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ABSTRACT

Coding Optimization and Nonlinear Receiver Analysis for Wireless
Communications Systems in the Presence of Interference

by
Troy Christopher Nolan

Chair: Wayne E. Stark

In our work we analyze many different situations where the transmission of in-
formation is corrupted by noise. In communications systems noise can be naturally
occurring, artificially generated, or self-generated. It is the job of communications
engineers to combat the effects of noise on their designs. In this thesis we examine
two main areas of noise mitigation: channel coding and filtering.

In the channel coding realm, we examine optimum code rates for a product code
in the presence of AWGN and intelligent partial band jamming interference, and we
provide asymptotic analysis of Reed-Solomon based product codes. The comparison
of the optimal code rates for finite length product codes with the rates determined
by asymptotic analysis illustrate the importance of considering undetected error in
the code design. We develop a method of determining the probability of undetected
error for the underlying Reed-Solomon codes that offers attractive advantages over
known methods.

In the realm of noise mitigation by filtering, we consider MEMS filters which
show great promise in achieving very high )’s at passband frequencies. We examine

the performance of sub-sampled systems and systems with cosite interference which



employ filters of varying ). We quantify the tradeoff between noise performance and
required Q) for these systems. Additionally we address the issues of power added
efficiency (PAE) in systems that employ high @ filters and nonlinear amplifiers. We
show that the application of a MEMS filter to a fixed bias power amplifier increases
the PAE in the presence of strong interferers, but that there is not a clear link between
lowering the bias power and increases in PAE.

For the analysis of nonlinear systems, we motivate and propose a new method
called the modified instantaneous quadrature method (MIQM). With this method
we can analyze, rather than simulate, the effects of a nonlinear element in weakly
and strongly nonlinear systems with large or small dynamic range inputs. Once the
system is known to be memoryless, or have a limited degree of memory, the MIQM
will produce accurate results that match the output of more numerically complex

simulation systems.
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CHAPTER 1

Introduction

The transmission of information from a source to a destination is the goal of
communication. Amongst the many desires in communications engineering are the
desires to achieve this goal with minimal power expenditure and with as small of an
error rate as possible. This thesis addresses some of the issues involved in meeting
these two desires.

To examine the transmission from source to destination, let us assume that a
source generates a single numeric value. This value represents the state of the source
at a given time instant. If the value can take on one of an infinite set of possibilities,
the source is known as an analog source. If, however, the value generated is one
of a finite number of possibilities the source is known as a digital source. It is the
objective of the communications system to transmit this value to the destination in
such a manner that the destination is able to reliably determine what the original
value was.

Analog communications systems attempt to communicate an analog value to the
receiver, and digital communications systems are concerned with the transmission of
a digital value. Analog sources can be converted into digital sources by the use of a

source coder. In one possible use, a source coder attempts to represent the infinite



set of analog values with a finite set of digital values, or a digital alphabet. Once this
digital alphabet is known to the transmitter and receiver, the source coded digital
value is transmitted to the destination. The error introduced by the use of a digital
value to represent an analog value is a well studied field, but one which we will not
concern ourselves with at this time.

We focus our efforts on digital communications systems. In a simple wireless
digital transmission one of a finite set of signals is transmitted from the source antenna
to the destination antenna. As the signal propagates from antenna to antenna through
the communications channel, it may be interfered with by various natural and artificial
effects. This interference distorts the transmitted signal so that the received signal
is not equal to any of the set of potentially transmitted signals. Management and
mitigation of interference is a concern of communications engineers and scientists.

At this point, we can draw a simple block diagram of the system, as shown in
Figure 1.1. The flow through this system is very easy to follow: information is
generated from the digital source, it is fed into the device that selects from a set of
signals to transmit (called the modulator), the signal is amplified and transmitted
through the channel. The signal is possibly corrupted in the channel, received by
the receiving antenna, and amplified. The receiver operates on it in such a manner
that a decision is made as to what signal was sent (demodulator). At this point the
destination makes its best estimate as to what the original information was. An error
is made if the estimate at the destination does not match the generated value at the

source.



Source - m=| Modulator -

Tx Amplifier

Destination -«—— Demodulator

Rx Amplifier

Figure 1.1: Simple communications system block diagram.

1.1 Types of Interference

1.1.1 Environmental Effects

There are many different types of interference that can corrupt information as
it propagates from the source to the destination. One type of naturally occurring
interference can add random noise to the transmitted signal. The most commonly
analyzed natural noise is thermal noise or additive white Gaussian noise (AWGN).
This noise is generally caused by the random thermal motion of molecules. The
probability density function of a single observation of a band-limited AWGN process
is:

1 _@-w?
f:v(x) = \/We 207 (11)

where 4 is the mean value and o? is the variance. Assuming the mean is zero, the

variance of the noise is a good measure of how corrupted a signal can become as it



effected by AWGN.

Another common variety of naturally occurring interference is caused by the prop-
agating signal reflecting off of various objects as it travels from the transmit antenna
to the receive antenna. The addition of randomly attenuated and delayed copies of
the same signal can cause the envelope of the received signal to fluctuate. The ran-
dom fluctuation of a single observation under certain circumstances can be shown to

follow a Rayleigh density function:

where 202 is the variance of the random fluctuation.

1.1.2 Jamming Interference

Interference can also be caused by artificial sources, either unintended or hostile.
Two types of jamming that we utilize in this thesis are continuous wave (CW) in-
terference and partial band jamming (PBJ). Continuous wave interference, otherwise
known as tone jamming, is the addition of power at a single frequency in such a
manner that it interferes with the correct reception of the transmitted signal. The

time domain waveform of a CW interferer is merely:

s(t) = Acos2rft, (1.3)

where the power in the tone is %2 and the frequency is f. This type of interference
can cause many different types of effects in receivers. Two such possible effects are:
the tone can be located in-band, to directly corrupt the transmitted signal, or it can
be located out of band which can cause intermodulation interference.

Partial band jamming is a technique where the jammer adds band-limited AWGN

noise power to a fraction, p, of a given range of frequencies. If p is large the jammer

4



spreads his power thinly over a large portion of the band; if p is small he concentrates
all his power into a much smaller band. The amount of noise power density added to

the effected band is JZV—/‘)’, where % is the variance of the added Gaussian noise.

1.1.3 Interference Added by Circuit Elements

The last source of interference considered in this thesis is generated or amplified
by the circuitry in the receiver. Virtually any operation on the received signal adds
interference to the signal. Two types of interference will be described: thermal noise
and nonlinear mixing interference. The noise figure (NF) of an amplifier is defined as
the ratio of input signal power divided by thermal noise power divided by the ratio of
the output signal power divided by the output thermal noise power. In the absence
of signal gain it can be thought of as noise gain. The primary place of concern for
the noise figure is in the very first elements that the received signal encounters i.e.
the antenna, front end filters, and the low noise amplifier. This measure reflects the
quality of signal that will result from the operation of the amplifier.

Nonlinear mixing noise, or more properly called intermodulation distortion, occurs
when a nonlinear amplifier operates on a signal in the presence of interference. For a

given single input circuit with response

y(t) = h(x(t)), (1.4)

given two tones, x1(t) = Ay cos(27 fit) and z5(t) = As cos(27 fot), the output due to

each signal independently is:

yi(t) = h(w (1)) (1.5)

y2(t) = h(w2(t)). (1.6)

A circuit is deemed linear if the output of the system due to the linear combination



of the two input signals is equal to the linear combination of the outputs due to each

input alone, or:

ah(zy (1)) + Fh(x2(t)) = h(aw () + Gra(1)), (1.7)

where a and 3 are arbitrary scaling factors. However, if the input-output relationship

of the circuit can be modeled by:
h(z) = ap + a1z + aga® + azz® + ..., (1.8)

with nonzero coefficients above the a; coefficient, then it fails the linearity test. In
fact, a component of the output signal known as the third order intermodulation (IM)

product contains the following term:
IMg(t) = A?AQ COS 27T(2f1 - fz)t (19)

If the desired signal has a component of frequency 2f; — f, it will be corrupted by

M, (t).

1.1.4 Noise and Interference Measures

Of the many ways to quantify the fidelity of a given signal, we focus on three
commonly used definitions. The first is the well used received signal-to-noise ratio

(SNR). SNR is defined by:

P
SNR = — (1.10)

No
B?

where P is the power in the received signal, % is the environmental thermal noise

power density, and B is the bandwidth under consideration. Our use of the received

SNR measurement accounts only for naturally occurring noise.



The second noise measure we define is the signal-to-interference ratio (SIR) at the
output of an amplifier. The SIR is the ratio between the amplified received signal

power and the self generated interference power. It is defined as follows:

BPy

IR =
SIR T

(1.11)

where 3 is the gain of the amplifier circuit and [ is the power of the intermodulation
distortion.
The final measure that we will use is the signal-to-noise-plus-interference ratio

(SNIR) at the output of an amplifier, which is defined as:

BP;

SNIR = ,
BNF (52 +52) B+1

(1.12)

where g—g is the added noise power density of a possible PBJ jammer and NF is the

noise figure of the circuit.

1.2 Methods to Combat the Effects of Interference

A communications engineer seeks to combat the effects of interference in the trans-
mission of information. Once a proper determination of the type of interference
expected in the system is made, different approaches may be used to mitigate its
effects. The two methods that are focused on in this thesis are 1) channel coding and

2) filtering.

1.2.1 Channel Coding

There are various methods of reducing the probability of error in a communications
system. A common technique is to add mathematical redundancy to the data, called

channel encoding, before it reaches the modulator (see Figure 1.2). This redundancy

7



Channel

Encoder | Modulator ——»

Source R

Tx Amplifier

Channel

Decoder | Demodulator

Destination |-e——

Rx Amplifier

Figure 1.2: Simple communications system block diagram, with channel coder.

is extra data that must be transmitted to the destination, but it is derived from the
original data in a structured fashion that is known to the receiver. Its primary purpose
is to combat the effects of channel noise on the decision device at the destination.
One common type of channel code is called a block code. Block codes group K data
symbols together and add N — K additional coding symbols. The rate of this code is
defined as % information symbols per channel symbol. The N transmitted symbols
are known as a codeword and can be thought of as a vector in an N dimensional
space. When all N, possibly corrupted symbols, are received they form a received
vector. Then the decoder attempts to determine which K symbols were intended to
be communicated.

Reed-Solomon (RS) codes are commonly used block codes. If the size of the
alphabet is M, a power of 2, then a standard RS code can be constructed with

length N = M —1 symbols. The minimum Hamming distance (the minimum number

of positions in which two codewords differ) for RS codes is dy;, = N — K + 1.
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Figure 1.3: Tllustration of the distances between codewords and decoding spheres for

bounded distance decoding.

Decoding is typically accomplished by using a bounded distance decoder (BD) such
as the Berlekamp-Massey decoder. An errors-only BD decoder maps all received
vectors within a N-dimensional sphere of radius Lmei”J, around each codeword, to
that codeword. An illustration of this is shown in Figure 1.3.  If a received vector
lies outside of all codeword spheres, the decoder can determine this and a decoding
failure is declared. If a transmitted codeword is decoded incorrectly, i.e. the received
vector lies within the decoding radius of a codeword other than the transmitted
codeword, a decoding error occurs. Without the use of an additional information,
these decoding errors are undetected. Calculating the probability of undetected error
in a RS code has been addressed by various authors, especially in the area of re-
transmission schemes, but usually these algorithms are of exponential complexity in
N. Even the best algorithm we encountered [1] has exponential complexity when

each transmitted symbol has different noise statistics.

In Chapter 2 we motivate and develop an efficient, recursive method for calculating



the probability of undetected codeword error. Our algorithm assumes independent
noise statistics from symbol to symbol but allows different noise distributions. The
efficiency of the algorithm is dependent on the number of different noise distributions
present, and can have exponential complexity in N as the number of noise distribu-
tions approaches N. In this situation, our result can be bounded in a fashion that
is compute-limited (the bound grows monotonically tighter as the amount of CPU
cycles applied increases). While the algorithm in [1] may approach our efficiency for
the case with few noise distributions, it does not offer a bound in the case where there

are many distributions.

1.2.2 Filtering

The second method of combating interference in a wireless system that we address,
is the use of filters. Using filters to mitigate the effects of interference is useful when
interfering signals have some type of frequency separation from the desired signal. A
basic filter will attenuate some signals and allow other signals to pass unattenuated.
These filters, when placed strategically, can effect the overall performance of the

system. A common measure to describe the selectivity of filters is @), or the quality

factor. The @ of a filter is defined as:

Q=1 (1.13)

where f. is the center frequency of the filter and B is the bandwidth of the filter.
Filters of high @ are especially difficult to manufacture for high values of f..

Recent advances in micro electro-mechanical systems (MEMS) have made possible

filters of high center frequency, with very large () values. In Chapter 4 we analyze

three applications of MEMS filters in communications systems: sub-sampling, cosite
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interference, and power efficiency. The basic receiver that we analyze in the cosite and
power efficiency applications, and that we compare the sub-sampling architecture to

is shown in Figure 1.4.  In this front-end, the received signal is filtered by a channel

\/ LNA LO
'
Channel select filter 2"d filter mixer  IF filter

Figure 1.4: System Block Diagram.

select filter, amplified by a potentially nonlinear amplifier, filtered again, and mixed
down to an intermediate frequency (IF). The goal is to perform these operations with
a minimum of added noise or interference.

For sub-sampling systems, the challenge is mitigating the effects of replicated
noise, while retaining as much of the desired signal as possible. A sub-sampling system
seeks to eliminate the local oscillator (LO) and mixer by using a technique which
creates a sampling-induced spectral replicate at the IF frequency. It is commonly
known that sampling at a frequency below the Nyquist rate for low-pass signals
induces spectral overlap, but bandpass sampling below the Nyquist rate can produce
spectral replicates at advantageous frequencies. If proper system parameters are set,
the mixer and LO found in the traditional radio front-end shown in Figure 1.4 can be
eliminated. We give conditions on the sub-sampling system parameters to assure self-
interference free communication and we show that the replicated sampling resistor
noise is dominated by the thermal noise at the antenna. Additionally, we show that
under another condition, the replicated wide-band noise is finite. We apply this

analysis to an example system and show the performance tradeoff between sampling
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rate, filter shape, and interference.

The second issue that we explore in Chapter 4 is the analysis of the suppression
of cosite interference. Cosite interference occurs when one or more strong interfering
signals are spectrally close to a weak desired signal. If the channel select filter is unable
to adequately attenuate the interferers and the LNA has a nonlinear response, then
intermodulation interference may be generated in-band. To combat this interference,
MEMS filters may be employed as the channel select filter. For a system with this
type of interference, we quantify the tradeoff between filter ) and SIR.

The third issue that we address is the power savings that may be achieved by
using MEMS filters in nonlinear receiver front-ends. It was thought that the use of
selective filters may allow the use of amplifiers that are more power efficient and at the
same time less linear. By applying a MEMS channel select filter to attenuate strong
interferers in a cosite scenario, intuition held that the overall system SIR could be
held constant while the power used by the system decreased. The measure of power

added efficiency (PAE) proposed to examine this situation is defined as:

Pout_Pi

PAE =
Psup ’

(1.14)

where P,,; is the power of the desired signal at the output of the amplifier, P;, is
the input power of the desired signal, and P, is the amount of power supplied to
the nonlinear amplifier. We show that the application of MEMS filters to a fixed
bias power amplifier increases the PAE in the presence of strong interferers, but that
there is not a clear link between lowering the amplifier bias bias power and increases
in PAE. The PAE of a given set of amplifiers is both dependent on the amount of
gain available and the amount of power supplied. When the power supplied decreases
the gain usually decreases as well, and the rates at which these two measures change

is heavily dependent on the circuit design.

12



1.3 Nonlinear analysis technique

In order to properly evaluate the effects of a nonlinear amplifier on the interfer-
ence level in a given system, a nonlinear analysis model is generally employed. The
commonly used nonlinear modeling techniques are: circuit simulation, behavioral
modeling, and analytical modeling. An overview of the strengths and weaknesses of
these techniques is found in Chapter 3.

To analyze, rather than simulate, the effects of a nonlinear amplifier in the sys-
tems that we examine, the Modified Instantaneous Quadrature Method (MIQM) is
proposed. Once certain limitations are addressed, this method is shown to have ad-
vantages over the existing modeling techniques discussed. Most important amongst
the advantages discussed in Chapter 3, is that it allows for rapid analysis of weakly
and strongly nonlinear systems with large or small dynamic range inputs. Once the
system is shown to be memoryless, or have a limited degree of memory, the MIQM
will produce accurate results that match the output of more numerically complex

simulation systems.

1.4 Organization of Thesis

In Chapter 2 the selection of optimal RS coding rates for a product code in the
presence of partial band interference is addressed. Development and use of a com-
putationally efficient method for determining the probability of undetected error is
made to select code rates that achieve a given design goal. These codes are compared
to the asymptoticly derived optimum codes and it is shown that undetected error is
an important consideration in rate selection.

Chapter 3 details the background and design of the MIQM technique for the
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analysis of nonlinear systems. The results from the MIQM analysis of a baseline
amplifier circuit are found to compare favorably to the results generated by a circuit
simulator. This technique is employed to analyze the use of MEMS filters in the
communications systems studied in Chapter 4.

Finally, a summary of the original contributions and conclusions of our work is

found in Chapter 5.
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CHAPTER 2

Reed-Solomon Codes: Probability of Undetected
Error and Applications

It is well known that coding is an essential element of a well designed digital
communication system. In some cases, the additional structure imposed by coding can
lower the required signal power by as much as 30 to 40dB [2]. Specifically, in systems
where parts of the transmitted codewords experience interference or fading, coding
can provide a mechanism to combat these effects. Many systems utilize Reed-Solomon
(RS) codes as part of their their error control structure. While the Reed-Solomon
code provides an attractive error control element due to its distance and burst error
control properties, analysis of the probability of undetected error for these codes can
be complex.

In this chapter we present an efficient algorithm for calculating the probabilities of
correct decode, incorrect decode, and decode failure for an RS code which is decoded
using a bounded distance (BD) decoder. We start with the assumption that each
symbol in the codeword has identical interference statistics, and we extend the analy-
sis and algorithm to the case where each symbol may experience different interference
statistics. Using this analysis we determine the probability of undetected error for a
single RS codeword transmitted through a number of common channels.

Additionally, we evaluate the correct, incorrect, and failure statistics for a frequency-
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hopped spread-spectrum system where a RS based product code (PC) is transmitted
in the partial band jamming (PBJ) channel. A product code consists of two codes:
A row code and a column code. These codes provide large error correcting capability
with low decoding complexity. We consider the case where the row code is trans-
mitted on a single frequency of a frequency-hopped system thus each element of the
column code is transmitted over a different frequency. The purpose of the row code
is to provide correction against random errors and detection of bursts of errors. Thus
the decoder may attempt to correct a small number of errors but detect a large num-
ber of errors. The column code corrects the erasures due to the row decoder’s error
detection. We determine optimal rates for the constituent row and column codes and
we compare these rates with the rates determined through asymptotic analysis [3].
The remainder of this chapter is organized as follows: In Section 2.1 we provide a
brief overview of the literature, in Section 2.2 we illustrate the system model that we
use for the case of the single RS codeword. Sections 2.3, 2.4, and 2.5 contain the main
derivation of our efficient method, and Sections 2.6 and 2.7 detail the application of

our method to some channels of interest. Finally Section 2.9 details our conclusions.

2.1 Work in the Literature

In the literature, authors have generally ignored the probability of incorrectly de-
coding a Reed-Solomon codeword, but there are a few that tackle this problem. In [4]
an expression for the probability of error is derived for a RS code with independent
identically distributed (IID) noise. Direct calculation of this expression is of exponen-
tial complexity. The problem of decoding in IID noise is also addressed in [5]. While

this method is less complex it does not consider the case where symbols are corrupted
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by independent but differently distributed (IDD) noise. In [6] and [7] bounds are given
for the probability of undetected error for the IID case but no mention is made of
IDD noise. Similarly in [8], results are derived combanitorically for the IID noise but
not for IDD noise. In perhaps the closest parallel to our work, Daraiseh [1], uses zero
patterns to combanitorically derive results where all symbols may experience noise of
different distributions, but the given expressions grow with exponential complexity
in the length of the code and the framework is less flexible than our result.

In the application of RS codes to product codes, there has been some activity.
In [9] the development of “good” Hamming codes for use in a product code is explored.
While there are interesting problems in this area, a Hamming code cannot provide the
degree of codeword separation that a constituent RS codes can. In [10], Nakamura
decodes a product code array by decoding row-wise, column-wise and row-wise again
in the presence of randomly distributed errors. This repetition is interesting in light
of the recent turbo code iterative methods, but they do not address the probability
of undetected error. In a fairly recent work, [11], Yi proposes a diagonal interleaving
scheme which serves to randomize potential burst errors. In a product code the
strength of the row code is used to detect and possibly erase burst errors. Since
interleaving attempts to eliminate burst errors it is not clear how Yi’s scheme will
impact the overall correcting power of the product code. In an older work, [2], Stark
evaluates the performance of concatenated codes in the partial band jamming (PBJ)
channel. The constituent codes discussed are an outer RS code and an inner single
parity code. This work is helpful as a performance comparison, but we will change
the model slightly. In addition, Frank [12] also considers concatenated coding in the
PBJ channel. He uses both soft and hard decisions, this will provide another model

for comparison.
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2.2 System Model

In developing an algorithm for efficient computation of undetected error probabil-
ity for Reed-Solomon codes we assume a singly extended (N, K) RS codeword with
minimum distance d,,,;, = N—K+1. A standard RS code has length N = ¢—1, where
the symbols are drawn from GF(¢q), and is known as a maximum distance separable
(MDS) code because its minimum codeword distance satisfies d;, = N — K + 1.
A singly extended RS code is also drawn from the GF(q) but it has length N = ¢,
and it also satisfies the MDS criteria. This codeword is transmitted using orthogo-
nal modulation across an M-ary symmetric channel with errors and erasures. The
receiver demodulates and makes symbol-by-symbol decisions as to what symbol was
transmitted. Interference in the channel results in a non-zero probability that the
receiver will decide what symbol was transmitted in error. In addition, the receiver
may declare a symbol erasure if some condition is satisfied (such as the ratio thresh-
old test (RTT)). For the I’th symbol transmitted over this channel the probability
that the receiver decides, in error, that any other symbol was transmitted is P!, the

P,
M1

probability that we error to a specific symbol is P! = the probability of erasure
is Pf, and the probability that the correct symbol is decided upon is P;.

