
Coding and Channel Estimation for Block

Fading Channels

by

Salam A. Zummo

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
2003

Doctoral Committee:
Professor Wayne Stark, Chair
Assistant Professor Achilleas Anastasopoulos
Assistant Professor Brian Noble
Associate Professor Kim Winick





c© Salam A. Zummo 2003
All Rights Reserved



In memory of my parents

and

To my siblings

ii



ACKNOWLEDGMENTS

First thankfulness and praises are for Allah, the most merciful, and most

compassionate. He blesses me with his ever-enduring mercies.

My great and deep appreciation go to my advisor Prof. Wayne Stark for

his time devoted to my thesis completion and research development. His way

of thinking and his extensive knowledge in the field of communications have

been valuable resources. I would like to thank my thesis committee members

Prof. Achilleas Anastasopoulos, Prof. Brian Noble and Prof. Kim Winick for

their valuable time devoted in reviewing and correcting my thesis.

I would like to thank King Fahd University of Petroleum and Minerals for

supporting me in completing my PhD program. I thank the Ministry of Higher

education and the Saudi Cultural Attache at the USA for their support. Spe-

cial thanks go to his Royal Highness the ambassador of the Kingdom of Saudi

Arabia to the USA and to Dr. Jamil Makhadmi for their support.

This work was supported in part by the National Science Foundation under

grant ECS-9979347 and the Office of Navel Research under grant N00014-03-

1-0232.

My heartful thanks go to the memory of my parents for their prayers and

encouragement. I wish to express my deep appreciation to my siblings for their

support throughout my academic life. The unlimited support of my family

made difficult tasks achievable.

I am grateful to my colleagues at the wireless communications lab and my

friends in Ann Arbor for the unforgettable times we spent together. I benefited

from discussing diverse subjects related to work and life in general.

iii



PREFACE

Wireless communication channels are commonly modeled by time-varying

random processes that exhibit memory. A simple model is the block fading

channel model. In this thesis, we derive a union bound on the performance of

binary coded systems over block fading channels. Noncoherent and coherent

receivers are considered with different assumptions on the channel side infor-

mation (SI) at the receiver. We derive the union bound for Rayleigh, Rician

and Nakagami distributed block fading channels. Systems employing single

and multiple transmit antennas are considered. From the results, the tradeoff

between channel diversity and channel estimation is investigated. Moreover,

we study the effect of the parameters of the channel and the space diversity on

the optimal channel memory.

As an effort to solve the channel estimation problem in multi-antenna trans-

mission over block fading channels, we derive a pilot-aided iterative receiver

for joint decoding and channel estimation. In the receiver, initial channel es-

timation is obtained using orthogonal pilot sequence insertion, and then soft

information from the decoder is used to update the estimation. Results show

that using 3 iterations in the iterative receiver results in a performance close

to that of the best achievable performance.

Trellis space-time (ST) codes using the I-Q encoding scheme provide a large

time diversity. For performance evaluation and decoding, the “super-trellis” of

the composite code is necessary which is too complex in general. In this thesis,

the performance of I-Q ST codes is analyzed using the transfer functions of the

component codes. Moreover, two low-complexity iterative receivers for I-Q ST
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codes are proposed and compared to the optimal decoding in complexity and

performance. Results show that using the iterative receivers with 3 iterations

provide most of the coding gain of the optimal decoding.
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CHAPTER 1

Introduction

1.1 Motivation

Emerging multi-media and internet applications require transmitting at

high data rates with good quality. The role of wireless communication in infor-

mation exchange is growing rapidly because of increased demand for mobility.

Since limited physical resources are shared by many users in wireless net-

works, new technologies that are extremely efficient with respect to both power

consumption and bandwidth should be deployed. A serious challenge to having

good communication quality in wireless systems is the time-varying fading en-

vironments that wireless systems experience. When the signal is transmitted,

it is reflected and scattered over surrounding objects, which causes the signal

to be received over many different paths. These paths can add constructively

or destructively. When they add destructively the received signal-to-noise ra-

tio (SNR) can drop severely. Error correcting codes and diversity are standard

approaches to mitigate multipath fading.

The fundamental theory of error correcting codes is often traced back to

Shannon, who proved in [1] that data communications with rates below chan-

nel capacity and arbitrarily low error rates can be achieved over noisy channels

by encoding the information properly. Encoding refers to imposing a structured

redundancy on the information prior to transmission. At the receiver, this re-
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dundancy is used to correct errors imposed by the channel. While Shannon’s

results demonstrated the existence of good error correction codes, it has not

given guidelines on how to construct such codes. Since Shannon’s paper, most

of the research on communication theory focused on inventing channel codes

with practical encoders and decoders. Recently, codes approaching the channel

capacity for additive white Gaussian noise (AWGN) channels have been discov-

ered such as turbo codes [2] and low-density parity-check (LDPC) codes [3, 4].

In an AWGN channel, which is often used to model wired communication sys-

tems, a noise sample from a white Gaussian random process is added to the

received signal at the receiver.

In wireless environments, multipath reception causes the energy of the re-

ceived signal to be varying randomly. A standard model for multipath fading

is the Rayleigh distribution. Turbo and LDPC codes have achieved perfor-

mance close to the channel capacity in memoryless Rayleigh fading environ-

ments [5, 6]. However, wireless communication channels are commonly mod-

eled by slowly time-varying random processes. In this thesis, we are inter-

ested in narrowband wireless channels, where the transmission bandwidth is

much smaller than the carrier frequency. Wireless channels are characterized

mainly by two parameters; namely, the coherence time and the coherence band-

width [7]. The coherence time of a fading channel is the time duration in which

the fading remains almost constant. Similarly, the coherence bandwidth is the

frequency band in which the fading is almost constant. The channel is said to

be time-selective if the symbol duration is long compared to the coherence time

of the channel. Also, frequency-selective channels arise when the transmission

rate is large compared to the coherence bandwidth of the channel. Channels

with memory result when the channel varies slowly compared to the symbol

duration. Thus the channel may remain constant during the transmission of a

block of symbols. Furthermore, if the fading changes independently from one

block to another, the channel is referred to as a block fading channel [8,9].

In modern wireless communications, digital information signals are divided
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into small size frames and then transmitted. Each frame is usually encoded,

modulated and then carried by a high-frequency carrier over a radio link. At

the receiver, the reverse processes are performed by a demodulator and a chan-

nel decoder. The effective channel diversity can be thought of as the number of

independent fading realizations available at the receiver to decode a frame. If

insufficient number of realizations is available, the decoder will not be able to

average over the channel statistics. In such environments, the performance of

coded systems is degraded severely. However, independent fading realizations

can be provided using diversity techniques [10]. In the simplest form, diver-

sity can be obtained by transmitting the signal more than once and using the

multiple copies of the received signal to improve the error rate. Repeating the

transmission can be achieved over time, frequency or space. From a coding

perspective this can be viewed as a repetition code, and hence more bandwidth

efficient codes can be exploited to improve the performance. In general, en-

coding the information using an error correcting code is a way to provide time

diversity at the receiver.

A common approach to break the channel memory and to spread burst er-

rors in the decoder is to interleave the coded sequence prior to transmission.

Conventionally, infinite interleaving is assumed in the literature [5, 11, 12] in

order to simplify code design and performance analysis. However, infinite in-

terleaving is impossible practically for delay-sensitive applications. Besides,

using the infinite interleaving assumption in the performance analysis may

not reflect the asymptotic behavior of the coded system at high SNR. If a co-

herent receiver is used, the phase of the fading process is needed for decoding.

In general, Channel side information (SI) is defined as the phase and ampli-

tude of the fading process. Thus if the receiver knows the channel SI perfectly,

large channel diversity improves the system performance resulting in an op-

timal channel memory of unity. On the other hand, if the receiver estimates

the channel, long channel memory provides more observations for each fad-

ing realization which permits a better channel estimation. Therefore, longer
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channel memory improves the performance if the frame size is infinite. How-

ever, if the frame size is finite, there exists a fundamental tradeoff between the

channel diversity and channel estimation [13]. As the channel memory length

increases, the channel diversity is reduced but the channel estimation becomes

easier since more observations of each fading realization is available. On the

converse, short channel memory increases the number of independent fading

realizations available to the decoder, and hence it is able to average out the

channel behavior at the cost of less accurate channel estimation.

In [13], Worthen et al. used the error exponent to find the optimal memory

length of a communication system over some simple block memory channels.

However, a method to analyze the performance of specific codes over block fad-

ing channels with arbitrarily chosen frame size and channel memory length is

needed. Also, such a method is crucial in optimizing the channel memory of a

coded system employing iterative decoding and channel estimation for exam-

ple. In this thesis, we propose a union bound on the performance of binary con-

volutional and turbo codes over block fading channels. In deriving the bound,

we assume uniform interleaving of the coded sequence prior to transmission

over the channel and compute the distribution of error bits over the fading

blocks. In order to evaluate the bound, the pairwise error probability corre-

sponding to specific distribution patterns of the fading blocks is derived under

different assumptions on the channel SI at the receiver. The proposed bound

is used with imperfect SI at the receiver to investigate the tradeoff between

the channel diversity and channel estimation, and hence optimize the memory

length at which the system should operate.

If a line-of-site exists between the transmitter and receiver in addition to

the multipath reception, the fading process is modeled by a Rician distribution

[14]. In this model, the received signal is composed of two signal-dependent

components; namely the specular and diffuse components. The specular com-

ponent is due to the line-of-site reception and the diffuse component results

from multipath reception. As the ratio of specular-to-diffuse component energy
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increases, the channel approaches the Gaussian channel, i.e., no fading. For

Rician channels the importance of channel diversity becomes less significant

as the specular-to-diffuse ratio increases because the fading channel becomes

less random. As in the Rayleigh fading case, a method is needed to analyze the

performance of coded systems over block fading channels with Rician distribu-

tion. In this thesis, the performance of coded systems over Rician block fading

channels is studied using the union bound for block fading channels. Further-

more, we investigate the effect of channel memory on the system performance

and its relation to the parameters of the channel such as the specular-to-diffuse

ratio of the channel. The pairwise error probabilities for coherent and nonco-

herent receivers are derived. Furthermore, the effect of the specular-to-diffuse

ratio of a Rician channel on the optimal channel memory is investigated.

Another popular model for the fading process is the Nakagami distribu-

tion [15], which provides a family of distributions that are well matched to

measurements under different propagation environments [16, 17]. Nakagami

distribution is characterized by the Nakagami parameter which indicates the

fading severity. As the fading parameter of a Nakagami distributed channel

is increased, the significance of diversity decreases because the channel ap-

proaches the no fading channel. Block fading channels with Nakagami distri-

bution are encountered in many communication systems. Thus it is essential

to analyze the performance of such systems. In this thesis, the performance

of coded systems over Nakagami block fading channels is analyzed using the

union bound for block fading channels. The effect of channel memory on the

system performance and its relation to the channel fading characteristics is

investigated. The pairwise error probability is derived for both coherent and

noncoherent receivers.

An alternative approach to using error correcting codes to provide the re-

ceiver with diversity is to use multiple antennas at the transmitter or receiver.

In transmit diversity [18], the information can be sent over different transmit

antennas. When the information is encoded and different signals are trans-
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mitted over the transmit antennas, the resultant system is referred to as a

space-time (ST) code [19]. A simple and elegant space-time block code (STBC)

was proposed by Alamouti [20] to provide diversity at the transmitter. This

idea was soon generalized by Tarokh et al. [21] to general number of transmit

antennas. A differential scheme for STBCs that relaxes the need to estimate

the channel was proposed in [22] at the cost of a 3-dB loss in the received SNR.

Since the use of ST codes was originally initiated to mitigate fading channels

with block fading behaviour, it is of interest to analyze the performance of such

systems. In this thesis, the union bound for block fading channels is extended

to coded STBC with perfect and imperfect SI at the receiver. From this, the

effect of increasing the number of transmit antennas on the SNR degradation

due to channel memory is investigated. It is well known [23] that channel es-

timation becomes more crucial to the performance of space-time trellis codes

as the number of transmit antennas increases. In this thesis, a similar result

for STBCs is derived and used with the union bound to investigate the trade-

off between channel diversity and channel estimation for binary coded STBCs

over block fading channels. It is shown that increasing the number of trans-

mit antennas provides more space diversity at the cost of more difficult channel

estimation. Again, an interesting tradeoff between channel diversity and chan-

nel estimation exists. This tradeoff is investigated as well as the effect of the

number of transmit antennas on the optimal channel memory.

Conventionally, channel estimation is performed independently from decod-

ing. After the astonishing performance of the low complexity iterative decoders

of turbo and LDPC codes, iterative receivers that jointly decode and estimate

the channel were considered by several research groups. Examples of iterative

receivers for joint decoding and channel estimation for single-antenna systems

appeared in [24–27]. Similar receivers for multiple antenna systems are found

in [28–32]. These iterative receivers use hard decisions from the decoder to

update the channel estimation. In this thesis, an iterative receiver for joint

decoding and channel estimation of coded multi-antenna systems is proposed.
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The receiver uses soft information from the decoder to update channel estima-

tion.

For applications that require low-complexity receivers and short delays,

trellis codes are good candidates. If a trellis code is used over a block fading

channel and the coded sequence is interleaved, then for low-to-medium SNR

values, the channel can be approximated by a memoryless channel provided

that the number of independent fading blocks is several times larger than the

constraint length of the code. For this observation and due to the difficulty of

optimizing trellis codes for block fading channels, we consider in this thesis a

class of ST trellis codes that are appropriate for independent fading channels.

These codes are referred to as I-Q ST codes [33], in which the I and Q channels

are encoded independently using two independent encoders. The super-trellis

of the composite code is necessary for performance evaluation and decoding,

which is too complex in general. In this thesis, the pairwise error probabil-

ity as well as the coding and diversity gains of I-Q ST codes are expressed as

functions of the transfer functions of the component codes. Furthermore, the

geometrical uniformity of I-Q ST codes is derived from the geometrical unifor-

mity of the component codes. We propose two iterative receivers for I-Q ST

codes. The two receivers are compared to the optimal decoding in complex-

ity and performance. Results show that using 3 iterations in both receivers

provide performance close to optimal decoding.

1.2 Block Fading Channel Model

In this section, we describe the channel model used throughout the the-

sis, i.e., the block fading channel model. Wireless communication channels are

usually modeled by discrete-time systems. In this model, the signal is filtered

using a matched filter and the output is sampled every T seconds. An equiva-
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lent model for the matched filter sampled output is given by

yl = hlsl + zl, l = 1, . . . , N (1.1)

where N is the frame size, sl is the transmitted signal during the time interval

l and zl is a complex Gaussian random variable with zero mean and variance

N0, i.e., CN (0, N0). The coefficient hl = alejθl is a sample of the fading process

whose phase θl is uniformly distributed over [0, 2π). Here, j =
√
−1. In this the-

sis, the amplitude al is assumed to have either Rayleigh, Rician or Nakagami

distribution.

A channel is said to be independent fading channel if {hl} are independent

random variable. On the other hand, if the fading process is constant for a

block of symbols, and changing independently from a block to another, the

channel is said to be a block fading channel [8, 9]. The block of symbols for

which the fading process is constant is called a fading block. Examples of sys-

tems modeled by block fading channels include orthogonal-frequency division

multiplexing (OFDM), frequency hopping (FH) and time-division multiplexing

(TDM) systems. In these systems, a transmission frame of length N symbols

is affected by F independent fading realizations, i.e., {hf}F
f=1, resulting in a

block of length m = $N
F % symbols being affected by the same fading realization.

The fading process remains constant for m symbols if the coherence time of the

channel is much longer than the transmission duration of m symbols. This is a

valid assumption for a practical range of mobility speeds and carrier frequen-

cies. The independent assumption between different fading blocks is justified

in the cases when FH or OFDM systems are used with the spacing between the

carriers is larger than the coherence bandwidth of the channel. In these cases,

each carrier will experience independent fading. In this model, F represents

the number of hops in a FH system or the number of carriers in an OFDM

transmission. Equivalently, m is the hop length in a FH system and the burst

length in an OFDM system.
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1.3 Channel Diversity vs. Channel Estimation

In this section, the tradeoff between the channel diversity and channel es-

timation is explained. In the block fading channel model, the effective chan-

nel diversity available at the decoder is defined as the number of independent

channel realizations observed by a frame, i.e., F . If channel SI is available at

the receiver, maximizing the effective channel diversity maximizes the perfor-

mance. In general, a larger channel diversity makes the system performance

close to the performance of the system over an AWGN channel with an SNR

value equal to the expected value of the fading process. This is because the

probability of bad channel conditions becomes smaller as the number of inde-

pendent fading realizations increases. Moreover, fewer number of independent

fading realizations increases the chance for experiencing poor channel real-

izations and hence the performance of a coded system degrades. Therefore,

maximum channel diversity is obtained when the channel memory is smallest,

i.e., m = 1. This is equivalent to the infinite interleaving assumption.

On the other hand, if channel estimation is performed at the receiver, longer

memory permits better observation of the channel and hence improves the es-

timation quality. This suggests that there is a fundamental tradeoff between

effective diversity and channel estimation and an optimal memory length ex-

ists for each coded system. Information theoretic bounding techniques were

used in [27] to demonstrate this tradeoff for single-antenna systems. In this

thesis, the tradeoff between channel diversity and channel estimation is in-

vestigated for different coded systems employing single and multiple transmit

antennas, and the corresponding optimal channel memory is approximated.

1.4 Thesis Outline

In Chapter 2, we briefly review binary and ST coded systems. The maxi-

mum likelihood receivers of these codes are considered with different assump-
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tions on the availability of channel SI at the receiver. Two binary codes are con-

sidered; namely, convolutional and turbo codes. Binary coded systems employ-

ing single and multiple transmit antennas are described. In addition, multi-

antenna systems employing trellis and turbo ST codes are presented.

In Chapter 3, a union bound on the performance of binary coded systems

employing single and multiple transmit antennas over block fading channels

is derived. The pairwise error probability required for computing the bound

is derived for the cases of coherent detection with perfect SI, imperfect SI and

no amplitude SI at the receiver. Moreover, we consider the case of noncoher-

ent detection using square-law combining. The union bound is evaluated for

turbo and convolutional codes for different number of transmit antennas. From

the obtained results, the effect of increasing the space diversity on the system

performance is investigated. Moreover, the tradeoff between channel effective

diversity and channel estimation is discussed as well as the relation of this

tradeoff to the system space diversity.

In Chapter 4, the union bound for block fading channel is extended to more

general fading models; namely, the Rician and Nakagami fading models. Ex-

pressions for the corresponding pairwise error probabilities for coherent detec-

tion with different assumptions on the channel SI at the receiver are derived.

Also, noncoherent receivers employing square-law combining are considered.

The effect of channel memory on the system performance and its relation to

the parameters of the channel such as the specular-to-diffuse ratio in Rician

channels and the fading characteristics in Nakagami channels are investi-

gated. Furthermore, the tradeoff between the channel diversity and channel

estimation is investigated as well as the effect of the specular-to-diffuse ratio

of the channel on the optimal channel memory.

