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Abstract

This report is concerned with power-weighted weight functionals associated with a minimal graph span-
ning a random sample of n points from a general multivariate Lebesgue density f over [0, 1]%. Tt is known
that under broad conditions, when the functional applies power exponent v € (1,d) to the graph edge
lengths, the log of the functional normalized by n(?~7)/4 is a strongly consistent estimator of the Rényi en-
tropy of order & = (d—+y)/d. In this paper, we investigate almost sure (a.s.) and £,-norm (r.m.s. for k = 2)
convergence rates of this functional. In particular, when 1 < v < d — 1, we show that over the space of
compacted supported multivariate densities f such that f € X,4(3, L) (the space of Holder continuous func-
tions), 0 < 3 < 1, the £,;-norm convergence rate is bounded above by O (n*“ﬁ/(o‘fgﬂ) Ud)). ‘We obtain
similar rate bounds for minimal graph approximations implemented by a progressive divide-and-conquer
partitioning heuristic. We also obtain asymptotic lower bounds for the respective rates of convergence,
using minimax techniques from nonparametric function estimation. In addition to Euclidean optimization
problems, these results have application to non-parametric entropy and information divergence estimation;
adaptive vector quantization; and pattern recognition.
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1 Introduction

It has long been known that, under the assumption of n independent identically distributed (i.i.d.) vertices in [0, 1]¢,
the suitably normalized weight function of certain minimal graphs over d-dimensional Euclidean space converges almost
surely (a.s.) to a limit which is a monotone function of the Rényi entropy of the multivariate density f of the random
vertices. Recall that the Rényi entropy or a-entropy is defined as
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Ho(f) = —— log / £ (@)dz

Graph constructions that satisfy this convergence property include: the minimal spanning tree (MST), k-nearest neighbors
graph (k-NNG), minimal matching graph (MMG), traveling salesman problem (TSP), and their power-weighted variants.
See the recent books by Steele [1] and Yukich [2] for introduction to this subject. An O(n‘l/ d) bound on the almost sure
(a.s.) convergence rate of the normalized weight functional of these and other minimal graphs was obtained by Redmond

and Yukich [3, 4] when the vertices are uniformly distributed over [0, 1]¢.

In the present report we obtain bounds on a.s. and £,-norm (r.m.s. for k = 2) convergence rates of power-weighted
Euclidean weight functionals of order ~ for general Lebesgue densities f over [0, 1]%, for which f € 4(3, L), the space of
Holder continuous functions, 0 < § < 1, and f 377 s integrable. Here the dimension d is greater than one and vy € (1, d)
is an edge exponent which is incorporated in the weight functional to taper the Euclidean distance between vertices of
the graph (see next section for definitions). As a special case of Proposition 5, we obtain a O (n=%#/(@+1) 1/4)) pound
on the .m.s. convergence. This bound implies a slower rate of convergence than the analogous O(n~'/?) rate bound
proven for uniform f by Redmond and Yukich [3, 4]. Furthermore, the rate constants derived here suggest that slower
convergence occurs when either the (Rényi) entropy of the underlying density f or the constant L is large. We also derive
lower bounds to the respective convergence rates by recasting the problem as that of estimating the Rényi entropy, or
equivalently [ f®(x)da, over the non-parametric class of densities f € $4(/3, L). For this, we use standard minimax

techniques from non-parametric function estimation.

We also obtain L,;-norm convergence rate bounds for partitioned approximations to minimal graphs implemented
by the following fixed partitioning heuristic: 1) dissect [0, 1]% into a set of m? cells of equal volumes 1/m?; 2) compute
minimal graphs spanning the points in each non-empty cell; 3) stitch together these small graphs to form an approximation

to the minimal graph spanning all of the points in [0, 1]%. Such heuristics have been widely adopted, e.g. see Karp [5],



Ravi et al. [6], and Hero and Michel [7], for examples. The computational advantage of this partitioned heuristic comes
from its divide-and-conquer progressive-resolution strategy to an optimization whose complexity is non-linear in n: the
partitioned algorithm only requires constructing minimal graphs on small cells each of which typically contains far fewer
than n points. In Proposition 6 we obtain bounds on £,-norm convergence rate and specify an optimal “progressive-

resolution sequence” m = m(n), n = 1,2,.. ., for achieving these bounds.

A principal focus of our research on minimal graphs has been on the use of Euclidean functionals for signal processing
applications such as image registration, pattern matching and non-parametric entropy estimation, see e.g. [8, 9, 7, 10].
Beyond the signal processing applications mentioned above these results may have important practical implications in
adaptive vector quantizer design, where the Rényi entropy is more commonly called the Panter-Dite factor and is related
to the asymptotically optimal quantization cell density [11, 12]. Furthermore, as empirical versions of vector quantization
can be cast as geometric location problems [13], the asymptotics of adaptive VQ may be studied within the present

framework of minimal Euclidean graphs.

The outline of this report is as follows. In Section 2 we briefly review Redmond and Yukich’s unifying framework of
continuous quasi-additive power-weighted edge functionals. In Section 3 we give convergence rate upper bounds for such
functionals with general Holder continuous density f. In Section 4 we extend these results to partitioned approximations.
In Section 5 we derive lower bounds to the convergence rates. In Section 6 we make a brief comment about nonparametric
estimation of the Rényi entropy. Finally, in section 7 we digress about the characterization of a density from its a-entropy,
when the later is regarded as a function of «. We also give an extension of the convergence rate upper bounds to densities

in a Sobolev class in Appendix B.

2 Minimal Euclidean Graphs

Since the seminal work of Beardwood, Halton and Hammersley in 1959, the asymptotic behavior of the weight function
of a minimal graph such as the MST and the TSP over i.i.d. random points X,, = {X,..., X} as n — oo has been of
great interest. The monographs by Steele [1] and Yukich [2] provide two engaging presentations of ensuing research in this
area. Many of the convergence results have been encapsulated in the general framework of continuous and quasi-additive

Euclidean functionals recently introduced by Redmond and Yukich [3]. This framework allows one to relatively simply



obtain asymptotic convergence rates once a graph weight function has been shown to satisfy the required continuity and

subadditivity properties. We follow this framework in this paper.

Let I be a finite subset of points in [0,1]¢,d > 2. A real-valued function L., defined on [ is called a Euclidean

Sfunctional of order y if it is of the form

L,(F) = gleig; le(F)[” (1)

where £ is a set of graphs, e.g. spanning trees over the points in F', e is an edge in the graph, |e| is the Euclidean length

of e, and +y is called the edge exponent or power-weighting constant. We assume throughout this paper that 0 < v < d.
2.1 Continuous Quasi-additive Euclidean Functionals

A weight functional L (X,,) of a minimal graph on [0, 1]¢ is a continuous quasi-additive functional if it can be closely
approximated by the the sum of the weight functionals of minimal graphs constructed on a dense partition of [0, 1]¢.
Examples of quasi-additive graphs are the Euclidean traveling salesman (TSP) problem, the minimal spanning tree (MST),
and the k-nearest neighbor graph (k-NNG). In the TSP the objective is to find a graph of minimum weight among the set
C of graphs that visit each point in &), exactly once. The resultant graph is called the minimal TSP tour and its weight
is LgSP(Xn) = mincec ) ¢ |e|?. Construction of the TSP graph is NP-hard and arises in many different areas of
operations research [14]. In the MST problem the objective is to find a graph of minimum weight among the graphs 7°
which span the sample X,,. This problem admits exact solutions which run in polynomial time and the weight of the
MST is L,IXIST (Xn) = minper ) .ple]?”. MST’s arise in areas including: pattern recognition [15]; clustering [16];
nonparametric regression [17] and testing for randomness [18]. The k-NNG problem consists of finding the set N k,i of
k-nearest neighbors of each point X; in the set X,, — {X;}. This problem has exact solutions which run in linear-log-
linear time and the weight is LEY*NNG(X,L) =3 > N le|”. The k-NNG arises in computational geometry [19],

clustering and pattern recognition [20], spatial statistics [21], and adaptive vector quantization [22].