The receiver then attempts to decode the received vector into a codeword using
a BD/RS/Errors and Erasures (EE) decoder. If the received vector has t errors and
e erasures satisfying 2t + e < d,;,, the received vector decodes correctly. However,
if the the received codeword lies within a d,,;, “radius” with respect to an incorrect
codeword, the codeword decodes incorrectly. If neither of these conditions hold, the
decoder declares a decoding failure. While it is common practice to assume the

probability of undetected error is negligible, we wish to determine this probability.

With out loss of generality we assume the all zeros codeword is the transmitted
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codeword for all cases.

2.2.1 Zero Patterns

One further concept that is needed in our algorithm development is the concept
of a “zero pattern”. A zero pattern is a vector that flags the positions of zero symbols
in a RS codeword. If we create a vector of length N that contains 0’s where a RS
codeword has zero symbols and 1’s where the same RS codeword has non-zero symbols
we have created a “zero pattern”. In this manner, every codeword has a zero pattern,
but not every zero pattern has a unique codeword. In fact, we know from the weight
enumerator that there are

(N-1) kfm(—l)s <k B 1>N'“‘s‘d’"i" (2.1)
s=1 5 ‘
codewords per weight k zero pattern [13]. Additionally we know that there are (]]Z)

zero patterns for a weight k& codeword [14].

2.2.2 Noise Distribution

We assume each symbol is transmitted in an M-ary symmetric channel with in-
dependent noise from symbol to symbol. For compactness of results we will assume
the distribution of noise has the potential to change from symbol to symbol, and
these distributions are known to us. The only case that requires a distinction is the
probability of incorrect decoding; in this case if the number of different distributions
is large (compared with N) the IDD noise case yields bounds, otherwise the IID case
and IDD case with few distinct noise distributions yield exact results with reasonable

complexity.
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2.3 Correct Decoding

To determine the probability of correctly decoding a received vector, we define the
event B} ; to be the event that i erasures and j errors have occurred in / transmitted
symbols, and we build the density function for B}, starting with P{B;,} = P/,
P{Bj,} = P, and P{Bj,} = P, and proceeding with [ = 2...N. The general term

then becomes
P{Bf,j} = [P{Bf?} X Tizirjy ) P+
[P{le'j,j} x Igizoy| P+
[P{B;;'\} x Ijz0)] Py, (2.2)

where 7 = 0,1,...,l and j = 0,1,...,l — 4, and I,y = 1 if the event m is true and

Ity = 0 otherwise. Thus, the probability of correctly decoding is

N N-—i

Pea =3 > PABI} * Tpsricdnin) (23)

i=0 j=0

The worst case computational complexity of evaluating (2.3) is O(N?) when there are
N different noise distributions present. If the probability of erasure is zero or the BD
decoder decodes errors only (EO), (2.3) reduces to complexity O(NN), but if there is
only one noise distribution the BD/EE decoder calculation is O(N) and the BD/EO
decoder calculation is trivial. (2.3) can be applied when the noise distribution is any
arbitrary function, the only requirement being the knowledge of the symbol transition

probabilities.

2.4 Incorrect Decoding

To determine the probability of incorrectly decoding the received vector we must

split the discussion into 2 sections. In the first section we determine the exact prob-
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ability of incorrectly decoding in the presence of IID noise, while the second section
determines the bounds on the probability of incorrectly decoding in the presence of

IDD noise.

2.4.1 IID

The probability of incorrectly decoding in the presence of IID noise can be con-
structed in a similar fashion to that of correctly decoding. For this analysis we define
the event of interest in a slightly different manner. Let Bf,juc be the event that the
received vector has i erasures and is a Hamming distance j (in the non-erased posi-
tions) from a weight & codeword after [ symbols have been transmitted. In addition

we define transition probabilities as

Pl if 7t =1
Pl if 7! =0,
P(M—-2)+ P ifzl =1

Pl = (2.5)
P! if 7! =0,

e

and Pfl* = 1—P.L — P.. = Pj; where Z is the zero pattern for any weight & codeword.
Proceeding as above, the initial terms are P{B;,} = P, P{B;,;} = Pj.,and
P{Bll,0|k} = PL. The general term is
P{le',j\k} = [P{Bf;ﬁk} X [{l¢i+j}]Pcl~ +
[P{B; 1 ;i % Trizoy) Py +

[P{Bf,giuk} x I{#O}]Péw (2.6)

which is independent of the weight & word decoded. Thus, the probability of error to
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any weight k& codeword can be found by summing

dyin—1
\-%J dminfzjfl

Pigy = Ay, Z Z P{Bz']Yj\k}a (2.7)
i=0

§=0
where Ay is the weight enumerator for an MDS code [14]. Summing over the potential
codeword weights removes the conditioning and completes the overall probability of
codeword error calculation:

N
Py= Y Puy (2.8)
k=dmin

2.4.2 1IDD

While the analysis from the IID case provides a straightforward exact probability
of incorrectly decoding the received vector, the additional dimension of differently
distributed noise raises some problems. In the previous analysis we constructed the
transition probability of the channel based on a zero pattern of a representative weight
k codeword. Unfortunately, the addition of IDD noise prevents us from selecting a
single weight & codeword to be representative of all weight k& codewords. Because the
channel transitions are a function of both the location of the zeros in a codeword and
the differing distribution of noise that is possible for each symbol, we must consider
each weight & codeword individually. This presents a problem in that there are IV,
combinations of zero positions for codewords of weight & [14] thus the number of
codewords to consider grows exponentially. For a code of non-trivial length this
complexity growth is unacceptable.

To address this problem we must examine the zero pattern distribution more
closely. As a result of the different noise distributions, some zero patterns are more
likely to occur than others. We use this knowledge and develop a list of representative

zero patterns ordered by their likelihood, with the most likely pattern first. We denote
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the [-th symbol in the (-th representative zero pattern Zé.

We define the correct transition probability vector, Pg, to be a vector of length
N whose elements contain the probability that the received symbol type (zero or
non-zero symbol) matches the type of the corresponding symbol in the zero pattern

of weight k under consideration. Thus P¢ is constructed of elements P where

P! if ZL =0

PL = (2.9)
Pl ifzi=1,

and [ = 1...N. The erasure probability vector can be determined from the channel

and is denoted:
Pp = [P{P;...P}]. (2.10)

The error probability vector, Pg is constructed from the probability space that re-
mains,
ot 1= PL— Pl if ZL =0 o)
1—P}—Psl ifZézl.
The event Bf]ﬂk is defined as the event that after [ symbols are transmitted the
received vector has i erasures and its associated zero pattern is a Hamming distance
j (in the N — i non-erased positions) from the (’th weight k zero pattern of interest.

For the specific pattern, Z;, the general term for the recursion is very similar to that

of (2.6) and is given by

P{B,} = [P{B} x Luzrpp)Pé +

[P{BZ15} X Lizy | Pre +

)

[P{B 150} X 120 P, (2.12)
with the corresponding initial values P{By¢,} = P4, P{B;$,} = P,and P{B;§,} =

PL.
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Next, the probability contribution of the ('th zero pattern is found by summing,

mln J

mln_2] 1

IDk = AC Z P{Bmk (2.13)
where A is the number of codewords with zero pattern Z;, (2.1). Continuing, we
write the unconditional probability of incorrect decoding as:

N Ny,
Pip= > Y P, (2.14)

k=d,nin (=0
2.4.3 Representative Zero Patterns

The remaining question is how to identify the representative zero patterns. Uti-
lizing Stirling’s approximation to NV!, it can be clearly seen that the number of zero
patterns grows exponentially in N. Because of the exponential growth of zero pat-
terns bounding the result may be more desirable than considering all of the patterns.
On first pass we may be tempted to select the fraction L most likely zero patterns
that the IDD noise would precipitate. While effective in creating a bound [15], if a
small number of noise distributions are present, as in the case of a two state channel,
there are much more intelligent mechanisms. To frame the problem, let us assume ¢
indexes different noise distributions (f; ... f;). Each distribution effects 1, symbols
from a (N, K) codeword. We define ¥ = [¢); ...¢y]. For a given weight, k, and zero
pattern, (, we define X,g to be the product of the associated correct transition vector

from (2.9):

N
=[] 7 (2.15)
=1

If we fix k£ and plot X,g for all ¢ we observe that some of the zero patterns share the
same likelihood of occurring. Figures 2.1, 2.2, and 2.3 are generated by sorting the

likelihood of all weight 10 zero patterns for a (16,12) code. Figures 2.1 and 2.2 have

24



2 and 3 distinct noise distributions each affecting 2 symbols, and Figure 2.3 has 16

different noise distributions each affecting 1 symbol.

I I I I I I I I
0 1000 2000 3000 4080 5000 6000 7000 8000 9000

Figure 2.1: Two distinct noise distributions

When the number of distinct noise distributions is small there are zero patterns
with the same likelihood of appearing, as the plateaus in Figures 2.1 and 2.2 illustrate.
However, as the number of noise distributions approaches the length of the code, N,
there are very few zero patterns with the same likelihood. We can see the mechanism
that generates these plateaus by examining the received zero patterns more closely.

The device we construct to illustrate this in Figure 2.4 is a zero pattern of length
N = 16 and weight £ = 13. We subdivide this pattern into ¢ = 5 partitions each
containing ¢, symbols (m = 1...t). We populate the pattern with N — k = 3 zero
symbols, “0”, and k& = 13 non-zero symbols, “X”. Next, we permute the location
of the zero symbols such that every successive permutation causes a zero symbol to

move across partition bounds. The resulting P., changes, thus the value of (2.15)
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I I I I I
0 1000 2000 3000 4080 5000 6000 7000 8000 9000

Figure 2.2: Three distinct noise distributions

I I I I
0 1000 2000 3000 4080 5000 6000 7000 8000 9000

Figure 2.3: 16 distinct noise distributions
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t=1 2 3 4 5 ¢

Pp=1 4 6 1 4  No change in likelihood
X XXXX| XXXX0X|0] 0000|——

|

Partition crossed, change in likelihood

X XXXX| XXXX00| X[ 0000 *

Figure 2.4: Plateau illustration device

changes.

We note that every zero pattern on a given plateau has the same likelihood of
occurring. This can be realized by moving a zero symbol such that it does not cross
a partition boundary. Using these zero pattern generation mechanisms, we can easily
generate the set of all zero patterns corresponding to a single plateau or a set of zero
patterns where each pattern is drawn from a unique plateau. Define a specific zero
pattern that is drawn from a set of zero patterns with equal likelihood, a “plateau
representative”. We will define Z%F = [ZF ... szvR] to be the ordered set of plateau
representatives which contain all representatives of weight k ordered by decreasing
likelihood of occurrence, where Ny is the size of the set (calculated in Section 2.4.4).

The advantage of exploiting the plateaus is the ability to selectively evaluate
representative zero patterns from each plateau. For instance, in a situation where
2 different noise distributions are present such as a basic PBJ channel, we would
merely need to calculate statistics for a maximum of k£ weight k zero patterns. This
provides a major decrease in complexity and accuracy as compared with our previous

results in [16] which provided upper and lower bounds on the probability of incorrectly
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decoding by choosing a fraction of the zero patterns without regard to the potentially

equal likelihood.

2.4.4 Plateau Representative Combinatorics

To take the previous analysis a step further, we are interested in the number of
plateau representatives and the number of zero patterns on a plateau for a given k

and V. In general there are

1 e
NR_ZOZU 2}[{k+2xy>21/)y} (2.16)

distinct plateaus, where I{z} = 1 if x is true and I{z} = 0 otherwise. While
accurate, this calculation itself has exponential computational complexity. To reduce
the complexity of this calculation, we generate a counting recursion. First we re-
state the problem as a counting game. Suppose we have k indistinguishable tennis
balls and ¢ buckets. Each bucket has a specific capacity v, where > 1, = N and
the position of the tennis balls in a bucket is indistinguishable. The problem then
becomes this: how many ways are there to put the k£ balls into the ¢ buckets with the
caveat that the buckets may be under-filled but may not be over-filled.

To solve this problem we define C}' to be the number of arrangements of b balls
into u buckets, and we generate a recursion. To see the derivation of the recursion’s
general term consider the case where the u’th bucket is empty, there are Cg"l ways
to distribute b balls into the u — 1 buckets. If a ball is now placed in the u’th bucket,
there are C;f , ways of distributing the remaining b — 1 balls into the u — 1 buckets.
The process of moving one ball from the v — 1 buckets to the u'th bucket continues
until the «’th bucket contains 1, balls or all the balls are in the u’th bucket. Thus,

the general term is only dependent on the case where there are u — 1 buckets.
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This recursion can be calculated using an array, C', indexed by w and b such
that b increases as we descend down the rows and u increases as we proceed to the
right across the columns. We initialize the first column with 1’s in the following
positions: Cg, Ct,Cy,...Cy, and zeros in the remaining positions. This is interpreted
in the following manner: there is one different way to arrange 0,1, 2. .., balls in one
bucket of size ¢; and there are no ways to arrange any more than ); balls. We now

fill in the next column by proceeding down the rows with the general term:

min(ty,b)
Cy= > C. (2.17)
=0

Thus, the solution of the question of how many ways to arrange k balls (or non-zero

symbols) in ¢ buckets (or different noise statistics) is
Np = CL. (2.18)

This solution has computational complexity O(N?) and storage complexity O(N?).
The number of elements on a given plateau can be determined once the plateau

representative is known. Define k; to be the number of non-zero symbols with noise

distribution f; in the plateau representative (. The number of different zero patterns

that share this same likelihood is
(05
NS = | [ (k : (2.19)

2.4.5 Bounding

In the case where ¢ is much smaller than N, selecting one representative zero
pattern per plateau and determining its contribution multiplied by the number of
zero patterns that it represents, decreases the number of zero patterns over which

we must sum. But as ¢ approaches N, the number of plateaus and thus the number
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of representatives, grows exponentially. If the complexity introduced by a growing
t becomes unacceptable, bounding is an option. The tightest lower bounds using
the plateau analysis comes from selecting the first fraction L of the ordered plateau

representatives. Modifying (2.14) gives us

LNg

N
Pip > P = Z Z ngng,k; (2.20)

k=dmin C:[]

and the upper bound can be determined by summing over the first fraction L of the
plateau representatives and treating the remaining fraction, 1 — L, plateau represen-

tatives as they contribute as much as the smallest evaluated plateau.

N LNg
Pip < PP = Y |> Py NS+ (1= L)NpgNJNePLIR | (2.21)
k=dmin ¢=0

In general, these bounds are compute limited, to make them tighter by increasing L
more CPU time must be employed. While multiplying N by the fraction L certainly
did not remove us from exponential complexity, it does grant the freedom to make

the bounds as tight or as loose as the application demands.

2.4.6 Zero Pattern Sorting/Generation

Some mention should be made here regarding the ordering of Z*, the set of plateau
representatives. In Sections 2.4.3 and 2.4.5 we assume the zero patterns are ordered
by their likelihood. For now, we generate a large number of highly likely plateau
representatives, a factor of 10 times more than we require for the product LNy and
we sort these using a standard O(nlogn) sorting technique. It is desirable to develop
an algorithm to generate these zero patterns in order, and this is an open problem
described in this section.

Suppose we generate N real, not necessarily unique, numbers from the open inter-

val (0,1). These numbers are then sorted into ascending order. We call the smallest
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number of this sorted set P, the next larger P, and so forth, and we define the vector
P =[Py, P, Ps,...,Py]. In addition, we define Zj to be a binary vector of length N
and weight k such that the rightmost & elements of Z, are “1”’s and the remaining
elements are “0”’s. Next we define my = [[2_,(Pol{Z, = 1} + (1 — P,)I{Z, = 0}),
where I'{z} =1 if z is true and I{z} = 0 otherwise.

As an example we have the following for £k =2, N = 5:

P=[1,2,3,4,.5 (2.22)
Zy =10,0,0,1,1] (2.23)
7o = (.9)(.8)(.7)(-4)(.5) = 0.1008 (2.24)

The arrangement of Z; may now be permuted into any of (ka ) possible patterns, thus

creating Z;. For instance:

Z, =1[0,0,1,0,1] (2.25)

™ = 0.0648 (2.26)

The problem is this: How can the sequence of zero patterns, Zy, Z1,..., Z(IZ), be
reliably and efficiently generated such that the associated product sequence, 7, 71, . . ., ™
is monotonic non-increasing. While it is “easy” to do this with brute force searching,
we are interested in developing an algorithm that does not need to enumerate all
possible binary vectors before searching. While it is clear (and trivially provable)
that the above selection of Z; is the correct choice, it is not so clear which is the
correct choice for Z; without trying different possibilities. Some analysis leads me to
believe that there must be some restrictions on the elements of P for the solution to

be tractable, but further work is needed.
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2.5 Decoding Failure

With the calculation of the probability of correctly decoding and incorrectly de-
coding complete, the probability of decoding failure occupies the remainder of the
probability space. The probability of the decoder failing to decode for IID noise is

Py =1— P, — Py and the upper and lower bounds for IDD noise are

Phi =1~ P — Py (2.27)
and

PLE=1-Py— P/, (2.28)

which are equal when ¢ is small and all the plateau representatives can be summed

over.

2.6 Results for Single RS Codewords

The results in this section are the probability of decoding error for a single RS
codeword. The transmitted codeword is modulated using M-ary orthogonal signal-
ing and is transmitted through a channel. Symbol detection is done using the ratio
threshold test (RTT), and the corresponding symbol error correct, incorrect and era-
sure probabilities are used to calculate the probability of decoding error. The receiver
block diagram is shown and symbol correct, incorrect, and erasure probabilities are

derived in Appendix A.

2.6.1 Single Codeword in AWGN

To examine the results of these calculations we, we consider a singly extended RS

code generated over GF(32). Since the RS code is linear, we may transmit the all
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zeros code word without loss of generality. All code symbols are transmitted as M-ary
orthogonal symbols which are corrupted by AWGN noise during transmission. The
receiver detects the symbols non-coherently, applies the ratio threshold test (RTT),
and makes hard decisions as to which symbol was transmitted. This model can be
thought of as the M-ary symmetric channel with erasures.

The first example is the IID case where all the symbols are corrupted by noise
with the same distribution. In Figure 2.5, the rate and RTT parameter v are varied
and the figure shows the probability that the RS codeword is decoded in error. Note
the non-monotonicity in error probability associated with a decrease in SNR for non-
zero values of 7, this is a result of the RTT detecting and erasing symbols that are
unreliable. As the SNR decreases, more and more symbols fail the RTT, and as a
result the RS decoder is more likely to declare a decoding failure rather than make an
incorrect decision, thus the probability of incorrect decoding falls.  To illustrate the
required receive energy for a given performance metric, Figure 2.6 gives the minimum

SNR required such that the probability of incorrect decode is less than 1 x 10720,

2.6.2 Single Codeword in the Partial Band Jamming Chan-

nel

As a second example we transmit a codeword in the partial band jamming channel
(PBJ). In this channel a hostile jammer is allocated a given amount of noise power
to distribute over a fraction p of the channel. Thus the probability that each symbol

experiences increased noise power is p and the noise density for that symbol is % +

];f—l‘)’. The remaining symbols are only corrupted by background noise, with density

No

5. As before, all code symbols are transmitted as M-ary orthogonal symbols which

are corrupted during transmission. The receiver detects the symbols non-coherently,
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applies the ratio threshold test (RTT), and makes hard decisions as to which symbol
was transmitted. This model can be thought of as the M-ary symmetric channel
with erasures with the caveat that the transition probabilities may change every
symbol. Because the PBJ channel imparts one of two noise densities on each symbol
transmitted through it, the symbols have one of two different transition probabilities
and there are at most K + 1 plateau’s for a fixed code rate (&) and jamming fraction
(p)-

In Figure 2.7 the average probability that the codeword decodes in error is dis-
played for RTT parameter v = 1 and varied J% for a (32,16) RS codeword. The
average assumes the distribution of the jammer’s parameter p is uniform over the
interval (0, 1). Note the error floor as the ﬁ—"; increases. This behavior is explained by
the relative contribution of the jamming interference decreasing; thus, the probability
of decoding error approaches the performance of the system that does not experience
jamming. In Figure 2.8 we plot the performance of the system for v = 2. The
performance for low ﬁ—’; is relatively unaffected by the jammer. The probability of
that symbols are erased by the RTT at a low SNR is relatively high and the addition
of extra noise from the jammer will not cause significant additional degradation, thus
the probability of decoding error is relatively flat across the whole range of jammer
power. However, at higher 1%—2 the addition of a strong jammer to the system can cause
a significant increase in the probability of codeword error. The point at which this
transition occurs corresponds to the peak of the decoding error probability in Figure
2.5; for a (32,16) code with v = 2 the this transition point is 7.252dB. This leads
to the conclusion that, all else being equal, if we are optimizing a system utilizing

the RTT for the worst case probability of decoding error in both AWGN and PBJ

channels, the worst selection of ]]f,—(b) are roughly equivalent between the 2 channels.
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2.7 RS Codes as Constituent Codes in a Product

Code

In this section we examine the performance of a Product Code (PC) in the par-
tial band jamming channel (PBJ). We focus on three areas: optimum rate selection
for the constituent codes (Sections 2.7.4 and 2.7.5), determining the probability of
correct, incorrect and decoding failure (Section 2.7.6), and finally some discussion of

the selection of constituent code decoding radius (Section 2.7.7).

