thus	 for small values of �	 the e�ects of jamming begin to dominate

the e�ects of fading� As a result	 jamming side information is more important than

fading side information for low values of �� Because	 fading side information is more

important for high values of � and jamming side information is more important for low

values of �	 the F NSI	 J SI and F SI	 J NSI curves should cross at some intermediate

value of �� According to Figure ���	 this occurs at approximately � � ���

Next consider the case of ��� bits per hop� At � � �	 the F SI	 J SI case for

��� bits per hop does not meet the F SI	 J SI case for � bit per hop	 a phenomena

which occurred for FH
SS with partial
band interference without fading� In these

simulations	 the fade amplitude was assumed to be constant over the duration of

each hop� For the case with ��� bits per hop	 the duration of each fade is longer and

consequently	 the coherence time is larger� Seen in the previous chapter	 this results

in performance degradations� The loss of slow fading for ��� bits per hop is about

��� dB at � � � with respect to the IID case �for fading side information cases��

Next	 consider the memory cases with � � �� Due to reliable jamming state

estimates	 the di�erence between the performances of cases with and without jamming

side information is virtually negligible� In addition	 note that the calculation of

quantized fading estimates yields promising results� The loss with respect to cases

with fading side information is approximately ��
 dB when there are eight quantized

levels and ��� dB when there are four quantized levels�

���



Figure ��� shows the simulation results for the noncoherent reception of turbo

codes in frequency
hop spread spectrum with Rayleigh fading and partial
band inter


ference� The results are similar in form to the results yielded by coherent detection�

For the IID case	 there is a threshold at which fading side information becomes more
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Figure ���� Performance of Turbo Codes in Noncoherent FH
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and Partial
Band Interference

important than jamming side information� Similar to the case of coherent detection	

this value is about � � ��� For the memory case	 jamming state estimates can be ac


curately computed	 explaining the small performance di�erences between cases with

and without jamming side information� Finally	 the the e�ective usage of quantized

fade estimates is demonstrated� The loss with respect to the F SI case is about ���

���



dB for Q � � and ��� dB for Q � 
�

��� Conclusions

In this chapter	 the design and performance of turbo codes for frequency
hop

spread spectrum with partial
band interference and Rayleigh fading was investigated�

For cases with memory	 the jammer and fading amplitude was assumed to remain

constant over the entire hop� In this case	 channel estimation for both the fading

level and jammer state was performed� Finally	 simulation results were discussed� In

the next chapter	 we move away from frequency
hop spread spectrum systems and

consider a more general type of channel	 the Gilbert
Elliot burst channel�

���



CHAPTER 


Turbo Codes for Burst Channels


�� Introduction

In previous chapters	 the performance of iterative decoding and estimation were

investigated in speci�c channels with memory� In this chapter	 a more general channel

with memory	 the Gilbert
Elliot burst channel	 is considered� The Gilbert
Elliot

channel is a two state hidden Markov model where one state represents a bad channel

state which typically has high error probabilities and the other state represents a good

channel state which has low error probabilities� For the burst channel model	 turbo

code calculations require knowledge of the hidden Markov state� As in previous

chapters	 the approach is to estimates unknown channel state parameters and use

these in the turbo decoder� This chapter is organized as follows� In Section ���	 the

systemmodel is described� The iterative estimation and decoding scheme is presented

in Section ���� The simulation results are described in Section ��
� Finally	 in Section

���	 a brief summary of this work is presented�

���




�� System Model

	���� Transmitter

The turbo encoder is formed by concatenating the constituent codes in parallel

and then separating the codes by an interleaver ����� The encoder takes as input the

data sequence dk�f�� �g and then produces three streams� the information bits dk	 the

parity bits p��k of the �rst component encoder with input dk	 and the parity bits p��k

of the second component encoder with interleaved dk as input� BPSK modulation is

considered with coherent demodulation�

	���� Gilbert�Elliot Channel

The Gilbert
Elliot channel is a two state hidden Markov model �HMM� where one

state represents a bad state which typically has high error probabilities and the other

state is a good state which generally has low error probabilities� This model is shown

below in Figure ���	 where at time k	 zk � � represents the bad state and zk � �

represents the good state� The probability of moving from state zk � i to zk�� � j is

denoted by pij �

Figure ���� Hidden Markov Model of the Gilbert
Elliot Channel

���



If transmission occurs over the good state at time k	 the noise is assumed to be

additive white Gaussian noise �AWGN� with power spectral density N��� where N�

typically has low magnitude� Similarly	 for transmission over the bad state	 the noise is

white Gaussian with power spectral density N��� where N� � N�� Let �y��k� y��k� y	�k�

be the channel outputs and let �c��k� c��k� c	�k� � �����dk � ����p��k � ����p��k �� Then

assuming coherent detection	 the model for the channel outputs is

yi�k �
p
E ci�k � 
zi�k� i � �� �� �� k � �� ���� N � z � �� �

where 
zi�k � N��� Nz��� assumes a zero mean Gaussian density with conditional

variance Nz which depends on the channel state	 zi�k � z�

Note that this channel model is similar to the channel model of a FH
SS system

with an on
o� jammer� If the jammer is on	 the signal is corrupted by jamming

interference and thermal noise �bad state�� If the jammer is o�	 the signal is corrupted

by only thermal noise �good state�� If the hopping rate is much faster than the rate

at which the jammer changes its signal structure	 then it is likely that most of the

bits within a hop will be either jammed or unjammed� This could be modeled in the

�gure above by high values of p�� and p��� Alternatively	 the states of the channel

model could represent whether an entire hop has been jammed or not� If � is the

probability that a hop is jammed	 then the transition probabilities could be set such

that the steady state probability limk�� p�zk � �� � ��

���




�� Turbo Decoder for the Gilbert	Elliot Channel

The turbo decoding algorithm is dependent on what information is available to the

turbo decoder� This chapter considers three cases� known channel state� unknown

channel state but known HMM transition probabilities pij� and unknown channel

state and unknown pij�

	���� Known Channel State

If the state	 zi�k	 is known	 then the modi�cation to the turbo decoder is straight


forward� The decoder can simply use the relevant noise variance to calculate the

branch transition probabilities� Thus	 ����� can be calculated using

p�yj�kjdk � i� Sk � m�Sk�� � m�� zj�k � z� �
�p

Nz

e�
�
Nz

�yj�k�
p
E cj�k�� �����

where dk and the trellis state transition Sk � m and Sk�� � m� determine the

associated coded bit cj�k�

	���� Unknown Channel State� Known Transition Probabil�

ities

If the channel state is unknown	 but the transition probabilities are known	 then