The following technical conditions on a Euclidean functional L., were defined in [3, 2].

o Null condition: L.(¢) = 0, where ¢ is the null set.

o Subadditivity: Let Q™ = {Qi};’;dl be a uniform partition of [0, 1]¢ into m? subcubes ); with edges parallel to



the coordinate axes having edge lengths mn ! and volumes m~¢ and let {qi};’fl be the set of points in [0, 1]¢ that
translate each ; back to the origin such that Q; — ¢; has the form m 1[0, 1]¢. Then there exists a constant C;

with the following property: for every finite subset F of [0, 1]¢
md
L(F) <m™ Y Ly (m[F NQ; — q) + Cym®™" )
i=1
Superadditivity: For the same conditions as above on @);, m, and g;, there exists a constant C5 with the following
property:
md
Ly(F)>m™ Y Ly (m[F N Q; — ¢i]) — Com™®™ 3)
i=1
Continuity: There exists a constant C3 such that for all finite subsets F' and G of [0, 1]¢,
Lo (F UG) = Ly (F)| < Cs(card(G)) =7/, )
where card(G) is the cardinality of the subset G. Note that continuity implies
|Ly(F) = Ly(G)| < 2Cs(card(F & G))=7/4, 5

where FF A G = (FUG) — (F N G) denotes the symmetric difference of sets F' and G.

The functional L., is said to be a continuous subadditive functional of order -y if it satisfies the null condition, sudad-

ditivity and continuity. L, is said to be a continuous superadditive functional of order -y if it satisfies the null condition,

superadditivity and continuity.

For many continuous subadditive functionals L., on [0, 1]¢ there exists a dual superadditive functional L7. The dual

functional satisfies two properties: 1) L. (F') +1 > L% (F') for every finite subset I of [0, 1]%; and, 2) for i.i.d. uniform

random vectors U1, ..., U, over [0, 1]¢,

|E(Ly(Us,....Uy)| — EILS (U, Uy)|| < Canl@7- 1/ ®)

with Cj a finite constant. The condition (6) is called the close-in-mean approximation in [2].

A stronger condition which is useful for showing convergence of partitioned approximations is the pointwise closeness

condition

|2, (F) = L(F)| < o ([eard () @-/4) ™
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for any finite subset F' of [0, 1]%.

A continuous subadditive functional L. is said to be a continuous quasi-additive functional if L., is continuous sub-
additive and there exists a continuous superadditive dual functional L7. We point out that the dual L7 is not uniquely
defined. It has been shown by Redmond and Yukich [4, 3] that the boundary-rooted version of L., namely, one where
edges may be connected to the boundary of the unit cube over which they accrue zero weight, usually has the requisite
property (6) of the dual. These authors have displayed duals and shown continuous quasi-additivity and related properties

for weight functionals of the power weighted MST, Steiner tree, TSP, k-NNG and others.

In [2, 3] almost sure limits with a convergence rate upper bound of O (nil/ d) were obtained for continuous quasi-
additive Euclidean functionals L~ (U1, ...,U,) under the assumption of uniformly distributed points U+,...,U,, and

an additional assumption that L., satisfies the “add-one bound”

e Add-one bound:
| EIL,(U1, ..., Ups1)] = E[Ly(Uy,...,Up)] | < Csn /%, ®)

The MST length functional of order + satisfies the add-one bound. A slightly weaker bound on a.s. convergence rate also

holds when L., is merely continuous quasi-additive [2, Ch. 5]. The n~1/4 convergence rate bound is exact for d = 2.

3 Convergence Rate Upper Bounds for General Density

In this section we obtain convergence rate bounds for a general non-uniform Lebesgue density f € 3,(3, L). For
convenience we will focus on the case that L., is continuous quasi-additive and satisfies the add-one bound, although
some of the following results can be established under weaker assumptions. Our method of extension follows common
practice [23, 1, 2]: we first establish convergence rates of the mean E[L,(X1,...,X )]/ n{d="/4 for piecewise constant
densities and then extend to arbitrary densities. Then we use a concentration inequality to obtain a.s. and £,-norm

convergence rates of L, (X, ..., X,n)/n(d*’Y)/d_
3.1 Mean Convergence Rate for Block Densities

We will need the following elementary result for the sequel.



Lemma 1 Let g(u) be a continuously differentiable function of u € R which is concave and monotone increasing over

u > 0. Then for any u, > 0

g(uo)

o

Al < g(u) < gluo) + g (uo)|A|

g(uo) -

where A = u — u, and g (u) = dg(u) /du.
Proof:
. . . def /

Since g(u) is concave the tangent line y(u) = g(u,) + ¢ (uo)(u — u,) upper bounds g. Hence

glu) < g(uo) + g (uo)|u — uyl.

On the other hand, as g is monotone and concave, the function z(u) def g(ue) + g(;“’) (4 — o)Ly <y, is a lower bound

on g, where 1, <y,} is the indicator function of the set {u < u,}. Hence,

9(to)

o

g(u) > glu,) — |u — .

O

A density f(x) over [0, l]d is said to be a block density with m? levels if for some set of non-negative constants

{pi} i 1 satisfying Zl Lom =1,

x) =) dilg,(x)
i=1

where 1¢(z) is the set indicator function of @ C [0,1]? and {Q; ?51 is the uniform partition of the unit cube [0, 1]¢

defined above.

Proposition 1 Letd > 2and 1 <~y < d— 1. Assume X1, ..., X, are i.i.d. sample points over [0, 1]¢ whose marginal
is a block density f with m? levels and support S C [0, 1]%. Then for any continuous quasi-additive Euclidean functional

L., of order ~y which satisfies the add-one bound (8)

‘E[L’Y(Xla ey X )]l 6L7,d/ F=D/d(g) dz| < O <(nm—d)—1/d) _
s

where 31.., 4 is a constant independent of f. A more explicit form for the bound on the right hand side is

KitCy [ f 5 (@)da (14 0(1)), d>?2

(nm—a)17d

) ((nm_d)_l/d> =

K1+Ca+Pr, a f
(nm—4)1/d s

z)dx (1+0(1)), d=2



Proof:

Let n; denote the number of samples {X,..., X} falling into the partition cell @; and let {U;}; denote an i.i.d.

sequence of uniform points on [0, 1]¢. By subadditivity, we have
md
L(X1ro Xn) < om0 Ly m{{X 1 X} 0 Qs — qi]) + Cim®
i=1

md
= mY L,(Ui....,Uy,)+ Cim?™7
=1

since the samples in each partition cell ); are drawn independently from a conditionally uniform distribution given n;.

Note that n; has a Binomial B(n, ¢;m~?) distribution.

Taking expectations on both sides of the above inequality,

md

BlL,(X1,...,X)] < m Y E[E[L,(Uy,...,Uy,)

i=1

ng)] + Cym?=7. )

The following rate of convergence for quasi-additive edge functionals L., satisfying the add-one bound (8) has been

established for 1 <~ < d [2, Thm. 5.2],

d—v d—1—~

|EIL,(Us,..., U]~ Br,an"T | < Kin =7, (10)

where K is a function of C7, C3 and Cs.

Using the result (10) and subadditivity (9) on L., for 1 < < d we have
d
d—y
i d

m o4 d—~y—1 d
E[L,(X1,...,X,)] < mWZE[ﬁLMan + Kin, * ]—i—Clm -
=1

d—y

m? .
- m*'YBL,Y,dndjT’Y ZE [(ZZ) ‘ } + mOKn T ZE [(Zx) . dl] 4 Oymd,
i—1

Similarly for the dual L; it follows by superadditivity (3) and the close-in-mean condition (6)

E[L3(X1,..., X5)]

o S [(2) 7 - s con S ()
i=1 i




forl <~y <d.