2.7.1 System Model

In the partial band jamming channel, a fraction of the total bandwidth experiences
a noise density that is higher than the normal background thermal noise. This extra
noise is due to the energy imparted by a, possibly hostile, jamming source. In the
frequency hopped spread spectrum (FH-SS) incarnation of this model, the overall
system bandwidth is divided into channels. There are two states in this model;
either a channel is jammed, or it is not. If a channel is jammed, its noise density
increases. In this section we assume the background thermal noise to be zero, i.e. if
a channel is not jammed its noise density is zero. We assume that the distribution
of jammed channels is uniform. The fixed power jammer changes the noise density
on the channels it chooses to jam by adjusting the parameter p, the fraction of the
system bandwidth W jammed. If the jammer has power J Watts to distribute over

the bandwidth jammed, then the added noise density in the jammed bandwidth is
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2.7.2 Product Code Basics

Product codes are arrays that are composed of two constituent codes, a row code
and a column code. Data symbols are placed in an K, X K. symbol array and the
array filled out by applying the constituent row code to the rows and the constituent
column code to the columns. This increases the total packet size to N, x N., where
N, and N, are the number of symbols in a complete row and column. The rate of the
row code is, of course, K,/N,; likewise the column code rate is K./N.. The overall
rate of the code is:

R = —
NN,

R, R., (2.29)

the overall rate is the product of the constituent code rates. Thus, the moniker
“Product” code. We use singly extended RS codes as our row and column codes.
These codes are maximum distance separable (MDS) codes built from symbols in
GF(M = 27) of length N, = N. = M where the minimum distance for the row code

is d, = N, — K, + 1, and likewise for the column code, d. = N, — K.+ 1. [4]

2.7.3 Modulation and Transmission

We model the transmission of data on a FH-SS system by transmitting one row
per channel hop. Therefore, a row has the same noise statistics for all symbols in
that row. Since a RS code whose length increases must use a growing alphabet of
symbols, (M = N,), we will represent each symbol as one of an M-ary orthogonal
signal set. For a Rayleigh fading channel with AWGN, as in [17], the corresponding
symbol crossover probability is:

M—-1
203

P,=F(p) = /000 [1 — exp(—z/2af)] [1 — exp(—z/2a§)]M_2 [exp(—z/2a§)] dz,
(2.30)
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where Fj is the energy per data bit and P, is the symbol crossover as defined in Section
2.2. Note that we drop the [ superscript since all symbols in a row experience the
same noise statistics. The inverse function is numerically determined and is expressed

in shorthand as:

p=F"'(P,). (2.31)

2.7.4 Worst case rate selection: the asymptotic case

We examine this problem from a game-theoretic formulation. The game is be-
tween the row decoder and a jammer. A wide-band jammer will cause random errors
and thus a good strategy for the decoder is to operate to maximize the total error cor-
rection capability of the decoder. A narrow-band jammer will cause bursts of errors
during a hop and thus a good strategy for the decoder will be to perform error detec-
tion and let the column code correct the induced erasures. The payoff function for
the game is the rate at which reliable communication is possible. For this analysis we
examine very long Reed-Solomon codes. Our results are a region of possible row and
column rate pairs for which reliable communication is possible. In addition we find
the maximum rate for which reliable communication is possible with Reed-Solomon
codes.

For this analysis, the row and column rates are fixed and the number of symbols
N,., N, becomes large. As the number of symbols become large, the expected number
of symbol errors in any transmission scheme, with a fixed crossover probability (P,),
goes to N, P,, by the weak law of large numbers (WLLN).

For our Reed-Solomon row code, we can correct the received row from all generated
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errors if

I “| > NP,
1 — &
N,
- > P,
2
1— R,
P,
5 >
1—R, >2P,
R, <1—2P,. (2.32)

The conclusion we draw is that the row can be properly decoded if its rate is appro-
priately small.

If the row rate is too large, with high probability the row decoder will fail, which
means that no codeword will be within the error correcting capability of the received
vector. If this happens, we erase the entire row and the corresponding elements in
the column codes are these erasures. Let e be the number of erasures passed to the

column decoders. The column coders can correct e erasures if:

d.—1>e€
N.— K, >e
e
1—-R,> —
>Nc
e
R.<1——
N,
R.<1—p. (2.33)

A similar conclusion can be drawn, if the column rate is appropriately small the
column decoder will correct all erasures passed to it. If the number of erasures
exceeds the error correcting capability of the column codes the decoder will declare a
failure. Asymptotically, the probability that an undetected error occurs goes to zero

as the error correcting capability of the column code grows large.
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To find the best rate we have a classic min max style optimization. Can the
transmitter minimize the effect of the mazrimum effectiveness of the jammer. This
is equivalent to finding the mazimum rate that the transmitter can achieve in the
presence of an intelligent jammer. We assume the jammer is privy to the transmitter’s
row and column rates and we develop the ranges of the jamming parameter, p.

To prevent the column codes from decoding properly, using (2.33) the jammer

may select any p such that

p>1—R,. (2.34)

To prevent the row codes from decoding properly, using (2.32) the jammer may select

any p such that

1—-R,
2

p < F7Y( ). (2.35)

Note the flip in the inequality, this is due to the fact that F~'(e) is a decreasing
function.
The probability that the jammer successfully prevents the receiver from decoding

properly is defined by the following conditions:

;

0 p> F‘l(—l’QRT)

Pjom =4 0 p<1-R, (2.36)

1 p>1-R.and p< F1(1f)

\

The jammer may pick any p such that 1 — R. < p < F~!'(1=f2) and it will maintain
the ability to jam the packet. Thus, the transmitter must select rates as to force the

jammer’s p choices to be the empty set. It must force

1—-R,

1—R.>F ! ) (2.37)
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Because the RHS of (2.37) is a decreasing function of (1—R,), it follows that for a fixed
R, the maximum row rate, R,, occurs when (2.37) is equality. The corresponding

overall rate is

R =(1-2F(p))(1-p). (2.38)

To determine the maximum overall rate, we maximize (2.38) by varying p, which in
turn determines R, by (2.37). Since the symbol energy is a function of R,, P, is
also a function of R,. To determine the maximum R, that satisfies (2.32) and (2.38)
numerical solutions were necessary.

Figure 2.9 shows the region where a (R,,R,.) pair achieves reliable communication.
Outside of this region, the intelligent jammer succeeds in overcoming the error cor-
recting capacity of the PC. Figure 2.11 illustrates the PC rates that the asymptotic

analysis states are achievable for various column code rates. The SNR of the system

Figure 2.9: Asymptotic results: achievable constituent code rates, SJR=10dB.
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is defined as
SNR = 101log;, (ﬁ—g) . (2.39)

Note the N; term is the noise density if the jammer sets p = 1. By selecting the
maximum rate for each SNR, we obtain the maximum achievable PC rates, as shown
in Figure 2.13.

This concludes the asymptotic analysis of optimal constituent code rates and over-
all rate for a product code when codewords are hopped in the partial band jamming
channel. We have shown the achievable rates in the presence of a jammer which
has perfect knowledge of the encoding method. Additionally, (2.37) separates the
rate pairs that allow communication from those whom are blocked and allows the

transmitter to maximize the overall PC rate.
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2.7.5 Worst case rate selection: the finite case

The previous analysis of large product codes is a first pass estimate of the best
rates for the row and column constituent codes. The results were developed by letting
the lengths of the constituent codes become large, and then applying those results to
a finite code. This asymptotic/finite analysis may lead to some inaccuracy because
F(p) and F~'(P,) are dependent on the the length of the codes through the growing
size of the code symbols and the growing numbers of M-ary orthogonal dimensions.
The degree of error becomes less and less as the code grows because the log of the
length grows slowly. As the constituent codes become longer the achievable rates
grow and the optimal rate shifts, as illustrated in Figure 2.14, where code length
ranges from M = N, = N, =8 to M = N, = N, = 22,

While small, this inaccuracy leads to the question of how to determine the best
constituent code rates for short codes without asymptotic analysis, and how different

the rates are from the asymptotic results. To answer these questions we determine
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the probabilities of correct decoding, incorrect decoding, and decoding failure for the
short row codes. Then we must develop expressions for the achievable rate pairs, and

from these draw the maximums.

2.7.6 Error probabilities for finite length product codes

We are interested in determining the probability that a product codeword is cor-
rectly received. A product codeword consists of N, x N. symbols. Additionally, to
analyze any of the current re-transmission schemes, knowledge of the probability of
undetected error is necessary. After decoding row-wise and then column-wise, a code-
word is correctly received when all columns have decoded correctly. An undetected
error occurs when there are no column decoding failures and the are one or more col-

umn decoding errors. A codeword failure occurs when there are one or more column
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decoding failures.

We will compute the conditional probabilities that these events occur, given r rows
are jammed. To compute un-conditional probabilities we must know something about
the distribution of the parameter r at the jammer, so we consider only conditional
probability expressions.

The calculation of the product codeword conditional probability measures depends
on a number of constituent codeword conditional probabilities. In particular we will
condition on knowing the number of correct, incorrect, and erased rows for both

jammed and unjammed rows. Define the following quantities:
e n/ = the number of jammed rows that correctly row-decode

= the number of jammed rows that incorrectly row-decode
e n; = the number of jammed rows that fail row-decode
e n? = the number of un-jammed rows that correctly row-decode
e n? = the number of un-jammed rows that incorrectly row-decode
e n% = the number of un-jammed rows that fail row-decode.

Let us refer to the above quantities as 2 vectors:

o n = [nﬁ,n?,nf]

e 1% = [ng,n%,n{]

These quantities are subject to the constraint that the sum of the vector components

must be equal to the number of elements in a column, N.,.
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Row code preliminaries

Because the row symbols are either all jammed or all unjammed, we can use the

results from Sections 2.3, 2.4.1, 2.5 to determine:
® Pz, the probability that a row decodes correctly,
® Pye, the probability that a row decode fails,
e P4z, the probability that a row decodes incorrectly.

When a row code error is made, if we assume that errors are uniformly distributed
along the whole row then we can write the probability that a symbol is in error and

the row decodes in error as:

Ny k
py = k%: Fitiy (2.40)

where Py, is from (2.7). For Pz, Pufje, Pigje and P?, we replace x with o when we
refer to unjammed rows and x with 5 when we refer to jammed rows.

Now we have developed the 8 probability measures for the row decoding process:
Peajj Py)j Piajjs E‘,j, Peajo Pasjo Pigo, and P_s" Evaluating these measures from their
underlying expressions was derived in a different fashion in [4], but that derivation

relied on an exhaustive counting technique which we have replaced with a recursion.

Individual column symbol decode probabilities

In order to calculate the probability of column error we must know something

about the probability that individual column symbols are correct, incorrect, or were
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erased. The probability that a column symbol is correct is as follows:

Py = P(symbol is correct|row decodes correct)P(row decodes correct)
+ P(symbol is correct|row decode fails) P(row decode fails)
+ P(symbol is correct|row decodes incorrect)P(row decodes incorrect)
=1 x P(row decodes correct)
+ 0 x P(row decode fails)
+ P(symbol correct and row decodes in error)

= Ledlz + (1 - Pcd|:v - Pdf\x - P_sx) (241)
The probability that a column symbol is incorrect is as follows:

Py;l» = P(symbol is incorrect|row decodes correct)P(row decodes correct)
+ P(symbol is incorrect|row decode fails) P(row decode fails)
+ P(symbol is incorrect|row decodes incorrect) P(row decodes incorrect)
= 0 x P(row decodes correct)
+ 0 x P(row decode fails)

+ P(symbol incorrect and row decodes in error)

= Pr. (2.42)
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Lastly, the probability that a column symbol is erased is as follows:

Py, = P(symbol is erased|row decodes correct)P(row decodes correct)
+ P(symbol is erased|row decode fails) P(row decode fails)
+ P(symbol is erased|row decodes incorrect) P(row decodes incorrect)
= 0 x P(row decodes correct)
+ 1 x P(row decode fails)
+ 0 x P(row decodes incorrect)

= Py (2.43)

This concludes development the 6 probability measures for column symbols: P, P/,

Pj pe

sfr © se»

PO

§%9

and Psof.

Packet decode statistics

To determine the probability of decoding the packet incorrectly, we start by condi-
tioning on the number of rows jammed, r. Define Ppgrrcp(r) as the probability that
the packet decodes incorrectly. For incorrect decoding to occur there must be at least
one incorrectly decoded column with the remainder decoding correctly, no decoder
failures are allowed because we are looking for undetected errors. This probability is

expressed as:

Ky

Prcrico(r) = 32 () Prepiea(r) (Prommen()* . (240

=1

where

Prcpica(r) = Probability that a column decodes incorrectly, given r (2.45)

Pcpicor(r) = Probability that a column decodes correctly, given . (2.46)
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Note that the symbol crossover statistics for a column can be viewed as 2 different
distributions. The IDD analysis from Sections 2.3 and 2.4 can easily be applied here.
This is done by constructing the transition probability vectors P, Py and P, for the

correctly decoding answer:

Pc:[Psc|oa---;Psc\oapsc\ja---apsdj]

Pa:[Psi\oa--isﬂoaPs 7Ps7,\]]

iljy - -

Pf = [-\Psf|o, o -7P5f|ga\Psf|j, .. .,Psf|];], (247)

N, — r of these r of these

where the number j of elements in each vector is equal to the number of rows jammed.
All that remains is to apply these vectors to (2.3). Similarly, the transition vectors for
incorrect decoding can be constructed by selecting the set of plateau representatives
and applying (2.9) through (2.14). If the column decoding failure is desired apply
(2.27) which is tight because of the small ¢ = r.

Once the column decode statistics are complete, we can determine the packet
decode statistics. To decode a packet correctly we must have no column erasures and

no undetected column errors,

Pprrep(r) = (Peorricol (T))K (2.48)

The event space of the packet decoder consists solely of correct packet decode, incor-
rect packet decode, and packet decode failure. These 3 events are mutually exclusive,

and their union is the whole probability space for the outcome of the decoder. Hence:

PPKTFAIL(T) =1~ PPKTCD(T) - PPKTICD(T)- (2-49)

In Figures 2.15, 2.16, and 2.17 we show the probabilities of packet correct decoding,

incorrect decoding, and decoding failure for a 32 x 32 PC, with the assumption that
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p is uniformly distributed.

While instructive, the determination of “best” coding rates is difficult to determine
from Figures 2.15, 2.16, and 2.17 without performance requirements. Figures 2.18 and
2.19 illustrate the rate selection for the case where the SJR 10dB and SNR is 30dB.
The asymptotic results are from the analysis in Section 2.7.4 with M = N, = N. = 32.
The finite length rates are determined by selecting the row and column rates that
guarantee error and erasure rates to be at most 1 x 107® and 1 x 107'% as labeled
in the caption. The selected row rates for the finite calculation decrease, to correct
more errors in the row code, as the error performance requirement increases. For the
case where SJR is 20dB and SNR is 40dB, Figures 2.20 and 2.21 illustrate a similar,
albeit less severe effect in the rate selection. These results illustrate the importance
of considering undetected error when determining optimum rates for the constituent

codes. Ignoring an error rate requirement may lead to overly optimistic rate selection.

2.7.7 Varying the radii of the decoder

The above sections consider the effect of variable rates on the packet probability
measures. Varying the encoding rate entails the adjustment of parameters on both the
transmitter and the receiver. The row code of the product code serves two functions;
it corrects small numbers of errors, or it erases the whole row to let the column code
have a chance to correct. If we reduce the decoding radius of the row code we would
intuitively expect to see the probability of correctly decoding drop, the probability
of incorrectly decoding drop, and the probability of decoding failure (erasure) rise.
Since the overall goal of the product code is to have no undetected column errors,

any incorrect symbols in the row code that are changed to erasures by decreasing the
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Figure 2.15: Unconditional probability of packet correct decoding, SJR=10dB.
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Figure 2.16: Unconditional probability of packet incorrect decoding, SJR=10dB.

23



PPKTFAIL

I I I I I I
0.08 0.1 0.12 0.14 0.16 0.18 0.2

R, x R,
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decoding radii, might advantageously impact the probability of correct packet decode.

The column code’s function is to correct for the erasures flagged by the row code
and the incorrect symbols generated by the row code. It is not clear if adjusting the
column decoder’s radii will have advantageous effects. By decreasing the radii we
would expect the number of incorrectly decoded columns to decrease, but we might
also expect the number of columns which fail decode to rise. Some investigation is
needed here.

The advantage of this scheme lies in the fact that the receiver could rapidly adapt
to changing conditions, if in fact an optimality situation exists. By reducing the
recoding radii, the receiver could decrease the probability that a packet is received in
error at no cost in complexity (potentially a savings) and with no adjustments in the

overall packet rate.

2.8 Computational Complexity

We compare the complexity of our method with the errors only IID decoding
method found in [4], and with the errors and erasures decoding IDD method found
in [1].

In [4], the combination of (7.8), (7.10), and (7.16) gives the following expression:

h+s ro

Prep = ZAh Z Z Z (2.50)

$=0 k=h—sr=r;

This expression is the probability that a bounded distance errors only decoder incor-
rectly decodes a received vector that has been corrupted by IID noise. The calculation
complexity for this is, clearly O(N*). As a comparison, the complexity of (2.14) spe-
cialized to IID noise and EO decoding (: = 0) depends on the complexity of the

recursion in (2.12). The value of P{B ¢} can be determined by populating a table
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of [ = N columns and 7 = N rows. In the worst case, filling this table will require
populating N?/2 table entries each requiring one addition, two multiplications, and
two values from the previous column. The recursion’s computational complexity is
O(N?) and the storage complexity is O(XN). Thus, the computational complexity of
(2.14) is O(N*), which is equivalent to that in [4].

Next, we compare our computational complexity of EE/BD decoding with IDD

noise to that found in [1]. Daraiseh’s method evaluates
S— p— N p— p—
Pe(RR) = > M;y P(vj(s),R[Rl), (251)

where P (¢7(s), R, |R]|) is an O(N°®) expression. Therefore the overall complexity of
his method is O(NTNY), since (]j) grows exponentially in N.

The direct comparison of Daraiseh’s method and ours involves the complexity
of the recursion in (2.12) and the use of that recursion in (2.14). In EE decoding
the above mentioned table must have N? rows to account for all possible errors and
erasures combinations. Thus the computational complexity for the recursion is O(N?)
and the storage complexity is O(N?). This complexity factored into (2.14) gives a
total computational complexity of O(N®NY). The savings in of a factor of N comes
from the selection of errors and erasures that are valid in the limit of our sum, whereas
it is calculated as an additional step in [1].

The clear advantage of our scheme lies in the flexibility of the bounding technique
from Section 2.4.5. The method developed orders the likelihood of the potential
zero patterns and calculates the probability contribution of the most likely patterns
first. To bound in this manner, not all zero patterns need to be considered, but the

most likely will be considered first. The bound will tighten the fastest with the least

compute time, thus the idea of “compute” limited bounds. The complexity of this
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bounding is difficult to determine exactly since the generation of the zero patterns
is still an open question. A brute force generation and sort of the potential zero
patterns is an O(Ng log Vi) operation, but if some intelligent generation methods are

used, significant complexity savings can result.

2.9 Conclusions

This chapter’s results are in three areas. First, we developed a recursion to ef-
ficiently calculate the probability of correct decode, incorrect decode, and decoding
failure for a bounded distance decoded Reed-Solomon code. These results are on
the order of O(N?) for noise with a small number of distributions. As the number
of distributions grows large, we give compute limited bounds. By compute limited
we mean that the bounds improve as more calculations are performed and the most
significant calculations are performed first. The second result is the calculation of cor-
rect decode, incorrect decode, and decoding failure for a product code with very long
Reed-Solomon constituent codes in the presence of worst case partial band jamming.
The third result is the selection of optimal PC rates for finite length constituent codes,
in the partial band jamming channel. In developing the best rate choices, we have
shown the existence of an optimal row and column rate pair where communication is
possible even in the presence of an intelligent jammer. Additionally, the use of asymp-
totic analysis to select the best constituent code rates is matched approximately to

the finite case, with variations based on the required performance goal.
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CHAPTER 3

Functional Analysis of Nonlinear Amplifiers

Before beginning any nonlinear analysis endeavor one must take note of the ad-
monition by Maas in [18]:

... the engineer who designs a nonlinear circuit (which
the engineer may or may not have intended to be non-
linear) will get very little help from conventional sources
because most textbook network theory is based on an
assumption of linearity. After searching in vain for reli-
able design information, the engineer usually makes use
of what little data he or she can find and “tweaks” the cir-
cuit empirically to make it work. The frustration, anger,
and insecurity engendered by this situation is responsible
for many sleepless nights, ruined marriages, and hateful
children.

While this may seem a little extreme, the analysis of nonlinear systems can be very
complex and the techniques used can vary dramatically from system to system.
This chapter begins with the motivation for the development of the Modified In-
stantaneous Quadrature Method (MIQM) and the functional analysis that it precipi-
tates. We then describe a basic circuit to model, give an overview of the characteristics
of nonlinear circuits, and present a brief survey of the advantages and disadvantages
of current nonlinear analysis techniques. Following this, we show the development of
the MIQM and we show that it leads to the ability to model a nonlinear circuit as the
combination of two functions, under certain memory constraints. We then illustrate

the accuracy of our new method and draw conclusions.
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3.1 Motivation

To begin, define the input/output response of a single input circuit to be:

y(t) = h(x(t)), (3.1)

where x(t) is the input time varying signal and y(t) is the output signal. Two signals,
x1(t) and z5(t), are separately input into the circuit. The output due to these inputs

can be generally written as:

yi(t) = h(w (1)) (3.2)

y2(t) = h(z2(t)). (3.3)

A circuit is deemed linear if the output of the system due to the linear combination
of the two input signals is equal to the linear combination of the outputs due to each

input alone, or:

ah(zy (1)) + Fh(z2(t)) = h(aw () + Gra(1)), (3.4)

where « and [ are arbitrary gain factors.

When the input signal into an LNA is small, the output is generally linearly
related to the input. However, when a large amount of power is driven into the
input, the underlying transistor in the LNA will saturate and the output is no longer
linearly related to the input. If this is the case, most of the standard circuit analysis
techniques break down. The determination of the output signal and the analysis of
systems when the input may be small or large is a difficult task which is usually
managed by simulating the circuit’s responses for specific input signals.