����� can be calculated by invoking total probability with respect to the channel state�

p�yj�kjdk � i� Sk � m�Sk�� � m��

���



� p�yj�kjdk � i� Sk � m�Sk�� � m�� zj�k � �� � p�zj�k � �� �

p�yj�kjdk � i� Sk � m�Sk�� � m�� zj�k � �� � p�zj�k � �� �����

�
�p
�
��

e
� �

���
�

�yj�k�
p
E ci�k�

�

� p�zj�k � �� �

�p
�
��

e
� �

���
�

�yj�k�
p
E cj�k�

�

� p�zj�k � �� �����

Note that p�zj�k � z� is not known� One possibility is to use the steady state

probability limk�� p�zj�k � z�� This can be obtained by solving v � vP 	
P

l vl � �	

and setting p�zj�k � l� � vl�

Another possibility is to estimate the probability of being in each state given the

received sequence and knowing the HMM transition probabilities� For k � �	

p�zi�� � �jyi��� � p�yi��jzi�� � �� p�zi�� � ��

p�yi���
���
�

where p�zi�� � �� is set to the steady state probability v�� For k � �	

p�zi�k � �jyi��� ���� yi�k� �
p�yi�kjzi�k � �� yi��� ��� yi�k��� p�zi�k � �� yi��� ��� yi�k���

p�yi��� ��� yi�k�
�����


 p�yi�kjzi�k � �� p�zi�k � �� yi��� ��� yi�k���
p�yi��� ��� yi�k�

�����

where ����� is approximate because encoder memory yields correlated channel outputs

fyi�jgkj��� Furthermore	 ����� is computed using

p�zi�k � �� yi��� ���� yi�k��� �
�X

z��

p�zi�k � �� zi�k�� � z� yi��� ���� yi�k��� �����

�
�X

z��

p�yi�k��jzi�k � �� zi�k�� � z� yi��� ���� yi�k��� �

���



p�zi�k � �� zi�k�� � z� yi��� ���� yi�k��� �����

�
�X

z��

p�yi�k��jzi�k�� � z� �

p�zi�k � �� zi�k�� � z� yi��� ���� yi�k��� �����

and ����� is computed using

p�zi�k � a� zi�k�� � b� yi��� ���� yi�k���

� p�yi��� ���� yi�k��jzi�k � a� zi�k�� � b� p�zi�k � a� zi�k�� � b� ������

� p�yi��� ���� yi�k��jzi�k�� � b� p�zi�k � ajzi�k�� � b� p�zi�k�� � b� ������

�
p�zi�k�� � b� yi��� ���� yi�k���

p�zi�k�� � b�
p�zi�k � ajzi�k�� � b� p�zi�k�� � b� ������

� p�zi�k�� � b� yi��� ���� yi�k��� pba� ������

Combining ����� and ������	

p�zi�k � �� yi��� ���� yi�k��� �
�X

z��

p�yi�k��jzi�k�� � z� p�zi�k�� � z� yi��� ���� yi�k��� pz������
�

Note that due to the recursive nature of ����
�	 ����� can be computed e�ciently�

	���� Unknown Channel State� Unknown Transition Proba�

bilities

If the HMM transition probabilities are unknown	 it is necessary to estimate the

transition probabilities of the chain� Once the transition probabilities have been adap


��




tively estimated	 the channel states can be estimated and then used by the turbo

decoder	 as seen above� Thus the problem is to �nd the HMM model which maxi


mizes the probabilities of the observation sequence� The Baum
Welch re
estimation

procedure yields an ML estimate of the HMM which is a locally optimal solution�

Before describing the Baum
Welch algorithm	 it is necessary to detail the proce


dure of calculating the observation sequence probability given the HMM model ��
��

Calculation of Observation Sequence Probability

Let the channel outputs be denoted as y � fyigNi�� and the state sequence cor


responding to y be denoted as z � fzigNi��� Furthermore	 let 
 � f
ig�i�� for


i � P �z� � i� represent the initial state distribution	 let A � fpijg for i � �� �

and j � �� � be the set of state transition probabilities	 and let B � fbj�k�g represent

the probability distributions of the observation symbol where bj�k� � p�ykjzk � j��

If the hidden Markov model is denoted by " � �
�A�B�	 then the Baum
Welch pro


cedure attempts to maximize p
�y�	 the probability of the observation sequence	 y	

given the HMM model	 "� But �rst	 we need to know how to compute p
�y�� Let

p
�x� represent the probability density function of some random variable x given the

HMM model	 "�

p
�y� �
X

z�����zN

p
�y� z� ������

�
X

z�����zN

p
�yjz� � p
�z� ������

�
X

z�����zN

�
NY
i��

p
�yijzi�� � �
�pz�z�pz�z� � � � pzN��zN � ������

���



�
X

z�����zN

�
NY
i��

bzi�i�� � �
�pz�z�pz�z� � � � pzN��zN � ������

where it is assumed that the observations are independent	 p�y�� ���� yk� �
Qk
i�� p�yi��

Note that for encoders with memory �e�g� convolutional codes�	 this assumption is

invalid� For such cases	 ������ and ������ become approximations�

If there are m states	 this direct computation would take on the order of �N �

mN calculations� This is computationally intensive as the complexity grows ex


ponentially in N � As a result	 a recursive procedure was established� If gi�j� �

p
�y�� y�� ���� yi� zi � j� represents the probability of the partial observation sequence	

then the forward procedure can be computed as shown below� For the calculations	 let

yk� � fyigki�� and assume that the observations are independent	 p�yk�� �
Qk
i�� p�yi��

�� Initialization

g��i� � 
ibi��� � � i � m ������

�� Induction

gk���j� � p
�y
k��
� � zk�� � j� ������

�
X
i

p
�y
k
�� yk��� zk�� � j� zk � i� ������

�
X
i

p
�y
k
�jyk��� zk�� � j� zk � i� p
�yk��� zk�� � j� zk � i�������

�
X
i

p
�y
k
�jzk � i� p
�yk��jzk�� � j� zk � i� � ������

p
�zk�� � jjzk � i� p
�zk � i�

���



�
X
i

p
�y
k
�� zk � i� p
�yk��jzk�� � j� pij ����
�

� �
mX
i��

gk�i�pij�bj�k � �� � � k � N � �� � � j � m ������

�� Termination

p
�y� �
NX
i��

p
�y� zN � i� ������

�
NX
i��

gN �i� ������

To summarize the steps	 the �rst step initializes the forward probabilities by the

initial state probability and probability of the �rst observation� The second step

essentially considers all states from the previous time step and weights them by the

associated state transition and observation probability� The termination step simply

computes the desired p
�y� by summing over the states of the forward variable� For

hi�j� � p
�yi��� yi��� ���� yNjzi � j�	 the backward procedure takes a similar form ��
��

�� Initialization

hN �i� � � � � i � m ������

�� Induction

hk�i� �
Pm

j�� hk���j�pijbj�k � �� � � k � N � �� � � j � m ������

We now have the tools to describe the Baum
Welch procedure�

���



Baum�Welch Re�estimation Procedure

If �k�i� j� is de�ned to be the probability of being in state i at time k and in state

j at time k � � given the model and observation sequence	 then for the observation

sequence	 yN� � y�� y�� ���� � yN	

�k�i� j� � p
�zk � i� zk�� � jjyN� � ������

�
p
�zk � i� zk�� � j�yN� �

p
�yN� �
������

�
p
�zk � i� zk�� � j�yN� �P

i

P
j p
�zk � i� zk�� � j�yN� �

������

where for independent observations	 p�yk�� �
Qk

i�� p�yi�	

p
�zk � i� zk�� � j�yN� �

� p
�y
k
�jzk � i� zk�� � j�yNk��� p
�zk � i� zk�� � j�yNk��� ������

� p
�y
k
�jzk � i� p
�yk��jzk � i� zk�� � j�yNk��� p
�zk � i� zk�� � j�yNk�������
�

� gk�i� p
�yk��jzk�� � j� p
�y
N
k��jzk � i� zk�� � j� p
�zk�� � jjzk � i� ������

� gk�i� bj�k � �� p
�y
N
k��jzk�� � j� pij ������

� gk�i� bj�k � ��hk���j� pij � ������

Combining ������ and ������	

�k�i� j� �
gk�i�pijbj�k � ��hk���j�Pm

i��

Pm
j�� gk�i�pijbj�k � ��hk���j�

������

���



If �k�i� is de�ned as the probability of being in state i at time k given the obser


vation sequence and model	 �k�i� can be related to �k�i� j� by

�k�i� � p
�zk � ijyN� � ������

�
mX
j��

�k�i� j� ���
��

If �k�i� is summed over all k	 the expected number of transitions made from state

i can be determined� Similarly	 summing �k�i� j� over all k gives the expected number

of transitions from state i to j� Using these results	 a set of re
estimation formulas

can be made for pij and bj�k��

pij �
expected number of transitions from state i to state j

expected number of transitions from state i

�

PN��
k�� �k�i� j�PN��
k�� �k�i�

���
��

���
��

bj�n� �
expected number of times in state j and observing yn � y

expected number of times in state j

�

PN
k���yn�y �k�j�PN

k�� �k�j�
���
��

Based on the above procedure	 if " is iteratively used in place of " and the re


estimation calculations are repeated	 the probability of y given the HMM model can

���



be improved until some limiting point is reached� The �nal result of this procedure is

an ML estimate of the HMM� However	 it should be pointed out that the algorithm

only leads to a local maxima	 where many local maxima might exist�

Note that at each iteration	 the Baum
Welch procedure inherently calculates

p�zi � j� through �k�i�� Hence	 after the Baum
Welch algorithm converges	 it is

not necessary to recalculate the state estimates as we did before�


�� Simulation Results

In this section	 simulation results are presented for the Gilbert
Elliot channel� For

all simulations	 the two component encoders were rate �
�
convolutional encoders with

memory 
 and octal generators ���� ���� Each block had ���� information bits and

a total of � turbo decoding iterations were used� In addition	 the SNR of the good

state	 Eb�N�	 was set to 
 dB for all realizations�

Figure ��� shows the BER performance of the system when the channel state is

known for di�erent values of pij� This set of performance curves serve as a reference

from which the following cases can be based� Note that the average received SNR

is not the same for each of the systems in Figure ���� The average received SNR is

�� log Eb
v�N��v� N�

where vi represents the steady state probability of being in state i�

For the �rst system �p�� � �	 p�� � ���	 v� � � and v� � �� For the last system

�p�� � ��	 p�� � ���	 v� � �� and v� � ��� For the middle three systems	 v� � v� � ���

If we assume that N� � N�	 then for a given N� and N�	 the �rst system has the

lowest average SNR and the second system has the highest average SNR� The average

�
�
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SNR of the middle three systems is the same and their average SNR is between those

of the �rst and last systems� This explains the di�erence in performance between the

three clusters of curves �grouped by v� and v��� Among the curves with v� � v� � ��	

as expected	 performance degrades if the sequence of states is more bursty �i�e� higher

values of p�� and p����

The simulation results for the case of known HMM transition probabilities but

unknown state are shown in Figures ��� and ��
� At low SNRs	 the a posteriori state

estimation method performs better than the steady state method as the decoder
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successfully uses the information inherent in the memory of the channel� There is	

however	 still a large gap between these two cases and the known channel state case�

With just one bit transmitted over each state	 channel state estimates are far from

reliable and this degrades decoding performance� As the SNR increases	 the perfor


mance di�erence between the graphs of Figures ��� and ��
 decreases as the channel

estimation method has a more di�cult time distinguishing between the two states�

Note	 however	 that for high SNRS	 the performance of both systems is comparable
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to that of the known channel state case� At high SNRs	 the two state system essen


tially reduces to a one state	 high SNR system� Thus	 even though channel estimation

�
�



methods might lose accuracy at high SNRs	 the performance is still good since precise

state estimation is not necessary in high SNR regions�

The simulation results of the channel estimation scheme in Figure ��
 showed

that the bene�t of the system which employed channel estimation was small since

estimation was based on just one transmitted bit over each state� For practical

purposes	 this model is unrealistic because for reasonably high data rates	 the channel

normally does not exhibit large �unctuations from bit to bit� A more realistic model

might have several bits transmitted over each state� Increasing the memory of the

channel would lead to improved channel estimates� In Figure ���	 the bene�t of

increased channel memory is demonstrated for p�� � p�� � ����

Similar to previous chapters	 increasing the memory reduces the e�ective block

length of the code� This explains the loss in performance of the known state case

when the channel model has �� bits transmitted per state rather than � bit� The

bene�t of increasing channel memory is that channel estimation improves� At low

SNRs	 the channel estimation technique is more easily able to distinguish between

the two hidden Markov states� Hence	 relative to the steady state method	 channel

estimation yields the largest gains at low SNRs� At high SNRs	 the channel estimation

technique performs more and more poorly	 even to the point where it yields worse

performance than the steady state method� The dominating factor at high SNRs	

however	 is that the channel model reduces to a one state high SNR system� Thus	

overall performance despite unreliable channel estimates is good at high SNRs� Note

that while the channel estimation scheme may perform worse than the steady state

method at high SNRs	 the di�erence is performance is marginal� Hence	 the channel

�
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estimation method is robust across all SNRs�

Figure ��� contains the simulation results for the case where neither channel state

nor transition probability information is available to the decoder� Note that the

performance is close to that of the known transition probability	 a posteriori state

estimation case� Comparing the plots of Figures ��
 and ���	 there is little di�erence
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in performance particularly at low SNRs	 because the BaumWelch algorithm is doing

a good job at estimating channel states� Knowing the state does not give a major

advantage at low SNRs since large magnitude noise makes tracking the information

�
�



bits di�cult� At high SNRs	 the Baum
Welch algorithm performs with less success	

but the more dominating factor is that state estimation at high SNRs is less important�


�� Conclusion

The performance of turbo codes in the Gilbert
Elliot burst channel model was

investigated with varying levels of side information� It was shown that for cases where

the transition probabilities of the HMM are unknown	 the performance is not seriously

degraded if the Baum
Welch procedure is applied� In fact	 the performance di�erence

between cases where the HMM transition probabilities are known and unknown �but

the channel state is unknown� is marginal� For the case where the channel state

was unknown but the HMM transition probabilities are known	 the gain of using a

posteriori state estimates over use of steady state probabilities is marginal when just

one bit has been transmitted over each state� The state estimates are inaccurate if

based on just one observation� The bene�t of increasing the channel memory to ��

bits transmitted over each HMM state is that channel state estimation is improved�

However	 increasing the channel memory can result in worse overall performance

because the e�ective block length is reduced�

�
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CHAPTER �

Robustness of Turbo Decoding

In previous chapters	 it was assumed that certain parameters of the channel were

known	 including the power spectral densities of the interference and the memory of

the channel� Such channel knowledge is required not only for soft decision decoders	

but also for the channel estimation schemes� When the channel is relatively static	 es


timation schemes can be utilized to estimate unknown channel parameters� However	

such estimation schemes typically rely on some channel knowledge� For instance	 the

estimation technique of Chapter � which estimated the jamming state	 zk	 required

knowledge of the noise power spectral densities	 N�
�
and NJ

��
	 but also the fractional

jamming bandwidth	 �	 and the length of the channel memory� Mismatches in any

of the assumed information can lead to severe degradation in overall performance� In

this chapter	 the robustness of turbo code performance is investigated when assump


tions concerning channel knowledge are relaxed�

This chapter is organized as follows� In Section ���	 the performance of turbo


coded systems are considered in the additive white Gaussian noise �AWGN� channel

�
�



with SNR mismatch� The Section ���	 turbo codes will be considered in a FH
SS

system with partial
band jamming and mismatched channel statistics� In Section

���	 the work is summarized and conclusions are drawn�

��� SNR Mismatch in AWGN

As a baseline system	 the performance of turbo codes in an additive white Gaussian

noise �AWGN� channel with SNR mismatch is considered� Soft decision decoders

typically require knowledge of the SNR� When the channel is relatively static �like

the AWGN channel�	 there are many good SNR estimation techniques ���� which o�er

di�erent levels of performance at the cost of complexity� However	 such estimation

schemes are sensitive to parameters such as the length of the transmitted packet�

If turbo codes are insensitive to mismatched SNR which may arise from estimation

errors	 then they can be considered robust in the AWGN channel� In the event that

turbo codes are determined to be sensitive to mismatched SNR	 then an alternative

scheme which is more robust to SNR mismatch needs to be considered�

First	 consider the performance of turbo codes in AWGN with true power spectral

densityN��� and mismatched statistics at the decoder� The turbo code in the simula


tion is a rate ��� code with block length ��
�� Figure ��� plots the BER performance

of BPSK
modulated turbo codes for di�erent true values of SNR versus several levels

of SNR mismatch� For instance	 the plot in the �gure for SNR � � dB at an SNR

o�set of �� dB shows the performance of turbo codes when the actual SNR is � dB	

but the receiver decodes as if the SNR is � dB� For SNR � � dB	 mismatches have

�
�
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little e�ect since the performance is already very poor� For SNR � � dB	 the sensitiv


ity to SNR o�sets decreases as the SNR increases� For instance	 the performance at

SNR � � dB appears robust to o�sets in the range of �� dB to � dB� In comparison	

the performance at SNR � � dB is robust to o�sets from �
 dB to � dB� While the

performance is virtually constant over these ranges	 the number of iterations required

to achieve such performance increases as the degree of mismatch increases� Note that

the penalty of overestimating the SNR is much smaller than the penalty of underes


timating the SNR� The reason for this is as follows� Overestimating the SNR implies

that the estimated noise variance has smaller magnitude� Underestimating the SNR

implies that the estimated noise variance has larger magnitude� This a�ects the turbo

decoder which makes bit decisions based on the conditional Gaussian probability den


sities of the channel outputs� If the estimated noise variance is smaller than the actual

noise variance	 then the density will become sharper	 placing greater di�erentiation

between received bits� If the estimated noise variance is larger than the actual noise

variance	 then the resultant density will become more smooth	 making it more di�


cult to distinguish between bits� This can be seen in Figure ��� for an exaggerated

case� For N��� � ����	 the density values at yk � ���� and yk � ���� are ����� and

���
�	 respectively� For N��� � ���	 the values at yk � ���� and yk � ���� are �����

and �����	 respectively� The main point here is that if the variance is signi�cantly

overestimated �i�e� the SNR is signi�cantly underestimated�	 the turbo decoder has a

di�cult time distinguishing between information bits because the density makes little

distinction between the channel outputs�

One possible method of improving the robustness of the system to SNR mismatch

���
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is to consider the density functions over several SNRs and then use the composite

density function which averages over the SNRs� For simplicity	 �rst consider the case

where the SNR is assumed to be uniformly distributed over some range	 A dB to B

dB� Let � represent the SNR in dB	 f	�g� be the probability density function of �	

and F	�g� be the cumulative distribution function of �� Then	

f	�g� �
�

B �A
� A � g � B �����

and

F	�g� �
Z g

A
f	�g

��dg� �����

�
g

B �A
� A � g � B� �����

The Gaussian density function does not operate in the log domain	 so the following

variable transformation is performed	 where � � �� log��Eb�N� � �� log�� h�

Fh�H� � P �h � H� ���
�

� P ���	��� � H� �����

� P �� � �� log��H� �����

� F	�
�� log��H

B �A
� �����

���



Hence	

fh�H� �
�Fh�H�

�H
�����

�
��

�B �A� ln ��

�

H
� ��A��� � H � ��B���� �����

The conditional density function used in the rate Rc turbo code can then be calculated

numerically as shown below for Es � �� For simulations	 this density can be calculated

o#ine for quantized values of yk � dk� In this way	 the computation requirements for

a real
time decoder can be signi�cantly reduced	 while slightly increasing the memory

requirements�

p�ykjdk� �
Z
p�ykjH�xk� fh�H�dH ������

�
Z ��B���

��A���

�p

N�

exp�� �

N�
�yk � dk�

��
��

�B �A� ln ��

�

H
dH ������

�
Z ��B���

��A���

s
Rc


H
exp��H Rc�yk � dk�

��
��

�B �A� ln ��
dH ������

The only parameters which need to be determined are A and B	 which de�ne the

range of possible SNR values� For our simulations	 we chose A � � and B � �� There

are two ways to justify this choice� First	 we refer to Figure ���� Figure ��� shows

the performance of SNR mismatched systems where the true SNR is displayed in the

legend and these systems are plotted versus the SNR assumed in decoder calculations�

Hence	 Figure ��� is essentially a shifted version of Figure ���� The range of � to � dB

was chosen because as shown in Figure ���	 the performance of all systems is virtually

constant when the decoder assumes an SNR in the range of � and � dB� The second

��
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reason is that the range of � to � dB appears to yield performance in the range of

interest� Shown in Figure ���	 the simulation results of systems even without any

mismatch yield BER rates greater than 
��e � �� for SNR � �� Such performance

is worse than any reasonable system would require� For SNRs signi�cantly greater

than � dB	 the performance without mismatch yields BERs much less than ���e� ��

which is perhaps better than most systems would require� If the upper range of the

decoder SNR were set to � dB	 the performance of systems with true SNRs up to

� dB �i�e �
 dB o�set� would probably be little a�ected given the trend shown in

Figure ��� which showed that as the SNR increases	 the BER performance becomes

less sensitive to SNR overestimation� For such reasons	 the SNR range of the decoder

is assumed to be between � and � dB	

Figure ��
 shows the simulation results of the robust decoder compared to the

decoder with perfect knowledge of the channel SNR� As shown in the �gure	 there are

performance losses for SNR � � dB �i�e� outside the �range� of the robust decoder�	

but these losses are small because the performance is generally poor in this range of

SNRs� For SNR � � dB	 however	 there is little di�erence in performance� Hence	

virtually identical performance can be obtained without expending any computation

on SNR estimation techniques�

Similar results can be obtained for the case of noncoherent detection� Figure ���

shows the simulation results of various SNR systems versus the SNR o�set of the

decoder� Again	 there are greater penalties for underestimating the SNR� Figure

��� compares the performance of the decoder which has perfect information of the

channel SNR to a robust decoder which operates in the range of � to � dB� Again	

���
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the performance of both systems are virtually identical�
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��� SNR Mismatch in Partial	Band Jamming

In this section	 the robustness of turbo decoding is investigated in FH
SS with

partial
band jamming and full
band thermal noise� In previous sections	 it was as


sumed that the frequency hopper changed frequencies at a much greater rate than

the jammer� Thus	 the entire hop was assumed to be either completely jammed

or unjammed� In addition	 we considered the case where the data rate was faster

���
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than the hopping rate� In such cases where multiple bits were transmitted over each

hop	 estimation techniques were employed to estimate which hops were jammed� At

around �� bits per hop	 the receiver without perfect jamming side information �SI�

was able to achieve performance virtually identical to the receiver with jamming SI

due to e�ective estimation�

While the estimation procedures were highly e�ective in improving decoder per


formance	 their success hinged on knowing several parameters of the channel among

which were the power spectral densities of the jamming and thermal noise �NJ
�� and