In Chapter 5, we propose an iterative receiver for joint decoding and channel

estimation in ST coded systems. The performance of the receiver is simulated

for turbo and trellis ST codes and the effect of the different parameters of the

receiver on its performance and convergence is discussed. In addition, the cases

10



of large frame sizes and large of number transmit antennas are considered.

The optimal memory length for trellis and turbo ST code is investigated.

Chapter 6 considers the performance analysis and iterative receivers for I-

Q trellis ST codes. The pairwise error probability of I-Q ST codes is derived as

a function of the transfer functions of the I and Q codes, instead of that of the

product of their trellises, i.e., the “super-trellis”. Moreover, two low-complexity

iterative receivers are proposed and their performance and complexity are com-

pared to those of the optimal decoder.

Finally in Chapter 7, we briefly summarize the main conclusions from the

thesis and point out possible future research directions.
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CHAPTER 2

Channel Codes for Fading Channels

Error correcting codes have been widely used in communication systems to

enhance performance. Depending on the application and the channel under

consideration, the system designer uses different channel codes. In this chap-

ter, we review two classes of channel codes that are used throughout the thesis;

namely, binary and space-time (ST) codes. In Section 2.1, binary coded systems

utilizing single and multiple transmit antennas are described. Convolutional

and turbo encoders are described and different receivers are derived for differ-

ent assumptions on the channel side information (SI). Particularly, coherent

receivers with perfect SI and no amplitude SI are considered as well as nonco-

herent square-law combining receivers. In Section 2.2, ST coded systems are

considered. Trellis and turbo ST encoders and their corresponding receivers

are described.

2.1 Binary Coded Systems

In this section, binary coded systems employing single and multiple trans-

mit antennas are described. The general block diagram of a binary coded sys-

tem over a fading channel is shown in Figure 2.1. The transmitter consists of

a binary encoder (e.g., convolutional or turbo), random interleaver, a modula-

tor and a multi-antenna transmission matrix. Time is divided into frames of
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Figure 2.1: The structure of the binary coded system with a possible use of
multi-antenna transmission.

duration NT , where T is the transmission interval of a bit. Throughout the

thesis, the words “sequence” and “codeword” will be used interchangeably to

mean a transmission frame. In each time interval of duration kT , a rate-Rc en-

coder maps k information bits into n coded bits, where Rc = k
n is the code rate.

Each coded bit is modulated to generate a signal using an equal-energy bi-

nary modulation. The modulation schemes considered in this thesis are binary

phase-shift keying (BPSK) for coherent detection and binary frequency-shift

keying (BFSK) for noncoherent detection. The channel we adopt is a block fad-

ing channel. Recall that in a block fading channel, each frame is subject to

F independent fading realizations, where a block of length m = $N
F % signals

undergoes the same fading realization. The coded bits are interleaved prior to

transmission over the channel in order to spread burst errors in the decoder,

which result from low instantaneous SNR at the output of the demodulator due

to fading. In the following sections, transmitters and receivers for binary coded

systems employing single and multiple transmit antennas are described.

2.1.1 Single-Antenna Systems

In single-antenna systems, the modulated sequence is transmitted using

one antenna. Coherent or noncoherent detection can be used at the receiver to

detect the received sequence. In coherent receivers, the matched filter sampled
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output at time l in the f th fading block is given by

yf,l =
√

Eshfsf,l + zf,l, (2.1)

where Es is the average received energy, sf,l = (−1)cf,l, where cf,l is the corre-

sponding coded bit, and zf,l is an additive white noise modeled as indepen-

dent zero-mean complex Gaussian random variables with variance N0, i.e.,

zf,l ∼ CN (0, N0). The coefficient hf is the channel gain in fading block f which

is modeled as complex Gaussian CN (0, 1) and is written as hf = af exp(jθf),

where af and θf are Rayleigh and uniform distributed, respectively.

The receiver employs maximum likelihood (ML) sequence decoding which

is optimal for frame error probability. In this rule, the decoder chooses the

codeword S = {sf,l, f = 1, . . . , F, l = 1, . . . , m} that maximizes the likelihood

function p(Y|S), where Y = {yf,l, f = 1, . . . , F, l = 1, . . . , m}. In coherent recep-

tion, some information about the channel phase and amplitude are available.

The case where perfect SI is available at the receiver is a hypothetical scenario

that predicts the best performance of the code. A practical assumption consid-

ers estimating the channel amplitude and phase resulting in imperfect SI at

the receiver. This case is discussed in Chapter 3. If perfect SI is available at

the receiver, the decoder chooses the codeword S that maximizes the following

metric

m(Y,S) =
F∑

f=1

m∑

l=1

afsf,lRe{yf,l}, (2.2)

where Re{.} represents the real part of a complex number. In the literature,

coherent detection with no amplitude SI was considered extensively as an in-

termediate case between coherent detection with perfect SI and noncoherent

detection, where both amplitude and phase are not available at the receiver. A

suboptimal decoding metric was used in [12,34] due to its analytical tractabil-
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ity, where the decoder chooses the codeword S that maximizes

m(Y,S) =
F∑

f=1

m∑

l=1

sf,lRe{yf,l}. (2.3)

In noncoherent systems, BFSK signaling is used where the carrier frequency

of the modulated signal is set to be one of two frequencies according to whether

the coded bit c = 0, 1. The carrier frequencies are chosen such that the resul-

tant signals are orthogonal. At the receiver, square-law combining [35] is em-

ployed for each received signal resulting in a suboptimal receiver with respect

to minimizing the frame error probability. The outputs of the demodulator are

represented by

r(I,0)
f,l =

√
Esafδ(cf,l, 0) cos(θf ) + η(I,0)

f,l

r(Q,0)
f,l =

√
Esafδ(cf,l, 0) sin(θf) + η(Q,0)

f,l (2.4)

r(I,1)
f,l =

√
Esafδ(cf,l, 1) cos(θf ) + η(I,1)

f,l

r(Q,1)
f,l =

√
Esafδ(cf,l, 1) sin(θf) + η(Q,1)

f,l (2.5)

where r(I,c)
f,l and r(Q,c)

f,l for c = 0, 1 correspond to the correlation of the received

signal with the inphase and quadrature dimensions of the signal corresponding

to a coded bit c. In (2.5), θf is the unknown phase of the received signals in block

f , δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise; and η(I,0)
f,l , η(Q,0)

f,l η(I,1)
f,l and η(Q,1)

f,l

are independent variables with N (0, N0
2 distribution. The decoder chooses the

codeword S that maximizes

m(R,S) =
F∑

f=1

m∑

l=1

(r(I,c)
f,l )2 + (r(Q,c)

f,l )2, (2.6)

where R = {r(I,c)
f,l , r(Q,c)

f,l , f = 1, . . . , F, l = 1, . . . , m}. Note that this decoder makes

no use of channel SI in decoding.
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2.1.2 Multi-antenna Systems

In the discussion to follow we describe multi-antenna transmitters that

concatenate error correcting codes with space-time block codes (STBC)s [20].

Throughout the thesis, small letters in bold are used to denote column vectors.

Moreover, we consider systems employing nt transmit antennas and single re-

ceive antenna, but all derivations and results to be presented apply to multiple

receive antennas. After encoding and interleaving, each nt signals are mapped

into a nt × nt transmission matrix Gnt as shown below for the cases of nt = 2

and 4

G2 =



 s1 s2

−s2 s1



 , and G4 =





s1 s2 s3 s4

−s2 s1 −s4 s3

−s3 s4 s1 −s2

−s4 −s3 s2 s1




. (2.7)

More examples of real and complex orthogonal matrices were presented in [21]

for different values of nt. Note that the rows of Gnt are orthogonal to each other

to enable linear complexity detection [20]. The transmission of Gnt takes place

in a time slot of duration ntT , where the ith row of Gnt is transmitted in the ith

time interval of the time slot using the nt transmit antennas. Equivalently, the

ith column of Gnt is transmitted over the ith transmit antenna during the time

slot of duration ntT . Thus the resulting STBC has full rate, i.e., one coded bit

is transmitted every T seconds.

To be able to detect STBCs, the fading process from each antenna should

remain constant for at least one time slot, i.e., nt time intervals. This constrains

the channel memory length to be a multiple of nt, where each fading block

contains m
nt

time slots each of length nt. In the rest of the thesis, the subscript

of Gnt is omitted to simplify notation. The received vector in time slot l of the
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f th fading block is given by

yf,l =
√

EsGf,lhf + zf,l, (2.8)

where zf,l is a length-nt column random vector with a distribution CN (0, N0I)

and I denotes the nt × nt identity matrix. The vector hf contains the channel

gains from the transmit antennas in fading block f and is modeled as CN (0, I).

This indicates that the gains from different transmit antennas are uncorre-

lated, which is reasonable if the distance separating different antennas exceeds

half the wavelength of the carrier [10]. The receiver employs sequence decod-

ing based on the detection scheme of STBC in [20]. Equivalently, the decoder

chooses the codeword S that maximizes the metric

m(Y,S) =
F∑

f=1

m/nt∑

l=1

Re{y∗
f,lGf,lhf}, (2.9)

where (.)∗ denotes the complex conjugate of a complex vector. The channel

codes that are concatenated with the single and multiple antennas transmit-

ters are described as follows.

2.1.3 Convolutional Codes

A popular channel code with an easy encoding scheme is the convolutional

code. A convolutional encoder is a finite state machine consisting of v shift

registers. During a time interval of length T , the encoder receives an input

vector u = {ul}k
l=1 of length k and produces a code vector c = {cl}n

l=1 of length n.

The lth coded bit among the n coded bits at the output of the encoder is given

by

cl = u1 +
v∑

j=1

gl,jrj , mod 2, (2.10)

where rj is the content of the jth shift register, and gl = {gl,j}v
j=0 is the generator

polynomial of the lth coded bit where gl,j ∈ {0, 1}. The generator polynomials are
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Figure 2.2: The encoder of a rate-12 (5,7) NSC.

usually expressed in octal numbers, e.g., a generator polynomial gi = 1101 is

represented as gi = 15. In general, a convolutional code is represented using its

generator polynomials as (g1, g2, . . . , gn). The encoder for a (5,7) convolutional

code is shown in Figure 2.2. This code is non-systematic code (NSC) since

the coded bits are not partitioned into information (systematic) bits and parity

bits. Convolutional codes which partition the information and parity bits are

referred to as systematic codes.

A recursive systematic code (RSC) is a systematic code with feedback in the

encoder. The encoder of a RSC with k = 1 is shown in Figure 2.3. An RSC

code is represented using its generator polynomials as (g1, . . . , gn/gb), where

gb = {gb,j}v
j=1 is the feedback generator polynomial. In Figure 2.3, the modified

input ũ is given by

ũ = u +
v∑

j=1

gb,jrj , mod 2. (2.11)

The coded bits are given by

cl = ũ +
v∑

j=1

gl,jrj , mod 2. (2.12)

The frame error probability is minimized by employing a ML sequence decoder

using a Viterbi algorithm [11]. The Viterbi algorithm uses the metrics de-

scribed in Section 2.1.1 for different assumptions on channel SI at the receiver.
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Figure 2.3: The encoder of a rate-12 (5/7) RSC.

2.1.4 Turbo Codes

Originally, turbo codes referred to parallel concatenated codes [2]. The gen-

eral turbo encoder is shown in Figure 2.4, which consists of two constituent

codes separated by an interleaver. The constituent code can be a convolutional

or a block code. If the constituent codes are block codes, the resultant code is

referred to as a product code [36], where parallel concatenation of convolutional

codes results in turbo codes [2]. A turbo code employing a RSC, with a respec-

tive feedforward and feedback generator polynomials of g and gb, is denoted by

(1, (g/gb), (g/gb)). The information sequence is encoded by the first constituent

code, and by second constituent code after being randomly interleaved. The

systematic (information) sequence C as well as the parity sequences at the out-

put of the two constituent codes, C1 and C2 are multiplexed to form a length-N

codeword C. The overall code rate is Rc = k
2n+k , where n is the number of parity

bits at the output of each RSC and k is the number of input bits to the turbo

encoder in each time interval. Note that the interleaver size is Ñ = RcN .

The block diagram of the turbo decoder is shown in Figure 2.5. It consists

of two soft-input soft-output (SISO) decoders, one for each constituent code,

an interleaver similar to that used in the encoder and a deinterleaver that

reverses the effect of the interleaver. The decoder works iteratively and the

SISO blocks exchange soft information about information bits in each iteration.

Each SISO block employs a maximum aposteriori probability (MAP) rule which
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Figure 2.4: The block diagram of a turbo encoder.

computes the bit aposteriori probability p(ul|Y) of each bit. Using the BCJR

algorithm [2], the likelihood function of the bit ul is given by

Λl = log
p(ul = 1|Y)

p(ul = 0|Y)
, l = 1, . . . , Ñ , (2.13)

= log

∑

(m,m′ ):ul=1

γl(m, m
′
)αl−1(m

′
)βl(m)

∑

(m,m′ ):ul=0

γl(m, m
′
)αl−1(m

′
)βl(m)

+ Λe
l , l = 1, . . . , Ñ , (2.14)

where Ñ is the length of the information sequence and γl(m, m
′
) = p(ys,l, yi,l|ul)

is the channel transition probability for a trellis transition from state m at time

l to state m
′
at time l+1 in the ith constituent code. The first part of Λl is due to

the contribution of the systematic bit and the constraint in the ith constituent

code, where the second part, i.e., Λe
l is the extrinsic information given by

Λe
l = log

p(ul = 1)

p(ul = 0)
, l = 1, . . . , Ñ , (2.15)

where p(ul = 0) and p(ul = 1) are the apriori probabilities for the bit ul to be

0 or 1, respectively, which are assumed to be equal in the first iteration. The

variables αl(m
′
) and βl(m) are the standard forward and backward recursions

in the BCJR algorithm [37]. For SISO decoder i, they are given by αl(m) =

p(S l = m, {ys}l
1, {yi}l

1) and βl(m) = p(Sl+1 = m, {ys}Ñ
l+1, {yi}Ñ

l+1), where p(Sl =
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Figure 2.5: The turbo decoder.

m, {ys}l
1, {yi}l

1) is the joint probability density function of the encoder being at

state m at time l and the sequences {ys}l
1 and {yi}l

1. A similar definition holds

for the function p(Sl+1 = m, {ys}Ñ
l+1, {yi}Ñ

l+1). The variables αl(m) and βl(m) are

computed in each SISO decoder, respectively as

αl(m) =
∑

m′

γl(m, m
′
)αl−1(m

′
), l = 1, . . . , Ñ , (2.16)

βl(m) =
∑

m′

γl+1(m, m
′
)βl+1(m

′
), l = 1, . . . , Ñ . (2.17)

In the final iteration, a decision is made on information bits according to

ûl =






0, if Λl ≤ 0,

1, if Λl > 0.
(2.18)

2.2 Space-Time Coded Systems

In this section we describe the ST coded systems. The section starts with

a general system description. Then, trellis and turbo ST codes are discussed.

The block diagram of the general ST coded system is shown in Figure 2.6. The

transmitter consists of a ST encoder, an interleaver, a modulator and nt trans-

mit antennas. During a frame transmission period of length NT , the input to

the transmitter is a length-N sequence U = {ul}N
l=1 of input vectors each of

length k. Each component of the input vector ul is assumed to be from a binary
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Figure 2.6: A general ST coded system.

alphabet. The ST encoder produces a length-N sequence S = {sl}N
l=1 of signal

vectors each of length nt. The ith element of each signal vector si
l is an element

of an M-ary signal constellation, such as MPSK or M-QAM, which is modulated

and transmitted using the ith transmit antenna in the time interval l. There-

fore, the overall system throughput is k/T bits/s. Before being modulated, the

signal vectors are interleaved to avoid burst errors in the decoder. Note that

we used s instead of c to denote the output of the encoder because each element

of s is a signal from a constellation as opposed to being a coded bit in the case of

binary codes. This notation is used for ST coded systems throughout the thesis.

The received signal at time interval l in fading block f is

yf,l =
√

Es

nt∑

i=1

hi
fs

i
f,l + zf,l, (2.19)

where Es is the average transmitted energy at each transmit antenna and zf,l

is an additive white noise modeled as CN (0, N0). The coefficient hi
f is the chan-

nel gain from the ith transmit antenna in fading block f , which is modeled as

CN (0, 1). As in the case of STBCs, it is assumed that the channel gains from

different transmit antennas are uncorrelated, i.e. E[hp
fh

q∗
f ] = 0 for p *= q, where

(.)∗ denotes the complex conjugate. The decoder employs a ML decoding rule

to minimize the frame error probability. Assuming perfect channel SI at the
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Figure 2.7: The encoder of a trellis ST code with k = 2 and v = 4.

receiver, the ML decoding rule chooses a codeword S that maximizes

m(Y,S) = −
F∑

f=1

m∑

l=1

∣∣∣yf,l −
√

Es

nt∑

i=1

hi
fs

i
f,l

∣∣∣
2

. (2.20)

2.2.1 Trellis ST Codes

The trellis an ST encoder considered in this thesis consists of k parallel

trellis subcodes, each encodes one of the k input bits. The resulting code has

a throughput of k/T bits/s. This is a generalization of the encoder described

in [38]. In general, each subcode has ṽ shift registers. The contents of the shift

registers of the qth subcode are denoted by {rq
l }ṽ

l=1, for q = 1, . . . , k. Note that

the total code memory is v = kṽ. Figure 2.7 shows a trellis encoder with k = 2

and v = 4. The signal vector at the output of the encoder at time l is given by

sl =
k∑

q=1

ṽ∑

j=1

ul−ja
q
l−j mod M, (2.21)

where aq = {aq,i}nt
i=1 is a length-nt vector with elements drawn from a set with

cardinality M , i.e., aq,i ∈ {0, 1, . . . , M − 1}.

For the purpose of iterative joint decoding and channel estimation to be

discussed in Chapter 5, a SISO decoder is necessary. Using the BCJR algorithm
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[37], soft information about signal vectors in the frame is computed using

p
(
sl

∣∣Y,H
)

= C
∑

(m,m′ ):sl

γl(m, m
′
)αl−1(m

′
)βl(m), l = 1, . . . , N, (2.22)

where C is a normalization constant, γl(m, m
′
) = p(yl|sl,hl) is the branch metric

for a trellis transition from state m at time l to state m
′
at time l + 1, where

hl contains the channel gains of the fading block in which time interval l lies.

The variables αl and βl are the standard forward and backward recursions in

the BCJR algorithm computed as in Section 2.1.4.