The overriding goal of this chapter is to develop a method of circuit analysis that

provides the ability to model nonlinear circuits in such a manner that does not suffer
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from the drawbacks of existing methods. The method that we introduce, the Modified
Instantaneous Quadrature Method (MIQM), permits the analysis of nonlinear systems
in such a way that a circuit, with certain restrictions, can be effectively modeled by
in-phase and a quadrature-phase nonlinear functions. Some existing nonlinear models
use relations rather than functions to model the circuit behavior. Functions by their
definition are one-to-one, whereas relations can have multiple output values for a
single input value. We stress the necessity of modeling the system with functions,
not relations, due to the ability to accurately approximate these functions with a
power series. Once this approximation is made, there are known analytical methods
to calculate the nonlinear output from the circuit [19-21] (see Appendix C). The
output that interests us the most is the gain effects of the fundamental and the
intermodulation effects from the mixing that occurs in nonlinear devices.

The role of the MIQM is to correctly determine the functions that accurately model
the circuit. This method is key to the functional analysis of nonlinear circuits under
large and small signal excitations, and will be used as the analysis model in Chapter
4. Functional analysis offers key advantages over several existing techniques namely
Harmonic Balance (HB) and discrete time methods. The advantages of increased
calculation speed, large input dynamic range, freedom from aliasing effects and large
diversity of input frequencies give this method a unique niche in the world of nonlinear

analysis.

3.2 Nonlinear Amplifier Circuit

In this section we detail the design of the LNA that will be analyzed. While the

design criterion may not be well motivated at this point (they will be discussed in
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Chapter 4) the primary goal of the LNA in a microwave receiver is the amplification
of a very low power signal without the addition of significant noise. The LNA design
considered in this section will be used to illustrate the effectiveness of the Instanta-
neous Quadrature Method (IQM) and the new MIQM in Sections 3.4.8 and 3.5, and
the effects of circuit induced memory on accuracy in Section 3.6.

The Noise Figure (NF) of a circuit is commonly defined as the ratio of the SNR at
the input to the SNR at the output of the given circuit [22]. The minimization of noise
figure of a circuit and the maximization of power transfer into a circuit are generally
mutually exclusive goals, one can either maximize power transfer or minimize noise
figure but not achieve both goals simultaneously. The design of low noise amplifiers
inherently involves the tradeoff between the reduction of gain in the circuit due to
the input mismatch and the reduction of resulting noise figure. These design choices
are typically made in the context of a Smith chart or a CAD tool.

The basic circuit that we will analyze is a derivative of the design found in [23].
Modifications are performed to use lumped circuit elements, varied bias points, and
a 900MHz center frequency. The incarnation of the circuit used is shown in Figure
3.1. This circuit is biased by a .91V DC source and matched to 900MHz operation.
The input and output matching networks are designed from the Smith chart shown in
Figure 3.2, where the noise figure and and available power gain circles are included.
The input match is designed such that a 50€2 source is matched to circuit at the point
where the circuit exhibits an available power gain of 19.45dB while maintaining a NF
of 2dB. The output match of the system is designed for maximum power transfer into
a 5002 load. The S-parameter match over a frequency range of 0.5GHz to 1.5GHz is

shown in Figure 3.3.
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Figure 3.2: Matching network design: .91V bias LNA, 502 characteristic impedance.
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3.3 Nonlinear Circuit Characteristics

The three main elements of nonlinear circuit characterization are the amplitude
of the signals involved, the degree (or strength) of nonlinearity of the system, and the
memory of the circuit. For sake of discussion the nonlinear circuit we will consider is
a microwave amplifier, but the nonlinear characterizations discussed can be equally
well applied to mixers, multipliers, varactors, diodes and any other microwave circuit
or device.

The principle that we begin with is that all circuits are nonlinear [18]. The degree
of nonlinearity is a function of the nonlinearity of the component devices and the
designed operating parameters of the circuit. A common assumption (and mostly a
valid one) is that a microwave device is linear for “small signal” operation. While there

is no precise definition of what “small signal” means, it is generally accepted that small
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signal device operation is such that the input signals impart a very small perturbation
to the designed operating point. In the case of a front end microwave amplifier in the
absence of strong interferers the received power available from the antenna can be as
small as -110dBm. This signal level represents a signal amplitude of 1.04V across a
50€2 matched load. While we generally do not have an absolute threshold where we
call one signal “small” and another signal “large”, it can reasonably be assumed that
the operating point for most real devices is not changed appreciably by perturbing
their input by this small amount. Put another way, the transfer characteristics of
devices and circuits can be assumed to be linear for inputs in a small neighborhood
around their operating point.

While small-signal operation leads circuit designers to make simplifying and mostly
valid assumptions about device linearity when the operating point is not moved appre-
ciably, if the system is driven in such a manner that the bias point changes appreciably
the output of the device is no longer linearly related to the input. For example, -
10dBm of available power driven into a matched 502 amplifier generates a voltage
at the input of the amplifier of approximately 0.1V. This significant swing in input
voltage can no longer be termed “small” in relation to the input bias point of the
device, and is thus deemed “large”.

The second descriptive quality of a nonlinear device is the “strength” or degree of
the nonlinearity which depends on the input conditions. Microwave circuits are gener-
ally described as linear, weakly-nonlinear, or strongly nonlinear. Due to small signal
assumptions, the definition of linear can generally be lumped into weakly-nonlinear.
The characteristic quality of the circuit/device is (again) subject to interpretation. As
examples of extremes of each case consider an ideal limiter and a small-signal LNA.

The small signal amplifier is generally biased in the active region of the underlying
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nonlinear device. At this operating point the assumptions of small signal linearity
are usually made, but if the input signal is such that the input/output relation has a
gentle curve rather than a straight line relationship, the amplifier is said to be weakly
nonlinear. This is most often observed in front-end amplifiers with pseudo-large sig-
nal interferers or in power amplifiers operating near saturation. In contrast to these
weakly-nonlinear examples a hard limiter is very clearly a strongly nonlinear device.
It’s input/output relation approaches that of a step function. In a less extreme case
an amplifier driven with a very strong input signal is likely to have its device operat-
ing point driven into the saturation or cutoff regions where the output signal appears
“clipped”. This type of operation is deemed “strongly” nonlinear.

The remaining descriptive characteristic of a nonlinear microwave circuit is its
memory. In practice, any change in input signal shifts the operating point of a
nonlinear device. The nonlinear element of a device is generally characterized by its
so-called V/I curve; the output current is nonlinearly related to some control voltage
(whether it be a voltage present at the terminals of the device or the voltage across
an internal element). The operating point of the device is set by the load line of the
linear portions of the circuit intercepting the V/I characteristic. The rate at which
the operating point of the device changes in relation to the control voltage is crucial to
the analysis of the system. Unfortunately, in most microwave circuits the matching,
bias and feedback networks introduce reactive elements that retain charge and can
cause the voltages and currents in the circuit to become dependent on past inputs.
This behavior is evidenced by a circuit exhibiting amplitude dependent phase shifts
(AM/PM). If it is assumed that the operating point of the nonlinear device reacts very
quickly (if not instantaneously) to changes in its control voltage, the circuit is called

quasi-static or quasi-memoryless [18]. Note this does not imply that the amalgam of
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elements in the circuit is memoryless, merely that the change of the operating point
of the nonlinear device is not dependent on some long time constant.

The three characteristics discussed: signal size, strength of nonlinearity, and cir-
cuit memory are commonly used to classify circuits and to select the type of analysis

or model used.

3.4 Nonlinear Model Characterization

In this section we provide an overview of the existing methods of nonlinear mi-
crowave circuit analysis. This section is not meant to be an exhaustive and detailed
discussion, rather an overview of the strengths, weaknesses, and references for each
technique. Existing techniques are classified into three main types based on their
underlying model: analytical, circuit, and behavioral. Analytical modeling is done
by selecting a function that is fairly easy to analyze and determining “best-fit” pa-
rameters to match some measured circuit or device response; it is the least accurate
model. Circuit modeling is performed by analyzing the node currents and voltages
in an iterative fashion; while precise, this model can involve very long computer run
times and deterministic outputs. Behavioral modeling attempts to relate the output
of a system to its input. The behavioral model is usually optimized for analyzing a
specific portion of the system output. The remainder of this section details some of

the common models available in the literature and texts.

70



3.4.1 Analytical

Analytical models are chosen as a first pass approximation to the AM/AM perfor-
mance (and sometimes the ITO performance)! of a circuit when more detailed models
are unavailable. While these models can provide a gross match to the performance
of a given amplifier if the parameters of the model are fit to measured data, they
usually introduce another level of approximation due to their parametric nature and
thus are inaccurate. Five common analytical models [26] used in modeling different

devices are given below:

Camn:  y(t) = G——=2 (3.5)
1+ ()

sine: y(t) = o (38sin(x(t)) + Tsin(3a(1)) + 5sinG3a(1),  (36)

arctan:  y(t) = % arctan(=2) (3.7)

fanh: () = tanh(z(t)), (3.8)

eaf:  yla) = % /0 " exp(—a?())d. (3.9)

Recent work [27,28] suggests that while these analytical models may provide a work-
able approximation to AM/AM curves, the results obtained for intermodulation prod-
uct circuit-based analysis are not accurate due to their derivatives not matching the
derivatives of the underlying device characteristic or their derivatives not existing. As
discussed in [29], to determine the n’th order intermodulation products in a circuit

based model, the device model must accurately match the first n derivatives of the

Tt is common in the literature and texts to discuss the AM/AM performance of an amplifier. This
characteristic is defined as the fundamental output amplitude (envelope) for a given fundamental
input amplitude. Determining this relationship can be done using simulation, measurement, or
analysis of a model. This curve should not be confused with the instantaneous input/output (II0)
relationship. The IIO relates the input voltage or current to output voltage or current at a given
instant in time. Note that in the literature the AM/AM is sometimes referred to as the instantaneous
envelope transfer function [24] [25], not to be confused with the ITO.
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devices V/I characteristic®.

3.4.2 Circuit

Perhaps one of the most flexible and realistic models of the performance of the
microwave circuit is done by computer simulation of circuit currents and voltages.
Computer aided design (CAD) for microwave circuits is generally is performed in
one of two ways: time domain (TD) or harmonic balance (HB). In arguably the most
ubiquitous TD simulator, SPICE [32-34] characterizes the node voltages and currents
of the linear parts of the circuit and solves for the operating point of the nonlinear
devices at given time intervals (or so called time-steps). The solution is typically an
iterative Newton-Raphson descent and can experience numerical convergence prob-
lems, but these can be minimized by appropriate choice of time step. Long run times
are also known for multiple closely spaced input frequencies.

The other well known CAD method is the HB method. In this method the linear
sections of the circuit are modeled in the frequency domain and the nonlinear sections
are modeled in the time domain; details of this method can be found in [18]. The ac-
curacy and speed of this method is dependent on the number of harmonics tracked by
the program and the numerical accuracy of the underlying FFT. In the case of a large
number of harmonics, the computational complexity can grow exponentially [27], so
judicious selection of analysis parameters is a must for efficient design. Common
CAD software that use this method for analysis include LIBRA and HARMONICA.
There are many different flavors of HB, a brief survey can be found in [35]. The

primary difference between the various methods are in the multi-dimensional opti-

2However, this is said with some caution in that authors have accurately modeled n’th order
intermodulation with higher order polynomials in behavioral modeling [18,24, 25,27, 30, 31] of the
circuit response rather than the device response.
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mization method used to reach a stable solution. The different HB methods converge
at different rates for different systems; it is the job of the particular CAD program
to manage the task of method selection.

The advantage of circuit level modeling is the fact that the three aforementioned
characteristics of nonlinear circuits: signal size, nonlinearity strength, and circuit
memory are generally built into the circuit device models. The results are then
dependent on the accuracy of the underlying transistor device models used. For
instance, at very high frequencies the Ebers-Moll model exhibits more realistic re-
sponse than the standard Gummel-Poon model used in most CAD programs [36] due
to non-negligible signal wave propagation times. Thus, one must be cautious as to
the underlying models in a TD simulator used at high frequencies. However, at the
frequency we are considering the inter-device and intra-device transit times are ar-
guably negligible due to the relatively long wavelength as compared to the physical
circuit dimension.

While circuit modeling offers some very positive advantages, its drawbacks in-
clude the inability to give results for inputs with statistically random distributions,
e.g. a sum of sinusoids with random phases, without exhaustive variation of input
parameters. HB simulators have exponentially complexity in the number of harmon-
ics tracked and thus the intermodulation products desired. TD simulators generally
have large run time especially with systems with closely spaced input frequencies.
For some applications, these disadvantages can lead to prohibitively long simulation

times.
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3.4.3 Behavioral

The complexity and iterative disadvantages of the above analytical and circuit
models illustrate the need for a flexible and fast modeling scheme. The many types
of behavioral modeling fulfill this goal, with a few caveats. The distinction between
the major behavioral models lie in their ability retain accuracy in the face of the

difference in the strength of nonlinearities, the signal size and the circuit memory.

3.4.4 Behavioral: Power Series Method

The most basic, and possibly well explored, method of modeling a nonlinearity is
by representing its IIO and sometimes its AM/AM characteristic as a power series.
Depending on the size of the input signal and the gain of the model, this series
may be a Taylor Series in the case of small signal /small perturbation or some other
polynomial fit in the case of a larger signal dynamic range. It is important to note that
the selected series must only be tight in the signal range of interest [29]. The Taylor
series polynomial has the quality of fitting a curve very well in the neighborhood
around a given operating point, with the error of the fit being pushed out to the
extremes. However, a Taylor polynomial has problems fitting a curve where there are
sharp corners, as in the case in a strongly nonlinear circuit. Other polynomial fits
are found to have better properties when applied to a larger interval; specifically the
Chebychev polynomials are found to give an adequate fit to larger signal swings and
sharper nonlinearities [24, 27,30, 37].

As mentioned in section 3.4.1, there is some question as to the accuracy of the
intermodulation information that is derived from a power series fit to either the 110

or the AM/AM curves. Some authors, including Staudinger in [24] and Loyka in [30],
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show that the tightness of a higher order power series fit determines the accuracy of
the result, while other authors including [29] claim that the n’th order IM products
are a function of the n’th order derivatives of the curve fit and that a power series
has a poor higher order derivative fit. Different, non-power series, fits to the I1O and
AM/AM characteristic functions have been proposed in [38] and [24]. In [38] a model

based on a combination of sinusoids is proposed to fit the I[TO. A fit of the form:

y(A, B) =

aor + z”: a; sin(ix)] tanh(aB), (3.10)

=1

where x, A, and B functions of transistor parameters and voltages, is said to match
the derivatives of the IIO more closely than the standard power series fits. In [24]
a Bessel series fit is proposed that does not suffer from the classical ill-conditioning
found in higher order polynomial fits.

The most basic power series fit to an arbitrary curve is probably the method
of least squares. Unfortunately, the system of equations that needs to be solved
in this method involves inverting a matrix that resembles a Hilbert matrix, and is
therefore an ill-posed problem for numeric evaluation. This behavior is primarily as
a result of the basis functions being the monomials (z,2?,2% ...) which are relatively
linearly dependent in the range (0,1). The solution to this problem is to use a
Chebychev polynomial fit, which has orthogonal Chebychev polynomials as basis
functions. It is noted that the polynomial model in [24] suffers from the ill conditioning
problems, a problem that Chebychev polynomials do not suffer from [39]. Since the
polynomial model chosen does provide comparable performance to the Bessel fit before
the ill-conditioning error dominates, we assume that the Chebychev polynomials will
continue to track the performance of the Bessel fit.

The debate as to the accuracy of power series fit stems from the use of the fit.

If the actual device characteristics are modeled with a power series then the higher
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order derivatives are important. If, however, the transfer response of the entire circuit
is being studied the higher order derivatives are not as critical [40] and the circuit
response can be accurately modeled by a power series.

The power series can be used to model both large and small signal circuits under
strong or weakly nonlinear operation. Their strength is in the rapidity that they
can be incorporated into a simulation and in their dynamic range. The AM/AM
and I1O functions that these series fit can be determined experimentally or from an
appropriate simulation. Since the power series (and likewise any of the other fitting
methods) are functional, they are not able to fit a nonlinear system with a large
amount of memory. The characteristic 11O function in this case is not one-to-one and

the definition of a series “fit” can not be meaningfully defined.

3.4.5 Behavioral: Volterra Series Method

The Volterra Series (VS) is a useful tool for the analysis of small-signal, weakly
nonlinear systems with memory. The interested reader can find a detailed discussion
of this technique in [18]. The basic principal of the VS can be summed up by Wiener’s
suggestion in [41] that a weakly nonlinear system under appropriately small-signal

conditions has the following response:

w(t) = /hl(ﬁ)s(t—ﬁ)dﬁ (3.11)
+ / / hy (71, 72) s(t — 71) s(t — 7)dridmy (3.12)
+ / / hy (71, 72, 73) s(t — 1) s(t — 72) s(t — 73)dridredrs + . .. (3.13)

The functions h,, (71, 72, ..., 7,) are called the n’th order nonlinear impulse response or
the n’th order kernel. Determining these functions and the appropriate frequency do-

main representations are the crux of the VS analysis technique. While this technique
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is deemed a powerful one for representing nonlinearities with memory, the complex-
ities of determining higher-order kernels usually keep this analysis from being used

for large-signal and strongly nonlinear systems [42].

3.4.6 Behavioral: Quadrature Modeling Method

The quadrature modeling (QM) technique breaks the nonlinear response of a
circuit into an in-phase and a quadrature-phase nonlinearity, and thus is able to
account for a greater range of nonlinear effects than a single nonlinear function. This
modeling technique’s specific advantage over a single nonlinear function is that is
able to account for both AM/AM and AM/PM nonlinear effects in quasi-memoryless
systems.

Understanding of the QM is necessary in understanding the so called “Instanta-
neous” methods found in Sections 3.4.8 and 3.5. The block diagram of this method
is illustrated in Figure 3.4. The development of the theory of quadrature modeling

follows from [40, 43, 44].

= Xi(t) = A(t) cos (t) ()

LX) = Alt)sing(t) ()

Y(t) = Ki(6) X, (t) — Kq(t)Xo(t)
Figure 3.4: Quadrature Model Block Diagram.

Necessary in understanding of the following derivation is the idea of so called
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output zones. The first zone output is the component of the output signal that has
the carrier as a component. The n’th zone output are the components of the output
signal that have the n — 1’th harmonic of the carrier as a component. For example,
if the carrier is defined to be wy, and component of the output that possesses coswgt
as its carrier frequency is a first zone output while any component of the output that
possesses cos 2wpt as its carrier frequency is a second zone output.

Consider a real bandpass signal:
x(t) = Re {A(t) exp(jwot + jo(1))}, (3.14)
= A(t) cos(wot + &(t)), (3.15)

where A(t) and ¢(t) are the amplitude and phase modulation and wy is the carrier

frequency. The complex envelope of this signal can be expressed as:

Env {x(#)} = A(t) exp[jo ()], (3.16)

= A(t)cos 4(t) + j A(t) sin ¢(2). (3.17)

The corresponding low-pass in-phase and quadrature signals are denoted:

X7(t) = A(t) cos (t) (3.18)
Xo(t) = A(t)sin (1), (3.19)

Thus
o(t) = X;(t) coswol — Xo(t) sinwet. (3.20)

The nonlinear effects, or so-called transfer factors, are dependent on the envelope
amplitude and can be expressed as:
K;(A(t)) = K(A(t)) cos D(A(t)), (3.21)

Ko(A(t)) = K(A(t)) sin ®(A(t)), (3.22)



where K(A(t)) and ®(A(t)) are the AM/AM and AM/PM responses of the circuit.
These functions are typically measured or simulated using a CAD program and are
restricted to the first zone output; second zone and higher outputs are not considered.

The output due to each transfer factor is multiplicative:

Yi(t) = Ki(H) X (1),

= A(t)K(A(t)) cos(P(A(t)) cos(o(t)), (3.23)
and

Yo(t) = Kq(t)Xq(t)

= A(t)K(A(t)) sin(P(A(t)) sin(p(1)). (3.24)
The combined output is:

Y(t) = Yi(t) = Yo(1),
= A(t)K(A(t)) cos(R(A(2)) cos((t)) — A(t) K (A(2)) sin(P(A(#)) sin(¢(t)),

= A(t)K(A(t)) cos(o(t)) + P(A(2)). (3.25)
Similarly, we note that the system can also be expressed as:

V(t) = Re {A(t) e’} Re { K (A(t)) /PN L — Tm {A(t) €/} Im { K (A(t)) /P Y
=Re {A(t) &’? K(A()) ej‘b(A(t))} ,

= A()K(A(t)) cos(o(1)) + D(A(1))). (3.26)

To determine the actual first zone output, y;(¢), the complex carrier is multiplied by
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the complex envelope of (3.26):

yi(t) = Re { A(t) K (A(t)) el@+PA0) ot}
= Re {A(t)K(A(t)) [cos(P(A(t))) + jsin(P(A(t)))]
x [cos(wot + @) + j sin(wot + ¢)]},
= A(t) K(A(t)) cos(®(A(t))) cos(wot + )

— A(t) K(A(t)) sin(®(A(t))) sin(wot + ¢). (3.27)

Equation (3.27) shows that the first zone output of the system is the equivalent of an
envelope times the coswgt portion of the carrier coupled with an envelope times the
sin wgt portion of the carrier.

Zone n nonlinearities may be determined by measuring/simulating the appropriate
zone one input vs. zone n output envelope transfer factors. For example, if the zone
two output envelope vs. zone one input envelope relationship is measured as Ky(A)

and ®y(A) the envelope nonlinearities can be expressed as:

ya(t) = Re {A(t) Kp(A(t)) e CoFo2(A0D gizent
= Re {A(t) K5 (A(t)) [cos(P2(A(1))) + j sin(P2(A(2)))]
X [cos(2wot + 2¢) + j sin(2wot + 2¢)]},
= A(t)K2(A(t)) cos(Pa(A(1))) cos(2wot + 2¢)
— A()K5(A(t)) sin(®2(A(t))) sin(2wot + 20). (3.28)

Use will be made of (3.27) and (3.28) in Section 3.4.8 to develop the Instantaneous
Quadrature Method.