We next develop lower and upper bounds on the expected values in (11) and (12). As the function g(u) = u" is

monotone and concave over the range u > 0 for 0 < v < 1, from Lemma 1

;i v
(%) = ===, (13)
n n
where p; = ¢;m <. In order to bound the expectation of the above inequality we use the following bound
El|% —pf] <y[B||% -p| | = s vEiG—p) < X2
il 211 = P 7 pi(l—pi) < NG
Therefore, from (13),
ni\Y L1
E[(2)] = w-p /v (14)

By concavity, Jensen’s inequality yields the upper bound
EG) =[2G = )
n n

Under the hypothesis 1 < v < d — 1 this upper bound can be substituted into expression (11) to obtain
E[L, (Xl,..., n)/nld/d]

d
K m d—ry—1 C
,d 1 —d 1
< BL,.d E b T (am—ay17d E ¢ ©om +m

c
(d=y-1)/d 1
1/d/f (@)de + o a7

— B / FEN/ () da + (16)

(nm

Applying the bounds (15) and (14) to (12) we obtain an analogous lower bound for the mean of the dual functional L:;

E[Lf/(Xla (RN Xn)}/n(div)/d

2ﬁw/fd_‘n(””)d””_(nm d 1/2/5 i

Kl +C4 -1
(nm—d)t/d / f (w)de - (nm~— d)(d v)/d a7

By definition of the dual,

E[L(X1,...,X,)]/n T > E[L(X1,...,X,)]/n T —n~ T (18)



which when combined with (17) and (16) yields the result

B[Ly(X1,..., X,)] d=y K+ Cy B, .d 1 4
g [ 1T < SR oo+ it [ i@
+m T (19)
where Ky = max{C4, Cy}. This establishes Proposition 1. O

3.2 Mean Convergence Rate for Holder Continuous Density Functions

Before extending Proposition 1 to general densities we will need to establish an approximation lemma for Holder contin-

uous functions.

Recall that the Holder class X4(3, L) is defined by

Sa(B.L) = {g:19(2) ~ ok (2)| < Lo — 2", . 2 € R}

where pl.(z) is the Taylor polynomial (multinomial) of g of order & expanded about the point , |.| denotes a norm in
R? and | 3] is defined as the greatest integer strictly less than 3. ¥4(1, L) is the set of Lipschitz functions with Lipschitz

constant L and X4(f, L) contains increasingly smooth functions as /3 increases.

For 9™ = {Q;}* 1 a uniform resolution-m partition as defined in Sub-section 2.1, define the resolution-m block
density approximation ¢(x) = Zfil ¢ilg,(x) of f, where ¢y =m? [, f o a)dax. The following lemma establishes how

close (in L1 ([0, 1]¢) sense) these resolution-m block densities approximate functions in W1 (R9).

Lemma2 For(0 < 3 <1, let f € X4(3, L) have support S C [0,1]%. Then there exists a constant Cg > 0, independent

of m, such that
/ |p(x z)|de < Cs LmP. (20)
A proof of this lemma is given in Appendix A.

Remark. Lemma 2 shows how close, in £1(IR?) sense, a function f € ¥.4(3, L) can be approximated by its resolution-m
block density. To extend the results in this and the following sections to other classes of functions, all that it is needed is

an upper bound to the £, approximation error similar to the one in equation 20. In Appendix B, we show how to do this

10



for densities in the Sobolev space W1P?(R%), 1 < p < oco. The importance of Sobolev spaces derives from the fact that it

includes functions that are not differentiable in the usual (strong) sense.

‘We can now return to the problem of finding convergence rate bounds on quasi-additive Euclidean functionals for non-
uniform density f. Let {X i}7, be i.i.d. random vectors having marginal Lebesgue density equal to the block density

approximation ¢. By the triangle inequality,

’E[LW(Xl,...,X,Z)]/n“’d” —ﬁLmd/Sfd?T”(m)dw 1)

< ‘E[kal,...,knn/n* Gt [ 6% )

+ Br,.d

[ @ae— [ 17 @)a
n ’E[LA,(Xl, o X)) - ElLy(Xy, ... Xn)]( T = I+ 1T+ 111

Term I can be bounded by Proposition 1. To bound 11, consider the following elementary inequality, which holds for

a,b>0,0<~vy<d,

’a(d—v)/d —pla=n/d] < g — p|@=n/d,
and therefore, by Lemma 2 and Jensen’s inequality,
IT<BL, 4 /S 6(@) — f(2)|“T da < Br, g Cg LI/ 4= Bd=/d, (22)
where Cjy = C{4/4,

The following Proposition establishes an upper bound on term 717 in (21):

Proposition 2 Let d > 2 and 1 < v < d. Assume {X;};_, are i.id. random vectors over [0,1]? with density f €
¥4(8,L), 0 < 3 < 1, having support S C [0,1]%. Let {Xi}?zl be i.i.d. random vectors with marginal Lebesgue density
@, the resolution-m block density approximation of f. Then, for any continuous quasi-additive Euclidean functional L.,
of order

ElLy(X1,..., X )] — E[Ly(X1,...,X,)]| /n T < ¢4 Cf LD/ pp=Bld=)/d, (23)

where Cly = 2240/,

Proof:

11



As in equation (21), we denote the left hand side of (23) by III. First invoke continuity (5) of L,
(d—n)/d - - (d—v)/d
@I/ < 904 E card({Xl,...,Xn}A{Xl,...,Xn}> .

To bound the right hand side of the above inequality we use an argument which is discussed and proved in ([23], Theorem

3). There it is shown that if ¢ approximates f in the £1(R?) sense:

/\¢> 2)|de < =,

then, by standard coupling arguments, there exists a joint distribution P for the pair of random vectors (X, X ) such that

P{X # X} < e. It then follows by Lemma 2 and the set inequality {X1,..., X,} A {Xl, . n} cur {X;}A
{X,} that
111 < 2C3E {card (U?:l{Xi} A {Xi})(dw)/d} /ntd=/d
(d=)/d
< 204E <2Z 1 (XX, ) /ntd=—/d
< 205(2nP{X, # X, })@0/d pld=m/d < 9@Rd=7)/dcy(d=)/d

where the second inequality follows from the fact card ({X S A{X Z}) € {0,2}. Finally, by Lemma 2 we can make ¢

as small as Cs L m ™" and still ensure that ¢ be a block density approximation to f of resolution m. g

We can now substitute bounds (19), (22) and (23) in inequality (21) to obtain

E[Ly(X1,..., X,,)]/nld=0/d — ﬁLﬂ,,d/ fla)d=1/dqg

K +C 3
mifdid (/ T @)+ o1 >> ; Lfd"ﬁ/z (/ f2d(z)da +o(1 >)

+ )t pld=/d g, —Bd—)/d
+ (B, .4+ C3) Cg

(24)

t am- d)(d n7a t o o

y

This bound is finite under the assumptions that f € ¥4(/3, L) with support in S C [0, 1]d and that f 377 is integrable

over S.

The bound (24) is actually a family of bounds for different values of m = 1,2, .... By selecting m as the function of

n that minimizes this bound, we obtain the tightest bound among them:

12



Proposition3 Letd > 2and 1 < v < d — 1. Assume X1,..., X, are i.i.d. random vectors over [0,1]¢ with density
o

f € Z4(B,L), 0 < B < 1, having support S C [0,1]%. Assume also that f274 is integrable over S. Then, for any

continuous quasi-additive Euclidean functional L., of order ~y that satisfies the add-one bound (8)

E[L,(Xq,...,X,)]/n@ 0/ ﬁLw,d/ FED Y (@) da
S

<0 (n*n(dmp)> ’

where
ap
af+1

1 (d7 ’7ap) =

IS

where o = d_TV.
Proof: Without loss of generality assume that nm =% > 1. In the range d > 2 and 1 < v < d — 1, the slowest of the
rates in (24) are (nm~%)~'/¢ and m~P(4=7)/4, We obtain an m-independent bound by selecting m = m(n) to be the

sequence increasing in n which minimizes the maximum of these rates
m(n) = arg min max {(nm_d)_l/d, m_ﬁ(d_”/d} .
m

The solution m = m(n) occurs when (nm =)~ 1/4 = = Pld=N/d or 1y = p1/14aB+1] (integer part) and, correspond-

ingly, m—Pd="/d = p~ =591 . This establishes Proposition 3. O
3.3 Concentration Bounds

Any Euclidean functional L., of order v satisfying the continuity property (4) also satisfies the concentration inequality

[2, Thm. 6.3] established by Rhee [24]:

(25)

PLy(X1, oy Xn) = B[Ly(X3, -, Xl > 1) < Cexp (WW) 7

Cn

where C'is a constant depending only on the functional L, and d. It is readily verified that if K > C3C (d=)/(2d) the
right hand side of (25) is summable over n = 1,2,... when ¢ is replaced by K(nln n)(d’”/ (2d) Thus we have by
Borel-Cantelli

Ly (X1, .., X)) — E[Ly(X1,...,X,)][ <O ((nlnnw*v)/(?d)) (a.s.).

