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Abstract

We examine the sensitivity of optimal routing policies in ad hoc wireless networks with respect to estimation
errors in channel quality. We consider an ad hoc wireless network where the wireless links from each node to its
neighbors are modeled by a probability distribution describing the local broadcast nature of wireless transmis-
sions. These probability distributions are estimated in real-time. We investigate the impact of estimation errors
on the performance of a set of proposed routing policies.

I. INTRODUCTION
As the size of communication networks increases and the applications of such networks spreads to various

fields, resource allocation issues such as connection admission control, routing, etc., become an increasingly
important component of communication research. Ad hoc networks research consists of a large body of work
which addresses these issues in the context of networks with no central controller and unspecified connectivity
topology, where each node can itself act as a store-and-forward router (see [1]). The general routing problem
in an ad hoc network is to define a policy which, given the trajectory histories of all the messages, chooses the
nodes to transmit the messages next. Such a policy must be implemented in a distributed fashion. There has been
an extremely rich literature on routing in ad hoc networks (for a summary see [1]), where several centralized and
distributed routing algorithms are proposed and notions of shortest path and minimum energy routing have been
established. Various objectives can be considered in a network routing optimization, including capacity, time-
liness, and energy consumption. Further challenges are posed by wireless networks, where similar goals must
be achieved with unreliable, time-varying channels, and where new concerns, such as energy consumption and
channel interference impose additional constraints. It is shown (see [2] and [3]) that in wireless networks due to
the unreliability of channels retransmission mechanisms have a non-negligible impact on the energy performance
of routing protocols. In other words, the proposed routing policies (e.g. MRPC in [3]) achieves a better perfor-
mance by including the channel quality and expected number of retransmissions, both functions of probability
of successful transmission, in the definition of each link’s length or each node’s transmission cost. Furthermore,
in [4], [5], and [6] it is shown that the local broadcast nature of wireless transmission, which usually causes in-
terference among neighboring nodes, can be used to our advantage. This can be done if successful transmissions
are acknowledged by the nodes which receive the message. Using the acknowlegements, sample-path-dependent
optimal routes can be constructed (see Section II). The construction of sample path dependent routing as well
as MRPC relies on the estimates of channel quality to achieve an improved performance in ad hoc routing. In
other words, the routing in wireless systems is best addressed by a stochastic model of the system. In general,
service provisioning and resource allocation issues (such as admission control, routing, etc.) in wireless net-
works are best modeled as stochastic scheduling and stochastic control problems, where the wireless links are
described by stochastic processes. The statistic of any wireless link depends on the physical channel (additive
noise, path loss, shadowing, fading, etc.), the number of users that use the link simultaneously, and the users’
transmission strategies. Generally, the overall structure and statistical behavior of the system, e.g. the marginal
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Fig. 1. Ad hoc wireless network with probabilistic local broadcast model

and joint distributions of the processes involved, is studied and modeled off-line, while the particular parameters
of such models, e.g. mean and covariance, are left to be estimated in a real-time measurement-based fashion. For
instance, a single-hop wireless link might be modeled as an independent identically distributed binary symmetric
channel, whose transmission error probability is estimated on-line. The existence of on-line estimation adds a
new dimension to the question of optimal routing.
Ideally, routing as well as other resource allocation mechanisms can potentially provide information on the

statistics of the wireless channels since any resource allocation mechanism regulates the communications in the
system. In fact, there exists a trade-off between identification and learning via communication versus minimizing
the communication costs. Hence, even in situations where the wireless system is controlled in a centralized
manner, the estimation problem combined with the control issues, should be ideally studied as a stochastic control
problem with imperfect information. Stochastic control problems with imperfect information are dual control
problems that address joint estimation and control issues. The information state [7] for these problems lies in an
infinite dimensional space even when the state-space and action space are finite. This feature makes such dual
control problems analytically and computationally difficult.
An alternative approach is to decouple the estimation and control issues in dual control problems. Such an

approach provides a parameter estimation algorithm which operates independently of the control decisions and
feeds the estimated parameters into a controller designed under the perfect information assumption. Following
such an approach, wireless ad hoc routing can be addressed by the following three step procedure: ( ) Off-line
modeling of the overall statistical behavior of the wireless links; ( ) specification of the channel quality via
real-time and measurement-based estimation of probabilities of successful transmissions at all nodes;; and ( )
determination of optimal decision (e.g. routing) strategies assuming that the results of steps ( ) and ( ) describe
the true stochastic behavior of the broadcast channels (referred to as broadcast model). The construction of
optimal sample path dependent routing strategies as well as MRPC (see [2], [4], [5], [6]) are examples of the
solution to step ( ) of the wireless ad hoc routing problem.
In the approach descrbied above, there are errors associated with the estimation techniques used in ( ), and

the accuracy of the estimated parameters is limited to the employed estimation algorithm’s error margin. Fur-
thermore, the optimal decision (e.g. routing) strategy resulting from ( ) is guaranteed to be optimal only for the
particular values of parameters given by ( ); and it generally varies when these parameters change. Hence, it is
vital to perform sensitivity analysis in order to quantify the loss in performance of the proposed decision strategy
in the presence of the aforementioned estimation errors. This fact implies that a major component of design and
analysis in any wireless system is the sensitivity analysis with respect to errors in channel modeling and channel
estimation.
In this paper we present a sensitivity analysis of a known optimal (with respect to an energy consumption
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criterion) routing policy in a stochastic ad hoc network. Our analysis is based on the model and results of [4],[5],
and [6]. In these papers, the authors investigate a network routing problem where a probabilistic model for
wireless local broadcasts is used. Under the assumption that the transmission probabilities of the local broadcast
model for each node are time-invariant and precisely known, the existence of an optimal priority policy with
time-invariant indices is shown in [4], [5], and [6]. As expected, these indices depend on the parameters of the
local broadcast model. We investigate the sensitivity of this priority policy with respect to errors in the knowledge
of the aforementioned transmission probabilities, and analytically determine the impact of errors in the broadcast
model on the performance of the optimal policy. We quantify this impact as follows: ( ) we first establish
appropriate distance measures between two probabilistic broadcast models, and between two policies in terms
of their performance; ( ) we construct policies and that are optimal for the true broadcast model and
the estimated broadcast model , respectively; and ( ) we bound the distance between the performance of the
two policies and by a term proportional to the distance between the broadcast models and (estimation
error).
As noted earlier, tne key feature of an ad hoc network is that there exists no central control or computation