The combined system where the in-phase signal envelope is acted on by the
in-phase nonlinearity and the quadrature phase signal envelope is acted on by the

quadrature nonlinearity is depicted in Figure 3.4. The main drawback of the QM is
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that the output is only determined in the measured zones, thus it is unable to model
higher order harmonics without additional circuit measurements or simulations. The
outputs of this system can be measured or simulated for different harmonic zones to
increase its utility, but this represents a large amount of measurement or computing
power to properly characterize the full spectrum of system output. Additionally, the
modulation signal must be narrow-band since the AM/AM and AM/PM response
is assumed constant over the frequency range of interest so it is unable to model

matching networks or bias-coupling effects [40].

3.4.7 Behavioral: Discrete Method

In the Discrete Method, systems are typically represented in the time domain
for nonlinear elements and the frequency domain for the linear elements. Use of
the FFT and IFFT is made to change between these domains. Because this type
of analysis is heavily dependent on the FFT it suffers from the following drawbacks:
the numerical resolution of the FFT can introduce errors in systems where both
large and small signals are present, the selection of the sampling rate of the signals
can lead to aliasing of intermodulation products and harmonics into the band of
interest and can significantly slow the simulation, and the output of the system is
determined by the exact input which in turn requires many simulations to determine
effects of varied parameters. Other problems arise with system causality, especially
in systems or operations that require an integration over all time (such as the Hilbert
transform). The truncation of these operations coupled with the dependence on the
FFT introduce error and force long run times for accurate results. Additionally, if
the system analyzed consists of a large number of closely spaced input tones or the

nonlinear effects are significant, equivalent baseband analysis may may not be possible
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and simulation at passband may require an inordinately large number of cycles for
an accurate answer.

However, Discrete Method modeling of a nonlinear circuit under the conditions
of large sampling rate and fast processing is able to treat wide-band systems and
determine even and odd order intermodulation and harmonic effects. This is, of course
contingent upon the numerical accuracy of the processing and the other disadvantages

listed.

3.4.8 Behavioral: Instantaneous Quadrature Method

A method is needed that preserves the advantages of the power series and discrete
analysis, namely the ability to analyze wide-band, strongly nonlinear, large signal
circuits while not prejudicing the analysis of weakly nonlinear, small signal, narrow
band circuits. These advantages can be coupled with the ability of the QM to analyze
circuits that exhibit a nontrivial AM/PM response. In [27] and [40] the Instantaneous

Quadrature Method (IQM) of Figure 3.5 is developed. The principal difference

| @) = in (1) X)

kr(t) = k(2n(2)) co8 (20 (2))

kq(t) = k(wn (1)) sin ®(zn (1))

g(t) = H{i (1)} X)

y(t) = kr(t)x (1) + ko(t)zq(t)

Figure 3.5: Instantaneous Quadrature Model Block Diagram.

between the IQM and the QM is the nonlinearities in the IQM are dependent on the
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instantaneous value of the the input signal rather than the envelope of the signal.
Following Loyka’s development in [40] and [45] the real and quadrature parts of the

input signal are determined as follows:

Tin(t) = Re {Ae/? e/} (3.29)
zr(t) = i (t) = Acos(wt + ¢), (3.30)
zq(t) = H{zim(t)} = —Asin(wt + ¢), (3.31)

where # is the Hilbert transform operator. The block diagram of this method/model
can be seen in Figure 3.5. The goal of this method is to determine the instantaneous
transfer factors, k; and kg from the corresponding envelope transfer factors K; and
K¢ where the input is a tone of constant amplitude and phase: w;,(t) = A coswt.
The transfer factors can be separated into even and odd parts:

kr(t) = ki (t) + ki, (t), (3.32)

ko(t) = kq. (t) + ko, (1), (3.33)
and the determination of these portions of the nonlinearities can proceed separately.

The output, y(t), can be written as:
y(t) = k(i (1) 2in(t) + ko (zin(t))H {zin (1)},
= Akr(Acoswt) coswt — Akg(A coswt) sin wt,
= Alkr (Acoswt) + kr, (A coswt)] coswt
— Alkg, (Acoswt) + kg, (A coswt)] sin wt,
= Ak, (Acoswt) coswt + ky, (A coswt) coswt
—kg. (Acoswt) sinwt — kg, (A coswt) sinwt] . (3.34)
Since kp, (A coswt) coswt and ky, (A coswt) coswt are even periodic functions of ¢ and
kg.(Acoswt)sinwt and kg, (A coswt) sinwt are odd periodic functions of ¢ they can
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be fully represented by their equivalent Fourier cosine and sine series. Thus,

Y10

o0 Y o0
+ Z Y7, cos nwt + ;"0 + Z Y;,n cos nwt

n=1 n=1

Y, - Y, -
_% - Z Yo.n sin nwt — ZOO — Z Yo,n sin nwt] ,
n=1 n=1

y(t) = A

Y, Y, Y, Y,
_ g | Yeo | Yo Yoo o Yoo
2 2 2 2
+ Z Y0+ Y] cosnwt — Z [Yo.n + Yo,n]sin nwt] , (3.35)
n=1 n=1

where, after the substitution 6 = wt:

3T

1 [7

Y, = —/ k1, (A cos®) cos B cosnb db, (3.36)
T )=

Y= —/ kr,(Acos @) cosfcosnb db, (3.37)
™ )=

Yoo = —/ kq.(Acos®)sinfsinnd db, (3.38)
™ )=

Yoon = —/ kq,(Acosf)sinf sinnd db. (3.39)
™ )=z

2

Combining cosine terms from (3.27), (3.28) and (3.35) yield:

Y71+ Y7,1] = K(A) cos D(A), (3.40)

(Y0 + Y7,0] = Ko(A) cos Py A). (3.41)

Similarly, combining sine terms from (3.27), (3.28) and (3.35) yield:

[YQEI + YQol] = K(A) sin (I)(A), (342)
[Yo.2 + Yo,2] = K2(A)sin @5 (A). (3.43)
Solving for the Y terms:
4 (3
Yii= —/ k1. (Acosf) cos 0 db, (3.44)
T™Jo
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s

Yo,0=— /2 kg, (A cos ) sin 6 sin 26 df.
T Jo
Thus,

K;(A) = K(A)cos®(A) =Y 1,
K[Q(A) = KQ(A) COS (I)Q(A) = Y}OQ,
Kg(A) = K(A)sin®(A) =Yg, 1,

Kos(A) = Ky(A) sin ®y(A) = Yo.0.

(3.45)

(3.46)
(3.47)
(3.48)
(3.49)
(3.50)

(3.51)

(3.52)
(3.53)
(3.54)

(3.55)

(3.52), (3.53), (3.54), and (3.55) are known as integral equations of the first kind

(IFK) and can be re-written in their Fredholm and Volterra integral equation forms

via two variable changes: t = cosf or t = sinf and © = At. These transformations

follow:

4 [z
Ki(A) = ;/0 k1. (Acosf)cos? 6 db,

4 [t 12

N dt,
W/O 1 (4
4 (A x?

— k — d
= [ )=

85

(3.56)
(3.57)
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4 [z
Ko(A) = — /0 k. (A cosf)sin® 6 df, (3.59)
4 1
= ;/ ko, (At)V1 — 2 dt, (3.60)
0
22
Y ORI
- 7 /o Qe A )
4 (4 A? — 22
=— k —d 3.61
= [ ke, (3.61)
4 s
Ky (A) = ;/ kr,(Acos @) cosbcos26 db, (3.62)
0
4 ! t(2t> — 1)
=— | ki (At)—— dt, 3.63
WA Io( ) m ( )
A 3 _ A2
= %/ kr, (x) 2:673314 dzx,
e A1-(3)
4 [ 223 — A’z
= — k —d 3.64
), o) e (364
4 [z
Kyg(A) = ;/0 kg, (A cosf) sin 6 sin 26 d6, (3.65)
4 [
= — / ko, (At)2tV1 — 12 dt, (3.66)
T™Jo
4 4 2z T\ 2
_ ;/0 b0\ /1- (5)
4 (A 20 5
= i on(x)E\/A — 2?2 dx. (3.67)

IQM: Resulting nonlinear factors and transfer functions

The Fredholm forms of (3.57), (3.60), (3.63), and (3.66) are equal to (23a), (23b),
(36a) and (36b) of [40] respectively. The method of moments, described in Appendix

B, is used to solve the corresponding Volterra equations (3.58), (3.61), (3.64), and
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(3.67) for the unknowns ky,_,k;,.kq,, and kq,. Using this method, k; and kg can be
determined from the measured quantities K(A), Ky(A), ®(A) and ®y(A). Figures
3.6 and 3.7 show the even, odd, and combined transfer factors of the circuit described
in Section 3.2. The corresponding I and @ transfer functions are shown in Figure 3.8.

Note that the kg curve in Figure 3.8 is a relation, not a function, thus fitting

2 klo
- kg,
g--0 er
oo ki,
o 1t
=
=
+—
o
&
g o |
+~
= o
B-1f 1
= ~o. o
g . /
N e
+ N af
—
-3 —
_4 I I I I I
05 -04 -03 -02 _ -0 0.1 02 03 0.4 05

0
Inst input magnitude

Figure 3.6: IQM: Even and odd parts of k; and kg nonlinear transfer factors.

with a polynomial to determine output intermodulation products is not possible. The
open “eye” in k¢ stems from the use of the Hilbert transform of the input signal with

the actual input signal in the quadrature side of the nonlinear model:

Yo.(t) = H{zin(t)} ko, (zin (1)), (3.68)

= —Asinwtkg, (A coswt). (3.69)

This is seen by selecting two values of ¢, t = ¢; and ¢ = t5, such that sinwt; = sinwt,,

then the corresponding input is equal, but the cosine portion of the output is such
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Figure 3.7: IQM: k; and kg nonlinear transfer factors.
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Figure 3.8: IQM: k; and k¢ nonlinear transfer characteristic.
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that kg, (Acoswty) # kg, (Acoswty) and kg, (Acoswty) # kg, (Acoswty). Thus, the
input/output transfer relationship is not one-to-one, and therefore not a function.
The advantages of the IQM are that it can model large and small signal inputs
into strongly nonlinear or weakly nonlinear circuits, using a small number of measure-
ments from the actual circuit. Once the in-phase and quadrature-phase nonlinearities
are determined, time domain simulation will provide accurate results. The main dis-
advantages to this system are twofold. First, the quadrature nonlinear transfer factor
may be a function, but coupled with the input signal, the input/output transfer
relationship is not a function. Because the quadrature channel IIO relationship is
non-functional fitting with a power series is impractical; thus the same drawbacks as

discrete modeling apply.

3.5 Modified Instantaneous Quadrature Method

The non-functional relationship between the input and output of the Q-channel of
Figure 3.8 presents a significant impediment to modeling the amplifier nonlinearities
as polynomial and thereby easily determining the intermodulation effects. While the
IQM follows naturally from the QM, a modification to the system can be made to
make the nonlinearities more amenable to functional analysis. The proposed Modified
Instantaneous Quadrature Method (MIQM) is shown in Figure 3.9. By re-arranging
the location of the Hilbert transformer we will show that the analysis and functional
relationship of the nonlinearity is preserved.

The problem of determining the even and odd portions of the transfer factors
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»‘ xr(t) = 24 (1) } ?
\ kr(zr(t)) \
el ot
ko(zo(t)) l |
(1) = win(t) L) Ja(t) ) yo(t)

Figure 3.9: Modified Instantaneous Quadrature Model Block Diagram.

proceeds, as before, by examining the output of the system:

Y(t) = kr(win(t) i (t) + H {kg(zin(t))zin (1)},
= Ak, (Acoswt) coswt + Ak;, (A coswt) cos wt
+ H {Akg, (Acoswt) coswt} + H {Akg, (A coswt) coswt},
= Ak (Acos@)cos + Ak, (A cos®) cost

+ H {Akq.(Acosh) cos 0} +H {Akg,(Acosh) cosf}, (3.70)

with 0 = wt. The H {Akg, (Acosf)cosf} and H {Akg,(Acosh)cosf} terms are odd
functions of #, and can be represented by a Fourier sine series; the Ak;_ (A cos®) cos 6
and Ak, (Acos®)cosf are even functions of  and can be represented by a Fourier

cosine series as the following:

Y10

y(t) =4 |

2

o0 Y o0
1,0
+ E Y., cos nwt + + E Y7 cos nwt

Vo0 | o : Y00 | o :
+3 +n§_:1YQensmnwt+ g —|—nz_:1YQonsmnwt],

Y, Y, Y,
:A|:IEO+ 1,0 | YQc0

2 2 2
Y0.0

— Z Y0 + Y] cosnwt + Z [Yo.n + Yo,n]sin nwt] ,  (3.71)

n=1 n=1
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where

3T
1 [7
Yin = —/ ki, (Acos®)cosfcosnd df (3.72)
mw . )=r
|
Y= —/ kr,(Acos@)cosfcosnt do (3.73)
™ )=z
|
Yo = —/ H {kq,(Acosf)cos} sinnb df (3.74)
™ J=r
|
Yoo = —/ H {kq,(Acosf)cosf} sinnb df. (3.75)
™ J=r
2

ki, and k;, can be determined from (3.72) and (3.73) by the method of moments
(see Appendix B), but (3.74) and (3.75) are nested integral equations with unknown
kernels. The solution to these nested equations may be obtainable by iterative means,
but for our purposes there is an easier way to determine kg, and kg, .

To determine kg, we compared the output of the MIQM system with the output
of the first zone of the QM system output and equated the non-vanishing terms;
this is the procedure that leads to the nesting of integral equations. If, however, we
equate the product of z¢(t) and kg(xg(t)) with the inverse Hilbert transform of the
sine portion of the output from the QM system, the resulting integral equations are
solvable. Because the output of the system from the QM is sinusoidal, the inverse
Hilbert transform is easy to determine. Mathematically, in the quadrature branch

before the Hilbert transformer, we have:

Uo(t) = Acos kg, (Acosh) + Acosbkg,(Acosh)

o0

Y, Y,
=A % + % + Z [Yo.n + Yo,n]cosnfl| . (3.76)

n=1

The Yy,1 and Yy o terms vanish and the remaining terms are equated to the QM
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output:

H ' {Kqg(A)sinf} = —Kg(A) cosf) = Yy, cos, (3.77)

H ' {Kge(A)sinf} = —Kgo(A) cos = Yoo cos b, (3.78)

and the following quadrature-phase Volterra IFK’s are determined:

4 (A z?

Kqi(4) = —;/0 kq. (x)m dz, (3.79)
4 (A 20% — A%x

KQQ(A) == —;/0 on(ﬁ)m d(L', . (380)

The in-phase [FK’s:

4 (A x?
Ki(A) = — k ——d .81
I( ) 7_‘_/0 Ie(x)AZ\/m €z, (38)
4 4 21% — A%x
Kor(A) = — —_— .82
21( ) 7_‘_/0 k]o(x)A3\/m dx: (38 )

are the Volterra IFK form of (3.72) and (3.73).

MIQM: Resulting nonlinear factors and transfer functions

The resulting nonlinear transfer factors and functions determined by the MIQM
are shown in Figures 3.10, 3.11, and 3.12. As a result of the re-ordering of the Hilbert
transform and the multiplication operators, the transfer function between z¢(t) and
y(t) is a functional relationship which submits to polynomial curve fitting. After
noting that the signal ¢(¢) is the sum of sinusoids and that the Hilbert transform of

that sum is trivially performed, our result is achieved.

3.6 Circuits with Memory

Memory in a circuit refers to the retention of energy in any of the components

[18]. The assumption of quasi-memoryless circuits is crucial to the development of
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Figure 3.10: MIQM: Even and odd parts of k; and k¢ transfer factors.
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Figure 3.11: MIQM: k; and k¢ nonlinear transfer factors.
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Figure 3.12: MIQM: k; and k¢ nonlinear transfer functions.

the IQM and MIQM analysis models. There is inherent memory in a circuit any
time nonlinear elements are coupled with energy storage elements such as inductors
and capacitors. Recall that in quasi-memoryless systems the operating point of the
underlying nonlinear device is assumed to be instantaneously related to the voltage
across or current into the device. When there exist elements in the circuit, such
as resonators, with large time constants the quasi-memoryless assumption no longer
holds and the accuracy of the QM, IQM, and MIQM methods is reduced. Care must
be taken in the circuit design to remove the presence of long time constant paths [46].
One such path in a BJT based LNA path is the feedback path. The adjustment of
the components to mitigate the long time constant in this path mainly effects the S22
parameter, and care must be taken so that the design goals are still satisfied when
making these adjustments.

In [46] a method is given for observing the amount of memory present in a circuit.
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A two tone frequency sweep under heavy drive conditions is used to analyze the effect
of a modulated signal on the input/output gain of the system. The test fixes the input
frequency of one tone while it sweeps the frequency of the second tone past that of the
first tone. This test simulates the varying envelope of a modulated signal. If the gain
of the fixed tone varies then there exist paths in the circuit that are inhibiting the
instantaneous change of the bias point of the nonlinear element which causes memory
effects. A memoryless system will exhibit perfectly flat response, the gain will be the
same across all frequencies of interest. A system with a large amount of memory will
exhibit a swift change in gain during part of the sweep, and a system with a small
amount, of memory will exhibit a gradual change in gain across the frequency band
of interest. Examples of the two tone gain test for the circuit with memory shown
in Figure 3.1 and a quasi-memoryless circuit shown in Figure 3.15 may be seen in
Figures 3.13 and 3.17. The corresponding small signal S-parameters are shown in
Figures 3.3 and 3.16, where it can be seen that the small signal match for S22 flattens
as the memory of the system is reduced by adjusting the feedback path components.
Note the gain of the two tone test is magnitude gain of an input ideal source in
relationship to the output across a 50§2 load. The S21 parameter is the ratio of the
power waves into and out of the ports. Under perfect matching the ideal source will
sink half its power into the input port of the amplifier, thus the actual port to port
transducer gain is a factor of two larger than the magnitude gain plotted. Some gain
loss is also due to the gain compression of the amplifier under hard driving conditions.
The important characteristic to note is not the gain mismatch between the two plots
but the severity of the uncovered memory response.

The effect of mitigating the frequency dependence of the circuit can be observed

by observing the sum of the odd order 2 f; — f, intermodulation products’ magnitude
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as two input tones are swept in magnitude. Illustrated in Figures 3.14 and 3.18, the
match between the harmonic balance method of the CAD program HARMONICA
and the predicted 2f; — fo magnitude from the MIQM improves markedly as the
frequency dependence (and hence the memory) of the circuit is reduced. As a side
note, Figures 3.14 and 3.18 were generated with a hybrid MIQM /discrete technique
(time domain signals and FFT analysis) and exhibit inaccuracy in the lower input
magnitudes due to numeric noise and the Hilbert transform of a finite sequence of

points.
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Figure 3.13: Two tone frequency sweep, resulting tone gains, circuit with memory.

Since the narrow-band S22 rejection is generally a function of a long time constant
circuit path, the effect on the circuit match by modification of this path may give a
circuit designer pause. However, one must remember that the S-parameters are small
signal measurements and are not strictly applicable in a large signal system. In a

system where the input signal is large enough to shift the bias point of the nonlinear
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Figure 3.14: Two tone magnitude sweep, resulting 2f, — f; Magnitude, circuit with

memory.

device the small circuit S-parameters can be used as guidelines, not gospel.

In [46] suggestions are made as to where long time constant paths may be found.
For BJT amplifiers, they are generally located in the feedback path and the biasing
networks; if the long time constant paths cannot be effectively removed from the
circuit design, the “Quadrature” based models (QM, IQM, MIQM) will break down.
Additionally, no effort is made to quantify to what degree the system may exhibit
memory. The MIQM shares this weakness with the QM and the IQM, so if the degree

of memory is quantified for one it is quantified for all.
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Figure 3.18: Two tone magnitude sweep, resulting 2f, — f; Magnitude, quasi-

memoryless circuit.
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3.7 Power Series Analysis Coupled with MIQM

With the nonlinear functional representation of the MIQM comes the ability to
model the system nonlinearities with a power series fit. The power series fit gives
the ability to directly determine the magnitude and phases of intermodulation and
harmonic tones without the drawbacks of the FFT based discrete methods. As dis-
cussed in Section 3.4.3, a Chebychev polynomial is fit to the I and Q channel MIQM
nonlinear transfer functions using the least mean square criteria found in [39].

In [19], Wass developed a table method to determine the coefficients, phases,
and frequencies of N’th order M tone intermodulation products from a polynomial
nonlinearity. The polynomial fit to the quasi-memoryless system of Figure 3.15 is
shown in Figure 3.19, the error of the fit is shown in Figure 3.20, and the resulting
2fs — f1 magnitude from an amplitude swept two tone test is shown in Figure 3.21.
This test is comparable to the two tone tests generated via the discrete method in
Figures 3.14 and 3.18, with the benefit of the knowledge of the magnitude, phase,

and frequency of each IM tone and without the drawbacks of the discrete methods.

3.8 Conclusions

The MIQM offers unique advantages to the analysis of real nonlinear circuits.
Under the constraint that the circuit is at least quasi-memoryless, we are able to
determine the in-phase and quadrature-phase nonlinear transfer functions which ac-
curately model the intermodulation performance of the circuit. In fact, the circuit
output is modeled correctly across the whole band where the memory test response is

flat. These functions, coupled with the ability to determine the magnitude, phase, and
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frequency of all intermodulation products form a new nonlinear analysis framework.