Therefore, combining this with Proposition 3 we obtain the a.s. bound

13



Proposition4 Letd > 2and 1 < v < d — 1. Assume X1,..., X, are i.i.d. random vectors over [0,1]¢ with density

v

f € Z4(B,L), 0 < B < 1, having support S C [0,1]%. Assume also that f274 is integrable over S. Then, for any

continuous quasi-additive Euclidean functional L., of order ~y that satisfies the add-one bound (8)

Inn\*/?
<0 (max {( ) , nTi(d7p) }) (a.s.),
n

The concentration inequality can also be used to bound the £,, moments E[|L~ (X1, ..., X ) — E[Ly(X1,..., X,)]|"]V/%,

L(X1,...,X,)/ntd=/ ﬁLv,d/fd M/ (z)da

where 11(d,y, p) is defined in Proposition 3.

= 1,2,.... In particular, as for any r.v. Z: E[|Z|] = [ P(|Z| > t)dt, we have by (25)

Bl|Ly(X 1o, X ) = ElLy(X1.., X))

/ P(|L7(X1,...,Xn) _E[L’Y(Xlaan)” >t1/K,> dt
0

o —¢2d/[K(d—)]
< C’gC’/ exp <) dt
Cn
= A.nedn/Cd (26)
where An — Cgcn(d—v)/(2d)+1 fooo 7u2d/[n(d—~/)]du'
Combining the above with (24), we obtain
Proposition 5 Letd > 2and 1 < v < d — 1. Assume X1,..., X, are i.i.d. random vectors over [0,1]¢ with density

v

f € Sa(B,L), 0 < B < 1, having support S C [0,1]%. Assume also that f2~7 is integrable over S. Then, for any
continuous quasi-additive Euclidean functional L., of order ~y that satisfies the add-one bound (8)

E

rq1/K
LA/(Xl,...,Xn)/n(div)/d—ﬁLn,,d/f(div)/d(w)dw }
S

S i (/ P i@ som)

nm—d (i —d\1/d
(ﬂL d_|_03) C” (d=)/d p =B(d—=7)/d

27)

+

(- d)(d w7t ’Y)/d

+ AR/ (2d)

Proof:

For any non-random constant z, using Minkowski inequality, [E|W + u|*]'/* < [E|W|*]'/* + |u|. Identify

po = B (X Xy [ O e
S

W =(L,(X1,....X,) = B[L,(X1....,X,)])/nld-/d
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and use (26) and (24) to establish Proposition 5. O

As the m-dependence of the bound of Proposition 5 is identical to that of the bias bound (24), minimization of the

bound over m = m(n) proceeds analogously to the proof of Proposition 3 and we obtain the following.

Corollary 1 Letd > 2and 1 < v < d — 1. Assume X1,..., X, are ii.d. random vectors over |0, 1}‘1 with density
ol

f € 24(B,L), 0 < B < 1, having support S C [0,1]%. Assume also that f2=1 is integrable over S. Then, for any

continuous quasi-additive Euclidean functional L., of order -y that satisfies the add-one bound (8)

E

where r1(d,~,p) is defined in Proposition 3.

n:| 1/ “o (nfn(d,%p)) | o)

Lo(X1,... X,)/ntd/d — ﬁLW,d/ SN (z)da
S

3.4 Discussion

It will be convenient to separate the discussion into the following points.

1. The bounds of Proposition 4 and Corollary 1 hold uniformly over the class of Lebesgue densities f € X4(3, L)
and integrable f(¢=")/d=1/2 If o = (d — ~)/d € [1/2,(d — 1)/d] then, as the support S C [0, 1]¢ is bounded,
this integrability condition is automatically satisfied. To extend Proposition 4 and Corollary 1 to the range o €
((d = 1)/d,1) would require extension of the fundamental convergence rate bound of O (n='/¢) used in (10),

established by Redmond and Yukich [3], to the case 0 < v < 1.

2. It can be shown in analogous manner to the proof of the umbrella theorems of [2, Ch. 7] that if f is not a Lebesgue
density then the convergence rates in Propositions 4 and 5 hold when the region of integration S is replaced by the

support of the Lebesgue continuous component of f.

3. The convergence rate bound satisfies r1(d, v, p) < 1/d, which corresponds to Redmond and Yukich’s rate bound
for the uniform density over [0, 1]d [2, Thm. 5.2]. Thus, the bound predicts slower worst case convergence rates

for non-uniform densities.

4. When f is piecewise constant over a known partition of resolution m = m,, faster rate of convergence bounds are

available. For example, in Proposition 1 the bound in (19) is monotone increasing in m. Therefore the sequence
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m(n) = m, minimizes the bound as n — oo and, proceeding in the same way as in the proof of Proposition 5, the
best rate bound is of order max {n*(d’“f)/(z‘i), n’l/d}. As the O(n~1/?) bound on mean rate of convergence is
tight [2, Sec. 5.3] for d = 2 and uniform density f, it is concluded that for « = (d — v)/d > 2/d the asymptotic

rate of convergence of the left hand side of (28) is exactly O(n /%) for piecewise constant f and d = 2.

. For a = (d — 7)) > 2/d, it can be shown that the rate bound of Proposition 1 remains valid even if L., does not
satisfy the “add-one bound.” Thus, with & > 2/d, Corollary 1 extends to any continuous quasi-additive functional
L., including, in addition to the MST, the TSP, the minimal matching graph and the k-nearest neighbor graph
functionals. As for the case o < 2/d, we can use a weaker rate of mean convergence bound [2, Thm. 5.1], which
applies to all continuous quasi-additive functionals and uniform f, in place of (10) in the proof of Proposition 1 to

obtain

E[LA,(Xl,...,Xn)}/n(d_”/d—ﬂLwd/f(d_"’)/d(:c)dw < o(n—ﬁw). (29)
S

. A tighter upper bound than Corollary 5 on the £,.-norm convergence rate may be derived if a better m-dependent

analog to the concentration inequality (25) can be found.

4 Convergence Rates for Fixed Partition Approximations

Partitioning approximations to minimal graphs have been proposed by many authors, including Karp [5], Ravi etal [25],

Mitchell [26], and Arora [27], as ways to reduce computational complexity. The fixed partition approximation is a simple

example whose convergence rate has been studied by Karp [5, 28], Karp and Steele [29] and Yukich [2] in the context of

a uniform density f.

Fixed partition approximations to a minimal graph weight function require specification of an integer resolution param-

eter m controlling the number of cells in the uniform partition Q™ = {Q;}7, of [0, 1]¢ discussed in Section 2. When m

is defined as an increasing function of n we obtain a progressive-resolution approximation to L~ (&}, ). This approximation

involves constructing minimal graphs of order v on each of the cells Q;, i = 1,...,m<, and the approximation LX)

is defined as the sum of their weights plus a constant bias correction b(m)

LI(Xn) = Y Ly (X N Qy) + b(m), (30)
i=1
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where b(m) is O (md*”/ ) In this section we specify a bound on the £,-norm convergence rate of the progressive-
resolution approximation (30) and specify the optimal resolution sequence {m(n)}, o which minimizes this bound. Our

derivations are based on the approach of Yukich [2, Sec. 5.4] and rely on the concrete version of the pointwise closeness

bound (7)
Cleard(F)]@=r=D/d-1D " 1<~y <d—1
|Ly(F) — L3 (F)| < Clogcard(F), y=d—-1#1 (31)
C, d—1<y<d

for any finite F' C [0, 1]d. This condition is satisfied by the MST, TSP and minimal matching function [2, Lemma 3.7].

We first obtain a fixed-m bound on £; deviation of L7"(X,,)/n(4=7/4 from its a.s. limit.