N�
� 	 respectively�	 and the fractional jamming bandwidth ���� If such information was

corrupted in any manner	 the performance of the estimation techniques would su�er�

There exists many situations in which channel estimation is impractical� The

jammer may change frequencies very quickly which would yield few bits per hop from

which estimation procedures could estimate channel parameters� The jammer may

also change its fractional bandwidth or even introduce multiple levels of jamming�

This would make it more di�cult to estimate whether a hop was jammed and if so	

what the appropriate jamming power was� The goal of this section is to investigate

the robustness of turbo codes in FH
SS with partial
band interference with little to no

knowledge of the channel� In our discussion	 two receivers for noncoherent reception

will be considered�

���




���� Square Law Combining Receiver

First	 consider the square law combining receiver� The deleterious e�ects of jam


ming using square law combining for noncoherent reception have been studied in

detail ��� ���� ���� ���� ����� Particularly in ���	 it was determined that reliable knowl


edge of the jamming channel state	 zk	 can signi�cantly improve the performance�

This is particularly true for soft decision decoders which make bit decisions based on

the conditional densities of the channel outputs� Consider the conditional densities

shown in Figures ���	 ���	 and ���� These �gures show the conditional densities of

the noncoherent square law outputs	 Y�� and Y��	 given dk � � when the channel

is known to be unjammed �Figure ����	 jammed �Figure ����	 and when the decoder

has no knowledge of the channel state �Figure ����� In the �nal case	 the decoder

computes conditional densities which are averaged over each jamming state ������

p�ykjdk � i� � p�ykjdk � i� zk � �� � � p�ykjdk � i� zk � �� �� � �� ������

In these �gures	 the jamming and thermal SNRs are Eb�NJ � � dB and Eb�N� �

�� dB	 respectively	 and the fractional jamming bandwidth is � � ���� Note that in

all three cases	 the channel parameters	 N�	 NJ 	 and � are assumed to be known to

the decoder�

Figure ��� shows that the conditional density averaged over the jamming state	

zk	 is far di�erent from each of those shown in Figures ��� and ���� Hence	 even if

N�	 NJ 	 and � are known to the decoder	 performance is seriously degraded if zk is

unknown� Next	 note the large di�erences between the densities of Figures ��� and

���
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���� Unlike the AWGN case where the range of interest was small �between � and �

dB�	 partial
band jamming makes it di�cult for a robust decoder to encompass the

large range of SNRs�

Given the results of the previous section	 however	 we would be amiss if we did

not even consider the decoder which assumes a uniform distribution on the SNRs�

Shown in Figure ���� are the simulation results for turbo codes in FH
SS with partial


band jamming when the packet length is ���� information bits and there are ��� bits

per hop� The BER performance of two systems are shown for di�erent values of

the fractional bandwidth	 �� The �rst system is assumed to have knowledge of the

fractional bandwidth	 �	 and the noise power spectral densities	 N��� and NJ�����	

but has no knowledge of zk� Hence	 the decoder uses ������ in its computations�

The second system is assumed to have no knowledge of the channel� The decoder

computes conditional densities which are averaged over a uniformly distributed SNR

range� In Figure ����	 this range is assumed to be � to �� dB for similar reasons given

in the previous section�

For � � ���	 there is little di�erence in performance between the two systems�

At high values of �	 most of the hops are jammed and the power spectral density of

the jammer	 NJ�����	 does not cause a large SNR mismatch with the robust decoder

which assumes the SNR to be in the range of � to �� dB� At � � ���	 the e�ects of the

jammer become more obvious� The SNR mismatch increases as the interference of the

channel is either NJ����� � N��� or N���� These mismatches cause degradation in

the performance of the robust decoder� Finally	 the results for � � ��� are discussed�

In Figure ����	 the simulation results for the receiver which knows the power spectral

���
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densities and the fractional jamming bandwidth is not shown� The simulations for this

receiver even at Eb�NJ � ��� dB yielded no detectable errors� In contrast	 however	

the decoder with no channel information requires more than �� dB to achieve BER

� ���
� In fact	 at high SNRs	 the BER performance gets worse and worse as the

value of � decreases towards �� At � � ����	 �� dB yielded BER � ���e��	� This

matches the analytical results ���� which reveal that as the SNR increases	 the value

of � which yields worst case jamming decreases towards zero� For any decoder design	

it must be assumed that the jammer will be intelligent �i�e� the jammer will choose �

to yield worst
case jamming�� It is unlikely that BER � ���	 is a satisfactory result

at �� dB	 so we consider another possible decoder�

The previous decoder only assumed to know the performance of turbo codes in

noncoherent FH
SS� Based on this performance	 a suitable SNR range was selected

and SNRs within this range were assumed to be uniformly distributed� While this

approach worked in the AWGN channel	 this approach does not yield good perfor


mance in a channel with partial
band jamming due to the increased levels of SNR

mismatch� If the level of SNR mismatch can be reduced	 then as shown in Figure

����	 performance can be improved signi�cantly�

It was mentioned before that it may be unsuitable to assume that pertinent chan


nel parameters such as �	 NJ�����	 and N��� are known because the jammer may

change frequencies quickly	 may vary its fractional jamming bandwidth	 and may

even vary the number of jamming levels� It may be possible	 however	 to estimate the

average power of the interference	 NJ�N�

� � If the average noise powers are assumed to

be known	 then the level of mismatch will be reduced and perhaps the performance

���



will improve�

Figure ���� shows the simulation results of the decoder which uses the average

interference	 NJ�N�
�

	 to decode all square law combined outputs� In the simulations	

the packet length is ��� information bits and there are �� bits per hop� As shown
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in the �gure	 the performance improvements are marginal� Especially at high SNRs	

the worst case jamming performance is still dominated by small values of ��

Hence	 the square law receiver does not yield good performance when limited chan


nel knowledge is available� Next consider another receiver which has been developed

���



for channels with partial
band jamming�


���� Self�Normalizing Receiver

One receiver which has shown strong resistance to partial
band interference is the

self
normalizing receiver �
�� �
��� In essence	 the channel outputs are normalized in

order to minimize the deleterious e�ect of jammed bits� If Y�	 Y�	 ���	 YM are the

square law detected outputs corresponding to each of M modulated signals	 then the

self
normalized receiver uses the metric

Si �

�����
����

Yi�$ i � �� ����M � �

$ i �M

����
�

where $ �
PM

i�� Yi�

The conditional densities of Yi can be computed as in ������� Using the series

representation of the modi�ed zeroth order bessel function	

I��
p
x� �

�X
k��

�x�
�k

n�n�
������

the joint density of the transformed variables in ����
� can be obtained �
���

fS�����SM���s�� ��� sM��� � e�	
�X
k��

�k �M � ���

n�n�
�� s��

k ������

� �M � ���ex�	L�
M����x�jx�	s� ������

���



where � � �Es�NJ and L

n��� are the Laguerre polynomials �

� which are de�ned as

L

n�x� � ex

x�


n�

dn

dxn
�e�xxn�
� n � �� �� �� �� ������

Hence	 for M � �	 the density for the self
normalized metric is

fS��s�� � �� � �s��e
x�	� ������

Note that forM � �	 the normalized metric produces only one random variable since