The primary advantages of this framework are the ability to model both large
and small input signal levels accurately, the lack of aliasing problems and numerical
noise introduced by the FFT, and the speed at which results can be achieved for large
numbers of input tones spaced near to each other in frequency. One further advantage
that is not as obvious is that the methods used to generate the IM products give a
phase relationship between the input frequencies and the output products. This
relationship can be used to determine variations in results due to random phase
inputs without exhaustive simulation. Meeting these goals simultaneously is a strong
advantage that MIQM has over other behavioral models, HB, time domain analysis,
and analytical models.

In all fairness, there are weaknesses in this framework. Since the quadrature
methods do not accurately model systems with memory, care must be taken in the

design of narrow-band amplifiers so the frequency band of interest exhibits a flat two
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tone response. The second weakness is the generation and storage of the IM products
of interest. Since the number of intermodulation products grows exponentially with
the order of the polynomial fit, the MIQM can exhibit similar complexity problems
as HB simulation. The difference, however, is the ability to calculate the magnitude,
phase, and frequency of these tones in advance. Hence, the complexity can be shifted
from run-time complexity as in HB to storage complexity, which is largely cheaper.
This model will be used in Chapter 4 to illustrate the effects of very high Q filters
on LNA performance and power efficiency. Implementation specifics not covered in

this chapter will be introduced in Chapter 4 along with the results of the calculations.
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CHAPTER 4

Analysis of MEMS Filters in Communications
Systems

The micro electro-mechanical (MEMS) filter is very small (on the order of 420
pm?), it can be constructed to be very narrow at passband. The ration of center
frequency to filter bandwidth is called ); MEMS filters can achieve )’s on the order
of 80,000 [47]. A scanning electron microscope image from [47] is illustrated in Figure
4.1. This chapter explores the use of MEMS filters in communications systems.

We start this chapter by analyzing the addition of a narrow filter into a sub-
sampling architecture, and we show the reduction of system signal to interference
ratio (SIR). The second issue we explore is the filter bandwidth requirements in a
system that receives a weak signal in the presence of two strong interfering signals.
We quantify the increase in interference rejection as a result of decreasing front end
filter bandwidth. The third issue we explore is the increase in amplifier power added
efficiency (PAE) that is achievable by using narrow front end filters.

This chapter is structured in a manner where each of the three topics is separately
motivated and analyzed with a common conclusion following all sections. The com-

mon thread is the application of narrow MEMS filters to communications systems.
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Figure 4.1: SEM of a spring-coupled bandpass MEMS filter and its measured fre-

quency response.

4.1 MEMS filter use in sub-sampling systems

4.1.1 Sub-sampling motivation

In a traditional super heterodyne receiver the received passband signal is filtered
by a wide filter, mixed down to an intermediate frequency (IF), filtered by a narrow IF
filter, and then mixed down to baseband where processing occurs. As receivers begin
to shrink in size and power requirements become more stringent this heterodyning
architecture begins to exhibit three main problems: the physical filtering components
are too large to integrate on a chip, the ability to manufacture narrow filters at
passband becomes more difficult, and the power requirements for two high frequency
oscillators can be large. A micro electro-mechanical (MEMS) filter potentially offers

a very attractive solution to these problems.
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When a passband signal is sampled at a rate less than the Nyquist rate, or sub-
sampled, spectral replicates of this signal appear at all integer multiples of the sam-
pling frequency. These replicates generate interference in the desired signal image.
In [48] conditions are offered for self-interference free sub-sampled signal reception,
but it can be shown that these conditions do not prevent spectral overlap. In this
section we address the system restrictions necessary for self-interference free com-
munication in a sub-sampled system which utilizes MEMS filtering. One common
drawback to sub-sampling is the spectral replication of wide-band sampler thermal
noise. We show that under a further restriction the spectrally replicated wide-band
noise is bounded. Additionally, we give results quantifying the SNR loss in the system
due to this replicated noise.

In Section 4.1.2 we model the MEMS filter and we propose a simple architecture for
a digital radio that uses sub-sampling and MEMS filters. In Section 4.1.3 we develop
conditions for which sub-sampling may be employed to achieve an interference free
direct down conversion. We prove, in Section 4.1.4, that the additive effect of the
wide-band thermal noise and sampler resistor noise replication as a result of the sub-
sampling is bounded. Finally, in Sections 4.1.5 and 4.4 we show the calculated SNR

loss and present conclusions.

4.1.2 Proposed system architecture

Our proposed architecture, shown in Figure 4.2, consists of using a very narrow
bandwidth MEMS filter coupled with a front-end low noise amplifier (LNA), with gain
a, and a sub-sampling mechanism to down-convert the desired passband information
signal to a carrier frequency that is small enough such that relatively inexpensive

real-time digital signal processors can process it. In general the sampling low pass
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Figure 4.2: Block diagram of MEMS/sub-sampling receiver.

filter (LPF) introduces noise after the front end MEMS filtering. In reality, the noise
can be modeled as a noisy resistor in the sample and hold circuit of the analog to
digital converter that is performing the sampling operation. We use a colored noise
source followed by an ideal sampler to model a noisy sample and hold device. Since
the MEMS filters are small in size and sub-sampling is an operation that can be
accomplished in silicon, our architecture can be completely integrated.

To simplify the analysis, we model the MEMS filter shape as a mathematical
function with the following assumptions: the filter response is piecewise linear on the
dB scale and the passband is flat with no attenuation, as shown in Figure 4.3, where
W is the bandwidth of the filter and f. is the center frequency. While this is
a rudimentary model, it is sufficient to promote understanding of the fundamental

problems associated with direct down conversion by sub-sampling. We write this
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The received signal is passed through a narrow MEMS/amplifier/MEMS chain. We

assume the combination of the 2 MEMS filters provide the response given by |H,,(f)|*.

While it would be simplest to assume the amplifier provides a gain « for the

whole spectrum, this is not a very practical assumption. Additionally, in practice,

the amplifier may have a non-linear response, but we assume the surrounding MEMS

filters remove all generated harmonics. At this point, we can assume the amplifier to

be linear with a single pole low-pass response with breakpoint, f,. We model the



amplifier’s response with the following transfer function:

(=0 (fra) ) f <=t
[Ha(f)I? = o —fra < f < Jha (4.2)
a(fT (fra) ) I > fha

where f, is significantly beyond the passband we are considering.

One further quantity in need of definition is the response of the sampler. The sam-
pling LPF is a consequence of the charge gathering capacitor and the small resistance
in the sample capture switch. The bandwidth of this sampling action is typically de-
signed to be larger than the frequency of the signal that is being sampled. In this case
we assume a piecewise linear model with a single pole breakpoint, f,,, significantly
beyond the passband we are considering. We model the sampler’s response with the

following transfer function:

— T (frm) 10 fo<—fim
|H ()P = S 1 —from < F < fam (4.3)
F30 (fam) 10 f> fame

We note that (4.3) is very similar to (4.2). For the simple case of the amplifier having
a LPF response we could have merely combined the poles, but to provide flexibility

in amplifier use we choose not to combine the poles at this point.

4.1.3 Interference Free Conditions

To avoid self-interference, the standard sampling procedure is to sample at the
Nyquist rate, or twice the largest frequency in the source. For low-power bandpass

systems the Nyquist rate would be prohibitively large, so a smaller, sub-sampling
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rate is employed. The standard sub-sampling procedure is to sample at a rate that
is twice B, the bandwidth of the passband signal. However, we will show that this is
not the only concern.

Ignoring the effects of the LPF, it is well known that spectral replicates are gen-

erated whenever any analog system is sampled [49] (Figure 4.4).  These spectral
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Figure 4.4: Spectral replication.

replicates occur at every multiple of the sampling frequency, and it is the replicated
centered at f; that we will use as our down-converted passband signal. However, these
replicates may introduce additional interference, so we impose additional restrictions

on the parameters of our system.

Restriction I: Main Shift

The first restriction specifies the relationship between the sampling rate (f;), the
desired image frequency (f;), and the carrier frequency (f.). If we wish to mix the

signal present at f. down to f; we must choose f, such that

fe=Fkfs+ fa, (4.4)
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where k is an integer and 0 < f; < % This restriction assures placement of a spectral

image centered at fy.

Restriction II: Nearest Neighbor

The next restriction specifies the minimum separation between the desired image
and the nearest spectral image to its right, or the nearest spectral “neighbor”. We
require all energy from non-desired spectral images to be attenuated, i.e. the flat
region of the nearest neighbor’s filter response must not overlap the the desired image’s
signal bandwidth. This leads to the following restriction for the sampling rate and

the desired frequency:

w B

fs_fd_?>fd+§a

fs>2fd+%(B+W). (4.5)

Restriction III: Sibling

The “sibling” image is the image that is centered at —f; which bears special
attention because it may be closer in frequency than the nearest neighbor. The final
restriction specifies the minimum distance between the desired image and its sibling.
We require the non-attenuated region of the sibling image’s filter response to not

overlap the desired signal image, i.e.

Ja— g > —fa+ %,
fa> i(B +W). (4.6)

Together, (4.4) (4.5) and (4.6) will prevent spectral overlap and the corresponding

corruption of the demodulated signal due to sub-sampling.
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4.1.4 Noise Replication

The previously mentioned restrictions prevent self interference, but they do not
account for wide-band thermal noise replication. With sub-sampling, we introduce
spectral images that are fairly close together but we also replicate the thermal noise
in each image as well. Since real filters never completely block energy, some finite
amount of energy from every spectral image will be present in the bandwidth of the
desired image. This noise will be additive and must be examined to assure the sum
of the noise from the infinite number of spectral images is bounded. In addition, we
have thermal noise introduced from the noisy resistor in the sampling mechanism.
This “resistor noise” is added after the MEMS filter and therefore it is only filtered

by the low-pass structure of the sampler.

Noise Multiplier

We assume the noise density of the sampling resistor noise /N, is proportional to
the wide-band thermal noise Ny in the following manner: & = ¢22. Using (4.1),

(4.2), and (4.3) we write the noise contribution of the £’th spectral replicate as:

fat ¥
/f P = REPIHS = RRPIHL(f KR + S H (= B

(4.7)
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To calculate the noise contribution of all replicates we write:

e fat+%
e %k_z /fd_m S Hm(f = Ef)PIHL(f = k)P He(f = k£

N,
+ 2

Hr(f - kf5)|2df7

No 1 & [lats
=Y X [, KPR L)

+o|H.(f — kfs)*df.
(4.8)
The total noise expression, Ny can be split into the thermal noise and a noise
multiplier, N,,,. We assume the thermal noise power density is flat across all frequen-
cies so the convergence of N, is necessary for the additive noise to be bounded. To

prove convergence we upper bound the integral as follows:

w
Jat+5

Nm:%kZ /fd_m |Hm(f_kf5)|2x
T Ho(f = kf)[2x

|Hy (f = kfo)IP+ (4.9)

SH.(f — kfs)df,

<A+B
where
it W W W
A= Z max(|Hm(fd + ? - kf5)|2 X |Ha(fd + ? - kf5)|2 X |Hr(fd + ? - kf5)|27
k=—00
W W W
|Hm(fd - ? - kf8)|2 X |Ha(fd - 7 - kf8)|2 X |Hr(fd - 7 - kfs)|2),
(4.10)
and
- W W
B =Y max(@|H,(fut+ 5 —kf)PGIH(fa = = = KfP). (4.11)
k=—00

113



Examining the expression for A, we note H,(f) < a and H,(f) < 1, therefore
Dors oo [ Hu(f = k)P Ha(f = k)P (f =k f)IP < 3000 o el Hufa+ 5 — kfo)[*
The range of the central regions of | H,,(f)[?, where f € (—f.— %, f.+%), is bounded
by 0 and 1 and only intersects with (fq — % — kfs,fa+ % — kf,) in a finite range of
k, therefore the sum in this region must converge. Thus, we are concerned only with
the convergence of the sum of the tail regions. We concentrate on the left shifts of

the right tail, with slope my (where my is a negative number). Let a be the point

_w_
where |H,,(f)|* begins its downward slope, so f, + % +kf, < a implies k < = z e
e |
Now we show E = Zk_ |Hm(fd — W — kf,)]? converges:
p<a Y - (4.12)
fee| _%_fcj (fd - 9 + kfs) 10

> 1
< A N 413
) Z“J e -

1
<Ay _— (4.14)
*%ffcj (_kTW +kfs) "
Is

1
= A —, 4.15
2 (k(=g +£) 7 o

k=—| 2=

e

k=m |
A = 1
< — — D R (4.16)
(=% + fs) L

(4.17)

where A = (f.+ %) 0>, The final expression converges via the p-series test [50] when
mo < —10. Thus, the sum of the right tail images converge and the same holds true
for the left tail images which implies the convergence of A. To show convergence of
B we note the center region of |H,(f)|* is bounded and intersects the desired range

for finite k. A convergence argument similar to (4.17) holds for the tails of |H,.(f)|?,
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and hence the sums in (4.8) and (4.11) converge, and the noise multiplier converges
under the condition that the filter slope is sufficiently steep. Next we examine the
relative contribution of the resistor noise and the replicated wide-band noise.

A major problem with resistor noise in a sub-sampling architecture is that we are
unable to use a MEMS (narrow) filter to mitigate the effects of neighboring resistor
noise images in the desired image because the noise is added after the filtering has
taken place. As a result, a noise density of approximately m = ]fc—s [22] times %
added to the desired image after the MEMS filters. The solution to this problem is
to dominate the resistor noise by amplifying the front end signal and wide-band noise
by a factor o, where v can be potentially very large. This will force the SNR of the
desired image to have a small dependence on the resistor noise. To this end, we define
the resistor to wide-band noise ratio (RWNR) as the ratio between the resistor noise

contribution and the contribution of the amplified wide-band noise. In general this

quantity can be expressed as follows:

Zl(zo:—oo ffj;djg ¢|Hr(f_kfs)|2df

RWNR = —w
S ST Hinf = KE)PlaZa(f = KE)PIH(f = k) df

. (4.18)

where aZ,(f — kfs) = Huo(f — kfs). We note that the denominator of (4.18) is a

function of o and the numerator converges, therefore

lim RWNR = 0. (4.19)

a—r00

This tells us that for sufficiently high gain at the front end, the impact of the resistor
noise is negligible and the SNR loss of the system can be accounted for solely by the

replicated wide-band noise.
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4.1.5 Numerical Results

In Section 4.1.4 we established that the sum of the noise contribution of the infinite
spectral replicates with large front end LNA gain converges under the condition that
the filter slope is steeper than 10 dB/decade. We now present an example system
where one user transmits data in a W=B=25 kHz bandwidth centered at f.=50 MHz
and the desired sub-sampled mix down point is f;=50 kHz. We compare the loss due
to wide-band noise replication for sub-sampling rate of about 100 kHz, 200 kHz, 400
kHz, 1 MHz, and 4 MHz. To do this we must select values f,; that satisfy the the
restrictions in Section 4.1.3. Figure 4.5 illustrates the SNR loss due to the noise

replication as the filter slope becomes steeper and it quantifies this result.
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Figure 4.5: SNR loss for a system with dominated resistor noise.

In Figure 4.5 we show the noise multiplier when the resistor noise is completely

dominated, essentially for an amplifier with infinite gain. However, for an amplifier

116



with finite gain, it is of interest to determine the effect of resistor noise on the total
noise. In Figure 4.6 the filter slope is fixed at 80dB/dec, ¢ = 1, and the LNA gain is
varied. We can see that the effect of resistor noise is negligible as the amplifier gain

exceeds 30dB. Figure 4.7 shows the RWNR versus the gain for a system with fixed
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Figure 4.6: Loss vs. amplifier gain for fixed filter slope.

sampling rate of about 1MHz. It is interesting to note that the gain required for a
fixed RWNR can vary by about 5dB depending on the filter slope, with the shallower
filter slope requiring less amplifier gain even though the filter slope limits the overall
loss of the system. For a given sampling rate a poor choice of filter slope causes a
maximum of about 5-7dB loss, while a poor choice of amplifier gain can cause an
additional 10dB loss. Stated another way, given a reasonable overall loss requirement
for a fixed sampling rate, there are different slope/gain choices to achieve the design

goal.
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Figure 4.7: RWNR for fixed sampling rate.
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4.2 MEMS Use in Cosite Problems

4.2.1 Cosite problem motivation

The main topic in this section is the problem of cosite interference in commu-
nications systems. In various commercial and military communication systems the
problem of detecting and effectively demodulating a weak signal in the presence of
strong interferers arises. Whether it be an IS-95 digital device or a command radio co-
located with other transmitting antennae, the design documentation for these systems
usually specify a minimum performance metric for the reception of the weak signal.
For example, in an IS95 system the receiver must be capable of receiving a -101dBm
signal in the presence of two -30dBm interferers. In [51,52], others have considered
different techniques to combat the corruption of the weak signal from spillover power
from the large signals and corruption due to intermodulation interference. These
works have generally simulated the appropriate system and provided interference re-
duction by various filters and frequency hop patterns. In this section, we apply the
MIQM technique to a wireless receiver that attempts to receive a small signal in
the presence of two strong interferers. The MIQM analysis framework developed in
Chapter 3 accounts for the introduction of a nonlinear amplifier into the receiver front
end. In addition, we incorporate a variable filter model as to quantify the tradeoff
between filter quality and interference in the demodulated small signal. Where this
work differs from others, is in its use of MIQM analysis rather than simulation to
illustrate nonlinear effects in co-located receivers.

In a typical RF receive chain, an LNA is located as one of the first elements. If
this amplifier is nonlinear, amplifying the desired and nearby interferers can cause

interference at the frequency of the desired signal and at nearby surrounding frequen-
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cies. This interfering power effects the overall quality of the received signal as early
as the IF stage. In the following analysis, we determine the SIR at the IF point, and
give requirements for the front-end filtering to achieve the desired SIR.

With the advances in MEMS filtering technologies, very high Q filters at passband
can be fabricated. These filters, when compared to their predecessors, can provide
the advantage of attenuating a large portion of the strong interfering signal before the
nonlinear effect “mixes” the interferers into the desired band. Additionally, MEMS
filters can be employed to further attenuate the interfering power after the LNA to
reduce the distortion into a potentially non-ideal mixer element.

In Section 4.2.2 we give our proposed system model, and in Section 4.2.3 we de-
velop the analysis framework to determine the effect of IM product interference in the
nonlinear front end. In Sections 4.2.3 and 4.2.4 we use the analysis to determine the
system signal-to-interference ratio and we determine the necessary filter requirements
to guarantee a given SIR design goal. In Section 4.2.5 we discuss the approxima-
tion of our system with a third order intermodulation assumption. Finally, we draw

conclusions in Section 4.4.

4.2.2 System Model

Consider a system in which the desired signal is sq4(t) = Agcos(27 f4t) and there
are two nearby continuous wave (CW) tone interferers at distinct frequencies that are
AP dB stronger in power than the desired signal.

The system we will analyze has the form of Figure 4.8. In a standard radio
receiver, the received spectrum may be filtered, amplified, and filtered again. The
conventional filters are low () (wide) filters which pass the desired signal and any

neighboring signals to the LNA, while in the system we consider the @) of the filters
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grows large and the neighboring signals are attenuated. In our proposed radio receiver
the filters of Figure 4.8 are MEMS filters. As in the standard system, the received
spectrum is filtered by a MEMS filter, amplified by a non-linear LNA, and filtered
again by a MEMS filter. The use of MEMS filters’ high Q properties will allow us to

achieve better rejection of the interfering signals and thereby reduce the SIR.

LNA LO
'
M _.%_, N ]
Channel select filter 2nd filter mixer  IF filter

Figure 4.8: System Block Diagram.

Our models have a relatively tight set of restrictions at this point. First we assume
there is no phase noise in any of the system oscillators. This allows us to concentrate
solely on determining which IM products interfere with the desired signal by simply
comparing frequency and phase. Second, for simplicity, we assume the MEMS filter
has a Chebychev response. This is a refinement over the model in section 4.1.2 in
order to achieve a better representation of the actual performance of the system.
Third, we assume that the local oscillator (LO) mixer is ideal and adds no distortion.
And finally, we assume that the IF filter has an ideal band-pass response of bandwidth
Wirr. These assumptions allow the SIR to be calculated at the output of the second

filter.

Nonlinear Amplifier Model

The circuit model that we use in this section is a slight modification from the model

used in Chapter 3. We select this circuit design because it shares some parameters
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that we will use later in this chapter. The designed available gain is 21.85dB and the
designed noise figure is 2dB at 900MHz. This amplifier exhibits a quasi-memoryless
two tone frequency sweep response and therefore readily submits to modeling by the

MIQM from Chapter 3.
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Figure 4.9: Basic LNA.

Following the method outlined in Appendix C the Chebychev polynomial order is
selected partially based on the MSE plot in Figure 4.10 and partially based on the
work done by Loyka in [45]. It is suggested that a balance be struck between the
tightness of the curve fit and the introduction of error due to inaccuracy or noise
in the AM/AM and AM/PM measurements. A 24’th degree order is suggested as
an optimum order to minimize the effect of measurement error and minimize the
errors due to a poor fit. The MSE traces found in Figure 4.10 tend to support this
conclusion, with the added comment that for orders higher than the low 30’s the fit

tends to become very sensitive to the numerical precision of the computer. The I
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Figure 4.10: MSE of increasing order Chebychev polynomial fit.

and Q transfer functions and the 24’th order Chebychev polynomial fits are shown in

Figure 4.11.  The polynomials can be written as:

N
pr(x) =Y e, (4.20)
=0

and
N
pole) = cqu, (1.21)
i=0
where the ¢;; and cq, terms are the Chebychev coefficients, generated by the method
outlined in [39].
In [19], Wass developed a table method to determine the coefficients and frequen-
cies of N’th order M tone intermodulation products. Using the MIQM nonlinearities

we can represent our nonlinear function as a polynomial, and are therefore able to

determine the intermodulation product magnitudes, frequencies, and phases. Once
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Figure 4.11: MIQM nonlinear transfer functions and 24’th order Chebychev polyno-

mial fit.

the input signal and the group of interfering IM products are determined, we are able
to calculate the signal and interference powers at the output of the amplifier. The

details of this procedure are found in Appendix C.