Proposition 6 Letd > 2 and 1 < ~v < d — 1. Assume that the Lebesgue density f € ¥4(08, L), 0 < 8 < 1, has support
S C [0, 1]4. Assume also that f*/>~7/ are integrable over S. Let LZ'(X,,) be defined as in (30) where L., is a continuous

quasi-additive functional of order v which satisfies the pointwise closeness bound (31) and the add-one bound (8). Then

FE HLZ’;(;\{n)/n(d—v)/d _ ﬁLwd/Sf(ol—w)/d(w)d:,3 }

<0 (max{(nmfd)w/[d<d7m, m—Bd=/d nf(dfw/(zd)}) (32)

if b(m) = O(m?~")

Proof:

Start with

d

LX) /a0 — ﬁL,,,d/ FEA/ 4 (g)da
s
|

Analogously to the proof of [2, Thm. 5.7], using the pointwise closeness bound (31) one obtains a bound on the

} < (33)

d—~

] + E[|LIN(Xn) — Ly(X,)|] /n 7. (34)

L (X)/n T —ﬁL%d/Sfd?T”(w)dw

difference between the partitioned weight function LI'(F") and the minimal weight function L. (F) for any finite I C

[0,1]¢

77’Ld

b(m) — Cym®™Y < LIF) = Ly(F) <m™7C Y (card(F N Q)7 /@D 11 4 Comd= +b(m).  (39)

i=1

17



As usual let ¢(x) = nyl #sm~? be a block density approximation to f(x). As {X, N Qi};’;dl are independent and

E[Z]] < (E[|Z])* for0 < u < 1

BI|L7 (%) — Ly (Xn)]]

'ITLd

<m0y E [(card(xn nQ,)) &/ <d*1>} 4 |b(m) — Crmd~7 + 1 4 Cym®™ + b(m)
i=1
md

< m Ipld-r=1/d-D Z(@mfd)(dﬂfl)/(dfl) + |b(m) — Cym™| +1 4+ Com= 4 b(m)
i=1
md

_ m'y/(dfl)n(dfﬂffl)/(dfl)ozd)z(.d—’v—l)/(d—l)mfd + |b(m) — Clmdﬂl +14+Comd + b(m)
i=1

= m'Y/(d*l)n(d*“’*l)/(d*l)C/ =D/ (@) dae + |b(m) — Cym® Y| + 1 4 Com®™7 + b(m)
s

Note that the bias term |b(m) — C;m? 7| can be eliminated by selecting b(rn) = C1m? 7. Dividing through by n(4=7)/4,

noting that (|b(m) — C1m?=7| + Com®=7 + b(m)) /n'?=1/4 < B(nm~?)~(@=7/4 for some constant B

E Lzyn(Xn) - L'Y(Xn)
n(d*’Y)/d

} < (nm—4y~/ldd- Dl / S/ (g)dg + (nm—4) @D/ 4 (d=)/d,
S

Combining this with Proposition 5 we can bound the right hand side of (34) to obtain

d |

LI (X)) /) — IBLv,d/ flA=/d(z)dee

f;i?‘id ([ @aarom) + 2t ([ i F@pia o)
+ o d)(d 7 + @ »y)/d + (Br,.a+ L) el Ld="/d gy =pld=)/d 4 A, p=(d=7)/(2d)
+WCM (/S FUm O/ () da + 0(1)> + (nm~ )"/, (36)
Over the range 1 < v < d — 1 the dominant terms are as given in the statement of Proposition 6. g

Finally, by choosing m = m(n) to minimize the maximum on the right hand side of the bound of Proposition 6 we

have an analog to Corollary 1 for fixed partition approximations:

Corollary 2 Letd > 2 and 1 < v < d — 1. Assume that the Lebesgue density f € %4(8,L), 0 < 8 < 1, has support
S C [0, 1]4. Assume also that f'/>=7/? is integrable over S. Let LI (X,) be defined as in (30) where L., is a continuous

quasi-additive functional of order ~y which satisfies the pointwise closeness bound (31) and the add-one bound (8). Then
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if b(m) = O(ma=7)

E HLT(H) (X1,... ,Xn)/n(d”)/d _ BLw,d/Sf(d*”)/d(w)dw } <0 (nfrz(d,%p)) 7 (37)
where
af 1
d,v,p) = —"—" =,
TQ( /p) dglaﬂ—kld

d—1
where o = d*T“’. This rate is attained by choosing the progressive-resolution sequence m = m(n) = pt/1A(5= aB+1)]

4.1 Discussion
We make the following remarks.

1. Under the assumed condition v < d — 1 in Corollary 2, r2(d,~y,p) < r1(d,~,p), where r1(d,~, p) is defined in
Corollary 1. Thus, as might be expected, the partitioned approximation has a £,-norm convergence rate (37) that

is always slower than the rate bound (28), and the slowdown increases as (d — 1)/ increases.

2. In view of (36), up to a monotonic transformation, the rate constant multiplying the asymptotic rate n~"2(%7:P) ig
an increasing function of [ fd=7=1/(d=1) (2)dz, which is the Rényi entropy of f of order (d —~v — 1)/(d — 1).

Thus fastest convergence can be expected for densities with small Rényi entropy.

1/2
3. Itis more tedious but straightforward to show that the £ deviation £ [| Ly (&) /nld=/d Br..d [s fl=/d(z)dz | 2}
obeys the identical asymptotic rate bounds as in Proposition 6 and Corollary 2 with identical bound minimizing

progressive-resolution sequence m = m(n).

4. As pointed out in the proof of Proposition 6 the bound minimizing choice of the bias correction b(m) of the
progressive-resolution approximation (30) is b(m) = Cym%~7, where C} is the constant in the subaddivity condi-
tion (2). However, Proposition 6 asserts that, for example, using b(m) = Cm?~7 with arbitrary scale constant C,
or even using b(m) = 0, are asymptotically equivalent to the bound minimizing b(m). This is important since the
constant C' is frequently difficult to determine and depends on the specific properties of the minimal graph, which

are different for the TSP, MST, etc.

5. The partitioned approximation (30) is a special case k = n of the greedy approximation to the k-point minimal

graph approximation introduced by Ravi etal [6] whose a.s. convergence was established by Hero and Michel [7]
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(Note that the overly strong BV condition assumed in [7] can be considerably weakened by replacing BV space
with Sobolev space and applying Lemma 2 of this paper). Extension of Proposition 6 to greedy approximations to

k-point graphs is an open problem.
5 Convergence Rate Lower Bounds

In this section we derive lower bounds for the convergence rates of minimal graphs. Define

1(f) = / o @)de . (38)

From sections 2 and 3, L (X1,. .., X, )/n(4=7/4 s a (strongly) consistent estimator of I, (f) for o = d_T'V. Thus, it is

natural to recast our problem as that of estimating I, ( f) over the nonparametric class of densities f € X4(3, L).

Let fa be an estimator of I, (f) (0 < o < 1) based on a sample of n i.i.d. observations from a density f. To access the
“quality” of fa we adopt the usual (nonparametric) minimax risk criterion, i.e., we look at sup fer E| I o — Lo (f)|P, the
worst case performance of I « over a known class of densities F, for a choice of p > 1. Under this criterion it is natural to

ask what is the minimum achievable risk for any estimator, i.e., what is

inf sup E|ja = L(f)IF,
I, fEF

where the infimum is taken over all estimators of I, (f), as this quantifies the best performance possible for any estimator.
Of course, as L (X1,..., X ) /n® is valid estimator of I, (f), this will also yield a lower bound to the convergence rates

of interest. The rest of this section is devoted to deriving these (asymptotic) bounds using standard minimax techniques.
5.1 Notation

In the following, we will take the class F as the set of multivariate Lebesgue densities defined on the unit cube [0, 1]¢

(d > 1), belonging to the functional Holder class ¥,4(53, L).

We will also use the affinity || P A Q|| between measures P and @ defined by:

1
||P/\Q||=1—§||P—Q||1 (39)
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where || P||; is the total variation norm of P defined as

1P|y = sup ’/fdP‘
[fI£1

and the supremum is taken over all measurable functions f bounded by 1. If P and () are absolutely continuous w.r.t. a
measure 1, with densities p and g, respectively, then || P — Q|1 = ['|p — ¢| du. In this case, we will write ||p — g]|; for
| P — Q|1 and ||p A ¢| for ||P A Q]|. Also, write p™ as shorthand notation for []", p(z;), the density of the product

measure P®™.