one metric completely de�nes the other �i�e� s� � �� s���

For the case whereM � �	 the Cherno� parameter can be computed as �
�� where

thermal noise is ignored and the partial
band jamming is assumed to dominate the

performance�

D � max
�����

min
���

D��� �� ������

� max
�����

min
���

�
�� � ��e�� �

�

��� � ���
���e��	 � ��� � �� � ����e���

�L
������

where L represents the diversity of the channel� As shown in ������ the Cherno�

parameter is computed for worst
case jamming�

Figure ���� shows the analytical results of the self
normalizing �SN� and the square

law combining �SLC� receivers with diversity L concatenated with a rate ��� turbo

code of packet length ��� information bits� Note that these analytical results assume

that there are no SNR mismatches�

���
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The self
normalizing receiver performs closest to the square law combining receiver

at low Eb�NJ � This is the region where jamming has the largest e�ect on system

performance� Hence	 this is the region where the self
normalizing receiver is most

e�ective� At high Eb�NJ 	 the performance of the self
normalizing receiver performs

progressively worse relative to the square law receiver because in this region	 the

received signal consists of little noise� In this region	 signal energies are essentially

being normalized�

Next	 consider the performance of diversity across low and high SNRS� At low

Eb�NJ 	 L � � performs best� In this region	 the worst case jamming typically occurs

for � � � ����� Hence	 for low jamming SNR	 the gain of diversity is very small	 if

any gain exists at all� However	 the price of diversity for noncoherent reception is

noncoherent combining loss� At high Eb�NJ 	 L � � gives best results� The increase in

diversity could be mitigated by increasing the fractional jamming bandwidth� How


ever	 in this high SNR regime	 the jammer has little power to spread	 making it

unable to combat increased diversity� Note that these results do not include thermal

noise� If thermal noise existed in the system	 then clearly there would come a point

where increasing L would yield worse performance� The degradation incurred by the

noncoherent combining loss would eventually fall under the thermal noise �oor�

Figure ���� shows the simulation results of the self
normalizing receiver with L � �

when the turbo decoder uses the average power	 NJ�N�

�
	 in its calculations� Similar

to the results in Figure ����	 the packet size spanned ��� information bits and the

number of bits per hop were ���

Shown in the �gure	 the self
normalized metric succeeds in removing the e�ects

���
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of narrow band jamming �i�e� � 
 �� at high SNRs� Meanwhile	 the worst
case

jamming performance at low to mid
range SNRs is virtually unchanged� While these

results show greater anti
jam capability relative to square
law detection	 it is useful

to compare the mismatched results to the case without any mismatch� These results

for worst
case jamming are shown in Figure ���
�
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Figure ���
� Worst Case Performance of the Self
Normalizing Receiver with and
without SNR Mismatch ���� � � � ��

For Eb�NJ � � dB	 the plots are indistinguishable� In this region	 worst
case

jamming occurs for � � ���� Hence	 the method without mismatch �i�e� uses

N��� � NJ������ and with mismatch �uses the average power N��� � NJ��� are

��




identical� As Eb�NJ increases	 however	 the fractional bandwidth which yields worst


case performance decreases towards zero� Hence	 in the high SNR regime	 as Eb�NJ

increases	 so does the mismatch for the decoder which does not know the instanta


neous power spectral densities� While the loss at BER � ���� is about ��� dB	 this

margin will steadily increase for higher SNRs�

Also shown in Figure ���
 is the simulation result for the receiver which attempts

to estimate the instantaneous power spectral density� Figure ���
 plots the perfor


mance of the decoder which can estimate the power spectral densities �N�
� � NJ

�� for

jammed states	 N�
� for unjammed states� to within � dB� As shown in the �gure	 the

performance improvement is greatest for high Eb�NJ � In particular	 relative to the

decoder which uses average power	 the mismatch is constant across all Eb�NJ � Hence	

the performance relative to the decoder without mismatch is virtually constant across

Eb�NJ �

Finally	 the results of the square law receiver shown in Figure ���� are compared

to the self
normalizing receiver with similar mismatches in Figure ���
� While the

square law receiver with no SNR mismatch shows a ��� dB gain with respect to the

self
normalizing receiver at BER � ����	 the gain diminishes to ��
 dB for the decoder

with a � dB mismatch� If only the average power can be determined	 the square

law receiver experiences signi�cant loss with respect to the self
normalizing receiver

at high Eb�NJ � Hence	 the self
normalizing receiver is less sensitive to changes in

channel information�
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��� Conclusion

In this chapter	 the robustness of turbo codes in the AWGN channel and in FH


SS with partial
band interference was considered� In AWGN	 a robust scheme was

developed which requires no knowledge of channel statistics� Without introducing any

complexity	 its performance was virtually identical to the case where SNR knowledge

was assumed� For the channel with partial
band interference	 the self
normalizing

receiver was shown to achieve superior performance over the square law receiver when

channel knowledge is absent� In such cases	 each receiver assumed the channel to be

AWGN� In addition	 for the case where SNR is known exactly	 the performance of

the self
normalizing receiver is within a decibel of the square law receiver�
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CHAPTER �

Conclusions and Future Work

The design and performance of turbo codes with joint iterative channel estimation

have been considered for several channels with memory� The channels which were con


sidered included the partial
band interference channel	 the Rayleigh fading channel	

and the channel with both partial
band interference and Rayleigh fading� For these

channels	 a frequency
hopped spread spectrum system was considered� In addition

to the systems with FH
SS	 a more general channel with memory	 the Gilbert
Elliot

burst channel model	 was considered�

The approach was to take advantage of the channel memory by calculating es


timates of certain channel parameters when side information was unavailable� For

channel estimation computations	 a recursive algorithm was developed to reduce the

computational complexity incurred by this procedure� Simulation results revealed a

performance tradeo� for varying lengths of the channel memory when �xed packet

lengths were considered� The bene�t of increasing channel memory was improved

performance of the channel estimation schemes� It was shown that if the channel

���



memory was su�ciently long to permit a reliable estimate	 performance virtually

identical to the cases with side information could be obtained� For the partial
band

jamming channel	 �� bits per hop provided su�cient memory for the channel es


timation scheme to provide performance similar to the case with side information�

Increasing the channel memory	 however	 also reduced the e�ective block length of

the code and led to performance degradations�

In addition to simulation results	 analytical results were calculated to upper bound

the performance of turbo codes� These results are especially useful in the regions with

high signal
to
noise ratios since it is computationally intensive to generate simulation

results for extremely low bit error rates� The calculation of the bound requires the

weight enumerator of the code and the pairwise error probability� Due to the presence

of the interleaver in the encoder	 it is di�cult to compute the weight enumerator for

a turbo code of block length N � As a result	 an average upper bound which used

a weight enumerator averaged over all possible interleaving schemes was considered�

Once this average weight enumerator is calculated	 knowledge of the pairwise error

probabilities is required to compute the union bound� Where possible	 the pairwise

error probability is calculated� For other cases	 the Bhattacharrya parameter or the