Filter Model Detail

To model the MEMS filter we select the well known Chebychev filter model. While
a MEMS filter response may not exactly match the Chebychev filter response, the
goal at this point is to introduce the effects of a very narrow filter to the system. We
can adjust the @ of the Chebychev model to suit either a narrow (MEMS) filter or a

wide (non-MEMS) filter. The Chebychev filter takes the following parameters:

e n - the order of the filter,
e m - the asymptotic slope of the filter,
e f. - the center frequency of the filter,
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o W - the filter 3dB bandwidth,
e () - the @ of the filter where @) = %,
e P, - the acceptable passband ripple.

The order of the filter is determined by the asymptotic slope m. Additionally, the
filter design is such that () and m are independent of each other, but the sharpness
of the response in the transition region between f. and f. + % is dependent on both.
To illustrate the difference, we examine the passband region of a filter with @@ = 20
designed with low order (m = 40, n = 2) in Figure 4.12 and high order (m = 140,
n = 7) in Figure 4.13. Both of these filters have the same (), but their associated
asymptotic performance is markedly different. For our use, we will fix the order of
the filter to n = 3 and adjust ). This adjustment will assure similar transition
band characteristics as to not prejudice the performance of a lower order filter while

allowing us to vary the filter bandwidth. We will denote the filter response as Hy(f).

20k
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Figure 4.12: Order 2 Chebychev Filter Response illustrating a smooth transition

band.
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Figure 4.13: Order 7 Chebychev Filter Response illustrating a sharp transition band.

4.2.3 Analysis Framework

In this section we develop the analysis framework to determine the system SIR.
We define the SIR as the ratio of the output power of the fundamental to the output
power of the interfering intermodulation products, at the output to the second filter.
The analysis follows the following steps: First compute the output of the first filter
due to the incoming three tones. Second, calculate all the magnitude, frequency, and
phase of the intermodulation products generated with order N Chebychev polynomial
fits to the MIQM amplifier model that are within i% of the carrier (the interfering
IM products) using the method detailed in Appendix C. Third, calculate the output
of the second filter resulting from the IM products. Fourth, determine the maximum
amount of power that the interferers can provide, AP, such that the desired SIR is
achieved. AP is how much stronger the interferers are than the desired tone; e.g.
P; = Pp + AP, where P; is the received power in the interfering tone and Pp is the

received power in the desired tone.
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Define:

e s4(t) = Agcos(2mfqt) - the desired tone,
e 5,(t) = A, cos(2m f,t) - the first interfering tone,

e 5,(t) = Apcos(2m fit) - the second interfering tone.

The input to the amplifier is a filtered version of the sum of the desired and the two

interfering signals. Formally, we define:

Tamp(t) = Hp(fo)Aacos(2m fot) + Hy( fo) Ay cos(2m fot) + Hy(fa) A cos(2m fat).
(4.22)

For our three tone model we implement Wass’ method on a computer with M = 3,
N = 24. ¢; and cg are taken from the polynomial fit in Section 4.2.2 and the the
only the tones that are within a bandwidth W;r around the carrier frequency are
considered. This is a valid rule based on our assumption that the mixer is linear, the
LO has no phase noise, and the IF filter is an ideal band-pass filter.

When the SIR is determined, or more appropriately the fundamental and in-
terfering tones are determined, we employ a numerical technique to determine the

maximum AP that will still permit the SIR to remain above a given design goal.

4.2.4 Numerical Results

The parameters of the filter used model are: n = 3, m = 60, f. = 900MHz, W;p =
100KHz, P, = 0.001, and @ which is varied. The frequency plan is: f; = 900MHz,
fao = 900.9MHz, f, = 901.8MHz, P, = —101dBm, and AP = +71dB. Note that
the placement of the interferers is worst case: the third order 2f, — f, IM product
lands exactly at the desired frequency. The amplifier model is shown in Figure 4.9,

it provides available power gain of about 20dB with a 2dB noise figure.
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For IS-95 systems, the receiver must be capable of demodulating the desired signal
in the presence of two AP = +71dB interferers placed at f, and f,. The desired SIR

is determined from the following:

SNR . NF.SNIR
o ) , (4.23)

SIR = SNIR + SNR — 101log;, (10 o +10

where SNR is the received signal to noise ratio (no interfering tones are included),
SNIR is the signal to noise plus interference ratio at the output of the second filter, and
NF is the noise figure of the amplifier. If NF=2dB, SNR=6.3dB, and SNIR=0dB [53]
then the required SIR is 2dB. For a weaker received signal of SNR=2.01dB, the
required SIR is 25dB. For a received signal of SNR very close to 2dB the required
SIR is 50dB. The system can never achieve SNIR of 0dB with a NF=2dB without
the received SNR being at least 2dB.

To determine the interferer level at which our target SIR is obtained, we nu-
merically solve for the maximum AP such that the target SIR is achieved, while
varying (). Figure 4.14 shows the maximum permitted strong interferer AP for a
given (). As we would expect, this value increases as the @) of the filters increase. For
SIR=2dB, the minimum filter Q to adequately suppress the intermodulation interfer-
ence is about 500. If the frequency scheme were such that the strong interferers were
spaced 100KHz apart, even more stringent filtering requirements would be required,

as shown in Figure 4.15.

4.2.5 Third Order Approximation

For simplicity, most authors select the third order 2f, — f, IM product’s interfer-
ence as an approximation to the interference of all IM products combined. For a large

number of cases involving nonlinearities that are not too severe, this approximation
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is a good one. After observing the results in Figures 4.14 and 4.15, note the uniform
slope and distance between the SIR lines. We approximate our system by using only
the third order IM product, and we attempt to characterize the regular slope and
distances.

The first approximation fixes the SIR and determines Q’s effect on the line slope.

We write:
P
SIR = 10log,, (=) (4.24)
Py
where
3 A2
Cg—A Az
Py~ ﬁﬂf(fa)élfff(fb){ (4.25)

and @,%A%AQ is the multiplier for the ¢ = 3, j = 1, 2f, — f, intermodulation tone
from Appendix C. We note that the filter power response falls off as ﬁ If Hy(f,) =

Hy(fy) then the product H7(fo)Hf(fy) rolls off as ﬁ To maintain the same SIR,
the interferer power must increase as Q. This rate increase on a log scale equates

to:

1010gyo(Q™) = (2n)1010gyy(Q), (4.26)

or 20n dB/decade, which matches the slope in Figures 4.14 and 4.15. In fact the
slope of the lines of constant SIR match the asymptotic slope of the Chebychev filter
model. This matches intuition since constant SIR is achieved when the attenuated
interfering input power matches the unattenuated input power required for a given
SIR.

The second approximation fixes the filter () and determines the AP vs. SIR
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interaction. We start with (4.25) and write:

Py ~ =S M2H; (f2) MyH; ()
2R,

~ 7 My My,

" 6776
~vM,,

where ~ represents the product of the fixed filter attenuations. Thus,

Py
SIR = 101 S
o610 (76M2’> ’

= 101ogy(Ps) — 101ogy(v°My).

a

Reordering the terms in (4.31) we obtain:

101og;y(7° M) = 101logyy(Ps) — SIR,

10 SIR

1010%10(M3) = 3 log,o(Ps) — 1010%10(76) T T30
SIR
R

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
(4.33)

(4.34)

where ¢ is fixed. This matches the distance between the lines of constant SIR which

are approximately SITRdB apart.

The result of these approximations is the conclusion that the system is such that

a 3rd order approximation gives accurate results for the relative relationship between

SIR design goals, and it accurately predicts the change in intermodulation interfer-

ence as () changes. However, these relative relationships are give no insight into the

absolute magnitude of the interference for which the full analysis is needed since all

odd order intermodulation products have a 2f, — f, component.
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4.3 Power efficiency applications

4.3.1 Power efficiency motivation

While most RF engineers are familiar with the nonlinear effects generated by
a power transistor being driven into saturation, the goal of this analysis is to use
the MIQM to analyze the nonlinearities that arise as a result of a single transistor
LNA being driven into cutoff as a result of a low bias point. The tradeoff between
power and linearity has been known since the fundamental equations of transistor
(and for that matter, vacuum tube) electronics were discovered. The solution to this
“problem” has historically been solved by biasing the LNA sufficiently deep into the
linear region as to assure the peak input level will not remove the transistor from
linear operation. While this may be a solution to the problem of linearity it may
not be not power efficient in the sense of power added efficiency (PAE). Power added
efficiency is defined as:

PAE — Power imparted to the desired signal Pdesiredout - Pdesiredin‘
Power supplied from the power supplies. Ppe

(4.35)

In the presence of strong CW interfering tones, the nonlinear effects in an amplifier
biased in the strongly linear region of operation will be minimal, but in the amplifier
that is biased with much less bias power the nonlinear effects may be significant. The
question we will ask is this: with the addition of MEMS filters into the receive chain
of weakly biased systems in such a way mitigate the nonlinear effects to match those
in a heavily biased system, what will be the resulting gain in PAE? We will find that
there is not a clear link between the bias point of an amplifier and the corresponding
PAE. As we will see, the PAE of the circuit is largely a function of the circuit design

rather than the mitigation of strong interferers.
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The second issue addressed in this section is the PAE gains in a a fixed bias
system with the addition of MEMS filters to the receive chain. We know that strong
interfering signals cause the output gain of the desired signal to compress. Since the
bias power will be fixed, the attenuation of the interfering signals will increase the
gain of the desired signal, and thus increase the PAE of the system. While this link
may seem intuitive, our goal is to quantify the power savings using the MIQM.

The remainder of this section will detail the design of the various amplifiers that
will be analyzed, the method of determining the power supplied to the circuit, the

analysis of the varied bias PAE, and the analysis of the fixed bias PAE.

4.3.2 Amplifiers used in the analysis

The amount of bias power to a circuit is largely dominated by the bias point
selected in the amplifier design. We will use a similar circuit design to that found
in Figure 4.9 but the Vgzp bias voltage will be varied. When designing microwave
amplifiers the combination of the transistor, the feedback network and the bias net-
work is characterized by S-parameters. Using the measured S-parameters, the design
of the input and output matching networks are done on the Smith chart to match
some desired performance criteria. For low noise amplifiers, gain of the circuit is
typically sacrificed for a low noise figure. For our circuits, the noise figure of 2dB is
used and the amplifiers are designed to provide as much gain as stability criteria al-
low. Each of the following amplifiers has been checked for input and output stability,
quasi-memoryless operation, and the maximum possible resulting gain. The designs
are illustrated in Figures 4.16, 4.17, 4.18, 4.19 and 4.20. Their one tone compression
performance is shown in Figure 4.21. Note the gain expansion of the 0.70V LNA, this

is due to the transistor turning on as the input signal becomes larger; with a small
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input signal the transistor is mostly turned off.
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Figure 4.16: Quasi-memoryless LNA with 0.90V bias, NF=2dB, Gain=20.70dB.

4.3.3 Power supplied

To determine the power supplied to each of the different circuits we measure the
supply power consumed under different input conditions using a circuit simulator.
In practice, this information can be measured from a circuit and incorporated into
the behavioral model. When the relationship is known, the supply power can be
determined by performing an interpolated table lookup. Figure 4.22 illustrates the
measured relationship between input power and supply power for each of the circuits

under consideration.
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4.3.4 Varied bias PAE

One of the main questions to be addressed in this Chapter is the power savings
that MEMS filters can foster. Fix the SIR requirement for the front end system, if
the amplifier experiences the effects of strong interfering tones while attempting to
receive a weaker desired tone, the nonlinear products that we have been considering
come into play. If the front end filters are wide the amplifier must maintain a degree
of linearity to meet the design goal. However, if the front-end filters are very selective
and attenuate the interferers adequately the linearity requirement on the amplifier
can be relaxed. The bias point of the amplifier typically determines the amount of
power consumed. Compared to amplifiers with high biasing power, amplifiers with
lower biasing power are typically less linear because the transistor is biased closer to
cutoff. Given the appropriate MEMS filter, nearby interferers can be attenuated to
such a degree that the SIR requirement may still be achieved. The task, then, is to
quantify the power added efficiency gains that can be achieved with the amplifiers
whose bias power is lower, and what the corresponding filtering requirements are.

To determine the answer to this question, we select the amplifier models illustrated
in Figures 4.16-4.19. These amplifiers have been designed to achieve their maximum
gain for which the noise figure does not exceed 2dB. The amplifier with bias voltage
0.70 has been dropped from consideration because of the overall poor gain response.
The remaining amplifiers are modeled using the MIQM and the method described
in Appendix C with N = 24. The frequency plan is the same as we considered in
Section 4.2.4, f; = 900MHz, f, = 900.9MHz, and f, = 901.8MHz. The interfering IM
products are selected if they are within a W = 100kHz wide region centered on f,.
The filtering requirements for each amplifier is given in Figure 4.23 when the input

desired tone is -101dBm and the two strong interferers are each received at -30dBm.
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While not extraordinarily steep, there is a trend toward relaxing filter requirements
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Figure 4.23: Q required for SIR design goal and different amplifiers, input is -101dBm.

as the bias power increases.

If the amplifier is driven harder by the desired signal (-41dBm and the interferers
at -10dBm), as in Figure 4.24, an interesting phenomenon appears. The amplifiers
with smaller bias power requires less filtering to achieve SIR=2dB than the amplifiers
with greater bias power.  This is explained by noting the one tone compression plot
in Figure 4.21. While the V, = 0.75 amplifier may have a smaller gain than the rest,
its 1dB compression point is is at a larger input signal level than the remainder of
the circuits. This implies that the V, = 0.75 may, in fact, be more linear than the
V, = .90 amplifier. Also note that the rate at which the gain decreases is not as fast as
the remaining amplifiers, which serves to strengthen this conjecture. The conclusion

to draw here is that the linearity of an amplifier is not necessarily a function of the
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Figure 4.24: Q required for SIR design goal and different amplifiers, input is -41dBm.

bias power supplied, even for circuits with similar designs.

The next result to examine is the PAE for the amplifiers when utilizing the cal-
culated Q that will give the desired SIR performance. The results of the PAE deter-
mination for the system driven with a -101dBm desired input and two -30dBm CW
interferers. Under these conditions, the amplifiers with the lower bias power achieve
a 10-14% increase in PAE as compared with the most heavily biased amplifier.

If the input of the amplifier is driven by larger signals, -41dBm desired power and
-10dBm interferer power the PAE results are shown in Figure 4.26. Just the opposite
effect is seen here; the circuits with smaller bias power have smaller PAE than the
circuits that receive more bias power. At first glance, this result seems counter-
intuitive. But, upon examination of the PAE calculation from (4.35) this effect can

be explained. We know, from the power traces in Figure 4.22, that the bias power
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decreases as the overall input signal power is attenuated. We also know, from Figure
4.21 that the fundamental gain decreases with a decrease in bias level. However, what
we do not know is how the decreases react in relationship with each other. If the gain
of the system shrinks with the bias power, then the only way to show PAE gains is
to make sure the bias power decreases at a faster rate, or else the PAE may actually
grow worse.

The conclusion to draw is that the PAE of an amplifier is not clearly related to
the bias power applied. The PAE is heavily dependent on the actual design of the
microwave circuit. A prudent design for fixed noise figure at a small bias power may
be more linear than a design at higher bias powers. This coupled with the fact that
the maximum gain of a system with shrinking bias power also shrinks. Thus, changes
in both the numerator and denominator of (4.35) lead to no clear intuition about
PAE, but the result can be quantified by using the MIQM.

The results of this section must be viewed in light of the assumptions made.
In selecting the amplifier designs, the noise figure of the circuits was fixed to 2dB.
This restriction was made in an attempt to make fair comparisons between amplifiers
driving 50€2 loads. Some examination of the basic assumptions may need to be
made in the future when circuit designers examine this work. For instance, it may
be advantageous to design the load for a different impedance and match the input
of the next element with an ideal transformer in order to achieve better gain or
noise performance. Additionally, we do note that matching small circuit gain across
amplifiers for comparison purposes was considered. If matching gain is done under
the restriction of matched noise figure the comparison of response is not fair because
the more heavily biased circuits must be intentionally mismatched in order to limit

their gain to be equal to the least biased circuit. On the other hand, relaxing the
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equal noise figure restriction may lead to an interesting tradeoff between linearity and

noise and is an open question.

4.3.5 Fixed bias PAE

Since the relationship between bias power and PAE seems to be heavily design
dependent, if we fix the design and analyze the effects of a MEMS filter on PAE we
may be able to gain some insight. The main problem with the PAE determination
in Section 4.3.4 is that both the numerator and denominator of (4.35) varied with
the bias power. To avoid this we will examine the PAE with a fixed amplifier design.
Thus the supply power will remain fixed and the denominator will as well. The gain
variation is the only effect that will change the PAE.

In Figure 4.27 the gain for the desired tone is shown for all SIR>2dB. Since the
bias power to the system is fixed, the gain compression seen contributes directly to the
reduction in PAE, seen in Figure 4.28. For a given strength of interferer, increasing
filter @) leads to greater power efficiency up to the limit of the small signal gain of

the amplifier.

4.4 Conclusions

In this chapter’s sub-sampling sections we present a model for direct down conver-
sion systems that use MEMS filters and sub-sampling. This architecture allows the
elimination of several high power oscillators. We develop 3 restrictions on the choices
of parameters to eliminate interference, and we show that the replicated additive
thermal noise is bounded under a fourth restriction on the MEMS filter slope. We

also show that the additive resistor noise can be dominated by selecting intelligent
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gain values in the front end LNA, which is contrary to [48] and [22].

Our numerical results consist of 1) the tradeoff between the sampling rate (f5),
the filter slope (my), and the SNR loss as a result of wide-band noise and completely
dominated resistor noise 2) the tradeoff between fy, the LNA gain, and the SNR
loss due to wide-band noise and resistor noise 3) tradeoff between a given RWNR
requirement and LNA gain for a fixed f;. These results will allow direct down-
converted MEMS based radios to be designed around given system requirements.

The cosite interference sections provide a framework for evaluating the effects of
nonlinearities in amplifier front-ends. It can be used to accurately predict the required
Q@ for a given design, and because Wass’ model is not dependent on either the filter
shape or the amplifier characteristic, modifying the basic system and generating new
results costs little compute time, resulting in a repeatable design methodology. The
key contributions of this work are to quantify our intuition that narrower bandpass
filters give better interferer rejection and to determine the maximum nearby inter-
ference level for a desired system performance. This type of analysis will become
advantageous as narrower MEMS filters are designed.

The power added efficiency section raised some question as to the efficacy of
filters on PAE. The question as to how much efficiency can be gained by the use
of MEMS filters is answered in two ways. First, the link between PAE and bias
power is highly dependent on the circuit design. The reduction in bias power can
be completely offset by the reduction in amplifier gain. Additionally, the required
filtering to reduce nonlinear effects is dependent upon the circuit design as well. The
design of the amplifier is a question better suited for optimal circuit design research,
while the system performance analysis is effectively handled by behavioral modeling.

The second manner in which this question can be answered is by fixing the design
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of the amplifier and determining the PAE increase by reducing the gain compression
brought on by strong interferers. These effects are quantified for a given circuit model

using the MIQM.

149



CHAPTER 5

Summary of Contributions and Conclusions

In this thesis we have analyzed many different situations where the transmission
of information is corrupted by noise. This chapter offers a review of the original
contributions that can be found in the preceding pages.

In Chapter 2 we motivated and developed an efficient, recursive method for calcu-
lating the probability of undetected codeword error. Our algorithm assumes indepen-
dent noise statistics from symbol to symbol but allows different noise distributions.
The efficiency of the algorithm is dependent on the number of different noise distri-
butions present, and can have exponential complexity in N as the number of noise
distributions approaches N. In this situation, our algorithm offers bounds in a fash-
ion that is compute-limited (the bound grows monotonically tighter as the amount
of CPU cycles applied increases). While the best algorithm found [1] may approach
our efficiency for the case with few noise distributions, it does not offer a bound in
the case where there are many distributions.

We applied the recursive method to the case of product code transmission in the
presence of an omniscient fixed power partial band jammer. Code rates were selected
using both asymptotic and finite length analysis. It was shown that the probability of

undetected error is an important consideration in accurately determining the optimum
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constituent code rates.

In Chapter 3 we motivated and proposed the MIQM, a new nonlinear modeling
technique which is used to analyze, rather than simulate, the effects of a nonlinear
element in receiver front-ends. This method has advantages over many of the existing
modeling techniques discussed. Primarily, it allows for rapid analysis of weakly and
strongly nonlinear systems with large or small dynamic range inputs. Additional
advantages over existing methods include numerical precision over FF'T based discrete
methods, functional input-output relationships over the IQM, and accuracy of results
over analytical methods. Once the system is known to be memoryless, or have a
limited degree of memory, the MIQM will produce accurate results that match the
output of more numerically complex simulation systems.

In Chapter 4 we analyze the effect that MEMS filters have on combating interfer-
ence in various systems. We show that if proper system parameters are set, the mixer
and local oscillator (LO) found in a traditional radio front-end can be eliminated. We
give conditions on the sub-sampling system parameters to assure self-interference free
communication and we show that the replicated sampling resistor noise is dominated
by the thermal noise at the antenna. Additionally, we show that under another con-
dition, the replicated wide-band noise is finite. We apply this analysis to an example
system and show the performance tradeoff between sampling rate, filter shape, and
interference.

The second issue that we explored in Chapter 4 is the analysis of the suppres-
sion of cosite interference with MEMS filters. We develop a system to quantify the
interference and to show the tradeoff between the SIR design goal and the filter @)
requirements. The results show that the SIR achievable with a given () is strongly

related to the order of the filter used. This is not only reinforces intuition, but we
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quantify that intuition with the direct calculation and illustration of the tradeoff.

The final issue addressed is the power savings that may be achieved by using
MEMS filters in receiver front-ends that employ nonlinear amplifiers. It was thought
that the use of selective filters may allow the use of amplifiers that are more power
efficient and at the same time less linear. By applying a MEMS filter to attenuate
strong interferers in a cosite scenario, intuition held that the overall system SIR could
be held constant while the power used by the amplifier decreased and thus show an
increase in PAE. We show that the application of a MEMS filter to a fixed bias power
amplifier increases the PAE in the presence of strong interferers, but that there is not
a clear link between decreasing the amplifier bias power and increases in PAE under
fixed noise figure constraints.