unit to supervise the implementation and calculation of routing decisions. This feature underlines the importance
of providing a distributed algorithm for the computation and implementation of an optimal policy. The authors
in [4] and [5] provide algorithms in which each node computes its optimal local routing actions in a distributed
fashion, i.e. each node only uses the local information available to it to make routing decisions. It is shown that
under a technical condition, which holds almost in all real scenarios, these algorithms all converge to an optimal
stationary policy which is consistent with the optimal index policy computed centrally. Combining this result with
our sensitivity analysis for the centralized control problem, we extend our sensitivity results to optimal routing
strategies that are computed in a distributed fashion.
The remainder of this paper is organized as follows. In Section II, we formulate the problem we analyze.

Specifically, in Section II-A we first present the formulation of the routing problem in an ad hoc networks,
provide some useful notation and definitions and state the result given by [4] and [5] on the structure of the
optimal sample path dependent routing (SPDR) strategy. In Section II-B, we formulate the problem of sensitivity
of routing policies with respect to errors in channel estimation and establish the desirable goals of such study. In
Section II-B.3, we construct examples to illustrate that such goals may not always be achievable. In Section III we
present the main results of our sensitivity analysis. In Section III-A we establish the mathematical relationships
between loss of performance and the error in the estimation of the local broadcast models. In Section III-B, we
discuss the essence of our sensitivity results through examples and numerically compare the robustness of optimal
SPDR with that of other known routing strategies. In Section III-C, we extend our results to the optimal routing
policies which are computed and constructed in a distributed fashion. In Section IV, we conclude the paper.

II. PROBLEM FORMULATION
We first revisit the following problem (Problem ( )) formulated in [4], [5], and [6], and state the results that

are necessary for our analysis (for detailed proofs see [5]). Based on Problem ( ), we formulate Problem ( )
which is an investigation of the sensitivity of an optimal routing policy with respect to errors in estimation of the
transmission probabilities which describe by the local broadcast model.

A. Problem ( ): Statement and Results
1) Model ( ), Notation, and Preliminaries: We begin by briefly defining notation and stating definitions for

the system model, which we refer to as Model ( ), under consideration. As discussed in [4], Model ( ) is
probabilistic, and control is centralized, meaning that the controller has access to all the information available at
the network. A description of the elements of this network model is given below.

is the number of nodes in the network.

is the set of all nodes. So .
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refers to a state of the system, defined as the set of nodes which have received the message. refers to
the state at time .
We define .
We write to indicate the probability of reaching state from state when choosing node for

transmission, . We write as shorthand for .
We refer to as the broadcast model.
We define .
We assume that transmission events at a given node are i.i.d., and transmission events are independent among

all nodes.
Node is called a neighbor of node if .
Given the local broadcast model , is the set of all neighbors of , together with itself. Note that

is permitted.
Definition 1—Increasing Property: Model ( ) is said to have the increasing property if for any system real-

ization under any policy we have .
Definition 2—Decoupling Property: Model ( ) is said to have the decoupling property if successful trans-

mission from a node to a set of neighbors at a given time is unaffected by which other nodes already have the
message.
We assume that Model ( ) has both the increasing and decoupling properties.

is the reward function, and . Also .
is a Markov policy.

We write to indicate policy transmits at node when in state .
We write to indicate policy retires and receives reward when in state . For convenience

we write as shorthand that policy retires and receives . In this case, we say that policy
retires and receives the reward of node .
By , we mean both and .
By , we mean either , or , for some .
Each transmission from node incurs a cost of .
We next formulate the centralized version of the stochastic routing problem with time-invariant parameters.
2) Statement of Problem ( ):
( ) We consider the transmission of a single message, from a given initial state (i.e. a given set of nodes)

to a set of destination states, in a wireless ad hoc network of nodes described by Model ( ) in
which the transition probabilities are given by the broadcast model . Transmission instances occur
at discrete time points. Each transmission from a given node incurs a fixed cost . According
to Model ( ): ( ) at each transmission instance the transmitting node is chosen by a central controller
that always knows the current state of the system (i.e. the set of nodes that have the message); ( ) node
transmissions are local broadcasts, that is, multiple neighbor nodes may all simultaneously receive the
message; ( ) given the node chosen to transmit, the probability that a given set of nodes receives the
message is known and fixed; ( ) The central controller is informed, without any cost, as to which nodes
receive the message. Control information flow between the nodes and the controller is considered free
of energy and instantaneous in time; ( ) each transmission event is assumed independent of those before
and after; ( ) a reward function is specified. At any instance, the central controller can terminate
the transmission process or choose to continue transmitting. The objective is to choose: ( ) the node
to transmit at each transmission instance, and ( ) the instance to terminate the transmission process, to
maximize over all Markov policies,

(1)
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where is the transmission/termination policy the controller follows, is the time when the transmis-
sion process is terminated under policy , is the state at , is the node chosen by the transmission
policy at time , and is the expected reward when starting in state under policy under local
broadcast model .