2.2.2 Turbo ST Codes

In [39], Yuan et al. presented ST turbo scheme consisting of two constituent

codes and an interleaver as shown in Figure 2.8. During a transmission inter-

val of length NT , the input to the encoder is a length-N/2 sequence of infor-

mation vectors U = {ul}N/2
l=1 , each of length k bits. The information sequence

is encoded using the first constituent code into S1 = {sl}N/2
l=1 . The information

sequence is randomly interleaved and encoded by the second constituent code

into S2. The two signal sequences out of the constituent codes are multiplexed

to form the signal frame S = {sl}N
l=1. Hence, the throughput of the resultant

turbo code is k
2 bits/s.

The constituent codes are recursive trellis ST codes that output signal vec-

tors of length nt, with elements from an M-ary signal constellation [39]. Figure

2.9 shows a recursive ST trellis with k = 2 and v = 4. In the lth time interval,

the qth recursive subcode in the ST encoder generates a modified input bit as

rq
0 = ul +

ṽ∑

j=1

rq
l−j mod 2. (2.23)
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Figure 2.8: The structure of a turbo ST encoder.

The output signal vector is given by

sl =
k∑

q=1

ṽ∑

j=1

rq
l−ja

q
l−j mod M, (2.24)

where ah is the same as that for non-recursive trellis ST codes.

The decoder of ST turbo codes is based on the turbo decoding principle [2],

in which two SISO modules are used, one for each constituent code. Aposteriori

probabilities of input vectors in the frame are computed as

p
(
ul

∣∣Y,H
)

= K
∑

(m,m′ ):ul

γl(m, m
′
)αl−1(m

′
)βl(m), l = 1, . . . , N, (2.25)

where γl(m, m
′
) = p(yl|ul,hl)p(ul) and p(ul) is the apriori probability of the in-

put vector ul computed in the other SISO block, which is set equal for all input

vectors in the first iteration. Information passed between the SISO modules is

extrinsic information which is the probability in (2.25) after removing the con-

tribution of p(ul). The algorithm runs for a number of iterations, and in the last

iteration the decoder chooses the information vector with the largest aposteri-

ori probability. For the purpose of iterative decoding and channel estimation,
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Figure 2.9: The encoder of a recursive trellis ST code with k = 2 and v = 4.

SISO modules compute soft information about signal vectors using (2.22).
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CHAPTER 3

Performance of Binary Coded Systems over

Rayleigh Block Fading Channels

In this chapter, a union bound for binary coded systems over block fading

channel is derived. Systems employing single and multiple transmit antennas

are considered. Conventionally, the performance of coded systems over ideally

interleaved channels is analyzed using the union bound, which was computed

by Viterbi [11] for specific convolutional codes using the weight enumerator of

the code. In [12], Divsalar et al. derived similar bounds for trellis codes with

perfect and no amplitude SI assumptions, where union bound for turbo codes

were presented by Hall et al. [5]. Multi-frequency trellis codes [40] are special

codes for block fading channels. At each state transition in multi-frequency

trellis codes, the encoder produces signals, each is transmitted over one fading

block. Hence, the number of output signals at each transition equals the num-

ber of fading blocks in the frame. This makes these codes too complicated for

arbitrary number of fading blocks. In [41], the union bound for multi-frequency

convolutional codes was evaluated. Several block and trellis codes designed for

the block fading channels were presented in [42]. Also, in [42], Knopp et al.

derived the outage probability of binary coded systems over block fading chan-

nels. Malkamaki et al. [43] derived random coding upper bounds on the av-

erage error probability of coded diversity over block fading channels. Also, an
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expression for the maximum achievable diversity as a function of the number

of fading blocks and the code rate was presented.

Despite the efforts to analyze the performance of coded systems over block

fading channels, a method for evaluating the error probability of binary codes

is needed. In this chapter, we derive a union bound on the error probability

of binary coded systems over block fading channels. Using the union bound

the channel memory can be optimized for a coded system employing iterative

decoding and channel estimation.

This chapter is organized as follows. In Section 3.1 the union bound for com-

munication systems employing arbitrary convolutional and turbo codes over

block fading channels is derived. Communication systems employing single

and multiple transmit antennas are considered in Sections 3.2 and 3.3, respec-

tively. Expressions for pairwise error probability of the coded systems are de-

rived for noncoherent and coherent receivers with different assumptions about

the channel SI at the receiver. Results are presented and discussed for each

case following the derivation of the corresponding result.

3.1 Union Bound

In this section, a union bound on the bit and frame error probability of con-

volutional and turbo codes over block fading channels is derived. Throughout

the thesis, the subscripts c, u and b are used to denote conditional, uncondi-

tional and bit error probabilities, respectively. For linear convolutional codes

with k input bits, the bit error probability is upper bounded [11] as

Pb ≤
1

k

N∑

d=dmin

wdPu(d), (3.1)

where dmin is the minimum distance of the code, Pu(d) is the unconditional

pairwise error probability defined as the probability of decoding a received se-

quence as a weight-d codeword given that the all-zero codeword is transmitted.
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In (3.1), wd =
∑N

i=1 iAi,d is the number of codewords with output weight d, where

Ai,d is the number of codewords with output weight d and input weight i. The

weight distribution {wd}N
d=dmin

is obtained directly from the weight enumerator

of the code [11]. For turbo codes with code interleaver size Ñ = RcN , the union

bound for a particular interleaver is difficult to evaluate. However, if we con-

sider the ensemble of codes generated by all possible interleavers, then we can

obtain a bound on the bit error probability of such a code by averaging over all

possible interleavers [44]

Pb ≤
Ñ∑

i=1

i

Ñ

(
Ñ

i

) N∑

d=dmin

p(i, d)Pu(d), (3.2)

where p(i, d) is the probability of having an input sequence with weight i and

an output codeword with weight d. For a turbo code with two component codes,

p(i, d) is given by

p(i, d) =
∑

{d0,d1,d2}:d0+d1+d2=d

p0(i, d0)p1(i, d1)p2(i, d2), (3.3)

where p0(i, d0) = δ(i, d0) represents the systematic bit; and pj(i, dj) = Ai,dj/
(

Ñ
i

)

for j = 1, 2, accounts for the code interleaver. The frame error probability of

turbo codes is given by

Pf ≤
Ñ∑

i=1

(
Ñ

i

) N∑

d=dmin

p(i, d)Pu(d). (3.4)

3.1.1 Union Bound for Block Fading Channels

Recall that in the block fading channel model, a frame of size N is affected

by F fading realizations. Thus the fading realization stays constant for a dura-

tion of a fading block composed of m = $N
F % signals. In this case, the pairwise

error probability Pu(d) is a function of the distribution of the d nonzero bits

over the F fading blocks. In the following, this distribution is quantified as-
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suming uniform channel interleaving of the coded bits over the fading blocks.

Figure 3.1 shows the distribution of the d nonzero bits in a weight-d erroneous

codeword over the F fading blocks. Denote the number of fading blocks with

weight v by fv and define w = min(m, d), then the fading blocks are distributed

according to the pattern f = {fv}w
v=0 if the following conditions are satisfied

F =
w∑

v=0

fv, d =
w∑

v=1

vfv. (3.5)

Denote by L = F − f0 the number of fading blocks with nonzero weights. Then

Pu(d) averaged over all possible fading block patterns is given by

Pu(d) =
d∑

L=#d/m$

L1∑

f1=1

L2∑

f2=1

. . .
Lw∑

fw=1

Pu(d|f)p(f), (3.6)

where

Lv = min

{
L −

v−1∑

r=1

fr,
d −
∑v−1

r=1 rfr

v

}
, 1 ≤ v ≤ w. (3.7)

The probability of a fading block pattern p(f) is computed using combinatorics

as

p(f) =

(
m
1

)f1
(

m
2

)f2 . . .
(

m
w

)fw

(
mF
d

) .
F !

f0!f1! . . . fw!
. (3.8)

The left factor of p(f) in (3.8) is the probability of distributing d nonzero bits

over F blocks with fv blocks having v bits, for possible values of v. The right

term of p(f) is the probability of having such combinations f = {fv}w
v=0 among

the F fading blocks. Using (3.6)-(3.8), the union bounds on the bit error proba-

bilities of convolutional and turbo codes over a block fading channels are found

by substituting (3.6) in (3.1) and (3.2), respectively. Also, substituting (3.6) in

(3.4) results in the union bound on the frame error probability of turbo codes

over block fading channels.

The number of summations involved in computing Pu(d) in (3.6) increases

as the channel memory length increases. Computing the bound by summing

all values of d ≤ N for a large channel memory length becomes a time consum-
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Figure 3.1: The distribution of the d nonzero bits in a d-weight error codeword
over the F fading blocks.

ing task. However, a good approximation to the union bound is obtained by

truncating it for a small value of d < N . This results in an approximation to

the error probability rather than an upper bound.

3.1.2 Pairwise Error Probability

The conditional pairwise error probability Pc(d|f) is defined as the proba-

bility of decoding a received sequence Y as a weight-d codeword Ŝ given that

the all-zero codeword S was transmitted and conditioned on the channel fading

gains. It is given by

Pc(d|f) = Pr
(
m(Y,S) − m(Y, Ŝ) < 0

∣∣H,S
)

, (3.9)

where H = {hf}F
f=1. Note that the d nonzero errors are distributed over the F

fading blocks according to a pattern f . For a specific receiver, the unconditional

pairwise error probability Pu(d|f) is found by substituting the corresponding

decoding metric (3.9) and then averaging over the fading gains. The rest of this

chapter is devoted to deriving expressions of the unconditional pairwise error
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probability for coded single and multiple transmit antennas systems employing

different receivers with different SI assumptions at the receiver.

3.2 Single-Antenna Systems

In this section, the pairwise error probability Pu(d|f) is derived for coded

single-antenna systems employing coherent and noncoherent receivers. For

coherent detection, we consider the cases of perfect and imperfect SI at the

receiver as well as the case of no amplitude SI. For noncoherent detection,

receivers employing a square-law combining are considered.

3.2.1 Coherent Detection - Perfect SI

Recall that the received signal over a block fading channel is given by (2.1)

and the corresponding ML decoding rule is given by (2.2). Substituting the

metric (2.2) in (3.9), the conditional pairwise error probability for coherent de-

tection with perfect SI is given by

Pc(d|f) = Pr

(
L∑

f=1

af

m∑

l=1

Re{yf,l} < 0
∣∣∣H,S

)
. (3.10)

The distribution of Re{yf,l} conditioned on af is Gaussian with mean
√

Esafsf,l

and variance N0. The conditional pairwise error probability simplifies to

Pc(d|f) = Q





√√√√2Rcγb

w∑

v=1

v
fv∑

i=1

a2
i



 , (3.11)

where γb = Eb
N0

is the SNR per information bit. Note that the average energy

per bit is given by Eb = RcEs, where Rc is the encoder rate. To find Pu(d|f),
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(3.11) is averaged over the fading amplitudes as

Pu(d|f) = EA



Q





√√√√2Rcγb

w∑

v=1

v
fv∑

i=1

a2
i







 , (3.12)

where A = {af}F
f=1. Using the Chernoff bound, Q(x) ≤ 1

2e
−x2/2, the uncondi-

tional pairwise error probability is upper bounded as

Pu(d|f) ≤
1

2

w∏

v=1

(
1

1 + vRcγb

)fv

, (3.13)

where the product results from the independence of fading in different fading

blocks. An exact expression of the pairwise error probability can be found by

using the integral expression of the Q-function, Q(x) = 1
π

∫ π
2

0 e(−x2/2 sin2 θ)dθ [45]

Pu(d|f) =
1

π
EA

[∫ π
2

0

exp

(
Rcγb

sin2 θ

w∑

v=1

v
fv∑

i=1

a2
i

)
dθ

]

=
1

π

∫ π
2

0

w∏

v=1

(
1

1 + vRcγb/ sin2 θ

)fv

dθ. (3.14)

The union bound was evaluated for a rate-12 (23,35) convolutional code with a

frame size of N = 2 × 512 coded bits, and a rate-13 (1,5/7,5/7) turbo code with

a frame size N = 3 × 1024 coded bits. Note that the convolutional code has

4 memory elements, whereas the component codes of the turbo have 2 mem-

ory elements. As discussed in Section 3.1.1, the union bound is truncated to

reduce computation complexity. For convolutional codes, the union bound was

truncated after codewords with distances d > 12. However, the union bound for

turbo codes was truncated after d > 52. The bound is compared to simulation

results. In the simulations, the channel interleaver is chosen randomly and is

changed every 10 frames to account for the uniform interleaving argument. In

turbo codes, the code interleaver is an s-random interleaver. In the literature,

s-random interleavers are used due to their good performance. An s-random in-
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terleaver permutes the data sequence in such a way that bits within distance

of s from each other are separated by more than s positions in the interleaved

sequence. In coherent systems, BPSK signaling is employed and (3.14) is used

to compute the union bound.

Figure 3.2 shows the results for the convolutional code with perfect SI for

channel memory ranging from m = 1 to m = 64. In the figure we plot the

curves corresponding to simulation and union bound results. Since simulating

very low error rates is too difficult, we plot simulation curves up to error rates

of around Pb = 10−6. However, the union bound curves are plotted for all SNR

values. From the figure, the bound is very close to the simulation curves for

a wide range of channel memory lengths. Also, the union bound starts to be

loose as the SNR decreases, where the union bound is known to diverge at SNR

values lower than the cutoff rate of the channel [46]. However, since simula-

tion is easy for low error rates, the importance of the performance analysis is

emphasized at high SNR values. In the following results, the union bound is

plotted for high SNR values to make the presentation more clear.

The frame error probability of the turbo code is shown in Figure 3.3. We

observe that the bound is able to predict the performance loss due to channel

memory in the error floor region, i.e., at the high SNR. Also, the bound is not as

close to simulation results as in the case of convolutional codes. This is mainly

because the turbo code interleaver is an s-random interleaver, where the union

bound for turbo codes in (3.4) assumes uniform code interleaver which aver-

ages the performance of bad and good code interleavers. However, using the

bound provide some insight about the performance of turbo codes with channel

memory. Note that the performance of turbo codes in the water-fall region is

not predictable using the distance spectrum of the code. In this region iterative

decoding is the major influence on the performance and results for ML decod-

ing does not hold. Generally, the performance with perfect SI degrades as the

channel memory increases.
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Figure 3.2: Bit error probability of a rate-12 (23,35) convolutional code with per-
fect SI and a frame size N = 1024 for channel memory lengths m = 1, 8, 16, 32, 64
(solid: approximation using the union bound, dash: simulation).
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Figure 3.3: Frame error probability of a rate-13 (1,5/7,5/7) turbo code with per-
fect SI and an code interleaver size Ñ = 1024 for channel memory lengths
m = 1, 8, 16, 32, 64.
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3.2.2 Coherent Detection - Imperfect SI

For coherent detection with imperfect SI it is necessary to estimate the

channel SI. This is achieved by transmitting a pilot signal with energy Ep in

each fading block. The corresponding received signal is given by

yf,p =
√

Ephf + zf,p. (3.15)

The ML estimator for hf is given by ĥf =
yf,p√

Ep
= hf + ef , where ef =

zf,p√
Ep

is the estimation error. The distribution of ef is CN (0, σ2
e) where σ2

e = N0
Ep

. The

correlation coefficient between the actual channel gain and its estimate is given

by

µ =
E[hf ĥ∗

f ]√
Var(hf )Var(ĥf )

=
1√

1 + σ2
e

. (3.16)

In order implement a ML decoding rule, the likelihood function of the channel

observations (received and pilot signals) conditioned on the transmitted code-

word should be maximized. Define yp = {yf,p}F
f=1 to be the vector containing

pilot signals in a frame, then the likelihood function is written as

p(Y,yp|S) = EH [p(Y,yp|H,S)] = C1

F∏

f=1

∫ ∞

0

exp

(
− 1

N0
|yf,p −

√
Ephf |2

)
(3.17)

× exp

(

− 1

N0

m∑

l=1

|yf,l −
√

Eshfsf,l|2
)

e−|hf |2dhf , (3.18)

where C1 is a constant. Simplifying

p(Y,yp|S) = C2

F∏

f=1

exp
(
− 1

N0
(|yf,p|2 +

m∑

l=1

|yf,l|2)
)

×
∫ ∞

0

exp
[
− 1

N0

(
α|hf |2 − 2Re{h∗

fβf}
)]

dhf , (3.19)

where α = Ep + mEs + N0, βf =
√

Epyf,p +
√

Es

∑m
l=1 yf,ls∗f,l and C2 is another

constant. Simplifying and completing the squares by adding and subtracting
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|βf |2
αN0

results in

p(Y,yp|S) = C3

F∏

f=1

exp
(
− 1

N0
(|yf,p|2 +

m∑

l=1

|yf,l|2)
)

exp
( 1

αN0
|βf |2

)

×
∫ ∞

0

exp
(
− α

N0

∣∣∣hf −
βf

α

∣∣∣
2)

dhf , (3.20)

where C3 is a constant. Now, the integral becomes a constant since it is an

integral of a Gaussian density function. Note that the only part that depends

on the transmitted codeword is the second exponential term. Thus based on

observing the received and the pilot signals, the ML decoder chooses the code-

word S that maximizes the metric

m(Y,S) =
F∑

f=1

|βf |2 =
F∑

f=1

Es|
m∑

l=1

yf,ls
∗
f,l|2 + 2

√
Es

m∑

l=1

Re{y∗
f,lsf,lĥf} + C4, (3.21)

where ĥf have been substituted for
√

Epyf,p and C4 is another constant term

that is independent of the transmitted codeword. This receiver is difficult to

implement in a Viterbi decoder of a convolutional code. Also, it is difficult to

analyze. Therefore, a suboptimal decoding metric that maximizes the likeli-

hood function p(Y|Ĥ,S) is used. It is given by

m(Y,S) =
F∑

f=1

m∑

l=1

Re{y∗
f,lĥfsf,l}. (3.22)

In order to find the pairwise error probability, the distribution of the re-

ceived signal yf,l conditioned on the estimated channel gain ĥf is required. Ap-

plying basic probability results, this distribution is found to be a complex Gaus-

sian with mean µ
σ

√
Esĥfsf,l and variance N0 + (1 − µ2)Es, where σ2 = Var(ĥf) =
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Table 3.1: Rates, minimum distances and puncturing patterns of the punctured
rate-1

2 codes.

m Code Rate R̃c Puncturing Location dmin

4 0.667 3 4
8 0.571 7 5
16 0.533 15 6
32 0.516 31 6
64 0.508 63 6

1 + σ2
e . Thus the conditional pairwise error probability becomes

Pc(d|f) = Q





√√√√√√
2µ2Rcγb

w∑

v=1

v
fv∑

i=1

|ζi|2

1 + Rcγb(1 − µ2)




, (3.23)

where ζ = ĥ
σ . Define γ̂b = µ2γb

1+Rcγb(1−µ2) to be the effective SNR after taking

into account the additional noise in the channel estimation, the unconditional

pairwise error probability simplifies to (3.14) with γb replaced by γ̂b.