Cherno� parameter was considered� These average upper bounds were shown to be

tight especially at high signal
to
noise ratios�

Both simulation and analytical results were compared to other well
known cod


ing schemes and decoding algorithms� For the frequency
hopped spread spectrum

system with partial
band interference	 the worst case jamming performance of turbo

codes with noncoherent reception was � dB better than the worst case jamming per
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formance of a concatenated code consisting of a Reed
Solomon outer code and a

convolutional inner code for packet error rates of ���	� For the frequency
hopped

spread spectrum system with measured fading	 the iterative estimation and decoding

scheme yielded a gain of over �� dB at a BER of ���� when compared to an errors

and erasures Reed
Solomon decoder similar to the one used in current packet radio

networks �SINCGARS��

Finally	 the robustness of turbo codes was investigated in cases with mismatched

channel parameters� It was shown in the additive white Gaussian noise channel that

the sensitivity to signal
to
noise ratio mismatch decreases as the signal
to
noise ratio

increases� In addition	 the penalty of underestimating the signal
to
noise ratio is gen


erally more severe than overestimating it� Despite the degradations which were shown

to result from signal
to
noise ratio mismatch	 a robust decoder with little additional

complexity was exhibited to yield virtually identical performance to the decoder with

perfect knowledge of the signal
to
noise ratio� This decoder computed branch tran


sition probabilities averaged over a signal
to
noise ratio range of interest� For the

channel with partial
band interference	 the self
normalizing receiver was shown to

achieve large performance gains over the square law receiver when statistics of the

jammer were absent� In such cases	 each receiver assumed the channel to be the

additive white Gaussian noise channel�

While turbo codes were shown to be e�ective in reducing the signal
to
noise ratio

required to achieve given performance requirements	 the iterative MAP decoding

algorithm requires considerable computational cost� Presumably	 the receiver for a

wireless system has �nite battery life� Thus	 before turbo codes can be integrated
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into any wireless communications system	 the computational complexity needs to be

reduced while minimizing performance losses� The work in this thesis exempli�es

the error correction power of turbo codes� Future research should investigate the

application of lower complexity turbo decoders to wireless communications systems�

A brief description of a few common reduced complexity decoders is presented in the

Appendix� The Max
Log
MAP method is of particular interest� While signi�cantly

reducing the complexity of the decoder calculations	 the loss with respect to the MAP

decoder for a packet size of ���
 in AWGN is less than ��� dB �����

Another area of future interest would be to apply similar channel estimation tech


niques to the case of noncoherent detection� Consider a frequency
hopped spread

spectrum system where the phase is assumed to vary slowly over the duration of each

hop� For this case	 joint decoding and phase tracking could be performed� If the

phase estimates could be computed reliability	 signi�cant performance improvements

could be achieved�
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APPENDIX A

Helical Interleaver

First introduced by Berlekamp and Tong ����	 helical interleavers have the function

of terminating the trellis in the turbo encoder� Customary non
systematic encoders

�NSC� can be driven to the all
zero state by a sequence of M zeros� Thus	 a turbo

encoder consisting of NSCs can be terminated by a sequence ofM zeros� For recursive

systematic codes �RSC�	 a sequence of M zeros generally does not drive the trellis

of each component code to the all
zero state due to the existence of a feedback loop

inherent in all RSCs� However	 for each of the �M states	 there exists an M bit code

that will drive each encoder to the all
zero state� Unfortunately	 at each point in

time	 the state of each component encoder is generally di�erent due to the existence

of the interleaver� Usage of a helical interleaver solves this problem by forcing both

encoders to end in the same state	 thus allowing a sequence of M bits to terminate

both trellises �����

The idea behind helical interleavers is as follows� If the state variables at a speci�ed

end time depend on the sum of bits found in disjoint partitions of the message stream	
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then if an interleaver permutes bits within these partitions	 the �nal encoder state

remains unchanged�

Consider the following example which uses the four state RSC shown below�

Figure A��� Four State RSC

In addition	 consider partitioning the data stream into three sequences�

Sequence � � fdkjk mod �M � �� � �g

Sequence � � fdkjk mod �M � �� � �g

Sequence � � fdkjk mod �M � �� � �g

The state sequence for this encoder is shown in Table A��� If N mod �M � �� � �	

then

S�
N � Sequence � � Sequence �

S�
N � Sequence � � Sequence ��

��




If N mod �M � �� � �	 then

S�
N � Sequence � � Sequence �

S�
N � Sequence � � Sequence ��

If N mod �M � �� � �	 then

S�
N � Sequence � � Sequence �

S�
N � Sequence � � Sequence ��

dk S�k S�k
d� � �
d� d� �
d	 d� � d� d�
d
 d� � d	 d� � d�
d� d� � d	 � d
 d� � d	
d� d� � d� � d
 � d� d� � d	 � d

d� d� � d	 � d� � d� d� � d� � d
 � d�
d� d� � d	 � d
 � d� � d� d� � d	 � d� � d�
d� d� � d� � d
 � d� � d� � d� d� � d	 � d
 � d� � d�

Table A��� Encoder State Sequence

As a result	 any permutations within each sequence will yield the same �nal state�

The structure for this helical interleaver with depthM �� � � is shown in Table A���

The output of this interleaver is

x��� x��� x��� x��� x�� x�� x�� x��� x��� x�	� x��� x�� x
� x�� x��� x��� x�
� x��� x�� x�� x	� ���
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d� d� d	
d
 d� d�
d� d� d�
d�� d�� d��
d�	 d�
 d��
d�� d�� d��
d�� d�� d��

Table A��� Interleaver structure
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APPENDIX B

Derivation of Equations Used in the Turbo

Decoder

This is a summary of the equations used in the turbo decoder� A more complete

discussion can be found in ��������

First	 the notation used in this section is described� The input to the encoder is

the data sequence of length N 	 fdkgNk��� The outputs of the encoder are the data

sequence	 fdkgNk�� and the parity sequences	 fp��kgNk�� and fp��kgNk��� Let y��k	 y��k	

and y��k be the channel outputs corresponding to dk	 p��k	 and p��k	 respectively� In

addition	 de�ne RN
� � fR�� ���� Rk� ���RNg where Rk � �y��k� y��k� y��k� and k � �� ��� N �

If we de�ne

�
�i�
k �m� � P �dk � i� Sk � mjRN

� �� �B���

���



then

P �dk � ijRN
� � �

X
m

�
�i�
k �m�� �B���

Thus	 the a posteriori log likelihood ratio �LLR� is

"�dk� � log
P �dk � �jRN

� �

P �dk � �jRN
� �

�B���

� log

P
m P �dk � �� Sk � mjRN

� �P
m P �dk � �� Sk � mjRN

� �
�B�
�

� log

P
m �

���
k �m�P

m �
���
k �m�

� �B���

The above equation can be computed by noting that events after time k are indepen