Restriction to Markov policies does not entail any loss of optimality because Problem ( ) is a stochastic
control problem with perfect observations [7].
Mathematically, Problem ( ) is parameterized by a tuple , where .
3) The Transmission Control Problem: Consider an ad hoc network in which control of transmission type (in

terms of power, antenna directionality, and addressing) is allowed. In such a network at each time step the central
controller chooses a node for transmission, among the nodes with the message, and a transmission type, among a
finite set of allowable types, is chosen for that node. To each node and transmission type , a transmission cost

and a probability distribution, denoted by , describing the probability that a given set of nodes
receive the message are assigned. The objective for the controller in such a network is to determine a policy
which maximizes a total reward similar to that of equation (1). Such a policy specifies the optimal number and
coverage of hops, along each realization of the operation of network.
Such a network can be modeled by Model ( ) and can be formulated as Problem ( ) with a particular

structure on the probability of successful transmission, i.e. a particular structure on the broadcast model. This is
possible since in Model ( ) no particular assumption regarding the statistical correlation among the transition
probabilities has been made. We seek to construct a particular network described by Model ( ), which satisfies
the conditions required by the addition of multiple transition types resulting from the use of multiple power levels.
In order to do so we represent each node as a set of sister nodes with cardinality , where refers to the
number of transition types available at node . Each sister node in such a set represents a transmission type for
node , and is identified by the pair , where and . We define to be the collection of
these sets of sister nodes. Transmissions in the space are based on the corresponding events in , as follows.
Each transmission at node with transmission type corresponds to a control decision which chooses
node . Such a transmission incurs a cost . If such a transmission leads to a set of nodes, say

, receiving the message, all nodes such that receive the message. This implies that
all sister nodes receive the message simultaneously, or in other words, message receptions for sister nodes in
are deterministically coupled. Finally each sister node of receives the same reward described by the reward
function.
The problem of optimal routing in the ad hoc wireless network described by is a special case of Prob-

lem ( ), when transmission probabilities have a particular coupled structure to accommodate different trans-
mission types as sister nodes at which the message receptions are deterministically coupled (for more details see
[4] and [5]). Hence the sensitivity results derived in this paper apply to a wireless ad hoc network with power
control and multiple transmission types.
4) Critique of Model ( ) and Problem ( ): In this section we briefly discuss the fundamental assumptions

and modeling choices in Problem ( ). We, like the authors in [5], point out that a model’s value depends on how
well it captures important aspects of reality. Furthermore, ad hoc networks vary greatly in their characteristics in
terms of mobility, transmission channels, etc. Hence, the validity of the model depends on these characteristics,
i.e. a good model for a particular network with low mobility and heavy traffic may be of no use for a heavily
dynamic network with rare messages and vice versa. In this section we discuss the fundamental assumptions
used in the construction of Model ( ), and their implications on the utility of the resulting optimal routing
strategy. The discussion here is qualitative aimed at providing insight into the applicability of Model ( ) to
various ad hoc networks. Hence no attempt is made to precisely quantify the phenomena we address.
The first assumption is the broadcast nature of local transmissions in Model ( ). This assumption is justified

by the omni-directionality of the antennas. It implies the ability of multiple neighbors to receive a message
simultaneously, decode its header, and acknowledge the transmitter.
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Model ( ) is based on the existence of a central controller with perfect knowledge of the state of the system.
In Section II.A.5, we present a priority policy which can be implemented in a distributed fashion and is optimal
for the centralized routing problem. Such an optimal policy does not require the central control and information
available in Model ( ). Hence, the results of this paper remains valid for the real scenarios where the centralized
information and control assumption is relaxed.
Another assumption is the time-invariant nature of the reward for the reception of a message at its destination,

and a fixed consumption of transmission energy (can be extended to average reception) at each node. As a con-
sequence of this assumption, the objective is to minimize the energy consumption (dominated by transmissions
and receptions), even at the expense of timeliness or system capacity.
In Model ( ), each message is considered in isolation. This implies that the result is valid mainly for systems

where in spite of the presence of sufficient messages in the system to justify Route Maintenance, the neighbor
interference is not the dominant channel impairment.
Finally, in Model ( ) it is assumed that transmission events at a given node are described by a time-invariant

conditional distribution, which is independent among all nodes. We clarify the meaning of this assumption in
terms of the channel and network models. Though this assumption implies a time homogeneity on transmission
probabilities, we can satisfy this requirement with less rigid assumptions such as (1) slow change of topology and
(2) restriction of channel degradation to either “slow” or “fast” channel effects.
5) Preliminary Results: Optimal Routing in Problem ( ): In this section, we summarize the results in [4]

that are relevant to our work. For that matter we need the following definitions:
Definition 3: AMarkov policy is a priority policy if there is a strict priority ordering of the nodes s.t.

we have or , where is the set of nodes of priority lower than under .
Definition 4: For priority policy , we write when has higher priority than under .
Definition 5: For priority policy and node , we denote by the class of higher priority subsets of

neighbors of , i.e. . Similarly we define

Now we state the following facts from [4] (for more details see [5]).
Fact. 1: For priority policy we have , when for .
This fact holds by the decoupling property and the definition of a priority policy.
Fact. 2: For priority policy and any state where or we can write the expected reward as

if selects transmission
if selects retirement

(2)

Fact. 3: There is an optimal Markov policy for Problem ( ) which is a priority policy and whose expected
reward has the following property:

(3)
Fact. 4: Under the optimal Markov policy the expected reward for each node defines an index

(4)

this index, in turn, defines an optimal ordering of the nodes and the actions taken at these nodes; i.e.

(5)
All these facts which are proved in [4] establish that, under the assumption that the network parameters are fixed

and known, there exists an optimal routing priority ordering of nodes. The authors in [4] propose a centralized
algorithm (Algorithm 1 in [5]) with complexity which computes the optimal priority listing of nodes in
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Problem ( ) when all the network parameters are known and available at the same location (this algorithm is
similar in nature to standard Dijkstra in OSPF [8]). Furthermore, three distributed algorithms to compute the
optimal priority listing of the neighbors at each node are proposed in [5]. Note that due to the nature of the
optimal priority policy, there is a natural distributed implementation of such policy; such an implementation
requires that (1) successful receptions at neighboring nodes are acknowledged to the transmitting node, and (2)
each node keeps a priority list of the node itself and its neighbors. A node transmits until another node of higher
priority successfully receives the message. Thus, the network layer does not dictate the route, and in fact there is
no one route, but the actual route a message takes between source and destination is sample path dependent. This
characteristic of the solution is distinctly different from that of other proposed algorithms (see [2], [9], [8], [3],
[1]).
The above model and all proposed algorithms assume knowledge of the transmission probabilities . To

actually implement the algorithms, methods to estimate these probabilities should be employed (see discussion
in [5]). On the other hand, such methods introduce various levels of error. In other words, in reality is not
known but has to be estimated. The presence of estimation errors raises the important issue of the sensitivity
of the results in [4], [5], and [6] with respect to (small) variations in . This motivates the sensitivity analysis
presented in this paper.
Based on Model ( ) and the above preliminary results we proceed with the sensitivity analysis of Prob-

lem ( ).