Two scenarios can be considered for channel estimation using pilots with

Ep = Es. The first one results from only pilot estimation (OPE) with an estima-

tion error variance of σ2
e = N0

Es
. The second case considers a lower bound on the

performance of receivers employing iterative joint decoding and channel esti-

mation. In such receivers the decoding results are used to improve the channel

estimates, which are used to improve the decoding results. This process is re-

peated iteratively. In general, the more reliable the decoding results, the more

accurate is channel estimation. A lower bound on the performance of itera-

tive receivers is obtained if the signals in each fading block are known with

probability one. In this case they can be considered as pilots resulting in an

estimation error variance of σ2
e = N0

mEs
. This case is referred to as correct data

estimation (CDE). Similar channel estimation scenarios were used in [47–49]

for channel estimation for LDPC codes.
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In simulating systems with channel estimation via pilot insertion, one coded

bit is punctured every m coded bits to account for the rate reduction resulting

from inserting a pilot signal every m−1 signals. This affects the whole distance

distribution of the resulting code and may reduce the minimum distance of the

code. In general, the resultant code rate after puncturing is given by

R̃c =
mRc

m − np
, (3.24)

where np is the number of pilot signals inserted in each fading block which

is set to be np = 1 in single-antenna systems. In Table 3.1 we show the code

rates and the minimum distances of the punctured codes for different channel

memory lengths. Also, the location of the punctured coded bit in a m-length

fading block. According to the table, the code rate increases with reducing the

channel memory length, which decreases the error correcting capabilities of

the code. Thus systems with short channel memory are expected to have more

channel diversity at the cost of lower minimum distance and worse channel

estimation quality. On the other hand, longer channel memory results in more

a powerful code as well as better channel estimation at the cost of less channel

diversity.

Figures 3.4 and 3.5 show the results for convolutional code with imperfect

SI under the OPE and CDE assumptions, respectively. Note that the energy

of the pilot is taken into account in the SNR axis. We observe that the SNR

degradation due to channel memory is less compared to the case of perfect SI.

This is expected since the number of transmitted pilot signals is reduced as

the channel memory gets longer, and hence the system becomes more energy

efficient. Also, the estimation quality under the CDE assumption improves

with increasing channel memory length as appears in the expression of σ2
e .

From the figures, the cases of m = 16 and m = 32 are the best systems, where

the former becomes better than the later for an SNR values exceeding 14 dB.

This suggests that the optimal channel memory length is between m = 16 and
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Figure 3.4: Bit error probability of a (23,35) convolutional code with imperfect
SI (OPE receiver with Ep = Es) and a frame size N = 1024 for channel memory
lengths m = 4, 8, 16, 32, 64.
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Figure 3.5: Bit error probability of a (23,35) convolutional code with imperfect
SI (CDE assumption with Ep = Es) and a frame size N = 1024 for channel
memory lengths m = 4, 8, 16, 32, 64.
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Figure 3.6: Frame error probability of a (1,5/7,5/7) turbo code with imperfect SI
(OPE receiver with Ep = Es) and an code interleaver size Ñ = 1024 for channel
memory lengths m = 4, 8, 32, 64.

m = 32. Also, the cases of m = 8 is the worse than the case of m = 64 at low

SNR and starts to improve as the SNR increases. This is because the resulting

code for m = 8 is less powerful than the code for m = 64 but has larger amount

of channel diversity. Although the case of m = 64 has the best code, it lacks

enough channel diversity to perform better than the other cases. Under the

CDE assumption, the case of m = 64 performs the best at low SNR because

longer memory permits better estimation. In general, the optimal memory

tends to increase under the CDE assumption compared to the OPE receiver due

to the improved channel estimation. In all cases the channel memory m = 4

performs the worst because the resulting code is weak due to puncturing one

coded bit every 4 coded bits.

Results for turbo code with imperfect SI using an OPE receiver and the CDE

assumption are shown in Figures 3.6 and 3.7, respectively. In OPE receivers,

we observe that the curves of the cases of m = 8, 16, 32 cross at different SNR

points. As the SNR increases, short channel memory provides better perfor-
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Figure 3.7: Frame error probability of for a (1,5/7,5/7) turbo code with imperfect
SI (CDE assumption with Ep = Es) and an code interleaver size Ñ = 1024 for
channel memory lengths m = 4, 8, 32, 64.

mance than long channel memory, which is apparent in the analytical curves.

From this we conclude that the optimal memory length changes with the oper-

ating SNR value. In the CDE assumption, the channel memory lengths m = 32

and m = 64 are very close where the former becomes the best at high SNR.

Figure 3.8 shows a comparison between the performance of the convolutional

code with channel memory lengths m = 8 and m = 32 for the cases of perfect SI,

OPE receiver and the CDE assumption. It is clear that as the channel mem-

ory gets longer, the SNR degradation due to imperfection in the channel SI

reduces. This is because long channel memory causes less penalty in the rate

and energy than short channel memory does, as well as an improved channel

SI under the CDE assumption.

When the energy allocated for the pilot signal is varied, the performance of

an OPE receiver is expected to change as a function of the channel memory.

The energy per information bit is written as a function of the energy allocated
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Figure 3.8: The performance of convolutional coded systems with a frame size
N = 1024 and channel memory lengths m = 8, 32 using perfect and imperfect
SI with Ep = Es (solid: m = 8, dash: m = 32).
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Figure 3.9: SNR required for the (23,35) convolutional code to achieve Pb =
10−4 versus Ep/Es for the OPE receiver and channel memory lengths m =
8, 16, 32, 64.
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for transmitting signals and pilots as

Eb =
(m − np)Es + npEp

mRc
. (3.25)

Thus for a fixed channel memory, there exists an optimal value for pilot en-

ergy. This is illustrated in Figure 3.9, where the SNR required for the system

to achieve bit error probability of Pb = 10−4 is plotted versus the pilot-to-signal

energy ratio Ep/Es in dB. We observe that as the channel memory length in-

creases the optimum value for Ep/Es increases. This is expected since longer

channel memory permits more possible energy to be allocated for the pilot sig-

nal. On the other hand, when the channel memory is short, a more wise usage

of the offered energy is to transmit the information signals rather than to es-

timate the channel. Note that optimizing the pilot energy results in an SNR

gain as large as 1 dB over the case where Ep = Es. This SNR gain increases

as the channel memory increases since longer memory increases the amount of

energy that can be devoted for channel estimation, which improves the overall

performance.

3.2.3 Coherent Detection - No Amplitude SI

For completeness we consider the case where the channel phase is known

but the amplitude is unknown. A suboptimal decoding metric (2.3) is used due

to its mathematical tractability. Substituting this metric (3.9) and using the

Chernoff bound to upper bound the pairwise error probability [12] as

Pc(d|f) ≤
L∏

f=1

Ey

[
exp
(
− 2λ

m∑

l=1

Re{yf,l}|sf,l − ŝf,l|
)]

, (3.26)

where λ > 0 is the Chernoff parameter. Following the derivation in Appendix

A.1, the pairwise error probability with coherent detection and no amplitude
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Figure 3.10: Bit error probability of a rate-12 (23,35) convolutional code with
no amplitude SI and a frame size N = 1024 for channel memory lengths m =
1, 8, 16, 32, 64.

SI is given by

Pu(d|f) !
(

ed

2RcγbL

)L
(

w∏

v=1

v2fv

)−1

, (3.27)

where e = exp(1). The union bound is evaluated for the case of coherent detec-

tion with no amplitude SI using (3.27) and results are shown in Figure 3.10.

From the figure, we observe that the bound is less tight than in the perfect SI

case. This is due to the use of the Chernoff bound which is known to be a little

loose in low SNR region. However, it dictates the trend in the performance over

block fading channels, where the SNR degradation due to memory is clear and

close to that shown in simulations.

3.2.4 Noncoherent Detection

In noncoherent systems the channel phase is unknown at the receiver. A

receiver that does not need any channel estimation (phase and amplitude) is
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the square-law combining receiver. Recall that the outputs of the square-law

combiner are given by (2.5) and the corresponding decoding metric appears in

(2.6). The conditional pairwise error probability is found by substituting the

metric (2.6) in (3.9)

Pc(d|f) = Pr

( F∑

f=1

df

(
|r(I,1)

f |2 + |r(Q,1)
f |2 − |r(I,0)

f |2 − |r(Q,0)
f |2

)
> 0
∣∣∣H,S

)
, (3.28)

where df is the number of error bits in the fading block f . The variables

{r(I,0)
f , r(Q,0)

f } and {r(I,1)
f , r(Q,1)

f } are zero mean Gaussian random variables with

variances equal to 1
2(Es +N0) and 1

2N0, respectively. Let |r(s)
f |2 = |r(I,s)

f |2 + |r(Q,s)
f |2

for s = 0, 1 and define κ =
F∑

f=1

df(|r(1)
f |2 − |r(0)

f |2). Then, the unconditional pair-

wise error probability is upper bounded using the Chernoff bound and the den-

sity function p(κ) as

Pu(d|f) =

∫ ∞

0

p(κ)dκ ≤ Eκ

[
eλκ
]
, (3.29)

where λ > 0 is the Chernoff parameter that should be optimized to result in

the tightest bound. Substituting for κ and collecting terms having the same

distance

Pu(d|f) ≤
w∏

v=1

E
[
eλv|r(1)

v |2
]fv

E
[
e−λv|r(0)

v |2
]fv

. (3.30)

The Chernoff parameter λ is optimized as in [35] and the resulting Chernoff

bound for the pairwise error probability simplifies to

Pu(d|f) ≤
w∏

v=1

[4Dv(1 − Dv)]
fv , (3.31)

where Dv = 1
2+vRcγb

. The union bound for convolutionally encoded BFSK sig-

nals with square-law combining is evaluated using (3.31) and shown in Figure

3.11. The bound is less tight than the perfect SI case due to the use of the

Chernoff bounding technique. However, the performance trend and the SNR
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Figure 3.11: Bit error probability of a rate-12 (23,35) convolutional code with
noncoherent detection and a frame size N = 1024 for channel memory lengths
m = 1, 8, 16, 32, 64.

degradation due to memory are predicted well from the bound.

3.3 Multi-Antenna Systems

In this section, the pairwise error probabilities for coded STBC systems are

derived. Coherent detection with perfect and imperfect SI is considered. Note

that the results for the case of perfect SI apply directly to coded differential

STBCs taking into account a penalty of 3 dB in the SNR [22].

3.3.1 Perfect SI

Recall that the received vector due to transmitting a STBC transmission

matrix Gf,l is given by (2.8). Also, the simple decoding metric that is equivalent

to ML metric is given by (2.9). The conditional pairwise error probability for

coded STBCs with perfect SI is found by substituting the metric (2.9) in the
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expression of the pairwise error probability in (3.9) resulting in

Pc(d|f) = Pr

(
L∑

f=1

w∑

l=1

κf,l < 0
∣∣∣H,S

)

, (3.32)

where κf,l = Re{y∗
f,lEf,lhf} and Ef,l = Gf,l − Ĝf,l. Here, Gf,l and Ĝf,l are the

transmission matrices in time slot l of the f th fading block corresponding to the

all-zero codeword and a weight-d error codeword, respectively. We use (.)∗ and

(.)T to denote the complex conjugate of a complex vector and the transpose of

a real matrix, respectively. In (3.32), κf,l is a Gaussian random variable with

conditional mean and variance given respectively by

E
[
κf,l

∣∣Gf,l,hf

]
=
√

EsRe
{
h∗

fET
f,lEf,lhf

}
=
√

Esdf,l

nt∑

i=1

|hi
f |2, (3.33)

Var
[
κf,l

∣∣Gf,l,hf

]
= E

[
Re
{
z∗f,lEf,lhfh

∗
fET

f,lzf,l

} ∣∣Gf,l,hf

]
= df,lN0

nt∑

i=1

|hi
f |2, (3.34)

where df,l is the number of error bits in the time slot l in the f th fading block.

In (3.33) and (3.34), the cross terms are zero due to the orthogonality of the

rows in Ef,l. The error probability in (3.32) simplifies to

Pc(d|f) = Q





√√√√2Rcγb

w∑

v=1

v
fv∑

l=1

nt∑

i=1

|hi
l|2


 . (3.35)

As in Section 3.2.1, the unconditional pairwise error probability Pu(d|f) is found

by averaging over the fading gains and using the exact expression of the Q

function. The resulting expression of Pu(d|f) is given by

Pu(d|f) =
1

π

∫ π
2

0

w∏

v=1

(
1

1 + vRcγb/ sin2 θ

)ntfv

dθ. (3.36)

As study cases, a rate-12 (23,35) convolutional code with 4 memory elements is

concatenated with a STBC employing two and four transmit antennas with the
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Figure 3.12: Bit error probability of a convolutionally coded STBC with per-
fect SI, nt = 2 and a frame size N = 1024 for channel memory lengths
m = 2, 16, 32, 64, 128.

same simulation settings as in the single-antenna case. The union bound was

evaluated by substituting (3.36) in (3.1) and summing over codewords with dis-

tances d ≤ 12 for fast computation of the bound. The results for the cases of two

and four transmit antennas are shown in Figures 3.12 and 3.13, respectively

for different channel memory lengths. From the figures, we observe that the

performance degradation due to increasing the memory length reduces as the

number of transmit antennas is increased. This is expected since there is more

space diversity as the number of transmit antennas increases, which reduces

the sensitivity of the performance to the number of independent fading blocks.

This is clear in Figure 3.14, where the SNR required to achieve Pb = 10−4 is

plotted versus the number of transmit antennas for different channel memory

lengths. We see that as the number of transmit antennas increases, the SNR

loss due to long channel memory reduces.
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Figure 3.13: Bit error probability of a convolutionally coded STBC with per-
fect SI, nt = 4 and a frame size N = 1024 for channel memory lengths
m = 4, 16, 32, 64, 128.
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Figure 3.14: SNR required for a convolutionally coded STBC to achieve Pb =
10−4 versus the number of transmit antennas nt for channel memory lengths
m = 16, 32, 64 (solid: perfect SI, dash: CDE, dots: OPE).
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3.3.2 Imperfect SI

Now we consider the case of coherent receivers with channel SI generated

from pilot sequences. This is achieved by transmitting nt orthogonal pilot se-

quences [23], each of length np ≥ nt, over the nt antennas in each fading block.

Thus a known pilot sequence pi = {pi
l}

np

l=1 is transmitted from the ith transmit

antenna once in each fading block. Denote by yp
f = {yp

f,l}
np

l=1 the received column

vector corresponding to the pilot sequences at each receive antenna in fading

block f . It is given by

yp
f =

√
Ep

nt∑

i=1

hi
fp

i + zf , 1 ≤ f ≤ F, (3.37)

where Ep is the pilot energy. If pilot sequences from different transmit anten-

nas are orthogonal, i.e., pi∗.pj = 0 when i *= j, then the ML estimator of the

channel gain hi
f is obtained by projecting yp

f on pi as

yp
f .p

i∗ = hi
f (p

i.pi∗) + zf .p
i∗. (3.38)

Thus the ML estimator of the channel gain hi
f is given by

ĥi
f =

yp
f .p

i∗

‖ pi ‖2
− zf .pi∗

‖ pi ‖2
= hi

f + ei
f , (3.39)

where ei
f = (zf .pi∗/ ‖ pi ‖2) is the estimation error associated with the channel

from the ith transmit branch in fading block f . From (3.39), the distribution of

ei
f follows CN (0, σ2

e) where σ2
e = N0

npEp
. The correlation coefficient between the

true and estimated channel gains is defined as

µ =
E
[
hi

f ĥ
i∗
f

]

√
Var(hi

f)Var(ĥi
f)

=
1√

1 + σ2
e

, (3.40)

where Var(ĥi
f) = σ2 = 1 + σ2

e .

From Section 3.2.2 we conclude that the ML decoding metric is difficult to

51



implement in a Viterbi-like decoder as well as being difficult to analyze. Hence

a suboptimal decoding rule that maximizes the likelihood function p(Y|Ĥ,S) is

employed. It chooses the codeword S that maximizes the metric

m(Y,S) =
F∑

f=1

m/nt∑

l=1

Re{yf,lGf,lĥf}. (3.41)

The received signal vector yf,l conditioned on the estimated channel gains is a

complex Gaussian random vector with mean µ
σ

√
EsGf,lĥf and covariance matrix

(N0 + ntEs(1 − µ2))I. Thus the pairwise error probability conditioned on the

estimated fading gains is given by (3.32) with replacing H and κf,l by Ĥ and

κ̂f,l = Re{y∗
f,lEf,lĥf}, respectively. Similar to the case of perfect SI, κ̂f,l is a

Gaussian random variable with mean and variance given respectively by

E
[
κ̂f,l

∣∣Gf,l, ĥf

]
=

µ

σ

√
EsRe

{
ĥ∗

f,lET
f,lEf,lĥf

}
=

µ

σ

√
Esdf,l

nt∑

i=1

|ĥi
f |2, (3.42)

Var
[
κ̂f,l

∣∣Gf,l, ĥf

]
=
(
N0 + ntEs(1 − µ2)

)
df,l

nt∑

i=1

|ĥi
f |2. (3.43)

Using the mean and variance of κ̂f,l, the pairwise error probability conditioned

on the estimated fading gains is given by (3.35), with γ̂b = µ2γb
1+ntRcγb(1−µ2) replac-

ing γb. As in the single-antenna case, γ̂b represents the effective SNR taking

into account the additional noise in the channel estimation. Thus the uncondi-

tional error probability is found by averaging over the estimated fading gains,

resulting in (3.36) with the SNR value being γ̂b. For the special case of Ep = Es,

the estimation error variance in an OPE receiver is σ2
e = N0

ntEs
, whereas it is

σ2
e = N0

mEs
under the CDE assumption.

In multi-antenna systems with pilot-aided channel estimation, nt coded bits

are punctured every m coded bits and replaced by a pilot sequence of length nt.