The primary contributions of this thesis are the methods for the analysis of com-
munication systems in the presence of interference. The structure of the algorithm
proposed in Chapter 2 leads to the ability to determine probability statistics that are
important in both direct calculation of undetected error and in analyzing retransmis-
sion systems. Further work in this area can be done in determining the zero pattern
generation algorithm, such that a global search and sort is not needed. The MIQM
analysis technique can, most likely, be further refined and used for analysis of ad-
jacent power interference and other nonlinear system behaviors. Finally, the PAE
results in Chapter 4, need further exploration by researchers versed in optimum cir-
cuit design. While we show that the relationship between amplifier bias power and
PAE is not clear in general, some design optimization research may shed light on this

relationship.
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APPENDIX A

Derivation of probability of correct, incorrect, and
failure for M-ary orthogonal non-coherent symbol
detection using the ratio threshold test (RTT)

A.1 AWGN Preliminaries

In a transmission of one of many possible signals the ratio threshold test provides
side information as to the reliability of the decision of which signal is detected. The
output of the energy detectors for an M-ary receiver are denoted as Z; where i =
1... M. The general rule is to select symbol j as the detected symbol if max; Z; = Z;.
The RTT flags the detected symbol as un-reliable if Z; < vZ; for any ¢ # j, with
v > 1. The special case of v = 1 degenerates to the general decision rule.

The block diagram of the decision device is shown in Figure A.1.

The transmitted signals are

2F; ' .
si(t) = 7 cos<27r<fc+Ti>t), i=1...M, 0<t<T,, (A.1)

where the offset frequency is selected to be a multiple of % so the signals are orthog-

onal. The low-pass equivalent of these signals are:

2F, : .
si(t) = || 7 cos (%Tit) . i=1..M, 0<t<T, (A.2)
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Figure A.1: M-ary orthogonal non-coherent detector

The received signals are:

[2F ) .
’I“(t): T Cos<27r<fc—|—Tis>t+¢>—|—n(t), 1=1...M, 0<t<Ts,

(A.3)

No

5, and ¢ is a uniformly distributed

where n(t) is an AWGN process, mean 0 variance

phase error. The low-pass equivalent of the received signal is:

1 J2F; ) ,
rl(yj):5 T cos (27?%15—1—(;5) + n(t), i=1...M, 0<t<T, (A4

The correlating functions for #'th signal are:

[ 2 i
fie = i cos <27rit> ,
2 . i
fis = ’/i sin (27rit> . (A.5)

The optimum receiver in AWGN selects the signal that maximizes:

Zi =122+ Z2. (A.6)
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A.1.1 Outputs with signal present

The output of the cosine correlator corresponding to the transmitted signal is:

Ts
zlc:/ n® fe(B)dt,  i=1...M,

0
_ VL. cos¢)+\/Tz / ot (A7)
s J0

Z1. 1s Gaussian distributed with mean

7 = E[Z3]
= \/ES oS ¢, (A.8)
and variance
Var(Z,.) = E [2},] — E*[Z.],
==L (A.9)

The output of the sine correlator is derived similarly:

[2 [T
Z1s =/ Egsin¢ + T/ n(t)dt, (A.10)
s Jo

with similar mean

Z1s = E[Z14]
= \/Essin 0, (A.11)
and variance
Var(Zy,) = B [Z1,] — E*[Z1],
= . (A.12)

For envelope detection, the input to the decision device is:

7y =1/ 7% + 72, (A.13)
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Since Zi. and Z;; are Gaussian distributed random variables, with non-zero mean,
. - . . . 2
7, is a Rician random variable with non-centrality parameter s> = 7Z,, + Z;, = E,.

The distribution of Z; is written as:

Z 2242 Sz
fa(e) =S¢ 5 1 (5),

0—2
2z _22+Fs 2:F
e s A.14
z. (N) (A.14)

where I is the modified Bessel function of the 0’th kind. As a side note, when the

parameter to I exceeds 700 the approximation:

To(x) ~ ¢217r—x o (A.15)

is necessary on a computer. The corresponding cumulative distribution function is

written as:

Fa(z)=1-0Q, (2.2).

—1-Q, (ﬁ \/;0> (A.16)

where Q, is the Marcum-@) function with parameter 1. From [54] we can evaluate

Q, (a, ) as follows:

0<a<pg
™ 1+ sin 6 —g2 o a2

Qu(e, B) = QL/ o (1gsnen(5)) gy, (A.17)

T —r o a

1+2351n9+ (3)
0<fB<a
m ﬁ 2 ﬁ 1 9 _a2 ) 2
Or(onB) =1+ = 1 / (a) + = sin 267(1+2§sm9+(§) )dﬁ, (A.18)
21 Jox 1428 sin 0 + (&)
and

0<a=p

1 2
Q1 (o, ) = 5 1+e  Ip(a?)]. (A.19)
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A.1.2 Outputs with no signal present

The output of a cosine correlator corresponding to any other signal than the

transmitted signal is:

Ts
ZQC:/ () fa(D)dt,  i=1...M,

0
[2 [T 1
=0+ i/o cos <27Tit> n(t)dt.

Z9. 18 Gaussian distributed with mean

ZQC =EB [ZQC]

and variance

Var(Zy.) = E [ 73] — E* [Zs],

The output of the sine correlator is derived similarly:

2 [T
Zas =0 — t)dt,
w=0+ /7 [ nto

with similar mean

and variance

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)



For envelope detection, the input to the decision device is:

ZQ - \/ Z%C + ZQQS (A26)

Since Z,. and Z,, are Gaussian distributed random variables, with zero mean, 7, is

a Rayleigh random variable. The distribution of Z, is:

fZ2(Z) =€ 2;27

=—e M. (A.27)

The cumulative distribution function is:

22

FZQ(Z) =1 —6_20_2,

2

—1—e M. (A.28)

A.2 Rayleigh Preliminaries

The special functions that appear in (A.19) and (A.16) cause some numerical
precision problems during evaluation on a computer. However analyzing a system
in an environment where the signal experiences AWGN and fading avoids the use of
special functions. The expressions for fz, and fz, come from Kim [17]. The expression
for the pdf of the output of the energy correlator with signal present is:

R
fz,(2) = T‘%e 1
1

= e FeinN A.29
Es+NUe " ( )

and the pdf of the output of the correlators with no signal present is:

1 2;2
fz,(2) 27:%6
L% (A.30)
= — e 0, .
No



Integrating to find F, and Fy, gives:
Fp(2) =1—e B8 (A.31)
and
Fz(z)=1—¢e %, (A.32)

which do not contain numerically sensitive special functions.

A.3 Putting it all together

A.3.1 The probability of correct detection

The decision device selects the correct energy correlator when the following occurs:

Z1 > ymaXpyz Lm, given signal number 1 is transmitted. The probability of this

event is:

PO =P (22 ymas ), (A.33)
%0 L\ M1
:/ Fz, <—|1> fz, (2]1) dz. (A.34)
all others are %ro_
1 =7

smaller than
z

(A.35)

A.3.2 The probability of incorrect detection

The decision device makes an incorrect decision when there exists one energy

correlator output that is larger than v times the remaining, and this output is not as-
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sociated with the transmitted signal. Thus the probability of this event is determined

as follows:

1) Ly > ymax Z;|1 A.36

P, (v]1) U Ymax 7| (A.36)

o z 2, \M?
— (M- 1)/ Py <—|1> Fy, <—|1> fo(2[)de. (A37)
- ~~ ~~ pro
Zq is smaller all other 7o
9 = Z

than z incorrect
outputs are
smaller than
z

A.3.3 The probability of RTT failure

The last remaining event of interest occurs when the outputs of the energy detec-
tors fail the RTT. In this situation, no output is larger than v times any of its peers.
This represents a situation where there is some strong interference or the low proba-
bility chance that the noise in one detector is large at the sample instant. We shall
determine the probability that one, or more, outputs has a large noise component at
the sample time.

Typically, the probability of RTT failure can be expressed as Py(y) =1— P.(y) —
P.(7), but on a computer this calculation can cause numerical problems. In this case
it is desirable to determine the integral (or direct) expression for Ps(y). If Z; is the
maximum output, the event that will fail the RTT is the event that one or more

outputs sat1sfy L < Z; < Zy. If v outputs satisfy this condition then:
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M—-1 v

. o M —1 z
Pt(v, Zy is max, |1) :/ Z < ” > |:FZ2(Z|]-) - FZ2(;|]‘) X
0 v=1 ~ _

v Zy’s outputs are between

éﬂ,and Z1
v
p M—-1—v
L R A (4.38)
M—l—zTZg’s are
less than 4t
v
The probability of Z; being the largest output is:
P(Z, is max) = P,.(1). (A.39)

If Z; is not the maximum output then one of the Z; must be. The probability of

this event occurring is:

P(Z, is max) = P(maxy Z; = Z5) (A.40)

- /000 Fa (D) Fr ()" fs (2]1)dz. (A.41)

Given Z5 is the maximum output the failure event is the event that % < Z; < Z, for

some 7. We split this into two separate joint probabilities:

Py(v, Zy is max, |1) =
Pr(7, Zy is below the range, Z, is max, |1) +

Py(v, Z; is in the range, Z, is max, |1), (A.42)

162



o~ [ M —2 N z M=2-v
Pyt Zismas, 1) = [0 (M) [Faey - £ G| |PaCCin]
VI — R Y N Y |
v Zy'’s are in the M—-2—v
failure range Zy's are
below the

failure range

FalE)] fr Gl

—_——
Z1 below
the failure
range
(A.43)
o0 M—2 v M—-2—v
M —2 z z
F O (M) [ae - maCi] [maCin)]
0 »—o A Y N v |
v Z5’s in the failure M—-2—v
range Zy’s are
under the
failure range
z
Falelt) = FuCID)| a1 (A1)
Z, is in the failure
range
Combining (A.38), (A.39), (A.41), and (A.44):
M
Pr(v|1) = Pr(vy, Zy is max|1) + ZPf(fy, Z; is max|1),
i=2
= Ps(v, Z; is max|1) + (M — 1)P(vy, Z, is max|1). (A.45)
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APPENDIX B

The method of moments

Given an equation of the form:

/01 K (A, Hu(t) dt = g(A), (B.1)

where u(t) is known and g(A) is known at discrete values g(A,,), determine the
discrete function K;(A,t). Equation (B.1) is known as an integral equation of the first
kind (IFK), in particular it is known as a Fredholm IFK'. g(A) is generally referred to
as the excitation, u(t) the unknown, and K (A, t) as the transform kernel. Comparing
to (3.56), (3.59), (3.64), and (3.67) we note u(t) is actually a known quantity and
K¢(A,t) is unknown. Thus, the problem is cast as a IFK with unknown kernel. The
solution this problem is generally not known, but in the case where K (A, ) is of the

form K(At) we may use the change of variable x = At to transform (B.1) as follows:

o) = [ Kottt
_ / K (Abu(t) dt.

_ %/0 K(tyu( L) it (B.2)

!The interested reader is referred to [55-60] for thorough discussion of closed form and numerical
solutions to integral equations.
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which can be re-written as:

A
o) = [ romG e (B3
where % is subsumed into K,. Equation (B.3) is known as a Volterra IFK, and there
is a body of work that deals with its solution.

To solve, we select the method of moments [61] (otherwise known as Galerkin’s
method). This method involves projecting both sides of (B.3) onto a common or-
thonormal basis and projecting the unknown function, f(¢), onto a (potentially) dif-
ferent orthonormal basis. We select the common RHS and LHS basis functions to be
Dirac delta functions to enforce equality at a finite set of points A,,; this method is

known as point matching or co-location.

Starting with the Volterra IFK:
o) = [ FK.(A, b, (B.4)

K, (A, t)dt, (B.5)

where the set {B,(t)} is an orthonormal basis of domain ¢ for f(¢). If {7,,,(A)} is an
orthonormal basis for g(A) then
A
m 0 n
A
=> oy / Bn(t) K, (A, t)dt. (B.7)
- 0

K, (A, t)dt, (B.6)

If we now project the integral onto the basis functions 7),,(A) we can re-write (B.7)

as:

3" BT =" a3 lunTon(A). (B.8)

We note that

Bm = Zanlm,na (Bg)
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which in matrix form gives:
a=1"18 (B.10)

While generally the orthonormal bases are complete, truncation of the basis set to
a subspace is equivalent to approximating «. Determining # and [ is the remaining
challenge.

To determine the basis functions for g(A) we recall that the measured or simu-
lated representation is evaluated at discrete points g(A,,). Using the point matching
method to enforce equality in (B.3) at {A4,,} we select the orthonormal basis functions

to be:

Tm(A) = 6(A—mT), (B.11)
with T'= Ay — A; and {A,,} uniformly spaced. For the orthonormal basis {B,} we
choose the pulse functions:

L nr<t<(n+r
B.t)=4 V7 (n+1) , (B.12)

0 otherwise

3

where 7 = max(A4,,)/N and N is the size of the subspace {Bi(t)...By(t)}. Since ¢
is bounded from above by A or (A, in the discrete case) the selection of subspace is
made under the restriction (n + 1)7 < A4,,.

To determine (3, we project g(A) onto its basis, {T,,(A)},:
5 = [ Tu(A)g(a)d
= /(5(A —mT)g(A)dA,
=g(A—mT),

= 9(Am). (B.13)
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Determination of [, , proceeds in a similar fashion:

_ / / Y B (1), (A1) di T, (A) dA,

/f/nn+1 W(A, 1) dt T, (A) dA,

(n+1)T
K,(A—mT,t) dt,
\/7_— nrt
1 (n+1)7
Ky(Apm, 1) dt.

RV

Since f(t) is unknown, solving for «,, is done in the manner of (B.10).

known we note that:

and discretely:

fn(t) = f(t - nT) =

Q.

=

(B.14)

Once «,, is

(B.15)

(B.16)

Note that care must be taken for the matrix inversion in (B.10) that [ is well

conditioned. If [ is ill-conditioned some regularization techniques may need to be

employed.
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APPENDIX C

Generation and verification of nonlinear system
output

Once a nonlinear circuit has been characterized by a polynomial fit to the MIQM
I and Q curves, determination of the intermodulation products becomes the focus of
the analysis. The mechanics of determining the IM magnitude, phase and frequency
given the input signal and the polynomial fits will be detailed in this appendix.
The result of this appendix will be twofold. First, a list of all IM products from
which fundamental and interfering IM products can be culled. Second, the total
fundamental and interfering signal power will be determined. The output will be

verified against known good one and two tone gain compression plots from the CAD

tool HARMONICA.

C.1 Inputs

We define the input signal as:

M
x(t) = Ay cos(2mfit + ¢1) + Z A;cos(2m fit + ¢;), (C.1)
i=2

where the A; cos(2m f1t+ ¢1) tone is considered the desired tone and the remainder of

the M — 1 tones are interfering tones. If the amplifier that is under consideration is
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memoryless or quasi-memoryless in a fashion such that the two tone frequency sweep
is fairly flat at the frequencies f;, then the MIQM is able to accurately model the

amplifier with the following two polynomials:

N
pr(z) = Z cr, @', (C.2)
i=0
and
N .
pol®) = 3 cq.r'. ©3)
i=0

Once these polynomials and the input signals are known the intermodulation products

can be determined.

C.2 IM product determination

C.2.1 Method of Wass

In [19], Wass developed a table method to determine the coefficients and frequen-
cies of N’th order M tone intermodulation products. The results of Wass’ method

can be represented by the following “typical product”:

M M
[ 4w cos (Z nk(filt) + ¢k)> , (C.4)
k=1 k=1

where the 7 index the order ¢ intermodulation products, the ¢; term is the #’th order

P, ;(t) = ciqi;

polynomial coefficient, the ¢; ; is the leading fraction of the j’th order i'th product,
the p; jx are the number of times input tone k appears in i’th order product j, and the
n; .k are the frequency contribution of the k’th input tone in the j’th order 7 product.
As an example, the M =2 N = 1...3 order products are enumerated in Table C.1.
The main advantage of this tabular method is that large tables can be calculated
off-line and stored. The individual polynomial coefficients and input frequencies can

be combined with the stored products once they are determined.
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Table C.1: Two tone, order 1...3 intermodulation products

J |G| qigl pij, | product

1|1 ]1,0 |1,0 |ciArcos2n(fi+ ¢1)t)

2 e |1 101 |01 | cpAycos(2m((fa + o)

Lle| 2102 [00 |cid,

2 |ea| 5 |20 [00 | cosAl

3 1|1 |11 1,-1 | oA Ay cos(2m((fy + ¢1) — (f2+ ¢2)))

4 0ea| 2120 |20 | c3ATcos(2m2(f1 4+ ¢n))

5 el | 1,1 1,1 co A1 Ay cos(2m((f1 + 1) + (f2 + ¢2)))

6 [ca| 2102 |02 | coiAcos(2m2(f2+ ¢2))

Lles|d 21 |2-1 | esfATAzcos(2m(2(f1 + ¢1) — (f2 + ¢2)))
2 |es| 2130 |10 |estA cos(2m(fi+ ¢n))

3 les| 2112 [ 1,0 | cs2A143cos(2n(f1+ ¢n))

4 1es| 2103 |01 | es2A3cos(2m(fz+ ¢2))

5 les| 321 |01 | c33A2A;cos(2m(fo+ ¢2))

6 [cs|2 1,2 | 1,2 | cs3A145cos(2n((f1 4 d1) — 2(f2 + ¢2)))
T les| 530 [30 | cspAScos(2m3(f1 4+ ¢n))

8 |es| 221 |21 |es2ATArcos(2m(2(f1 4 ¢1) + (f2+ 62)))
9 les| 2112 | 1,2 | e33AiAZcos2n((fi+ 1) +2(f2 + 62)))
10{ 3| 2103 |03 | c32A3cos(2m3(fz+ ¢2))
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C.2.2 Method of Sea

In [20,21] Sea proposed two methods to directly calculate the intermodulation
magnitude of a given frequency combination, at run time. The method in [20] has a
high degree of computational complexity which is not feasible for run-time operation
unless M and N are small. However, in [21] a recursion is proposed and the complex-
ity is reduced to a roughly O(MN) for each frequency desired. Unfortunately, the
numbers of frequencies present grows exponentially in N and makes his calculation
difficult for run time use in determining all magnitudes, phases and frequencies of

large order systems.

C.3 Combining Wass with MIQM

Once the table of IM products is generated the task at hand becomes deciding
which products are interference and which products are signal. In the case of input
interfering signals with no modulation all products with table element n; = 1,0,...,0
are deemed fundamental power. These products are found in odd orders due to
the mixing of even order DC components with the fundamental. For example, the
fundamental tones found in Table C.1 are (i, ) = (1,1), (3, 2), (3, 3) and the remainder
of the tones are considered to be interferers. The output tones may be restricted to a
bandwidth of interest around the fundamental tone, so all interfering tones may not
be present in any given listing of tones.

Recalling the MIQM model block diagram found in Figure 3.9 and repeated here
in Figure C.1, the fundamental and interfering tones can be determined by matching

the I and Q Chebychev polynomials to the Wass table. ~ The signal that results on
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Hzi(t) =wn(t) (X
(2 (1)) | |
Zin(1) O
a(zq(1))
ool =) | é Ja(t) H{) va(t)

Figure C.1: Modified Instantaneous Quadrature Model Block Diagram.

the I side is

n(t) =3Pl ()

with the ¢; replaced by c;,, and the Q side

iolt) = 3 P3 (1), ()

with the ¢; replaced by cg,.
To determine the magnitude of the signal at each frequency, all IM products of
like frequency and phase from y;(t) are added coherently, as are all the products from

Uo(t). The resulting signals are written as:

yrm(t) = Y Y PL(®), (C.7)
(]
njp=nj Vik,l
and
yom(®) = D> P, (C.8)
i

N k="j1 Vl,k,l
where m indexes the resulting tones (by convention let m = 1 for the fundamental

output).
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Next, the tones on the I side and Q side are compared to each other. Tones sharing
the same frequency and phase will be technically 90 degrees out of phase when 3¢ (%)
is transformed to y¢(t) via the Hilbert transformer. The magnitude of the resulting

tone will be:

()] = /1y OF + lygun (1) (C9)
The phase of the m’th tone is:

O(ym (1)) = tan™! % (€.10)

Thus, the resulting output is

y(t) = lym(t)| cos (27 frn + Sym (1)) (C.11)

C.3.1 SIR of the output signal

Once the IM products are separated into fundamental tones and interfering tones
and the magnitudes of like phase and frequency terms are determined for y(¢), the
SIR calculation is rather trivial. The total normalized power due to the fundamental

signal is
Ps = |y1(t)|2 /2, (C.12)
the total power due to the interfering signals is

Po= S lum(®)F /2 (C.13)
m,m#1

and the resulting SIR is

P
SIR = 10logy, P—S. (C.14)
N
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C.4 Method Verification

In this section we will compare the one and two tone compression test results
of the amplifier depicted in Figure 4.9 using HARMONICA and the MIQM/Wass
method. The one tone compression test is a good indicator that our model is correctly
identifying all the fundamental power in the output signal. The two tone test is a
good indicator that out model is correctly identifying all the fundamental signal power
due to the mixing of the even orders of interferers and the odd fundamental orders.
When these two tests match, we will have reasonable assurance that the algorithms
used to determine the IM products are correct.

The one tone compression test measures the gain of the fundamental as the input
fundamental is swept in magnitude (or power). There are no interfering tones in this
test and Figure C.2 shows the gain compression of our model matches the simulated
gain compression.

The two tone gain compression test measures the gain of a weak input fundamental
as the strength of a nearby interfering tone grows large. As Figure C.3 shows our
model tracks the simulated output very closely. The divergence in the -7dBm range
most likely has to do with the inversion of the matrix in the calculation of the MIQM

transfer functions starting to lose precision.
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