B. Sensitivity Analysis: Problem Formulation
1) Statement of Problem ( ): Consider Problem ( ) associated with two sets of system parameters,

and , describing the true and estimated models of the system, respectively. Accord-
ing to the results given in Section II-A.5 there exists an index policy which is an optimal routing policy
for Problem ( ) with parameters . At the same time the optimal solution to the estimated model,

, is an index policy that is not optimal for the true model , in general. Policy is applied
to the system with the true broadcast model (distribution) . We are interested in: ( ) Determining/quantifying
the difference between the performance of policy in such a system and the best possible performance, achieved
by . ( ) Relating the aforementioned difference to a quantity describing the estimation error in the (true)
broadcast model.
To quantify the difference specified in ( ) we define an appropriate metric on the space of all routing policies.

We define the distance between policies and at state in the context of the distribution as

(6)

We define the distance between policies and in the context of distribution as

(7)

To relate the difference specified in ( ) to the estimation error in the (true) broadcast model we first quantify
this error by defining a distance measure between the true broadcast model and the estimated model . We
use the total variation metric for this purpose (see [10], [11]). The total variation distance between two local
broadcast models, and , describing the probabilities of transmission success for node , is defined as

(8)

We extend this measure to define the total variation distance between broadcast models and as

(9)
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Note that if at each node transmissions to different neighbors are independent and the maximum error on each
link is , i.e. for , , then . Hence, the total variation distance is an appropriate
metric to specify the estimation errors.
Based on the above we formulate the following sensitivity analysis problem.
( ) Consider Problem ( ) for two sets of parameters, and , describing the true

and estimated models of the system, respectively. Let be an optimal routing policy for Problem ( )
with parameters , and be an optimal routing policy for Problem ( ) with parameters

. The objective is to determine the distance between policies and in the context of
, and relate this distance to the total variation distance between the estimated model and the true

system model , i.e. .
Routing policy is said to be robust with respect to errors in channel quality estimates, if is

bounded by a finite term proportional to error .
2) Basic Assumption on Convergence Rate of Estimation Algorithm: As mentioned before, the estimated

local broadcast model is constructed through an on-line parameter estimation algorithm. Denote by the
characteristic time of the estimation algorithm; throughout the paper, by characteristic time of a process we mean
the time required for the transient behavior of a process to settle down. For example, the characteristic time of
the estimation algorithm is the time required for the estimation algorithm to converge to some final estimate .
We assume throughout the following analysis that , where is the characteristic time for the

computation and dissemination of the calculation of optimal ranking of the nodes through the network, and is
the characteristic time of significant network topology variation.
3) Example: The following example shows that, in general, optimal routing can be extremely sensitive to

estimation errors, i.e. there exist scenarios where a small error in estimation can unboundedly deteriorate the
performance of the constructed priority policy.
Consider the simple network given by Fig. 1. We assume that transmission success probabilities are given

by the true model and the estimated values of these probabilities are given by model . The value of
these transmission probabilities are ,
, , , and finally

. Furthermore, we assume while . Assume that node
has transmission costs ; . Rewards are zero for the first two nodes, and it is equal to at the
destination. The cost of transmission at node 2 is much larger than the cost of transmission at node 1, i.e. .
In this example the total variation distance between the two broadcast models and , i.e.

is . There are two priority policies and possible in this network. Under these policies
we have and . The distance between these two policies in the context of is infinite, since

. We show that even for a small distance between models and , i.e. small , policy can
be selected as the optimal policy (due to its optimality in the context of ). To prove this, we write the expected
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rewards:

(10)

(11)

Since , there exists a (small) for which is selected as the optimal priority policy when the estimated
distribution is assumed to describe the transmission success. On the other hand, . Therefore
we have even though .
This example illustrates that in general a small error in channel estimation can cause an unbounded decrease

in performance.

III. ANALYSIS AND RESULTS
A. Analysis of Problem ( )
In this section our goal is to bound the distance between two policies and by a term proportional to the

distance between the broadcast models and . As illustrated in Example II-B.3, this is not possible in general.
Thus, to obtain a positive result, we make the following assumption on the nature of the estimation error.
Assumption 1: For any node such that , that is, does not retire at node , there exists such

that
(12)

Intuitively Assumption 1 implies that the magnitude of the estimation error at each node can not be larger than
the total estimated probability of routing the message “closer” to the destination. In other words, even under
the suboptimal routing policy the transmission at each node has a true (according to P) positive probability of
reaching a node of higher priority.
Under the above assumption we seek to bound the loss of performance by a term proportional to the estimation

error. To do so we first present the following definition which will simplify our notation.
Definition 6: For any measurable function which is -integrable, we define the Markov

operator
(13)

Using this definition we can write the expected reward for priority policy at state , assuming or ,
as

if selects transmission
if selects retirement (14)

We begin by establishing Lemma 1 which relates the overall distance between two policies and to the
distance between the policies at each singleton .
Lemma 1: .
Proof: Let and . Then,

(15)
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The second equality in equation (15) is true since is optimal in the context of , and the first inequality holds
because policy is optimal in the context of .
Hence,

(16)

To bound the performance loss, we develop upper bounds on each of the maxima that appear in Lemma 1
(right hand side of equation (16)). Bounds on the first term, i.e. , are obtained via

Lemma 2. Bounds on the second term, i.e. , are obtained via Lemmas 3 and 4. The
proofs of Lemmas 2 and 3 are given in Appendix III.
Lemma 2 below establishes at each node a relationship between and the distance

between broadcast models and .
Lemma 2: Assume that is the nodes’ strict priority ordering under policy , i.e. .