This reduces the error correcting capability of the code as the channel memory

length becomes shorter which degrades the performance. The code rate of the

punctured codes is given by (3.24). Tables 3.2 and 3.3 show the code rates and
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Table 3.2: Rates, minimum distances and puncturing patterns of the punctured
rate-1

2 codes for multi-antenna systems with nt = 2.

m Code Rate R̃c Puncturing Locations dmin

8 0.667 3,7 5
16 0.571 7,15 5
32 0.533 15,31 6
64 0.516 31,63 6
128 0.508 63,127 6

Table 3.3: Rates, minimum distances and puncturing patterns of the punctured
rate-1

2 codes for multi-antenna systems with nt = 4.

m Code Rate R̃c Puncturing Locations dmin

16 0.667 3,7,11,15 5
32 0.571 7,15,23,31 6
64 0.533 15,31,47,63 6
128 0.516 31,63,95,127 6
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Figure 3.15: Approximation of bit error probability of a convolutionally coded
STBC with imperfect SI (OPE receiver with Ep = Es), nt = 2 and a frame size
N = 1024 for channel memory lengths m = 8, 16, 32, 64, 128.
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minimum distance of the punctured codes used in systems with two and four

transmit antennas, respectively with different channel memory lengths. Also

the tables show the locations of the punctured coded bits in a length-m fading

block. In Figure 3.14, we see that for single-antenna systems at Pb = 10−4,

systems with m = 32 performs the best, whereas in multi-antenna systems,

the memory lengths m = 32 and m = 64 provide the best performance for the

cases of nt = 2 and nt = 4, respectively. Moreover, we observe that as the chan-

nel memory length increases the gain of the CDE assumption over the OPE

receiver increases. This is basically due to the enhanced channel estimation

as the memory length increases. The results for two transmit antennas with

imperfect SI using an OPE receiver and the CDE assumption are shown in

Figures 3.15 and 3.16, respectively. Again, the energy of the pilot sequences

is taken into account in the SNR axis. In all cases the memory length m = 8

performs the worst among the shown curves because the resulting code is weak

due to puncturing two coded bits every 8 coded bits. Using an OPE receiver,

the case of m = 64 outperforms all other cases in the low SNR region, whereas

the case of m = 32 starts to improve and becomes the best after an SNR value

of 7 dB. Also, observe that the case of m = 16 outperforms the m = 128 case,

which is reversed at low SNR. The same phenomena are observed in the CDE

assumption, where the case of m = 64 performs the best at low SNR and then

degrades as the SNR increases.

Figures 3.17 and 3.18 show the results for the case of four transmit anten-

nas with imperfect SI using an OPE receiver and the CDE assumption, respec-

tively. The optimal channel memory seems to be between m = 64 and m = 128,

with a cross over at around 7 dB. In general we conclude that the optimal mem-

ory tends to increase as the number of transmit antennas increases for the

following reasons. First, as the number of transmit antennas increases more

channels are needed to be estimated, which requires longer observation period

for each channel. Second, more space diversity reduces the effect of diversity

provided by the independent fading blocks in the channel making channel esti-
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Figure 3.16: Approximation of bit error probability of a convolutionally coded
STBC with imperfect SI (CDE assumption with Ep = Es), nt = 2 a frame size
N = 1024 for channel memory lengths m = 8, 16, 32, 64, 128.
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Figure 3.17: Approximation of bit error probability of a convolutionally coded
STBC with imperfect SI (OPE receiver with Ep = Es), nt = 4 and a frame size
N = 1024 for channel memory lengths m = 16, 32, 64, 128.
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Figure 3.18: Approximation of bit error probability of a convolutionally coded
STBC with imperfect SI (CDE assumption with Ep = Es), nt = 4 a frame size
N = 1024 for channel memory lengths m = 16, 32, 64, 128.

mation more crucial. Finally, the length of the pilot sequences increases as the

number of transmit antennas increases, which reduces the energy efficiency of

the system. In order to accommodate long pilot sequences the channel memory

has to increase, which results in longer value for the optimal channel memory

as the number of transmit antennas increases.

In Figures 3.19 and 3.20, we show a comparison of systems with channel

memory lengths m = 16 and m = 64 for the cases of nt = 2 and nt = 4, re-

spectively. As in the single-antenna case, the SNR degradation due to channel

estimation reduces as the channel memory increases. Also, this SNR degrada-

tion increases with the number of transmit antennas making it more crucial to

estimate the channel for larger number of transmit antennas. Moreover, using

an OPE receiver results in an SNR loss of about 2 and 3 dB for the cases of

nt = 2 and nt = 4, respectively. This performance loss is comparable to the

loss encountered in differential STBCs. However, using efficient iterative joint

decoding and channel estimation receivers may reduce this loss resulting in a
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Figure 3.19: Approximation of bit error probability of a convolutional coded
STBC systems with a frame size N = 1024 and channel memory lengths m =
16, 64 using perfect and imperfect SI with Ep = Es (solid: m = 16, dash: m = 64).

performance close to that of the system under the CDE assumption. An itera-

tive receiver that performs close to the performance of the CDE assumption is

described in Chapter 5.

The energy allocated for the pilot signal is optimized for the multi-antenna

systems as shown in Figures 3.21 and 3.22 for the cases of two and four trans-

mit antennas, respectively. From the figures, we observe that the optimal pilot

energy allocation is almost independent of the number of transmit antennas.

This is mainly because the optimal pilot energy allocation is governed by the

ratio of energy spent on estimating the channel, and this ratio is a function

of the channel memory length only. As in single-antenna systems, optimizing

the pilot energy results in an SNR gain as large as 1 dB over the case where

Ep = Es.
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Figure 3.20: The performance of convolutional coded STBC systems with a
frame size N = 1024 and channel memory lengths m = 16, 64 using perfect and
imperfect SI with Ep = Es (solid: m = 16, dash: m = 64).
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Figure 3.21: SNR required for the convolutionally coded STBC with nt = 2
to achieve Pb = 10−4 versus Ep/Es for the OPE receiver and channel memory
lengths m = 16, 32, 64.

58



!4 !2 0 2 4 6 8 10 12 14 16
7

8

9

10

11

12

13

14
m=16
m=32
m=64

γ b
(d

B
)

Ep/Es (dB)

Figure 3.22: SNR required for the convolutionally coded STBC with nt = 4
to achieve Pb = 10−4 versus Ep/Es for the OPE receiver and channel memory
lengths m = 16, 32, 64.

3.3.3 Correlated Transmit Antennas

In the following discussion, the performance of multi-antenna systems with

correlated transmit antennas is derived. The effect of correlation between the

antennas in a receive diversity system was modeled in [10,50] as a function of

the distance separating antennas and angles of arrival of the signal beam. In

the following discussion, we consider the correlation coefficient as the correla-

tion measure in order to simplify the analysis. In this case, the received signal

vector is given by (2.8), where hf is a correlated complex Gaussian random

vector with a covariance matrix Kh whose (i, j)th element is given by

Kh(i, j) = E[hi∗hj ] =






1, i = j,

ρij , i *= j.
(3.44)

When perfect SI is available at the receiver, the conditional pairwise error prob-

ability is still given by (3.35). Clearly this probability is a function of the inner
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product
∑nt

i=1 |hi
f |2 = h∗

fhf . Thus the unconditional error probability is found by

averaging over the joint probability density function of hf given by

p(hf) =
1

πntdetKh
exp
(
h∗

fK
−1
h hf

)
. (3.45)

Performing the averaging is difficult due to the complicated form of p(hf).

To resolve this issue, an uncorrelated random vector gf is generated by pre-

whitening hf . Recall the eigenvalue decomposition of the covariance matrix

Kh = UΛUT , where Λ is a diagonal matrix containing the eigenvalues of Kh,

i.e., Λ = diag{λ1,λ2, . . . ,λnt}, and U is a unitary matrix that contains the eigen-

vectors of Kh in its rows. Thus an uncorrelated Gaussian random vector gf

with a covariance matrix Kg = Λ is generated by applying the linear transfor-

mation gf = UT hf to (3.35) resulting in

Pc(d|f) = Q





√√√√2Rcγb

w∑

v=1

v
fv∑

l=1

nt∑

i=1

λi|gi
f |2


 . (3.46)

Now, the vector gf is a complex Gaussian with distribution given by CN (0,Λ).

By averaging (3.46) over the distribution of {gf}, the unconditional pairwise

error probability becomes

Pu(d|f) =
1

π

∫ π
2

0

w∏

v=1

nt∏

i=1

(
1

1 + vλiRcγb/ sin2 θ

)fv

dθ. (3.47)

In the case of imperfect SI, there are twomethods for estimating the channel as

in [51]. In the first method the receiver knows the channel covariance matrix

and finds the channel estimates that minimizes the estimation mean square

error. This is the optimal linear receiver in the mean square error sense. The

second method uses a suboptimal receiver, where the channel is estimated as-

suming uncorrelated transmit antennas as in Section 3.3.2. In [51], it was

shown that the performance of the suboptimal receiver is very close to that of

the optimal receiver. In the rest of this Section, we investigate the performance
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of the suboptimal receiver for a coded STBC systems over block fading channels

as a function of the channel covariance matrix.

When the channel is estimated as in Section 3.3.2, the conditional pairwise

error probability is given by (3.35) with hf replaced by qf = 1
σ ĥf , where σ2 =

1 + σ2
e . Thus the covariance matrix of qf is given by

Kq =
1

1 + σ2
e

Kh +
σ2

e

1 + σ2
e

I, (3.48)

where Kq is the effective covariance matrix whose diagonals are unity and the

off-diagonal elements are ρij

1+σ2
e
. Let {λ̂i} be the eigenvalues of Kq, then Kq can

be diagonalized as above and the pairwise error probability is given by (3.47)

with replacing {λi} by {λ̂i}.

Figure 3.23 shows the SNR required for uncoded STBCs to achieve error

rate of Pb = 10−3 versus the correlation coefficient between the transmit anten-

nas for the cases of perfect and estimated SI. It is assumed that all the anten-

nas are correlated by the same amount ρ. Thus the diagonal elements of Kh are

unity and its off-diagonal elements are ρ. From the figure, we observe that the

SNR loss is almost negligible for a correlation coefficient less than ρ = 0.6 and

ρ = 0.3 for the cases of two and four transmit antennas, respectively. This is

expected since space diversity increases with increasing the number of anten-

nas, and the permitted amount of correlation to achieve this diversity becomes

smaller. Also, under channel estimation environments, the SNR loss due to

correlation reduces as the correlation coefficient increases. This suggests that

higher antenna correlation results in better channel estimation.

In Figures 3.24 and 3.25, the performance of the coded STBC systems with

antenna correlation of ρ = 0.9 is shown for the cases of two and four transmit

antennas, respectively. By comparing with Figures 3.16 and 3.18 respectively,

we observe that antenna correlation degrades the performance of systems with

long channel memory more than it does for systems with short channel mem-

ory. This is because of two main reasons. First, long channel memory reduces
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Figure 3.23: SNR required for uncoded STBC to achieve Pb = 10−3 versus the
correlation coefficient between the transmit antennas for perfect SI and an
OPE receiver.

the channel diversity provided by the independent fading blocks causing space

diversity to become more crucial to the performance of the system. Thus re-

ducing space diversity by imposing antenna correlation reduces the overall

channel diversity which degrades the performance. The second reason is that

long channel memory produces better channel estimation, the task that be-

comes easier due to antenna correlation. Therefore, an advantage of systems

with long memory have disappeared, resulting in a degraded performance more

than in the systems with short channel memory.
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Figure 3.24: Approximation of bit error probability of a convolutionally coded
STBC using nt = 2 with antenna correlation coefficient of ρ = 0.9, imperfect SI
(CDE assumption with Ep = Es) and a frame size N = 1024 for channel memory
lengths m = 8, 16, 32, 64, 128.
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Figure 3.25: Approximation of bit error probability of a convolutionally coded
STBC using nt = 4 with antenna correlation coefficient of ρ = 0.9, imperfect SI
(CDE assumption with Ep = Es) and a frame size N = 1024 for channel memory
lengths m = 16, 32, 64, 128.
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CHAPTER 4

Performance of Binary Coded Systems over

Rician and Nakagami Block Fading Channels

In this chapter, the union bound for binary coded systems over block fading

channel introduced in Chapter 3 is extended to more general fading models.

In particular, Rician and Nakagami distributions are used to model the fading

process in each fading block. The performance of diversity reception over Ri-

cian channels with noncoherent detection was derived by Jacobs [52]. In [12],

coherent detection of trellis coded systems was analyzed for the cases of perfect

and no amplitude SI available at the receiver. In [53], Charash analyzed the

performance of noncoherent communication over multipath Nakagami fading

channels with random delays. The bit error probability of coherent diversity re-

ception over Nakagami was derived by Al-Hussaini et al. [16], where the block

error probability was derived by Noga in [54].

In Chapter 3, a union bound for binary coded single-antenna systems over

Rayleigh block fading channels was derived with coherent and noncoherent

detection. The union bound is based on uniform interleaving of the coded

sequence prior to transmission over the channel, and the distribution of the

erroneous bits over the fading blocks is computed. Results showed that the

bound dictates the performance of coded systems for a wide range of SNR.

For Rician channels, the importance of channel diversity becomes less signifi-
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cant as the specular-to-diffuse ratio increases because the fading random vari-

able becomes less random. Similarly, as the fading severity of a Nakagami

distributed channel is increased, the significance of diversity reduces. As in

Rayleigh fading channels, a method to analyze the performance of coded sys-

tems over block fading channels with Rician and Nakagami distributions is

needed. In this chapter, the performance of coded systems over Rician and

Nakagami block fading channels is studied using the union bound introduced

in Chapter 3. Furthermore, we investigate the effect of channel memory on the

system performance and its relation to the parameters of the channel such as

the specular-to-diffuse ratio in Rician channels and the fading severity in Nak-

agami channels. The corresponding pairwise error probabilities are derived for

noncoherent detection using a square-law combining and coherent detection

with perfect, imperfect and no amplitude SI available at the receiver. Fur-

thermore, the union bound is used with the assumption of imperfect SI at the

receiver to investigate the tradeoff between the channel diversity and channel

estimation, and the effect of the specular-to-diffuse ratio of the channel on the

optimal channel memory.

The chapter is organized as follows. In Sections 4.1, expressions for the

pairwise error probability are derived for Rician block fading channels. Nonco-

herent and coherent receivers are considered. In coherent receivers, different

assumptions on the channel SI are assumed and the corresponding pairwise

error probability is derived, where square-law combining is used in noncoher-

ent receivers. Block fading channels with Nakagami fading distribution are

considered in Section 4.2. Numerical results are presented for the Rician and

Nakagami distributions following the derivation of the results.

4.1 Rician Fading

In this section, we derive expressions for the pairwise error probability of

coded systems over Rician block fading channels. In Rician block fading chan-
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nels, the channel gain in each fading block hf is modeled as a complex Gaussian

variable with CN (b, 1), where b represents the specular component of the chan-

nel. Thus the amplitude af has a Rician distribution with a normalized density

function [12] given by

fa(a) = 2a(1 + K) exp
[
−K − a2(1 + K)

]
I0

(
2a
√

K(1 + K)
)

, a ≥ 0, (4.1)

where K = b2 is the energy of the specular component and I0(.) is the zero-

order modified Bessel function of the first kind. In this context, K denotes the

ratio of the specular component energy to the diffuse component energy. The

unconditional pairwise error probability Pu(d|f) is derived for coherent detec-

tion with perfect and imperfect SI as well as the intermediate situation where

no amplitude SI is available at the receiver. Also, noncoherent detection using

square-law combining is considered.

4.1.1 Coherent Detection - Perfect SI

When the channel SI is known perfectly at the receiver, the ML decoder

chooses the codeword that maximizes the metric (2.2). As was shown in Section

3.2, the conditional pairwise error probability is given by (3.11). To find the

unconditional pairwise error probability Pu(d|f), (3.11) is averaged over the

statistics of the fading amplitudes in (4.1) as in (3.12). The Chernoff upper

bound for the unconditional pairwise error probability [12] is given by

Pu(d|f) ≤
1

2

w∏

v=1

(
1 + K

1 + K + vRcγb

)fv

exp

(
− KvfvRcγb

1 + K + vRcγb

)
dθ. (4.2)

An exact expression of the pairwise error probability is found by using the

integral expression of the Q-function resulting in

Pu(d|f) =
1

π

∫ π
2

0

w∏

v=1

(
1 + K

1 + K + vRcγb/ sin2 θ

)fv

exp

(
− KvfvRcγb/ sin2 θ

1 + K + vRcγb/ sin2 θ

)
dθ.

(4.3)
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The union bound was evaluated for a rate-12 (23,35) convolutional code with a

frame size of N = 2 × 512 coded bits. The union bound (3.1) was approximated

by including only codewords with distances d ≤ 12 and using (4.3). In this

chapter, we show only the analytical results since the union bound is very close

to simulation as was demonstrated in Chapter 3. Figure 4.1 shows the analyt-

ical results of the rate-12 (23,35) convolutional code over Rician fading channels

with specular-to-diffuse ratios K = 1, 10 dB and perfect SI. We observe that the

SNR degradation due to longer channel memory is more severe in the case of

K = 1 dB than the case of K = 10 dB. This is clear from Figure 4.2, where

the SNR required for a (23,35) convolutional code to achieve bit error rate of

Pb = 10−4 is plotted versus the specular-to-diffuse ratio K of the Rician chan-

nel. This shows that increasing the energy of the line-of-site component of the

channel reduces the effect of the diversity provided by the independent fading

blocks. This is expected since increasing K causes the energy of the specular

component to increase and the channel approaches the “no fading” scenario,

where diversity becomes less important. Hence, we conclude that the smaller

the specular-to-diffuse ratio is, the more sensitive the performance becomes to

the lack of channel diversity.

4.1.2 Coherent Detection - Imperfect SI

As in Section 3.2.2, when the channel SI is unknown at the receiver, it can

be estimated via transmitting pilot signals. In such a system, a pilot signal

with energy Ep is transmitted in each fading block. The corresponding received

signal is given by (3.15) and the ML estimator for hf is written as ĥf = yf,p√
Ep

=

hf + ef , where ef = zf,p√
Ep

is the estimation error modeled as CN (0, σ2
e) with

σ2
e = N0

Ep
. The correlation coefficient between the true channel gain and its

estimate is given by

µ =
E[(hf − b)(ĥf − b)∗]√

Var(hf )Var(ĥf )
=

1√
1 + σ2

e

. (4.4)
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Figure 4.1: Approximation of the bit error probability of a rate-12 (23,35) convo-
lutional code over a Rician fading channel with K = 1, 10 dB, perfect SI and a
frame size N = 1024 for memory lengths m = 1, 8, 16, 32, 64.
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Figure 4.2: SNR required for a (23,35) convolutional code to achieve Pb = 10−4

versus the specular-to-diffuse ratio K (linear scale) for memory lengths m =
8, 16, 32, 64 (solid: perfect SI, dash: OPE).
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The ML decoding rule is found by maximizing the likelihood function (3.18),

where the fading density in the Rician fading case is e−|hf−b|2. The deriva-

tion for Rician fading is essentially the same as in (3.18)-(3.20) with the only

change being βf =
√

Epyf,p +
√

Es

∑m
l=1 yf,ls∗f,l + bN0. Thus based on observing

the received and the pilot signals, the ML decoder chooses the codeword S that

maximizes the metric

m(Y,S) =
F∑

f=1

Es|
m∑

l=1

yf,ls
∗
f,l|2 + 2

√
Es

m∑

l=1

Re{y∗
f,lsf,l(ĥf + bN0)} + C, (4.5)

where C is a constant term independent of the transmitted codeword. As dis-

cussed in Section 3.2.2, this receiver is difficult to be implemented in a Viterbi

decoder. Therefore, a suboptimal decoding metric that maximizes the likeli-

hood function p(Y|Ĥ,S) is employed. It is given by

m(Y,S) =
F∑

f=1

m∑

l=1

Re{y∗
f,lĥfsf,l}. (4.6)

Thus the conditional pairwise error probability for the suboptimal decoder be-

comes

Pc(d|f) = Pr

(
L∑

f=1

m∑

l=1

Re{y∗
f,lĥf} < 0

∣∣∣Ĥ,S

)
. (4.7)

The received signal yf,l conditioned on ĥf is a complex Gaussian random vari-

able with mean
√

Essf,lE[h|ĥ] and variance N0 + (1 − µ2)Es, where E[h|ĥ] =

µ
σ (ĥf −b)+b. Thus the conditional pairwise error probability for the suboptimal

decoder is given by

Pc(d|f) = Q





√√√√√√
2Es

F∑

f=1

df

∣∣∣
µ

σ
(ĥf − b) + b

∣∣∣
2

N0 + (1 − µ2)Es




, (4.8)
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Figure 4.3: Approximation of the bit error probability of a (23,35) convolu-
tional code over a Rician fading channel with K = 1, 10 dB, imperfect SI (OPE
receiver) and a frame size N = 1024 for memory lengths m = 8, 16, 32, 64.

where df is the number of nonzero error bits in fading block f . Define the

normalized complex Gaussian random variable ζf =
ĥf−b

σ + b
µ with distribution

CN ( b
µ , 1). Then the conditional pairwise error probability simplifies to (3.23)

with ζf is as defined above. Therefore, the pairwise error probability for the

case of imperfect SI is the same as that of perfect SI, by replacing γb by γ̂b =

µ2γb
1+Rcγb(1−µ2) and K by K

µ2 .