Finally, write co(F) to denote the convex hull of F.
5.2 Lower Bounds

In order to get lower bounds for the minimax risk, the usual technique is to build, for every n, a subset 7y, C F
of finite cardinality, such that the problem of estimating I, (f) over Fg ,, is essentially as difficult as the full problem.
Assouad’s lemma or Fano’s lemma are the commonly used tools to address such constructions ([30]). However, in the
case of entropy estimation (as well as many other functional estimation problems, [31], [32]), these methods only give
the trivial lower bound zero. We will thus rely on a result by Le Cam (see for example [31]) that relates the minimax risk
to a testing problem between two sets of hypothesis, whose convex hulls are “well” separated in a total variation distance

sense. Bellow is a simplified version of this result, suited for our needs (for a simple proof see [31]):

Lemma 3 Let I be an estimator of 1(f)" based on n i.i.d. observations from a density f € F. Suppose that there are

subsets Gy and Go of G = {f™ : [ € F} that are 25-separated, in the sense that,

I(f1) = 1(f2)| = 26 forall f" € Gy
and f3 € Gy. Then

sup B|I —I(f)]=6- sup |lp1Apall.
feF pi € co(Gy)

We will apply lemma 3 to the usual small perturbations of the uniform density, u, on [0, 1]¢. Towards this goal, fix
g € Xq(B,1) with support in [0, 1] such that [ g(z)dz = 0, [ g*(z)dz = k2 > 0 and |g(z)| < M. Let {Qj};-”:dl be

the uniform resolution-m partition and {z;}, be the set of points in [0, 1]¢ that translate each Q; back to the origin, as

'From now on, we will omit the subscript o from i « and I, (f), unless necessary.
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defined in Sub-section 2.1. Let g;(x) = g (m(x — x;)). For A € A = {—1, l}md, define the perturbation of u as
md L
A@) =1+ 5 m=P\; () (40)
j=1

It is easy to see that [ f(z)dx =1, f\ € X4(3, L) and, for m large enough, f > 0. So (for m large enough) f € F.

We can now apply lemma 3 to the sets G1 = {u"} and Go = {f¥ : A € A}. We will start by determining the

24§-separation between G; and G5. Consider the second order Taylor expansion
« 1 a—2,2
(14+y) :1+ay—|—§a(a—1)§ Y
where £ lies between 1 and 1 + y. This implies that

/fs\l(w)dm_lzg/.(1+-§m_ﬁ)\jgj($)li>adx—l

1 /L

2
=5 <2> ”Z @i (@) de (41)

where 1 — M% m P < ) <1+ M% m P, Inserting these bounds in equation (41), we have

1 /L\? L
3 <2> ala—1)k2 (1 — M§ m Py, < /ff‘(:c) de —1
2
< % (g) ala — 1)k (14 M% m P2 ;=20 (42)

which essentially means that [ f(x)de —1 = m 25, We can now use this result to conclude, for any A € A,

1) 16 = | [ @) 1| 220w @)
for some constant C' > 0 and m large enough.

We now need to derive a lower bound for sup,,, ¢ co(g,) [P1 A p2||. To this end, let ,, = 2-m’ doaea [X € co(G2).

The following lemma provides such a bound ([33]):

Lemma 4

2

1 L 2
[u™ = R[]} < exp imd ln/ <2 mﬁgl(m)> dm] -1

A proof of this lemma is given in appendix A.
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For our choice of g1, lemma 4 simplifies to:

1 /L\*
[u™ = hn|IT < exp {2 <2> K3 n2m(4ﬁ+d)} -1

Now, choosing m = O (n*2/ (46 +d)), the optimum value that balances the rates in lemma 3, and ¢ such that x5 is small

enough, then there exists an € > 0 such that
[ = Rl < (2(1 = €))% .
Hence, by equation (39),

[u A || >1—=2(1—€)/2=¢>0. (44)

Finally, plugging equation (43) and (44), with the choice of m = O (n=%“#+d)) 'into lemma 3 and using Jensen’s

inequality, gives us the desired lower bound:

Proposition 7 For F = {f : f is a Lebesgue density on [0,1]% and f € ¥4(3,L)}, p > 1 and n large enough, there

exists a constant ¢ = ¢(03, L, d, o) > 0 such that

inf sup E|fa —L,(H)P >cn w1 , (45)

I, feF

where the supremum is taken over all estimators fa of I(f) based on n i.i.d. observations from density f.

‘We make the following comments about this proposition.

1. For sufficiently smooth densities, i.e., for § > d/4, 43/(43 + d) > 1/2, which is the usual rate of convergence
for parametric problems. This suggests, using the extension of the efficiency concept to the nonparametric setting

(Cramer-Rao type inequalities, ... to be verified), that the lower bound in Proposition 7 can be replaced by

}1/17

cn—(a5ans)

inf sup [E\fa — I (f)IP
I, fEF

2. The results of Proposition 7 agree with those obtained by Birgé and Massart in [34]. In there, they derive lower
bounds on the minimax risk for the general problem of nonparametric estimation of a functional
T(f) = [o(f(z), f'(z),...,f®)(x),z)dr satisfying some smoothness conditions. They also show, that for
B > 2k + d/4, the y/n-rate is achievable. Kerkyacharian and Picard closed the problem in [35] by showing that

the corresponding rates for 3 < 2k + d/4 are also achievable.
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3. Are the rates in Proposition 7 achievable? (I think they are...)

Remark. If, instead of the Rényi entropy, we were interested in the Shannon entropy Hy(f) = — [ f(x) log f(x) dz, the

same rates would be obtained. This can be seen by considering the second order Taylor expansion,

1
(I+y)log(l+y) =y+5¢ Ly?

and following the same steps as for I,,(f). In [36], Laurent exhibits an efficient estimator of this entropy, for densities
defined on a compact set of the real line with smoothness parameter 3 > 1/4, that achieves the y/n-rate on densities

bounded away from zero on their domain.
6 Performance of Minimal Graph and Plug-in Entropy Estimators

In this section we derive upper bounds for the maximum risk of plug-in estimators and minimal-graph based estimators

of entropy.

We consider entropy estimates of the form H, = (1 — o)~ " log I,,, where I, is a consistent estimator of I,,(f). By a

standard perturbation analysis of In x,

Thus, as I, (f) is bounded away from zero uniformly over the class F (i.e., infscx I (f) > 0), the asymptotic rate of

convergence of H, — H,/(f), as a function of n, will be identical to that of I, — I,(f).

Let f be a density estimate of f based on n i.i.d. observations (from density f). We have the following upper bound

for plug-in estimators I, (f):

Proposition 8 For F as defined in Proposition 7,

sup E I (f) = I.(f)| < C4 =%t (46)
fer

for C1 = C1(B,L,d) > 0.

24



Proof: The proof relies on the well known minimax rates for density estimation available in the literature (see, for example,

[37]). Specifically, these rates are of order O (n’ﬂ/(m*d)), ie.,
sup E [ |f(z) — f(a)|de < Oy "7
feF

for the best estimators f (for example, wavelet thresholding based estimators).

Using the above result, the inequality |a® — b%*| < |a —b|® (a,b > 0) and successive applications of Jensen’s inequality

e/

b U‘f(w)_f(‘”)) d"”r = {E/]f(@—f(w)( dw]a < Oy T

yield the desired result,

«

dx

IN

B1(f) ~ La(£)| i@ f()

IA

O
For I, denoting the minimal graph estimator of I, (f), we have from Proposition 5 the following result:
Proposition 9 For F as defined in Proposition 7, with0 < 3 < 1,1/2 < a < (d—1)/d,
sup E |1, —Ia(f)‘ < Oy n-ahFTd 47)
feF

fOF CQ = 02(5, L, d, OZ) > 0.
7 Notes on the Invertibility of the a-entropy

This section is somehow different in character from the previous sections. In here, we briefly digress about how the

knowledge of H,(f), for « € G, whith G € |0, 1] being any open interval, can provide information about the density f.

We consider first the 1-dimensional case, i.e., f is a univariate Lebesgue density. Let S1, Ss, . . . be the support regions
of a monotonic decomposition of f such that the change of variable y = In f(x) is (locally) invertible over each set S;.