Then, we have
(17)

where is increasing in and satisfies the recursion

if

if
(18)

Lemma 3 below establishes, at each node , a relationship between and the distance
between the broadcast models and .
Lemma 3: Assume that is the nodes’ strict priority ordering under policy , i.e. .

We have
(19)

where is increasing in and satisfies the recursion

if

if
(20)

Remark: In Example II-B.3 we have which implies the unboundedness of the right
hand side of equation (19). This is consistent with the result provided in Section II-B.3, establishing that

. Note that Lemmas 2 and 3 do not assume the validity of Assumption 1; hence,
they can be applied to Example II-B.3.
Lemma 4: Under Assumption 1, we have

(21)

where is increasing in and satisfies the recursion

if

if
(22)

Proof:
Case 1: If , then . Hence,

(23)
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On the other hand, the right hand side of equation (22) is always a positive number. Hence,

(24)

This completes the proof in Case 1.
Case 2: If , then Assumption 1 implies that:

(25)

On the other hand we have

(26)

(27)

where the first equality holds since for every , , the third inequality follows the definition
of total variation metric, and the last inequality holds because of equation (25). The assertion of the lemma
follows from equation (26) and Lemma 3
Combining Lemmas 1, 2, and 4 we establish the following theorem, which summarizes one of the two main

results of this paper.
Theorem 1: Under Assumption 1, we have

(28)

where the function denotes the optimal probabilistic connectivity for a broadcast model , its corre-
sponding optimal priority policy , and the vector of bounds on estimation error denoted by
and is defined as

(29)
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Proof: Combining Lemmas 1,2, and 4, we have

(30)

where the first inequality holds because of Lemma 1, the second inequality is a result of Lemmas 2 and 4, the
first equality result from the definition of functions and and their monotonicity in the index , and the last
equality follows from the definition of the function .
The term in equation (28) depends on the topology of the network under the true and

the estimated broadcast models. This dependency provides insight into the study of sensitivity of the optimal
routing policies with respect to the estimation error under various topological structures. It can be seen that loss
of performance for networks where each transmission reaches a large set of higher priority nodes is smaller than
for networks with “hot links,” where the condition of a few links is critical in determining the ability of the routing
policy to transfer the message to the destination. This is an important feature of the proposed optimal priority
routing policy. We will elaborate on this in Section III-B.
On the other hand, sensitivity analysis may be used to provide guidelines in designing on-line estimation

algorithms with acceptable margin of error. In such applications, the dependency of our bounds on the true
and estimated structures and topology of the network can create difficulty. In general and in a practical setting,
such models are not known and cannot be exploited to design appropriate algorithms. Furthermore, in an ad
hoc network it is undesirable to assume any particular topological structure. For these applications, we provide
Theorem 2 below to eliminate the dependency of our bound on the particular (and unknown) topology of the
network. To do so, we need Lemma 5 and Corollaries 1 and 2 that follow.
Lemma 5 is a direct consequence of the results given in [4].
Lemma 5: Let and be two optimal priority routing policies under broadcast models and , respectively.

Assume that , that is, policies and do not retire when the state is . Then

(31)

Proof: implies that

(32)

On the other hand, for and any policy we have . Hence,

(33)

This implies that .
Similarly, if , . The proof of Lemma 5 is now complete.
Corollary 1—of Lemma 2: Assume that is the nodes’ strict priority ordering under policy .

Then, we have
(34)
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where is increasing in and satisfies the recursion

(35)

Proof: The assertion of the corollary follows directly from Lemmas 2 and 5.
Corollary 2—of Lemma 4: Under Assumption 1, we have

(36)

where is increasing in and satisfies the recursion

(37)

Proof: The assertion of the corollary follows directly from Lemmas 4 and 5.
We now use Corollaries 1 and 2 to prove Theorem 2, which provides a bound on the error independently of the

topology.
Theorem 2: Under Assumption 1, we have

(38)

where

(39)

Proof: Combining Lemma 1 and Corollaries 2 and 3, we have

(40)

where the first inequality holds because of Lemma 1, the second inequality is a result of corollaries 1 and 2, and
the first and second equalities result from the definition of functions and and their monotonicity in the index
.
1) Sufficient Conditions for Assumption 1 to Hold: Assumption 1 is the minimum requirement needed to

guarantee and obtain a finite bound on the sensitivity of the optimal index routing policy to the estimation error in
the broadcast model. This assumption depends on the nature of the optimal policies (under the true model and
estimated model ), hence the topology of the network. Nevertheless, there are stronger conditions which are
independent of the network topology, are sufficient to guarantee Assumption 1, are easy to verify, and are given
below.
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Condition 1: For any node , there exists such that

(41)
Condition 1 guarantees that there exists for which Assumption 1 is satisfied. Intuitively, Condi-

tion 1 has two significant implications. First, it implies that the network topology under the estimated broadcast
model does not contain links which do not really exist, i.e. , . Second, the
condition implies that, whenever there is a link between nodes and , i.e. , there is a finite bound
on the percentage of error in over-estimation of the quality of the link, i.e. . In other words,
specifies the maximum error percentage in the estimation of the quality of links connected to node .
Condition 2: The estimation error is bounded by the following expression:

(42)
From Lemma 5 it follows that Condition 2 guarantees that Assumption 1 holds. Although Condition 2 is

too restrictive, it can be checked without any knowledge of the probabilistic topology of the network and/or the
structure of the optimal policies. Intuitively, this is a sufficient condition to guarantee a Lipschitz-type continuity
of the performance, which in turn implies a bounded gradient around the true model . Unlike Condition 1,
Condition 2 bounds the absolute value of error in estimation rather than the error percentage.