In evaluating the union bound for pilot-aided channel estimation, the en-

ergy of the pilot is taken into account in the SNR axis and the code is punc-

tured to maintain the same transmission rate for systems with different chan-

nel memory. From Figure 4.2, the optimal channel memory value for an OPE

receiver with Ep = Es is m = 32 for a Rayleigh fading channel, i.e. K = 0,

where it is m = 64 for a Rician channel with K = 10. Also, note that the case

of m = 8 outperforms the case of m = 64 when the channel is more fading,

where the reverse occurs for channels that are less faded, i.e., larger values of

K. Figures 4.3 and 4.4 show the results of imperfect SI with an OPE receiver
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Figure 4.4: Approximation of the bit error probability of a (23,35) convolu-
tional code over a Rician fading channel with K = 1, 10 dB, imperfect SI (CDE
assumption) with Ep = Es and a frame size N = 1024 for memory lengths
m = 8, 16, 32, 64.

and the CDE assumptions, respectively. As in Chapter 3, the gain loss in SNR

due to the channel memory is less compared to the case of perfect SI. Also, we

observe that systems with long channel memory perform better as the energy

of the specular component of the channel increases. This is because as K in-

creases the channel becomes less fading which reduces the need for the decoder

to average over the statistics of the channel. Therefore, the channel diversity

becomes less crucial causing in systems with long channel memory to outper-

form systems with short memory. Another reason for this is the larger energy

fraction spent on pilot signals in systems with short channel memory lengths

than in systems with long memory. This is obvious for the case of K = 10 dB,

where the performance of m = 64 is nearly optimal for most of the SNR values.

On the other hand, the case of m = 8 is the worst every where when K = 10 dB,

where it outperforms the case of m = 64 when K = 1 dB.

Figure 4.5 shows a comparison of systems with channel memory lengths
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Figure 4.5: Approximation of the bit error probability of a rate-12 (23,35) con-
volutional code over a Rician fading channel with K = 1, 10 dB, frame size
N = 1024 and memory lengths m = 8, 32 using perfect and imperfect SI with
Ep = Es (solid: m = 8, dash: m = 32).
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Figure 4.6: SNR required for a rate-12 (23,35) convolutional code to achieve
Pb = 10−4 versus Ep/Es for the OPE receiver with Ep = Es and memory lengths
m = 16, 32.
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m = 8 and m = 32. As in Chapter 3, the SNR degradation due to channel es-

timation reduces as the channel memory increases. Moreover, the SNR loss in

OPE receivers with long channel memory increases with increased energy of

the specular component of the channel. When the channel is estimated using a

pilot signal, the channel estimation error adds a fading component to the chan-

nel gain at the decoder. The effect of this new fading component increases as

the energy of the specular component increases of the channel, which degrades

the performance of OPE receivers more as K increases. The energy allocated

for the pilot signal is optimized as shown in Figure 4.6. We observe that the

optimal pilot energy allocation is almost independent of the fading nature of

the channel, i.e., independent of the energy of the specular component K of

the channel. As discussed in Chapter 3, this is because the amount of energy

available in each fading block, which can be used in estimating the channel,

is the controlling factor of the optimal pilot energy allocation. Clearly, this en-

ergy amount is a function of the channel memory length only. Also, the SNR

gain resulting from optimizing the pilot energy is almost independent of the

channel fading behaviour.

4.1.3 Coherent Detection - No Amplitude SI

For completeness we consider the case where the channel phase is known

but the amplitude is unknown. The suboptimal receiver that uses the metric

(2.3) in decoding is employed due to its mathematical tractability. Using this

metric and going through the derivation in Section 3.2.3, the conditional pair-

wise error probability is upper bounded using the Chernoff bound as in (3.26).

The full derivation is included in Appendix B.1, and the final expression of the

pairwise error probability for coherent detection with no amplitude SI at the

receiver is given by

Pu(d|f) ! e−K

(
d(1 + K)

2RcγbL

)L
(

w∏

v=1

v2fv

)−1

, (4.9)
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Figure 4.7: Approximation of the bit error probability of a rate-12 (23,35) convo-
lutional code over a Rician fading channel with K = 1, 10 dB, no amplitude SI
and a frame size N = 1024 for memory lengths m = 1, 8, 16, 32, 64.

where e = exp(1). The union bound is evaluated using (4.9) for coherent detec-

tion with no amplitude SI at the receiver and shown in Figure 4.7. We observe

that the SNR degradation due to increasing the channel memory is clear from

the bound.

4.1.4 Noncoherent Detection

For noncoherent communications over Rician fading channels, where the

phase is unknown at the receiver, the optimal detection rule was derived by

Jacobs [52]. A suboptimal detection scheme using a square-law combining

is used, where its performance was derived in [52]. We use a square-law

combining receiver for noncoherent communications over Rician block fading

channels. The outputs of the square-law combiner are given by (2.5). The

decoder uses these outputs and the suboptimal metric (2.6) for decoding. In

this setup, the conditional pairwise error probability is found by substitut-
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ing the metric (2.6) in (3.9) resulting in (3.28). For Rician fading distribution,

the variables r(I,0)
f , r(Q,0)

f are Gaussian random variables with means equal to
√

Esb cos(θf) and
√

Esb sin(θf ), respectively and variance of 1
2(Es + N0). Also,

r(I,1)
f , r(Q,1)

f are zero mean Gaussian random variables with variance 1
2N0. Let

|r(c)
f |2 = |r(I,c)

f |2 + |r(Q,c)
f |2 for c = 0, 1 and define κ =

F∑

f=1

df(|r(1)
f |2 − |r(0)

f |2). Then,

the unconditional pairwise error probability is found by averaging (3.29) over

the density function p(κ) and collecting terms having the same distance to ar-

rive to (3.30). The following identity for a random variable x with CN (b, σ2)

distribution [52] is used in averaging (3.29) over the density of κ. The identity

is given by

E
[
eωx2
]

=
exp (ωb2/(1 − 2ωσ2))√

1 − 2ωσ2
, Re(ω) <

1

2σ2
. (4.10)

Optimizing the Chernoff parameter λ as in [52], the resultant Chernoff bound

on the pairwise error probability is given by

Pu(d|f) ≤
w∏

v=1

[4Dv(1 − Dv)]
fv exp

(
−KvfvRcγb

2 + vRcγb

)
, (4.11)

where Dv = 1
2+vRcγb

. The union bound is evaluated for convolutionally coded

systems with BFSK signaling and square-law combining and results are shown

in Figure 4.8. Note that the loss in performance due to the smaller amount of

channel diversity is clear. Again this performance loss increases with increas-

ing the energy of the specular component of the channel.

4.2 Nakagami Channels

This section is devoted to deriving the pairwise error probability of coded

systems over Nakagami block fading channels. In Nakagami block fading chan-

nels, the fading amplitude in each fading block is Nakagami distributed with a
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Figure 4.8: Approximation of the bit error probability of a rate-12 (23,35) con-
volutional code over Rician fading channel with K = 1, 10 dB, noncoherent
detection and a frame size N = 1024 for memory lengths m = 1, 8, 16, 32, 64.

normalized density function [15] given by

fa(a) =
2MM

Γ(M)AM
a2M−1 exp

(
−Ma2

A

)
, a > 0, M > 0.5, (4.12)

where A = E[a2] = 1, M = A2

Var[a] is the fading parameter and Γ(.) is the Gamma

function. As M increases, the fading becomes less severe and reaches the non-

fading case when M → ∞. The Nakagami distribution covers a wide range

of fading scenarios including Rayleigh fading when M = 1 and single-sided

Gaussian distribution when M = 0.5. In the following, we consider coherent

detection with perfect SI and no amplitude SI as well as noncoherent detection

using square-law combining.
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4.2.1 Coherent Detection - Perfect SI

If the channel SI is known perfectly at the receiver, the ML decoder uses the

metric (2.2) for decoding. As in Section 3.2, the conditional pairwise error prob-

ability is given by (3.11). Averaging over the statistics of the fading amplitude

(4.12), an exact expression of Pu(d|f) is found as in [55]

Pu(d|f) =
1

π
EA

[∫ π
2

0

exp

(
− Rcγb

sin2 θ

w∑

v=1

v
fv∑

i=1

a2
i

)
dθ

]

=
1

π

∫ π
2

0

w∏

v=1

(
1

1 + vRcγb

M sin2 θ

)Mfv

. (4.13)

In computing the union bound (4.13) is used in (3.6). The results for the rate-12
(5,7) convolutional code are shown in Figure 4.9 for memory lengths ranging

from m = 1 to m = 64. From the figure, we see that the effect of increasing the

channel memory length is more severe in the case of M = 0.5. This is expected

since as M increases, the fading amount increases and the channel approaches

the “no fading” scenario. The effect of the fading amount on the performance of

coherent detection with perfect SI is shown in Figure 4.10. We observe that as

the fading parameter increases, the SNR loss due to channel memory reduces.

This is expected since as the fading parameter increases, the diversity becomes

less important since the channel is approaching the AWGN channel.

4.2.2 Coherent Detection - No Amplitude SI

Coherent detection with known phase and unknown amplitude SI at the

receiver is considered below. We employ the suboptimal receiver that maxi-

mizes the metric (2.3) for its simplicity. Using this metric and going through

the derivation in Section 3.2.3, the conditional pairwise error probability is up-

per bounded using the Chernoff bound as in (3.26). The derivation is given in

Appendix B.2. The final expression which uses an approximation at high SNR
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Figure 4.9: Approximation of the bit error probability of a rate-12 (5,7) con-
volutional code over Nakagami fading channel with Nakagami parameter
M = 0.5, 3, perfect SI and a frame size N = 1024 for memory lengths m =
1, 8, 16, 32, 64.
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Figure 4.10: SNR required for the (5,7) convolutional code with perfect SI to
achieve Pb = 10−3 versus the Nakagami parameter M for memory lengths m =
1, 8, 16, 32, 64.
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Figure 4.11: Approximation of the bit error probability of a rate-12 (5,7) con-
volutional code over Nakagami fading channel with Nakagami parameter
M = 0.5, 3, no amplitude SI and a frame size N = 1024 for memory lengths
m = 1, 8, 16, 32, 64.

is

Pu(d|f) !
(

Γ(2M)

Γ(M)2M−1

)L( de

2RcγbL

)ML
(

w∏

v=1

v2Mfv

)−1

. (4.14)

The results for coherent detection with no amplitude SI are shown in Figure

4.11. Again, as the fading parameter M increases the SNR degradation due to

memory reduces because the channel becomes less fading.

4.2.3 Noncoherent Detection

In noncoherent systems, the channel phase is unknown at the receiver.

In [53], Charash derived the optimal detection rule for noncoherent diversity

receivers over Nakagami fading channels. Also in [53], the performance of

the optimal receiver and a suboptimal square-law combining receiver was an-

alyzed. We employ a square-law combining receiver for noncoherent communi-

cations over Nakagami block fading channels. The outputs of the square-law

79



combiner are given by (2.5) and the suboptimal decoding metric used is given by

(2.6). Thus the conditional pairwise error probability is found by substituting

the metric (2.6) in (3.9) resulting in (3.28). For Nakagami fading, the variables

r(I,0)
f and r(Q,0)

f conditioned on the fading gains are Gaussian random variables

with means
√

Esaf cos(θf ) and
√

Esaf sin(θf ), respectively and variance equal to
1
2N0. Similarly, r(I,1)

f and r(Q,1)
f are Gaussian random variables N (0, 1

2N0). Fol-

lowing the derivation of the conditional Chernoff bound in Section 3.2.4, we

arrive at the Chernoff bound (3.30). Using the identity (4.10) with the means

and variances of r(0)
f and r(1)

f mentioned above, the Chernoff bound simplifies to

Pu(d|f) ≤
L∏

f=1

1

(1 − λdfN0)(1 + λdfN0)
Ea

[
exp

(−λdfEsa2
f

1 + λdfN0

)]
. (4.15)

Averaging over the fading gains with density in (4.12) yields

Pu(d|f) ≤
w∏

v=1

(1 + λvEsN0)(M−1)fv

(1 − λvEsN0)fv

(
1

1 + λv(N0 + Es/M)

)Mfv

. (4.16)

This bound simplifies to the Chernoff bound for Rayleigh channels when M = 1

[35]. Since the expression in (4.16) is difficult to be optimized over λ, numer-

ical optimization is used to evaluate the bound for noncoherent detection of

binary codes over block fading channels. The results of a convolutionally en-

coded system with BFSK signaling and a square-law combining receiver are

shown in Figure 4.12. The loss in performance due to the reduced diversity in

the channel is clear and increases as the fading parameter M is increased.
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Figure 4.12: Approximation of the bit error probability of a rate-12 (5,7) con-
volutional code over Nakagami fading channel with Nakagami parameter
M = 0.5, 3, noncoherent detection and a frame size N = 1024 for memory
lengths m = 1, 8, 16, 32, 64.
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CHAPTER 5

Iterative Joint Decoding and Channel

Estimation Receiver for Multi-Antenna Systems

In this chapter, an iterative receiver for joint decoding and channel estima-

tion of multi-antenna systems over block fading channels is derived. As indi-

cated in [23] and illustrated throughout the results of Chapter 3, the perfor-

mance of multi-antenna systems is severely affected by the quality of channel

estimation, especially when large number of transmit antennas are used. The

use of orthogonal pilot sequence insertion to estimate the channel was proposed

in [23]. It was shown that the estimation quality improves as the length of the

pilot sequences is increased, reducing the effective rate and energy efficiency

of the system. This emphasizes the need of channel estimation techniques that

provide good quality estimation at the least sacrifice in the offered bandwidth

and energy.

Iterative receivers that jointly decode and estimate the channel for ST codes

have appeared recently. In [28] Li et al. implemented a pilot-aided chan-

nel estimation scheme for ST coded orthogonal frequency-division multiplexing

(OFDM) systems over correlated fading channels. The channel estimation was

performed using a least-square estimator with no information exchanged be-

tween the decoder and the estimator. An iterative version of the receiver that

employs expectation-maximization (EM) algorithm was proposed in [29]. The
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complexity of the EM algorithm becomes prohibitive for turbo-like codes, and

hence a maximum aposteriori version of the EM algorithm was derived in [30].

Grant [31] proposed a pilot-aided iterative receiver for joint decoding and chan-

nel estimation of trellis ST codes over quasi-static channels. The receiver was

used for turbo ST codes in [32]. Special code structures were utilized to solve

the same problem as in [56] for diagonal ST codes and [57] for orthogonal block

ST codes. All the above iterative receivers use hard decisions from the decoder

to update the channel estimation. However, using the soft information out of

the decoder is expected to improve the quality of channel estimation update.

For single-antenna systems, an iterative receiver for decoding and channel

estimation of turbo-coded FH systems was proposed in [24]. In this receiver,

a quantized representation of the fading process is used and the aposteriori

probability of each quantization level is updated iteratively using soft informa-

tion from the decoder. This algorithm can be extended for the case when the

channel is modeled as a Markov process, which was applied in [58] to the phase

process.

In this chapter, a pilot-aided iterative receiver for joint decoding and chan-

nel estimation of ST codes over block fading channels is proposed. Orthogo-

nal pilot sequence insertion is used to get initial channel estimation for the

first iteration. Then, the fading quantization level with the largest aposteriori

probability among a “selected” set of levels is found using soft information from

the decoder. This fading level is used in subsequent decoding iterations. The

receiver iterates between decoding and updating channel SI for a number of it-

erations. To illustrate the results, trellis and turbo ST codes are used. For these

codes, the effect of different parameters of the receiver is studied as well as the

convergence behavior of the receiver. Moreover, we find the optimal channel

memory via simulation. Also, the affect of the error correcting capability of the

code on the optimal channel memory is investigated.

The chapter is organized as follows. In Section 5.1, the proposed iterative

receiver is derived. Section 5.2 discusses the results which illustrates the con-
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vergence behavior of the iterative receiver as well as the effect of different sys-

tems’ parameters on the performance of the receiver. Also, the tradeoff between

effective diversity and channel estimation is investigated.

5.1 The Iterative Receiver

The proposed iterative receiver uses orthogonal pilot sequence insertion to

estimate the channel initially. The use of orthogonal pilot sequence insertion

in multi-antenna systems was discussed in Section 3.3.2. From this, a chan-

nel estimation is obtained with an error variance σ2
e = N0

ntEs
and a correlation

coefficient µ given by (3.40). Thus using longer pilot sequences improves the

channel estimation at the cost of reducing the effective energy of the coded

system. Therefore, using the soft information of the decoder to aid in channel

estimation may reduce the penalty paid in energy for good channel estimation

quality.

The block diagram of the proposed iterative receiver is shown in Figure 5.1,

where an additional block to update the channel SI was added to the diagram in

Figure 2.6. Denote the initial channel estimates obtained from orthogonal pilot

sequence insertion by Ĥ = {ĥf}F
f=1. As in Chapter 3, a suboptimal decoding

rule that maximizes the likelihood function p(Y|Ĥ,S) is employed due to its

simplicity. It chooses the codeword S that maximizes the metric

m(Y,S) = −
F∑

f=1

m∑

l=1

∣∣∣yf,l −
µ

σ

√
Es

nt∑

i=1

ĥi
fs

i
f,l

∣∣∣
2
. (5.1)

The distribution of yf,l conditioned on ĥf and sf,l is complex Gaussian with

mean µ
σ

√
Es

∑nt

i=1 ĥi
fs

i
f,l and variance N0 + (1 − µ2)Es

∑nt

i=1 |si
f,l|2. For constant-

energy constellations,
∑nt

i=1 |si
f,l|2 = nt. In the first iteration, initial channel

SI obtained from pilot-aided channel estimation is used by the ST decoder to

compute the aposteriori probabilities of signal vectors using (2.22). In subse-

quent iterations, these probabilities are used in the SI update block to improve
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Figure 5.1: The structure of the iterative receiver.

the quality of channel estimation. The new SI are fed to the ST SISO decoder

to update the probabilities of the signal vectors in the frame. The process of

decoding and updating SI continues for a number of iterations. Updating the

channel estimation is accomplished by using a quantized representation of the

fading process as follows.