Define also f; ! as the local inverse of f(z) over x € S;. We thus have

/fo‘(aé)daé—/eo‘lnf(m)dm—/eo‘yzi:<‘(fxlnf(x)
_ /eayz f/(f{l(/

-1
I.(f) ) L, (f; (e¥)) dy
w=f; t(ev)

f(fl((;?)))) (s () dy - .
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f

1
Equation (48) shows that I, (f), as a function of «, is the Laplace transform of the function g(y) = > Jw(f*il((ee?))) ’ Lin £(50) (0)-

9

Of course many different densities f will result in the same g; just consider any location change of probability mass in f

and the resulting entropy will remain the same.

Consider now the multivariate case. Without loss of generality, we only need to study the 2-dimensional case, as the
general situation follows by induction. Write f as f(z1,z2) = f(z1|z2) f(x2), where f(z1|x2) is the conditional density
of X given X5 and f(x2) is the marginal density of Xs. Let g(y1|z2) be the function g defined above with f(z) replaced

by f(x1|x2). Proceeding in the same fashion as above, we have the following equalities:

Ia(f) = //fa(xl,IQ)dI1d$2 ://fa(xl‘xg)fa(flé)dibldxg
- //eayﬁawZ9(y1|fi71(ey2))9(y2)dyldy2 ://eayl+ay2 G(y1,y2) dyrdys (49)

where G(y1,y2) = >.; 9(v1]f7"(€¥2)) g(y2). Equation (49) shows that I, (f) is the 2-D Laplace transform of the
function G(y1,y2), evaluated at the point («, ). So, the knowledge of the multivariate c-entropy of a density, as a
function of «, characterizes only the Laplace transform of the function G over the line vy = a2 on the Laplace frequency

plane.
8 Conclusion

In this report we have given rate of convergence bounds for length functionals of minimal-graphs satisfying continuous
quasi-additivity, and briefly discussed their performance for entropy estimation. These results suggest that further explo-
ration of minimal graphs for estimation of Rényi divergence, Rényi mutual information, and Rényi Jensen difference is

justifed.

There are still many problems that remain to be studied. One such problem is the achievability of the minimax rates
derived in section 5, in particular, the existence of practical estimators that achieve these rates. We believe this is a
challenging problem as the techniques commonly used to address this problem yield only estimators of theoretical interest.
One other problem is the derivation of convergence rate bounds for the k-MST, as this graph provides a robust entropy
estimator. Also, to complete the results given in this report, it would be interesting to extend the rate bounds to smoother
Holder continuous densities (i.e., § > 1). With regards to future applications, we feel that these methods can be applied

in problems such as independent component analysis (ICA) or clustering techniques. Finally, establishing general weak
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convergence results for these types of minimal graphs could have a significant impact in applications such as hypothesis

testing and goodness of fit tests.
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A Appendix

Proof of Lemma 2: By the mean value theorem, there exist points §; € (); such that

s =m | fla)e=1(&).

Note that, in what follows, |.| means both the absolute value in R and any norm in R¢. Using now the fact that f €

Zd(ﬁ,L), d d
xz) — f(x)|de = ) — f(z)|dx x—§;|Pde .
/Sw ) - f@)d ;/Qimz) f(@)ld sz/QL €)%

As,€; € Q;, asub-cube with edge length m ™", [, |& — &;’da = O(m~7~¢). Thus, we have

/S () — f(@)ldz < CLm®.

g
Proof of Lemma 4: This proof follows from [33]. Define
Uy L
Gi(A) = G(Xi, ) = g S Ajgi(Xi) = Sm~INg(X))
where A = (A1,..., A\ a)' € Aand g = (g1, - .., Gma)®. Define also
for A, u € A. Note that, due to construction of g,
EGi(X) =0, (50)

and due to identically distributed samples assumption, 7; (A, ) = 71 (A, ).

Now, rewrite h,, as:

he = > wy[[(+GiN)

Aep =1

> wy, 1+ZGZ-(>\)+ZGZ-(A)GJ-(A)+ > GiNG NG + ...

AeA i<j i<j<k

where wy = 2-m"_ From a Bayesian perspective, the weights w define a uniform prior probability on A.
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Using Jensen’s inequality,
[ — un”% = (Eun|hn — 1|)2 < Eun|hy — 1|2

A e i i<j i

+> Gi(w)Gi(p) + ... (51)

i<j
Expanding out the product in (51), due to independence and (50), only the terms where each factor G;(\) is paired

with a corresponding G; () will survive. All other terms with an isolated factor will be zero. The result is

Eunlhy =17 = > wywp [ Donpmw) + ) nwrApw) + ...
AJLEA i 1<j
= Z wywy (1+71(A, p)" —1 (52)
A UeA

Regarding the double sum in (52) as an expectation of a pair of independent random variables X and g, each distributed

according to a uniform prior in A, we get the following bound for the total variation norm:
By — ™ < EQ+71(Ap)" —1 < Bexp{nni(A, p)} —1, (53)
where the last inequality comes from e® > 1 4 z.

Now, note that the functions g; have disjoint supports and, so, are orthogonal in the sense that £,,g,(X 1)g;(X1) =0,
for ¢ # j. Thus, we have
I 2
) = (G ) N B {a(X0g (X)) =* X,
with 02 = [ (£ m=8g, (x))” da. Equation (53) simplifies to

|hn —u™|3 < Eexp{no® AX'u} —1.

The above expectation is easy to compute because the choice of a uniform prior on A makes the coordinates \; indepen-

dent, taking values +1 and —1 with probability 1/2:

1 1 " 1
Eexp{no? Xp} = <2 e 3 en02> < exp {2 m? (n02)2} .

Lemma 4 now follows. g
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B Appendix

In this Appendix we will introduce some concepts from the theory of Sobolev spaces and then show how to extend the

previous results on convergence rate bounds to densities in the Sobolev class.

Let £,(R) be the space of measurable functions over R? such that || f||,, = ([ | f(z)[Pdz)'/? < occ. For f areal valued
differentiable function over R¢, let D, f = 0f/0x; be the x-th partial derivative of f,and D f = [0f /0%y, ...,0f/0x4]
be the gradient of f. The concept of derivative can be extended to non-differentiable functions. For f € L£1(RY), g is

called the x ;-th weak derivative of f [38], written as g dgf D$j fif

[ @D, p@)e == [ @)

for all functions ¢ infinitely differentiable with compact support. The weak derivative g is sometimes called the gener-
alized derivative of f or distributional derivative of f. If f is differentiable, then its weak derivative coincides with the

(usual) derivative.

We now define a function space whose members have weak derivatives lying in the £,(R?) spaces [38]. For p > 1,
define the Sobolev space

WP(RY) = L,(RY) N {f : Dy, f € L(RY), 1 <5 < d}.

The space WP is equipped with a norm

1l = L1l + Dy -

The Sobolev space WP (Rd) is a generalization of the space of continuously differentiable functions, in the sense that
WP (R9) contains functions that do not have to be differentiable (in the usual sense), but can be approximated arbitrarily

close in the ||.||1,, norm by infinitely differentiable functions with compact support ([38, Thm. 2.3.2]).

Let ¢ be the resolution-m block density approximation of f, as defined in section 3.2. The following lemma establishes

how close (in £ (R?) sense) these resolution-m block densities approximate functions in W1 (R?).