B. Examples and Discussion
In this section we present three networks ( ) given by figures 2-4 to illustrate how topology affects

the sensitivity of the optimal routing policy with respect to the estimation error. Consider these three networks.
We assume that successful transmissions along different links are independent. Hence, Model ( ) for network
, , can be defined by where is a transition matrix whose -th element

represents the probability of successful transmission from node to . We assume ,
, , , , , and . Consider routing a

message from node 1 to node 5 in networks . We assume that the estimated value of the transmission
probabilities are

and
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Furthermore, we assume that the probabilities of successful transmission between each pair of nodes are known
except for the link between nodes 2 and 3 in each network where there is an error in the estimation of the quality
of the link. Hence, for any error value and , we have , where represents
the true broadcast model for Network , and is a matrix whose only non-zero element is the th element
which is equal to 1. Notice that . We vary the error from 0 to 100 percent of
the estimated value of the link’s transmission probability , and compare (1) the loss of performance in the
three different networks, and (2) the bounds provided by Theorem 1 in each case. Furthermore, for comparison
purposes, we provide the performance of a OSPF-type routing algorithm (see [2], [9], [8], [3], [1]) where some
form of shortest route is established as the minimum energy route. In this OSPF-type routing algorithm a full
route with minimum expected energy is identified and set up, and all information between source and destination
is transmitted on this fixed route. It can be shown [2] that, under the estimated model , the “minimum energy”
route from node 1 to node 5 in all three networks is constructed as . Note that as the error
percentage at link increases, the true cost of routing via this “minimum energy” route increases.
Before discussing the sensitivity of routing policies in these examples, we would like to point out a known

advantage of using the sample-path-dependent routing policy (SPDR) proposed by [4]. As mentioned before,
an important feature of the proposed optimal routing policy given in [4] is the fact that the route a message
takes between source and destination depends on the particular realizations of channels and transmission success.
In other words, when implementing the proposed SPDR, the network layer avoids establishing a fixed route.
It is known (see [4]) that due to this property, in well-connected networks the optimal SPDR policy shows an
advantage in achieving lower expected cost over strategies which set up fixed routes. This is mainly because in
well-connected networks, due to the presence of multiple alternative routes between source and destination, the
optimal SPDR strategy avoids unnecessary retransmissions by choosing the best neighbor among those which
have received the message. The graphs provided by Figs. 2-4 illustrate the aforementioned advantage.
We use networks - to discuss the nature of our sensitivity analysis. We have set up these examples

to illustrate the effect of the network topology on the sensitivity of the performance of the optimal SPDR policy



16

1 2 3 4 5

6

7

8

9

Network 3  (Alternative Routes)
0 20 40 60 80 100

101

102

Percentage of Error in P23

Ex
pe

ct
ed

 T
ot

al
 C

os
t (

e.
g.

 c
on

su
m

ed
 e

ne
rg

y)

Energy Cost of Various Policies in Network 3

True Optimal SPDR 
Estimated SPDR    
OSPF!type         
Sensitivity Bounds

Fig. 5. Network

(network has the lowest connectivity, while is the most connected). In each case, we study the performance
of the optimal SPDR strategy when the estimated probabilistic model includes an % estimation error over a
particular link on the minimum energy route. In addition, we assume that such error occurs in the form of over-
estimation. For each network we plot the performance of policy , which is the optimal (SPDR) priority
policy associated with the estimated model . We provide the optimal cost, had the true model
been known, as a bench-mark. Furthermore, we plot the bounds provided by Theorem 2.
The results (summarized in Figs. 2-4) can be summarized as follows. Network consists of a single route

between the source and the destination, hence it is expected for all policies to demonstrate identical performance
and robustness. In such a scenario, all routing policies rely on the failing link for their routing decisions. As
the quality of the link decreases all policies fail to successfully transport the message from the source to the
destination. Hence, as the quality of the link drops the cost of routing the message from node 1 to node 5 grows
due to the retransmission efforts. Notice that due to the retiring option the optimal cost, had the true model been
known, is slightly below the cost of other policies. In network there are more than one route from source to
destination. This feature of the network has no effect on the performance of OSPF-type routing strategies, since
such strategies always select the route which, under model , is assumed to be the minimum energy route, i.e.

. The optimal priority (SPDR) policy shows better performance even in the presence
of estimation error. Notice there is still only one route from node 2 to the destination, hence as the error goes
to 100%, goes to zero and the right hand side of equation (28) becomes unbounded. In network where
there exist alternative routes around the failing link, the optimal SPDR policy shows a high degree of robustness.
In addition to capturing the effect of topology on the sensitivity of the optimal policy, these examples provide a
rough idea on the tightness of the bounds provided by the right hand side of equation (28). It can be seen that the
obtained bound becomes tighter as increases.

C. Distributed Computation of the Optimal Policy
As mentioned in Section I, the key feature of an ad hoc network is the absence of a central control or com-

putation unit, and this underlines the importance of providing distributed algorithms for computation and imple-
mentation of an optimal routing policy. The authors in [4] and [5] provide various algorithms in which each node
uses its local information in order to compute a local priority list of its neighbors. The priority list for each node
is determined based on the estimates of the optimal expected reward of the node and its neighbors. The local
information available at each node consists of the local broadcast model for that node and the updated estimates
of its neighbors’ optimal expected rewards. These estimates are received regularly by the node from its neighbors.
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Each node computes a new estimate of its own optimal expected reward according to an update equation specified
by the distributed computation algorithms and it regularly communicates this estimate to its neighbors. To a great
extent these algorithms are, in their information structure, similar to the Distributed Bellman-Ford algorithm
(see [12], [13]), and can be thought of the sample-path dependent extensions of the distributed Bellman-Ford
algorithm. In all the distributed algorithms presented in [4] and [5], each node uses information only about its
own local broadcast model and not the global network model. This implies that, in practice, it is sufficient for
each node to estimate its broadcast model locally. We are interested in studying the loss in performance of these
algorithms when there are estimation errors at the local broadcast model.
In [4] and [5] it is shown that under the proposed distributed algorithms the estimates of the optimal expected

reward of each node converge to their true values. Furthermore, it is proved that almost in all practical scenarios
this convergence occurs in finite time. In other words, in almost all practical cases an optimal local index policy
which is consistent with the optimal index policy described in Section II-A.5 can be constructed in finite time.
This implies that, given a sufficiently long time horizon, all the algorithms of [4] and [5] demonstrate identical
performance loss in the presence of estimation errors in the broadcast model. More specifically, assume that
the true system model is as before, and the vector represents a collection of
optimal local routing decisions at nodes at time under distributed algorithm (one of the three
algorithm provided in [4]). Furthermore, assume that each node estimates its local broadcast model, ,
for each in a local fashion based on all its communications, both control signals and messages, as well
as its channel measurements. Construct an overall local broadcast model such that for and

we have
if
otherwise (43)