The channel gain from the ith transmit antenna in fading block f is written

as hi
f = ai

f ejθi
f , where j =

√
−1, ai

f and θi
f are the amplitude and the phase of hi

f ,

which are modeled as Rayleigh and uniform random variables, respectively. In

the SI update block, the domain of the amplitude random variable, associated

with the channel from each transmit antenna is quantized into L intervals

{Aj}L
j=1. The same is performed for the phase random variable resulting in

{Θj}L
j=1, and a total of L2nt possible fading intervals {Φj}L2nt

j=1 at each receive

branch. The center of the quantization interval Φj is denoted by gj. Since phase

modulation is used, the phase of the received signal in (2.19) is the cumulative

phase of all si
f,l and hi

f , making blind estimation impossible in this context.

In order to update the channel estimates, the SI update block computes

p(hi
f ∈ Φj|Y) for “selected” quantization intervals around the estimated gain.

Let Φi
f = {Φj}Lc

j=1 denote the set containing the closest Lc quantization intervals

to the channel estimate ĥi
f , i.e., Φi

f = {Φj : |gj − ĥi
f | ≤ dLc}, where dLc is the

distance from the channel estimate to its Lth
c nearest neighbor. Thus after each

decoding iteration, the SI update block uses the soft information of the decoder
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to compute the aposteriori probabilities p(hi
f ∈ Φj |Y) for quantization levels

inside Φi
f and updates the channel SI as follows

ĥi
f = gj, if p(hi

f ∈ Φj |Y) ≥ p(hi
f ∈ Φq|Y), ∀Φq ∈ Φi

f . (5.2)

The soft information of the decoder is used to compute p(hi
f ∈ Φj |Y) in the SI

update block as follows.

Let Ỹf be the vector containing the channel observations in all fading blocks

in the frame except the fading block f . Also, let Yf be the vector containing

the channel observations in the fading block f . The aposteriori probabilities

p(hi
f ∈ Φj |Y) are computed as

p(hi
f ∈ Φj |Y) = p(Y|hi

f ∈ Φj)
p(hi

f ∈ Φj)

p(Y)

= p(Yf |hi
f ∈ Φj , Ỹf)p(Ỹf |hi

f ∈ Φj)
p(hi

f ∈ Φj)

p(Y)

≈ Cp(Yf |hi
f ∈ Φj)p(hi

f ∈ Φj), (5.3)

where C = p(Ỹf |hi
f ∈ Φj)/p(Y) is a normalization constant and p(hi

f ∈ Φj) is

the apriori probability of the fading level. The approximation in (5.3) is due

to the fact that channel outputs in different fading blocks are slightly corre-

lated because of the interleaving used in the transmitter. Now, the probability

p(Yf |hi
f ∈ Φj) is written as

p(Yf |hi
f ∈ Φj) ≈

∑

sf,1,...,sf,m

p(Yf |hi
f ∈ Φj , h̃

i
f , sf,1, . . . , sf,m).p(sf,1) . . . p(sf,m), (5.4)

where h̃i
f is the column vector containing the channel estimates of fading block

f at all transmit antennas except the ith one. If the size of the signal constel-

lation used at each antenna is M , then computing (5.4) involves summing over

Mmnt quantities which is very complex. An iterative algorithm to calculate

(5.4) efficiently was derived in [24] for blind estimation in single-antenna FH

86



systems. A modified version of the algorithm that fits the pilot-aided receiver

is given in the following

1. Initialization:

p(hi
f ∈ Φj |yf,1) = p(yf,1|hi

f ∈ Φj)
p(hi

f ∈ Φj)

p(yf,1)
(5.5)

p(yf,l|hi
f ∈ Φj) ≈

∑

∀s

p(yf,l|hi
f ∈ Φj , h̃

i
f , sf,l)p(sf,l) (5.6)

2. Recursion:

p(hi
f ∈ Φj |yf,1, . . . , yf,l) =

p(yf,l|hi
f ∈ Φj , yf,1, . . . , yf,l−1)

p(yf,l|yf,1, . . . , yf,l−1)
.p(hi

f ∈ Φj |yf,1, . . . , yf,l−1)

≈
p(yf,l|hi

f ∈ Φj)p(hi
f ∈ Φj |yf,1, . . . , yf,l−1)

p(yf,l|yf,1, . . . , yf,l−1)
. (5.7)

In (5.7), p(yf,l|hi
f ∈ Φj) is computed as in (5.6) and the approximation in (5.7)

is due to the small correlation between the channel outputs in different fading

blocks because of the interleaving used. Also, (5.6) is modified from the original

receiver in [24], where the approximation is due to conditioning on h̃i
f instead

of averaging over all quantization levels. Note that computing (5.6) requires

summing over Mnt signals resulting in exponential complexity in the number

of transmit antennas. The results of using the iterative receiver in ST coded

systems as well as convolutionally coded STBCs are presented next.

5.2 Results

In this section, the iterative receiver is applied to QPSK trellis and turbo

ST codes presented in Chapter 2. The trellis code [33] has 4 states and uses

two transmit antennas with a throughput of 2 bits/s. On the other hand, turbo

ST codes [39] with two and four transmit antennas are used. The 2-antennas

code has 4 states and a throughput of 1 bits/s, where the 4-antenna code has 16
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states with a throughput of 2 bits/s. Using these codes, we investigate how the

receiver performance is affected by changing its parameters. In the proceed-

ing subsections, we consider the effect of the number of quantization levels L,

number of iterations, channel memory length m, frame size N and the number

of transmit antennas nt.

The performance of trellis and turbo ST coded systems is considered with

perfect SI, an OPE receiver and joint decoding and channel estimation (JDE)

using the iterative receiver described above. In addition, we consider the hypo-

thetical case of feeding the transmitted codeword to the SI update block which

results in the CDE assumption. In the cases of CDE, JDE and OPE, the length

of the pilot sequences is set to the minimum value needed to preserve orthog-

onality, i.e., np = nt symbols. As a result, the initial channel estimation has

an error with variance σ2
e = N0

ntEs
for JDE and OPE receivers. By assumption,

σ2
e = N0

mEs
for the CDE case. Note that the pilot energy is taken into account

in the cases of the CDE, JDE and OPE, where no pilot sequences are inserted

in the case of perfect SI. Throughout the simulation, the amplitude and phase

processes are quantized using a Llyod-Max algorithm [7], and the aposteriori

probabilities are computed in SI update block for Lc = 4 quantization levels.

Also, all results are expressed as a function of the SNR per information bit

given by γb = Es
kN0

, where k is the number of information bits transmitted dur-

ing a transmission interval of length T .

5.2.1 Number of Quantization Levels

In Figure 5.2, the required SNR γb for trellis and turbo ST codes to achieve

a bit error rate (BER) of 10−3 is shown. Also shown in the figures the required

SNR for the OPE and CDE cases. We see that for trellis codes, increasing the

number of quantization levels from L = 8 to L = 32 provides a gain of 0.5

dB, and increasing L beyond 32 have a negligible effect. The same observation

holds for turbo codes. However, the gain of the iterative receiver over the OPE
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Figure 5.2: SNR required for QPSK ST codes with the iterative receiver to
achieve Pb = 10−3 versus the number of quantization levels for frame size N =
1024, number of transmit antennas nt = 2 and channel memory length m = 16.
(a) trellis, (b) turbo.

case is larger in turbo codes than in trellis codes. This is expected since turbo

codes are more powerful than trellis codes and hence soft information of a turbo

decoder is more reliable than that provided by a trellis decoder.

5.2.2 Number of Iterations

The effect of the number of iterations on the performance of the iterative re-

ceiver is shown in Figure 5.3. Figure 5.3a shows the required SNR to achieve

a BER of 10−3, from which we conclude that 3 iterations are enough for the

receiver to converge and iterating more does not improve the performance. On

the other hand, the performance of turbo codes is highly affected by the num-

ber of iterations. Hence, another parameter should be used to measure the

progress of estimation quality with the number of iterations. We chosen the

channel gain-to-estimation ratio (CER) to measure the estimation quality at
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Figure 5.3: Effect of the number of iterations on the performance of the itera-
tive receiver for QPSK ST codes with frame size N = 1024, number of transmit
antennas nt = 2 and channel memory length m = 16. (a) SNR required for
the trellis code to achieve Pb = 10−3 with L = 64, (b) CER = − log(σ2

e) versus
the number of iterations for the turbo code parameterized by the number of
quantization levels.

each iteration, which is defined as CER = − log(σ2
e). In Figure 5.3b, the CER

is plotted versus the number of iterations for different quantization levels. Ob-

serve that the CER is almost unchanged after 3 iterations showing that it is

enough to use the SI update block in 3 iterations only in turbo codes, instead

of using it in all turbo iterations.

Observe that the CER for the CDE assumption is 4 dB better than that

of the JDE using the iterative receiver. However, from Figure 5.2 the SNR

required by the CDE assumption to achieve BER of 10−3 is only 0.7 dB less than

that required by the iterative receiver with L = 64. Thus reducing the channel

estimation variance may not provide a proportional gain in the required SNR,

which is the important performance measure in communication systems.
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5.2.3 Channel Memory Length

Figure 5.4 shows the performance of trellis and turbo ST codes with frame

size N = 1024, two transmit antennas nt = 2 and channel memory of length

m = 16. For trellis codes, using the iterative receiver provides less than 1

dB gain over the OPE receiver and is less than 0.5 dB worse than the CDE

assumption at BER of 10−3. In turbo codes, the iterative receiver is better

than the OPE receiver by slightly more than a dB and is worse than the CDE

assumption by almost 0.75 dB. Also, it is observed that turbo ST codes are more

sensitive to channel estimation errors than trellis ST codes. This is clear from

the SNR loss of the OPE receiver and the CDE assumption with respect to the

case of perfect SI. The same information are shown in Figure 5.5 for channel

memory length of m = 128. In this case, the iterative receiver is provides

most of the gain that is achieved by the CDE assumption. This is due mainly

to the long channel memory which enhance the iterative estimation quality.

However, the iterative receiver is closer to the cases of perfect SI and the CDE

assumption in turbo codes than in trellis codes because turbo codes are more

powerful codes.

5.2.4 Frame Size

The performance of turbo ST codes with frame size N = 4096, two transmit

antennas nt = 2 and channel memory of length m = 64 is shown in Figure 5.6.

In this case, the number of independent fading blocks is the same as the case

discussed above, i.e., when N = 1024 and m = 16. We see that the iterative

receiver provides a gain of 2 dB over the OPE receiver and is worse than the

CDE assumption by around 0.25 dB. This shows that the performance of the

iterative receiver improves as the frame length is increased. Also, note that

the code sensitivity to channel estimation errors increases with the frame size.

A similar observation was noted in [27], where it was shown that channel es-

timation becomes more crucial to the performance as the code approaches the
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Figure 5.4: Performance of QPSK trellis and turbo ST codes for frame size
N = 1024, number of transmit antennas nt = 2 and memory length m = 16.
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Figure 5.5: Performance of QPSK trellis and turbo ST codes for frame size
N = 1024, number of transmit antennas nt = 2 and memory length m = 128.
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Figure 5.6: Performance of QPSK turbo ST code for frame size N = 4096, num-
ber of transmit antennas nt = 2 and channel memory length m = 64.

capacity, which is the case as the frame size increase in turbo codes.

5.2.5 Number of Transmit Antennas

The performance of turbo ST codes with frame size N = 1024, four trans-

mit antennas nt = 4 and channel memory of length m = 64 is shown in Figure

5.7. The iterative receiver provides a gain of 1 dB over the OPE receiver and

is worse than the CDE assumption by around 1 dB at BER of 10−3. We ob-

serve that the code sensitivity to channel estimation errors increases with the

number of transmit antennas as was shown in [23]. The performance of the

iterative receiver improves and becomes closer to the CDE assumption as the

SNR increases. This concludes that the iterative receiver is expected to per-

form well for large number of transmit antennas.
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Figure 5.7: Performance of QPSK turbo ST code for frame size N = 1024, num-
ber of transmit antennas nt = 4 and channel memory length m = 64.

5.2.6 Optimal Channel Memory

The SNR required to achieve a BER of 10−3 is plotted versus the channel

memory length m for trellis and turbo ST codes in Figures 5.8 and 5.9, re-

spectively. Note that the frame size is N = 1024 and the number of transmit

antennas is nt = 2. The cases of perfect SI, CDE and the use of the iterative

receiver are shown in the figure. In the case of perfect SI, effective diversity is

the key performance criteria and hence the performance improves as the chan-

nel memory length is reduced, i.e., when the effective diversity is increased.

However, in the CDE assumption and the iterative receiver, the performance

is affected jointly by the effective diversity, fraction of pilot energy and channel

estimation quality. From the figures, the optimal memory is around m = 64

symbols for the trellis code, and around m = 32 symbols for the turbo ST code.

Therefore, the turbo code has a shorter optimal memory than the trellis code

because the former is more sensitive to diversity, and its performance is more

affected by increasing the channel memory length.
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Figure 5.9: SNR required for QPSK ST turbo code to achieve Pb = 10−3 versus
channel memory m for frame size N = 1024 and number of transmit antennas
nt = 2.
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CHAPTER 6

I-Q Space-Time Coded Systems

In this chapter, the performance of I-Q ST codes is analyzed and two ef-

ficient iterative receivers are derived. Trellis codes are good candidates for

applications that require low-complexity receivers and short delays. If a trellis

code is used over a block fading channel and the coded sequence is interleaved

to break up the channel memory, then for low to medium SNR values, the chan-

nel can be approximated by a memoryless channel provided that the number of

fading blocks is several times larger than the code constraint length. For this

observation and due to the difficulty of optimizing trellis codes for block fading

channels, various ST trellis codes were optimized for independent fading chan-

nels in [33,38,59]. In [60] Tonello presented a bit-interleaved ST coded scheme

for independent fading channels. Motivated by the low complexity and short

delays of trellis codes, this chapter is devoted to a class of trellis ST codes that

provide large time diversity known as I-Q ST codes.

It is known that the time diversity provided by a trellis code is the key

design parameter of the code for independent fading channels. Convention-

ally, increasing the time diversity is achieved either by reducing the number

of input bits to the encoder which reduces the throughput, or increasing the

memory of the encoder which increases the complexity. In [61], Al-Semari et

al. showed that using I-Q encoding can increase the time diversity of the code

with the same throughput and lower decoding complexity compared to conven-
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tional coding techniques. In I-Q encoding, the input stream is encoded using

two independent encoders and the output of each encoder is used to determine

one dimension of the complex signal constellation, i.e., the I and Q dimensions.

This reduces the number of input bits to each encoder to half the original num-

ber, which increases the time diversity with less decoding complexity compared

to conventional coding techniques. Motivated by the large time diversity of I-

Q codes, Zummo et al. [33] observed that when I-Q encoding is used in ST

coded systems the I and Q coded sequences are faded and super-imposed on

top of each other. Therefore, a “super-trellis” corresponding to the product of

the trellises of the component codes is necessary for performance evaluation

and decoding, which has two drawbacks.

The first drawback of using the super-trellis is that the performance criteria

of I-Q ST codes are expressed as functions of the parameters of the super-trellis,

which makes it difficult to optimize and design the component codes without

the need of the super-trellis. In [19], the pairwise error probability of ST codes

was upper bounded, and performance criteria were derived for the case of per-

fect SI. Similar results for the case of imperfect SI were obtained in [23]. In

this chapter, the pairwise error probability as well as the performance criteria

of I-Q ST codes are expressed as functions of the parameters of the component

codes. Both cases of perfect and imperfect SI are considered.

The second drawback of the super-trellis is its huge complexity for practical

code constraint lengths. For example, if each component code had 32 state, the

super-trellis would have 32 × 32 = 1024 states. A suboptimal decoding algo-

rithm was proposed in [33], which is based on a detection stage prior to the

I and Q decoders without exchanging information between the decoders. The

performance of the algorithm was not satisfactory especially for non-constant

energy signal constellations. In this chapter, two iterative decoding algorithms

are proposed. The first algorithm views I-Q ST codes as a concatenation of a

channel code and a mapping process, and hence it uses iterative demodulation

and decoding (IDD). The second algorithm uses interference cancellation tech-
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niques, and is referred to as interference cancellation decoder (ICD). Results

show that using 3 iterations in both algorithms provides performance close

to optimal decoding. From the complexity point of view, the ICD has a lower

complexity than the IDD at the cost of performance degradation, where both

algorithms have much lower complexities than optimal decoding.

This chapter is organized as follows. In Section 6.1, the general model of

an I-Q ST coded system is described. The performance of I-Q ST codes and

their design criteria are derived in Section 6.2. In Section 6.3, the geometri-

cal uniformity of I-Q ST codes is established from the geometrical uniformity

component codes. Two iterative receivers are presented in 6.4 as well as their

performance and complexity issues.

6.1 System Description

In this section, we describe the transmitter, channel and receiver of I-Q ST

coded systems. The general I-Q ST transmitter is shown in Figure 6.1. During

a frame transmission period of length NT , the input to the transmitter is a

length-N sequence of binary vectors {ul}N
l=1 each of length k bits. At time lT the

input to the transmitter is ul and the corresponding output is the signal vector

sl of length nt. The signal vector is transmitted using nt antennas, one for each

component of sl. The resulting throughput is k/T bits/s. The transmitter first

splits each input vector into two equal-length vectors uI,l and uQ,l. The vector

uI,l is encoded by the I encoder into a signal vector sI,l of length nt, whose

elements are drawn from an alphabet AI which is a 1-D constellation such as

M-PAM. The 1-D signals in sI,l constitute the I components of the 2-D signals

to be transmitted over the nt transmit antennas. The same applies to the Q

branch, resulting in two length-N sequences of 1-D signal vectors SI = {sI,l}N
l=1

and SQ = {sQ,l}N
l=1. After that, the I and Q codewords SI and SQ are interleaved.

After interleaving, the 2-D signal si
l to be transmitted over the ith antenna is

drawn from the alphabet A = AI × AQ according to: si
l = si

I,l + jsi
Q,l, where
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Figure 6.1: I-Q ST transmitter structure

j =
√
−1, resulting in a transmitted codeword S = SI + jSQ.