Lemma5 For1 <p < o, let f € WHP(R?) have support S C [0, 1]%. Then there exists a constant C' > 0, independent
of m, such that

[ 16t@) = r@)ide < ot (D11, +o(1) 54
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Proof: First assume that f is a continuously differentiable function. By the mean value theorem, there exist points §; € @;

such that
b= [ fla)iz=(&).
Qi
Also by the mean value theorem there exist points 1; € (); such that

[f(x) = (&) = Df (%) - (= &), e

Using the above results, Jensen inequality and Cauchy-Schwarz inequality

(/[ 1ote) - sieias)’

IN

/S ole) -~ St =3 /Q 1160 - fla)

> [ Drw- @€z < S s [ e

As x,1; € Q;, a sub-cube with edge length m ™' fQi |z — &;[Pdz = O(m~P~%). Thus, we have

([ 16te) - soaz) " < o s A e ([ Ipr@)rae o)

i=1
Since smooth functions are dense in lep(Rd) ([38, Thm. 2.3.2]), using the standard limiting argument the above

inequality holds for f € W1P(R?). This establishes the desired result. O

Lemma 5 now provides the necessary result to extend the convergence rate bounds derived previously to the Sobolev
case. As it can be seen from section 3.2, the £ approximation error will influence the final rate upper bound only through
the exponent (3 in equation (20). As the Sobolev approximation error (54) is similar to the Holder class case for 3 = 1,

we immediately have the following proposition:

Proposition 10 Letd > 2 and 1 <~y < d — 1. Assume X1,...,X,, are i.i.d. random vectors over [0, 1]? with density

v

f e WhP(RY), 1 < p < oo, having support S C [0,1]%. Assume also that f274 is integrable over S. Then, for any

continuous quasi-additive Euclidean functional L., of order ~y that satisfies the add-one bound (8)

rq1/K
{E‘Lv(Xl,..an)/n(d—w)/d _ﬁLﬂ,,d/ P14 4y } <0 (nfj é) _
S

31



References

[1]

(2]

[6]

[10]

[11]

J. M. Steele, Probability theory and combinatorial optimization, vol. 69 of CBMF-NSF regional conferences in

applied mathematics, Society for Industrial and Applied Mathematics (SIAM), 1997.

J. E. Yukich, Probability theory of classical Euclidean optimization, vol. 1675 of Lecture Notes in Mathematics,

Springer-Verlag, Berlin, 1998.

C. Redmond and J. E. Yukich, “Limit theorems and rates of convergence for Euclidean functionals,” Ann. Applied

Probab., vol. 4, no. 4, pp. 1057-1073, 1994.

C. Redmond and J. E. Yukich, “Asymptotics for Euclidean functionals with power weighted edges,” Stochastic

Processes and their Applications, vol. 6, pp. 289-304, 1996.

R. M. Karp, “The probabilistic analysis of some combinatorial search algorithms,” in Algorithms and complexity:

New directions and recent results, J. F. Traub, Ed., pp. 1-19. Academic Press, New York, 1976.

R. Ravi, M.V. Marathe, D.J. Rosenkrantz, and S.S. Ravi, “Spanning trees short or small,” in Proc. 5th Annual

ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA, 1994, pp. 546-555.

A.O. Hero and O. Michel, “Asymptotic theory of greedy approximations to minimal k-point random graphs,” IEEE

Trans. on Inform. Theory, vol. IT-45, no. 6, pp. 1921-1939, Sept. 1999.

A. O. Hero, B. Ma, O. Michel, and J. D. Gorman, “Alpha-divergence for classification, indexing and retrieval,”
Tech. Rep. 328, Comm. and Sig. Proc. Lab. (CSPL), Dept. EECS, University of Michigan, Ann Arbor, May, 2001,

http://www.eecs.umich.edu/ hero/det_est.html.

B. Ma, A. O. Hero, J. Gorman, and O. Michel, “Image registration with minimal spanning tree algorithm,” in JEEE

Int. Conf. on Image Processing, Vancouver, BC, Oct. 2000.

A.O. Hero and O. Michel, “Estimation of Rényi information divergence via pruned minimal spanning trees,” in

IEEE Workshop on Higher Order Statistics, Caesaria, Israel, June 1999.

A. Gersho, “Asymptotically optimal block quantization,” IEEE Trans. on Inform. Theory, vol. IT-28, pp. 373-380,

1979.

32



[12]

[13]

[14]

[15]

[16]

[17]

[13]

[19]

[20]

[21]

[22]

(23]

[24]

D. N. Neuhoff, “On the asymptotic distribution of the errors in vector quantization,” IEEE Trans. on Inform. Theory,

vol. IT-42, pp. 461-468, March 1996.

S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics.

Springer-Verlag, Berlin Heidelberg, 2000.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, The traveling salesman problem, Wiley, New

York, 1985.

G.T. Toussaint, “The relative neighborhood graph of a finite planar set,” Pattern Recognition, vol. 12, pp. 261-268,

1980.

C.T. Zahn, “Graph-theoretical methods for detecting and describing Gestalt clusters,” IEEE Trans. on Computers,

vol. C-20, pp. 68-86, 1971.

David Banks, Michael Lavine, and H. Joseph Newton, “The minimal spanning tree for nonparametric regression
and structure discovery,” in Computing Science and Statistics. Proceedings of the 24th Symposium on the Interface,

H. Joseph Newton, Ed., pp. 370-374. 1992.

R. Hoffman and A. K. Jain, “A test of randomness based on the minimal spanning tree,” Pattern Recognition Letters,

vol. 1, pp. 175180, 1983.

M. T. Dickerson and D. Eppstein, “Algorithms for proximity problems in higher dimensions,” Comput. Geom.

Theory and Appl., vol. 5, no. 5, pp. 277-291, 1996.

B. D. Ripley, Pattern recognition and neural networks, Cambridge U. Press, 1996.

N. A. Cressie, Statistics for spatial data, Wiley, NY, 1993.

A. Gersho and R. M. Gray, Vector quantization and signal compression, Kluwer, Boston MA, 1992.

J. M. Steele, “Growth rates of euclidean minimal spanning trees with power weighted edges,” Ann. Probab., vol.

16, pp. 1767-1787, 1988.

W. T. Rhee, “A matching problem and subadditive Euclidean functionals,” Ann. Applied Probab., vol. 3, pp. 794—

801, 1993.

33



[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

R. Ravi, M.V. Marathe, D.J. Rosenkrantz, and S.S. Ravi, “Spanning trees — short or small,” SIAM Journal on

Discrete Math, vol. 9, pp. 178-200, 1996.

J. Mitchell, “Guillotine subdivisions approximate polygonal subdivisions: a simple new method for the geometric

k-MST problem,” in Proc. of ACM-SIAM Symposium on Discrete Algorithms, 1996, pp. 402—408.

S. Arora, “Nearly linear time approximation schemes for Euclidean TSP and other geometric problems,” in Pro-

ceedings of IEEE Symposium on Foundations of Computer Science, 1997.

R. M. Karp, “Probabilistic analysis of partitioning algorithms for the traveling salesman problem,” Oper. Res., vol.

2, pp. 209-224, 1977.

R. M. Karp and J. M. Steele, “Probabilistic analysis of heuristics,” in The Traveling Salesman Problem: A guided
tour of combinatorial optimization, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, Eds., pp.

181-206. Wiley, New York, 1985.

C. Huber, “Lower bounds for function estimation,” in Festschrift for Lucien Le Cam, D. Pollard, E. Torgersem, and

G. Yang, Eds., pp. 245-258. Springer-Verlag, New York, 1997.

Bin Yu, “Assouad, Fano, and Le Cam,” in Festschrift for Lucien Le Cam, D. Pollard, E. Torgersem, and G. Yang,

Eds., pp. 423-435. Springer-Verlag, New York, 1997.

O. Lepski, A. Nemirovski, and V. Spokoiny, “On estimation of the L, norm of a regression function,” Probab.

Theory Relat. Fields, vol. 113, pp. 221-253, 1999.
D. Pollard, “Asymptopia,” http://www.stat.yale.edu/ pollard/Asymptopia/.

L. Birgé and P. Massart, “Estimation of integral functionals of a density,” The Annals of Statistics, vol. 23, no. 1,

pp. 11-29, 1995.

G. Kerkyacharian and D. Picard, “Estimating nonquadratic functionals of a density using Haar wavelets,” The

Annals of Statistics, vol. 24, no. 2, pp. 485-507, 1996.

B. Laurent, “Efficient estimation of integral functionals of a density,” The Annals of Statistics, vol. 24, no. 2, pp.

659-681, 1996.

34



[371] M. Neumann, “Multivariate wavelet thresholding: a remedy against the curse of dimensionality,” Preprint no. 229,

Weierstrass Institute, Berlin, 1996.

[38] W. P. Ziemer, Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, Graduate

Texts in Mathematics. Springer-Verlag, New York, 1989.

35