Assume that vector , represents a collection of local routing decisions at nodes
at time under distributed algorithm and under the estimated model . For almost all practical cases there
exists a large horizon such that for , where is a stationary policy that is optimal for the
centralized problem with model . This implies that, in the context of true model , the performance
of policy , constructed by distributed algorithm is independent of and is equal to the performance
of the stationary policy . On the other hand, due to the optimality of the distributed algorithm , there exists a
finite horizon such that policy is optimal in the context of the true model ; i.e. its performance is
identical to that of the stationary policy , where is an optimal index policy for the centralized problem with
the true model . Hence past horizon , under any of the distributed algorithms of [4]
and [5], the loss in performance due to estimation errors in the broadcast model is equal to the loss in performance
of policy . Such a loss has been calculated in Section III-A. And it is shown that under assupmtions 2 and 3,
the perfomance loss is bounded by a term proportional to the estimation error, i.e. the distance between the true
model and estimated model .
Theorem 3 summarizes this discussion in a precise fashion under the following assumptions.
Assumption 2: For any node such that , there exists such that

(44)

This assumption is identical to Assumption 1.
Assumption 3: For any pair of nodes and such that , .

This assumption implies that no two neighboring nodes have the same expected reward (i.e. optimal index) to
route a message to the destination. It holds in almost all practical scenarios. Under this assumption, the policies
constructed by any of the three distributed algorithms in [4] converge to a stationary optimal index policy in finite
time, i.e. for all sufficiently large.
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Theorem 3: If Assumptions 2 and 3 hold and is sufficiently large, then for and for any of the
distributed algorithms of [4], say ,

(45)

where the function is defined by equation (29).
Proof: Assumption 3 implies that for every , we have (see the above discussion and

[4]), where is an optimal index policy for the estimated model , described in Section III-A.
On the other hand, for all we have , where is an optimal index policy for

the true broadcast model described in Section III-A (see [4] and [5]).
Hence, for

(46)

where the inequality follows from Theorem 1.

Notice that in Theorem 3 is the time to compute and disseminate the local optimal policies. In other words
where is defined in Section II-B.2. In general, depends on the values of , , and algorithm

. Therefore, the covergence rate of an algorithm varies with the estimation error. This raises the issue of
sensitivity of the convergence rate of various algorithms with respect to estimation errors in the local broadcast
model. The answer to this issue combined with the result of Theorem 3 can shed light on the transient behavior
of the distributed algorithms proposed by [4] and [5]. Hence, the effect of estimation errors on the convergence
rate can be considered an important goal of future research.

IV. CONCLUSION
In this paper we examined the sensitivity of optimal routing policies in ad hoc wireless networks with respect

to estimation errors in channel quality. We considered an ad hoc wireless network where the wireless links from
each node to its neighbors are modeled by a probability distribution describing the local broadcast nature of
wireless transmissions. These probability distributions are estimated in real-time. We investigated the impact of
estimation errors on the performance of a set of proposed routing policies. Our results can be used as a guideline
to design on-line estimation algorithms with acceptable margin of error. At the same time, our results provide a
method to study the effect of the network topology on the robustness of a routing strategy with respect to errors in
channel estimation. We provided a few numerical examples to illustrate such robustness issues. We believe that
such results combined with a study of the statistical distribution of “typical” link estimation error can provide a
guideline in designing topologies with desirable robustness to estimation errors and link failures.
In summary, the proposed sensitivity analysis provides a bound on the loss of performance as a result of a

time-invariant error in the estimation of the quality of broadcast channels. In general, the estimation error is a
dynamic variable whose variation depends on the dynamics of the network topology, the rate at which optimal
routes are updated, and the convergence rate and error margin of the on-line estimation algorithm. We provided
intuitive conditions on the time characteristics of the network’s topological changes and the rate of convergence
of the estimation algorithm, hence the dynamics of the estimation errors, to allow for our sensitivity result to be
extended to more realistic cases.
We extended our sensitivity analysis to the case of the distributed computation of the optimal routing policy,

when the distributed algorithms converge to a stationary policy. A further study should be conducted to investigate
the impact of estimation error on the convergence rate of various distributed algorithms.
We would like to point out that in scenarios where changes in the topology and structure of the network are

relatively rare, which implies a sufficiently fast recovery of information and reconstruction of an optimal routing
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strategy, the result of our sensitivity analysis can be used to intuitively predict the transient behavior of various
routing strategies when implemented in real systems. In other words, in the case of networks with rare topological
changes, the result of sensitivity analysis can provide a bound on the transient performance of proposed routing
strategies.
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APPENDIX I
INTEGRAL PROBABILITY METRIC

In this appendix we provide the background material needed to introduce the appropriate distance measure
between two local broadcast models. Furthermore, we provide a result which is fundamental in our sensitivity
analysis. As discussed in Section III, we use the total variation metric as the distance measure between two
broadcast models (the true model) and (the estimated model). Total variation metric is an instance of a
larger class of distance measures called integral probability metrics. As we will show in this appendix, this class
of measures is closely related to Markov operators (see Definition 12), which makes them appropriate for our
sensitivity analysis. In the interest of breivity, we only state the basic definitions related to the topic, and the
rsults most useful for our analysis. For more detailed discussion on this topic, see [10], [14], and [15].
Definition 7: Consider a subset of bounded functionals on . Consider the space of of probability distri-

butions defined on the -field . We define the integral probability metric associated with on the space by
the distance

or (47)
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where the second eqality holds for finite set and the corresponding discrete -field . We call a generator
of the integral probability metic .