dent of Rk
� and dk if Sk is known�

�
�i�
k �m� � P �dk � i� Sk � mjRN

� � �B���

�
X
m�

P �dk � i� Sk � m�Sk�� � m�� Rk��
� � Rk� R

N
k���

P �RN
� �

�B���

�
X
m�

P �RN
k��jdk � i� Sk � m�Sk�� � m�� Rk��

� � Rk�

P �RN
� �

� �B���

P �dk � i� Sk � m�Sk�� � m�� Rk��
� � Rk�

�
X
m�

P �RN
k��jSk � m�P �dk � i� Sk � m�RkjSk�� � m�� Rk��

� �

P �RN
� �

� �B���

P �Sk�� � m�� Rk��
� �

�
X
m�

P �RN
k��jSk � m�P �dk � i� Sk � m�RkjSk�� � m��

P �RN
� �

� �B����

P �Sk�� � m�jRk��
� �P �Rk��

� �

���



Combining �B��� and �B����	

"�dk� � log

�P
m

P
m� P �RN

k��jSk � m�P �Sk�� � m�jRk��
� �P

m

P
m� P �RN

k��jSk � m�P �Sk�� � m�jRk��
� �

� �B����

P �dk � �� Sk � m�RkjSk�� � m��
P �dk � �� Sk � m�RkjSk�� � m��

�

� log

P
m

P
m� ���yk�m��m��k���m��	k�m�P

m

P
m� ���yk�m��m��k���m��	k�m�

�B����

where

�k�m� � P �Sk � mjRk
�� �B����

	k�m� �
P �RN

k��jSk � m�

P �RN
k��jRk

��
� �B��
�

Both �k and 	k can be calculated via recursions described by �����

�k�m� �

P
m�
P�

i�� �i�yk�m
��m��k���m��P

m

P
m�
P�

i�� �i�yk�m
��m��k���m��

�B����

	k�m� �

P
m�
P�

i�� �i�yk���m
��m�	k���m��P

m

P
m�
P�

i�� �i�yk���m
��m��k�m��

�B����

where

�i�Rk�m
��m� � P �dk � i� Rk� Sk � mjSk�� � m�� �B����

� p�Rkjdk � i� Sk � m�Sk�� � m�� � �B����

P �Sk � mjdk � i� Sk�� � m�� � P �dk � ijSk�� � m�� �B����
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APPENDIX C

Calculation of p�dji� for the Union Bound

In this section	 the calculation of p�dji� which is essential to the computation of

the union bound for turbo codes is described ����� The state transition matrix details

the input!output relationship of the encoder� A sample state transition matrix is

shown below for a convolutional code with generator octals ��� ���

A�L� I�D� �

�
BBBBBBBBBBBBB	

L LID � �

� � LD LI

LID L � �

� � LI LD



CCCCCCCCCCCCCA

The rows index the states of the encoder before a transition while the columns

index the states of the encoder after a transition� The monomial LlI iDd describes the

input!output relationship for a speci�c transition� The variables i and d are equal to

� or � depending on whether the corresponding input and output bits	 respectively	

���



are � or � and l	 which represents the length of the path is always equal to ��

If we de�ne t�l� i� d� as the number of paths of length l	 input weight i	 and output

weight d which start and end in the all
zero state �represented by �m�	 then we de�ne

the transfer function as follows�

T �L� I�D� �
X
l��

X
i��

X
d��

LlI iDdt�l� i� d�

According to ����	 T �L� I�D� is the ��m� �m� entry in

�I �A�L� I�D� �A�L� I�D�� �A�L� I�D�	 � ����A��� ��D�m�

Thus	

T �L� I�D� � ��I �A���A��� ��D�m��m��m�

By omitting the termination factor A��� ��D�m	 we can get the following approxima


tion for the example state transition shown above�

T �L� I�D� 
 �� LD � L�D � L	�D� � I��

�� L�� �D� � L	�D �D� � I� � I�D	�� L
�I
D� � I�D
 � D� � I��

���



This yields the recursion

t�l� i� d� � t�l � �� i� d � �� � t�l� �� i� d� �

t�l � �� i� �� d � �� � t�l� �� i� �� d� � t�l � �� i� d � �� �

t�l � �� i� d � �� � t�l� 
� i� 
� d� �� � t�l � 
� i� �� d � 
��

t�l � 
� i� �� d� � t�l� 
� i� d� �� � ��l� i� d�� ��l� �� i� d� ���

��l� �� i� d� �� � ��l� �� i� d� ��� ��l� �� i� �� d��

By assuming a uniform interleaver	 we can compute p�dji� for each code fragment�

p�dji� � t�N� i� d�P
d� t�N� i� d��

�
t�N� i� d��
BBB	
N

i



CCCA

Finally	 we can calculate p�dji� for the entire code by using

p�d � d� � d� � d�ji� � p��d�ji�p��d�ji�p��d�ji��
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APPENDIX D

Reduced Complexity Decoders

One area of interest for future work is to consider reduced complexity decoders�

Decoding complexity is one of the major disadvantages for turbo codes� Complex


ity is proportional to the block length	 the number of decoding iterations	 and the

constraint length of the convolutional codes� Each MAP decoder has the approxi


mate complexity of the Viterbi algorithm and this must be iterated several times�

Thus	 it is not surprising that some of the current research is focused on reducing

the computational complexity of turbo decoders ����������
�� In this section	 I will

discuss the basis behind four reduced complexity decoders� Max
Log
Map	 SOVA	

Log
MAP	 and Sliding Window BCJR�

D�� Max	Log	MAP

Using the MAP algorithm to compute log likelihood ratios requires the calculation

of the branch transition probability	 �	 the forward recursion	 �	 and the backward

���



recursion	 	 �see Appendix B�� Consider the natural logarithm of �k�m��

ln�k�Sk� � ln�
X
Sk��

X
i

eln	i�yk�Sk �Sk����ln
k���Sk����� �D���

ln�
X
Sk

X
Sk��

X
i

eln	i�yk �Sk�Sk����ln
k���Sk����

The calculation of �k �and hence 	k and the log likelihood ratio	 "k� could be

greatly simpli�ed if the following approximation was used�

ln�e�� � e�� � ���� e�n� 
 max
��i�n

�i �D���

�D���

This approximation can be applied to the forward and backward recursions	 �k�Sk�

and 	k�Sk�	 and the log likelihood ratio	 "k	 where %�k�Sk� � ln�k�Sk�	 %	k�Sk� �

ln	k�Sk�	 and %�i�yk� Sk� Sk��� � ln �i�yk� Sk� Sk����

%�k�Sk� 
 max
Sk���i

�%�i�yk� Sk� Sk��� � %�k���Sk����� �D�
�

max
Sk �Sk���i

�%�i�yk� Sk� Sk��� � %�k���Sk����

%	k�Sk� 
 max
Sk�� �i

�%�i�yk� Sk� Sk��� � %	k���Sk����� �D���

max
Sk �Sk���i

�%�i�yk� Sk� Sk��� � %�k�Sk��

"k 
 max
Sk �Sk��

�%���yk� Sk� Sk��� � %�k���Sk��� � %	k�Sk��� �D���

max
Sk �Sk��

�%���yk� Sk� Sk��� � %�k���Sk��� � %	k�Sk��

Despite signi�cantly reducing the decoding complexity	 this method yielded a

��




performance loss less than ��� dB with respect to the original MAP algorithm for

packet length ���
 information bits	 � decoding iterations	 and component encoders

with memory 
 over the AWGN channel �����

D�� Log	MAP

This method improves the performance of Max
Log
MAP by adding a correc


tion term to the approximation used above� This can be accomplished by using the

Jacobian logarithm �����

ln�e�� � e��� � max���� ��� � ln�� � e�j�����j� �D���

� max���� ��� � fc�j�� � ��j� �D���

In the above equation	 fc can be approximated �quantized� by using a pre
computed

lookup table� While this may result in small performance losses	 the advantage is

that less storage is needed� The performance of this decoder is virtually identical to

the MAP decoder�

D�� SOVA

This method is similar to Max
Log
MAP	 but only considers survivor paths �i�e�

for a path to be considered	 the competing path must join the path chosen by the

Viterbi algorithm without being eliminated�� Thus competing paths may not be the

best ones�
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D�� Sliding Window BCJR

This method uses the original Bahl equations	 but instead operates on a �xed

memory span� Thus	 decisions are forced with a given delay�
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