Example. We can define an integral probability distance associated with set of bounded funcationals be-
tween two local broadcast models describing the transmission probabilities for node as

(48)

Note that the term ( ) can be written as a Markov operator operating on a
bounded functional . On the other hand Markov operators and their difference are used to determine the distance
between the performance of Markov policies in an MDP, hence they are vital to our sensitivity analysis. Unfortu-
nately, they are not sufficient to establish the sensitivity analysis since they only relate the integral metric and the
Markov operator on the particular functionals . In general the value functions and/or expected rewards of
a certain policy might not belong in the bound set . To relate the difference between two Markov operators to
the integral probability metric for functionals we need the following definitions and facts (for details and
proof, see [10]).
Definition 8: A set of functionals on is balanced, iff for and , , the functional also

belongs to .
Fact. 5—Theorem 3.2 in [10]: If is an arbitrary generator of an integral probability metric, then the balanced

convex hull spanned by generates the same probability metric as .
A balance convex subset of functionals can be used to define the Minkowski functional associaciated with
.
Definition 9: Consider a balanced and convex subset of the set of bounded functionals on the space .

We define the Minkowski functional associated with , , as

(49)
Intuitively, the Minkowski functional “down-scales” a function by the smallest amount so as to result

in a scaled vector which belongs to the balanced, bounded, convex set .
From Definition 9 and Fact 5 we conclude that there can be a Minkowski functional associated with any

integral probability. Furthermore, these facts and definitions provide a relationship between the difference of two
Markov operators (closely related to the distance between policies) on a function, its Minkowski functional, and
the integral probability metric between the corresponding probability distributions (e.g. local broadcast models).
This relationship is given by the following fact. For the proof see [10].
Fact. 6:

APPENDIX II
TOTAL VARIATION METRIC

In this appendix we use the notions introduced in Appendix C and illustrate how to construct the total variation
metric as an integral probability metric. After such construction we identify Fact 7 as a special case of Fact 6,
where the integral metric is the total variation. Fact 7 establishes a relationship between the value functions or
the expected total rewards (constructed by Markov operators) and the total variation distance between the true
and estimated broadcast models; it is also the basis of the proof of Lemmas 2 and 3.
Define as the set of all indicator functions of subsets of , i.e. , where the indicator

function is defined as if
if

Definition 10: The total variation metric on the set of probability distributions defined on the -field is
defined as the integral probability metric associated with on .
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For the purpose of sensitivity analysis of an optimal routing strategy in ad hoc networks, we focus our attention
on the total variation distance on the set of all local broadcast models for node . Note that a local broadcast
model for node fully describes the probabilities of successful transmission success from node to its neigh-
bors. Using the mechanism introduced in Appendix I, we can find the total variation distance between two local
broadcast models around node , and

(50)

Fact. 7: Consider a bounded functional . We have

(51)

Proof. We prove Fact 7 as a special case of Fact 6. In order to construct the Minkowski functonal associated
with the total variation metric we first use Fact 5 to construct the balanced covex hall of , . In other
words,

for or for (52)

Since is a balanced convex hull of it generates the same integral probability metric on the local
broadcast modes, i.e. it generates the total variation metric.
For any bounded function defined on space , i.e. , we can easily construct the Minkowski functional

for the total variation metric as

if
if (53)

Using Fact 6 we have

(54)

where the first equality holds because of the decoupling property.
Hence, the assertion of Fact 7 is true.

APPENDIX III
PROOF OF LEMMAS 2 AND 3

Now we provide the full proof for Lemmas 2 and 3.
Lemma 3: Assume that is the strict priority ordering under policy , i.e. . Then,

we have
(55)
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where is increasing in and satisfies the recursion

if

if
(56)

Proof: We prove the lemma by induction on the index of the strict ordering .
Basis of Induction: Since is an optimal routing policy for a problem associated with the tuple

we have . Similarly, is an optimal routing policy under and (see
Section 3.3.2 in [4]). Hence we have
Induction Step:We assume that

(57)

We need to show that
(58)

where .

Case 1: If , then . Hence,

(59)

On the other hand, the right hand side of equation (58) is always a positive number. Hence,

(60)

This completes the induction step in Case 1.
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Case 2: If , then . Hence,

(61)

where the second inequality holds because of Fact 7 (Appendix D), the third inequality holds since an the expected
reward of an optimal policy at each node is bounded in the interval and we assume that is an optimal
policy in the contex of , the fourth inequality is true since is an optimal routing policy associated with the
tuple (i.e. ), the fifth inequality holds due to the induction hypothesis
and the fact that for all such that and we have , and the last



24

inequality holds since is increasing in .
Now we solve equation (61) for . We have,

(62)

or

(63)

or

(64)

The proof of the induction step in Case 2 is now complete. Hence the assertion of the lemma is true.
Similarly we have Lemma 3.
Lemma 4: Assume that is the nodes’ strict priority ordering under policy , i.e. .

We have
(65)

where is increasing in and satisfies the recursion

if

if
(66)

Proof: We, again, prove this lemma by induction on the index of the strict ordering
.

Basis of Induction: Since is an optimal routing policy under broadcast model , and
(see Section 3.3.2 in [4]). Hence we have , and equation (65) is

satisfied with .
Induction Step:We assume that

(67)

We need to show that
(68)

where
(69)
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Case 1: If , then . Hence,

(70)

On the other hand, the right hand side of equation (65) is always a positive number. In other words,

(71)

This completes the induction step in Case 1.
Case 2: If , then

(72)

where the second inequality holds because of Fact 7, the third equality again holds since is an optimal policy
in the context of and the fact that at each node the expected reward of an optimal policy always belongs to the
interval , and the fourth inequality follows from the induction hypothesis, the fact that for all such that

and we have , and the increasing property of in .
An argument similar to that following equation (61) in Lemma 2 results in the following inequality

(73)

and this completes the proof of induction step in Case 2. Hence, the assertion of the lemma is true.