The channel considered here is an independent fading channel, where the

received signal at time l is given by

yl =
√

Es

nt∑

i=1

hi
ls

i
l + zl, (6.1)

where in this case hi
l is the channel gain from the ith transmit antenna at time

l and is modeled as CN (0, 1). Here, the fading affecting each signal in the

frame is independent from that affecting the other signals, which results in

the independent fading channel model. The receiver employs the ML decoding

rule that minimizes the frame error probability by maximizing the metric

m(Y,S) = −
N∑

l=1

∣∣∣yl −
√

Es

nt∑

i=1

hi
ls

i
l

∣∣∣
2
. (6.2)

The error probability of I-Q ST codes over independent fading channels is dis-

cussed in the next section.
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6.2 Performance Analysis

In this section, the pairwise error probability and the transfer function of

ST codes are reviewed. Next, the bit error probability of I-Q ST codes is derived

for the cases of perfect and imperfect SI. Then, the geometrical uniformity of

I-Q ST codes is proved from the geometrical uniformity of the component codes.

The section concludes with analytical results for some I-Q ST codes in the lit-

erature. First consider the case of perfect SI available at the receiver. The

conditional pairwise error probability [19] is defined as the probability of de-

coding a received sequence as Ŝ given that S was transmitted conditioned on

the fading variables H = {hl}N
l=1. It is given by (3.9) where the metrics are from

(6.2). Substituting the metrics in (3.9) yields

Pc(S, Ŝ,H) = Pr
(
κ > d2

E(S, Ŝ)
∣∣S,H

)
, (6.3)

where

d2
E(S, Ŝ) = Es

N∑

l=1

∣∣∣
nt∑

i=1

hi
le

i
l

∣∣∣
2
, (6.4)

κ = 2
√

Es Re

{
N∑

l=1

z∗l

nt∑

i=1

hi
le

i
l

}

, (6.5)

where ei
l = si

l − ŝi
l. In (6.5) the random variable κ has a complex Gaussian

CN (0, σ2
κ) distribution where σ2

κ = 2N0Es

N∑

l=1

∣∣
nt∑

i=1

hi
le

i
l

∣∣2. The unconditional pair-

wise error probability is found by averaging (6.3) over the channel statistics

Pu(S, Ŝ) = EH



Q





√
d2

E(S, Ŝ)

2N0







 ≤ 1

2

L∏

l=1

(
1

1 + dl
4N0

)
∼ 1

2

L∏

l=1

dl

4N0
, (6.6)

where dl = Es

∑nt

i=1 |ei
l|2, L = min

∣∣ {l : sl *= ŝl}
∣∣ is called the minimum time di-

versity of the ST code. Note that the Chernoff bound was used in (6.6). Using

the integral expression of the Q-function [45], the unconditional pairwise error

100



probability is written as

Pu(S, Ŝ) =
1

π

∫ π/2

0

L∏

l=1

(
1

1 + dl

4N0 sin2 θ

)

dθ. (6.7)

6.2.1 Design Parameters

From (6.6) important design parameters for ST codes over independent fad-

ing channels are:

1. The diversity gain, L.

2. The coding gain defined by the squared product distance, i.e., d2
p =
∏L

l=1 dl.

The main advantage of I-Q encoding technique appears in increasing the di-

versity gain L of the ST code. In Table 6.1, a comparison between ST trellis

codes employing single encoder and the I-Q encoding scheme from the com-

plexity and diversity gain points of view. The complexity is defined as the total

number of trellis branches divided by the number of information bits [61]. We

see that for the same throughput and decoding complexity, the diversity gain

provided by I-Q encoding is larger than those provided by single-encoder ST

codes. Furthermore, as the constellation size increases, diversity gains of I-Q

ST codes increases significantly, resulting in huge gains over single-encoder ST

codes.

By employing the union bound and averaging over all transmitted code-

words we obtain an upper bound on the error event probability Pe,u

Pe,u ≤
∑

S

∑

Ŝ

P (S)Pu(S, Ŝ), (6.8)

where P (S) is the probability that codeword S is transmitted. If the trellis code

is geometrically uniform, then without loss of generality the all-zero codeword
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Table 6.1: Comparison of ST codes employing single encoder and I-Q encoding
technique.

Constellation (bits/s) Code # States Diversity gain L Complexity
Single 4 2 8

QPSK 2 I-Q 4 3 8
Single 8 3 16
I-Q 8 4 16

Single 16 2 64
I-Q 16 4 32

16-QAM 4 I-Q 32 5 64
Single 32 3 128
I-Q 64 6 128

Single 64 2 683
64-QAM 6 I-Q 64 5 85

I-Q 256 7 683

S0 = {s0}N
l=1 can be assumed to be sent and Pe,u becomes

Pe,u ≤
∑

Ŝ

Pu(S0, Ŝ). (6.9)

In order to evaluate (6.9), the transfer function of the code is required. The

transfer function of a trellis code enumerates the number of codewords at every

input weight and output distance and can be calculated using the error state

diagram [62]. A description of the transfer function of a ST code is included in

Appendix C.1. Computing (C.2) requires the construction of the state diagram

of the super-trellis of the composite code, which may be too complex in general.

In addition, designing good I-Q ST codes requires optimizing the coding and

diversity gains of the I-Q ST code by choosing the signal labels of the component

codes rather than choosing those of the super-trellis. Hence, it is of practical

importance to express the performance of I-Q ST codes as a function of the

transfer functions of the component codes. This is discussed in the remainder

of this section.
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6.2.2 Perfect SI

Define E = {S → Ŝ} to be the event of decoding a received sequence as a

codeword Ŝ. The conditional probability of E given that S was transmitted is

denoted by Pc(E) and given by (6.3). Similarly, I = {SI → ŜI} and Q = {SQ →

ŜQ} refer to the events that the I and Q decoders choose erroneously the 1-D

codewords ŜI and ŜQ, respectively. Since E occurs if either I or Q occurs or both

of them, then using the union bound

Pc(E) ≤ Pc(I) + Pc(Q). (6.10)

Our goal is to bound the pairwise error probability in (6.3) as a function of the

parameters of the I and Q codes explicitly. Modifying (6.4) by using the complex

representation ei
l = ei

I,l + jei
Q,l, then

d2
E(S, Ŝ) = Es

N∑

l=1

∣∣∣
nt∑

i=1

hi
l

(
ei

I,l + jei
Q,l

)∣∣∣
2

= Es

N∑

l=1

(∣∣∣
nt∑

i=1

hi
le

i
I,l

∣∣∣
2
+
∣∣∣

nt∑

i=1

hi
le

i
Q,l

∣∣∣
2
)

. (6.11)

Following the derivation in [19] to simplify the distances in (6.11), we have

d2
E(S, Ŝ) = Es

N∑

l=1

|βl|2 (dI,l + dQ,l)

= d2
E(SI , ŜI) + d2

E(SQ, ŜQ), (6.12)

where dI,l = Es

∑nt

i=1 |eI,l|2, dQ,l = Es

∑nt

i=1 |eQ,l|2 and βj,l follows CN (0, 1) distri-

bution. In (6.12), the squared distance is split into two parts: a part due to

the error signal along the I direction and another part due to the error sig-

nal along the Q direction. Substituting (6.12) in (6.3), the conditional pairwise

103



error probability becomes

Pc(E) = Pr
(
κ > d2

E(SI , ŜI) + d2
E(SQ, ŜQ)

∣∣∣S,H
)

. (6.13)

When no error event occurs in the I code, d2
E(SI , ŜI) = 0, and (6.13) is the prob-

ability of an error event in the Q code, i.e., Pc(Q) = Pc

(
κQ > d2

E(SQ, ŜQ)|SQ,H
)
.

Here, κQ is the noise affecting the Q direction only, which results after remov-

ing the contribution of the I error signal ei
I,l from κ. Similarly, d2

E(SQ, ŜQ) = 0

when no error event occurs in the Q code and the probability in (6.13) is the

probability of an error event in the I code, i.e., Pc(I) = Pc

(
κI > d2

E(SI , ŜI)|SI ,H
)
.

Using (6.10) and averaging over the channel statistics, the unconditional pair-

wise error probability becomes

Pu(E) ≤ Pu(I) + Pu(Q). (6.14)

Using the Chernoff bound results in

Pu(I) ≤ 1

2

LI∏

l=1

(
1

1 + dI,l

4N0

)
∼ 1

2

LI∏

l=1

dI,l

4N0
, (6.15)

where LI = min
∣∣ {l : sI,l *= ŝI,l}

∣∣ is the minimum time diversity of the I code. The

coding gain for the I code is defined as d2
P,I =

∏LI

l=1 dI,l. Similar expressions for

Pu(Q), LQ and d2
P,Q hold for the Q code. From (6.15) and (6.14), the design cri-

teria for the component codes of I-Q ST codes for independent Rayleigh fading

channels are:

1. In order to have a diversity gain of L, then L should satisfy L = min(LI , LQ).

This means that the minimum of LI and LQ should be set equal to the tar-

get minimum time diversity of the composite code, i.e., L.

2. In order to have a coding gain of d2
P , then it should satisfy d2

P = min(d2
P,I , d

2
P,Q).

So, the minimum of d2
P,I and d2

P,Q should be set equal to d2
P .

104



The above design criteria are for arbitrary I and Q codes, which in general can

be different if unequal error protection or variable transmission rates are de-

sired for the I and Q parts of the signal. However, in the case of identical codes,

then the design parameters become L = LI = LQ and d2
P = d2

P,I = d2
P,Q. Exact

expressions for Pu(I) and Pu(Q) are given by (C.2) by replacing T (J, D1, .., Dm)

by TI(J, D1, .., Dm) and TQ(J, D1, .., Dm) for the I and Q codes, respectively. Also,

L and dl are replaced by the corresponding parameters of the I and Q codes.

From (6.14), the bit error probability is bounded by

Pb ≤ Pb,I + Pb,Q, (6.16)

where Pb,I and Pb,Q are the bit error probabilities of the I and Q codes, respec-

tively.

Design Example: The I-Q ST code with 16-QAM constellation, 4 bits/s through-

put and nt = 2 transmit antennas [33]. The component codes employ a 4-PAM

constellation and the 2-D 16-QAM signal space is partitioned as shown in Fig-

ure 6.2. Set partitioning is performed such that the normalized squared Eu-

clidean distance d =
∑nt

i=1 |e|2 and the squared product distance d2
P of the gen-

erated subsets are higher each time the partitioning is performed. The trellis

diagram of the 4-state code is shown in Figure 6.3b. From the figure, the labels

of branches remerging to the same state are chosen from different subsets in

the last partitioning level. The resultant diversity and coding gains are 2 and

3.2, respectively with corresponding error event [0 3;2 3]. Note that this code

is not geometrically uniform.

6.2.3 Imperfect SI

The use of orthogonal pilot sequence insertion for channel estimation in ST

coded systems was presented in Section 3.3.2. From this, channel estimation is

obtained with an error variance σ2
e = N0

ntEs
and a correlation coefficient µ given

by (3.40). The suboptimal decoding rule that maximizes the likelihood function
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Figure 6.3: The 1-D constellations and trellis diagrams of the 4-state compo-
nent codes used as an I-Q ST codes with nt=2 (a) QPSK (2 bits/s) (b) 16-QAM
(4 bits/s).
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p(Y|Ĥ,S) is employed. it chooses the codeword that maximizes

m(Y,S) = −
N∑

l=1

∣∣∣yl −
µ

σ

√
Es

nt∑

i=1

hi
ls

i
l

∣∣∣
2
. (6.17)

The conditional pairwise error probability given the estimated channel gains

is given by substituting m(Y,S) in (3.9). Thus, the conditional pairwise error

probability simplifies to (6.3) with d2
E(S, Ŝ) is given by (6.4) by replacing hi

l by

ξi
l for all l, i, where ξi

l = ĥi
l/σ is a random variable with CN (0, 1) distribution.

Here, σ2 = 1 + σ2
e . In this case, κ is a complex Gaussian with zero-mean and

variance 2
(
N0 + ntEs(1 − µ2)

)
µ2Es

N∑

l=1

∣∣
nt∑

i=1

ξi
f,le

i
f,l

∣∣2. Thus the conditional pair-

wise error probability is given by

Pc(S, Ŝ) = Q




√

d2
E(S, Ŝ)

2N0 + 2ntEs(1 − µ2)



 = Q





√
d2

E(S, Ŝ)

2ν



 , (6.18)

where

ν−1 =
µ2

N0 + ntEs(1 − µ2)
. (6.19)

The pairwise error probabilities of the I and Q codes for the case of imperfect

SI follows from the case of perfect SI, which are given by (6.15) with ν in (6.19)

replacing N0.

6.2.4 Analytical Results

Throughout the chapter, we consider only the case of two transmit and one

receive antennas. The code used is a 4-state QPSK I-Q code whose component

codes have the trellis shown in Figure 6.3a. The throughput of this code is 2

bit/s and the code is clearly geometrically uniform. The bound on the bit error

probability and simulation results are plotted in Figure 6.4 versus the average

SNR per information bit γb = Eb
N0

. The figure shows the performance of the

code with different channel estimation quality parameterized by the channel
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Figure 6.4: Performance of I-Q QPSK code using optimal decoding with perfect
and imperfect SI parameterized by CER= − log σ2

e . (bnd: bound, sim: simula-
tion).

gain-to-estimation error ratio: CER = − log(σ2
e). The bound on the error proba-

bility is relatively tight at high SNR values as expected. Also the performance

improvement with improved estimation quality exhibits a diminishing returns

effect. Increasing the CER above 20 dB yields small improvement in perfor-

mance except at high SNR. The decoder uses a 16-state super-trellis to decode.

Larger time diversity could be achieved using codes with a larger number of

states but the complexity of decoding grows rapidly. Thus we need to consider

suboptimal decoding algorithms as in the following.

6.3 Geometrical Uniformity

In the following, we prove that if the component codes of an I-Q ST code are

geometrically uniform then the overall I-Q ST code is geometrically uniform.

A trellis code is said to be geometrically uniform [63] if the distance spectrum
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of the code relative to any codeword is the same as that taken relative to the

all-zero codeword. In [64], Biglieri et al. derived sufficient conditions for geo-

metrical uniformity of trellis codes. Consider a trellis code whose output signal

s is given by a mapping of a binary code vector c onto a signal constellation

point, s = f(c). The code space C consisting of all possible codewords is par-

titioned into subsets C and C̃. In the trellis, codewords from C are permitted

at a subset of trellis states S, where the other state subset S̃ permits code-

words from C̃. Define the partition of the signal space corresponding to C as

A = {s : s = f(c), ∀c ∈ C}. Similarly, Ã is defined resulting in partitioning the

signal space into A and Ã. In [64], it was shown that a trellis code is geometri-

cally uniform if:

1. The subset C̃ is a coset of C, i.e., C̃ = C + c̃, where c̃ is the coset represen-

tative of C̃ in bits and addition is performed bitwise for each codeword in

C.

2. The signal partitions A and Ã are isometrics, i.e., they have the same

distance spectrum,

d2
E[f(c), f(c + e)] = d2

E[f(c + c̃), f(c + c̃ + e)], ∀c ∈ C, e ∈ C, (6.20)

where d2
E represents the squared Euclidean distance between two signal points.

Proposition 6.1.

An I-Q ST code is geometrically uniform if its component I and Q codes are

geometrically uniform.

Proof. Consider an I-Q ST code with geometrically uniform component codes,

i.e., the code spaces of the I and Q encoders are partitioned into CI , C̃I = CI + c̃I

and CQ, C̃Q = CQ + c̃Q, respectively. The output signal vector of an I-Q ST en-

coder is given by a mapping s = f(c), where c = (cI , cQ) is the concatenation

of the I and Q code vectors. Therefore, the code space of the I-Q ST encoder

is partitioned into four sets (CI , CQ), (C̃I , CQ), (CI , C̃Q) and (C̃I , C̃Q), resulting in
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partitioning the complex signal into (AI ,AQ), (ÃI ,AQ), (AI , ÃQ) and (ÃI , ÃQ),

where AI and AQ are the signal partitions corresponding to CI and CQ, respec-

tively. Now we have:

1. The code sets (CI , CQ), (C̃I , CQ), (CI , C̃Q) and (C̃I , C̃Q) are cosets of each other

since their I and Q elements are cosets.

2. The complex signal partitions (AI ,AQ), (ÃI ,AQ), (AI , ÃQ) and (ÃI , ÃQ) are

isometrics since their I and Q components are isometrics.

Thus I-Q ST codes that employ geometrically uniform component codes are also

geometrically uniform.

6.4 Iterative Decoding

This section is devoted to suboptimal decoding of I-Q ST codes. The section

starts with reviewing the decoding problem, and then two iterative decoders

are described. The received signal at each receive antenna in (2.1) is expanded

as

yl =
nt∑

i=1

(hi
I,ls

i
I,l − hi

Q,ls
i
Q,l) + j(hi

I,ls
i
Q,l + hi

Q,ls
i
I,l) + zl, (6.21)

where hi = hi
I +jhi

Q. The ML decoding rule at the I and Q decoders requires the

computation of the likelihood functions p(Y|SI ,H) and p(Y|SQ,H), respectively.

However, Y depends on SI and SQ which complicates the implementation of the

optimal decoder. Therefore, low complexity decoders are of interest. Next we

propose two iterative decoders.

6.4.1 Iterative Demodulation-Decoding (IDD)

The first algorithm views the I-Q encoding process as a concatenation of two

independent stages: the encoding using the I and Q codes and the I-Q mapping

of the 1-D I and Q signals to the 2-D signal constellation. Therefore, the overall

system is viewed as a serial concatenation of a convolutional code and a block
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code (mapping), and hence iterative demodulation and decoding in [60,65] can

be used to demodulate and decode the information. The block diagram of this

decoder is shown in Figure 6.5. It consists of a detection stage and two SISO

modules for the I and Q codes. The detection stage receives the channel output

for a frame and computes the following probabilities

p(yl|sI,l,hl) = Kp(sI,l)
∑

∀sQ

p(yl|sI,l, sQ,l,hl)p(sQ,l), l = 1, . . . , N (6.22)

p(yl|sQ,l,hl) = Kp(sQ,l)
∑

∀sI

p(yl|sI,l, sQ,l,hl)p(sI,l), l = 1, . . . , N, (6.23)

where hl = {hi
l}nt

i=1, K is a normalization constant and p(yl|sI,l, sQ,l,hl) is the

channel transition probability

p(yl|sI,l, sQ,l,hl) = exp

(
−m(yl, s)

2ν

) ∣∣∣∣
s=(sI,l,sQ,l)

, (6.24)

where m(yl, s) is given by

m(yl, s) =






∣∣∣yl −
√

Es

∑nt

i=1 hi
ls

i
∣∣∣
2
, perfect SI,

∣∣∣yl − µ
σ

√
Es

∑nt

i=1 ĥi
ls

i
∣∣∣
2

, imperfect SI,
(6.25)

and ν = N0 or given by (6.19) for perfect and imperfect SI, respectively. The

probabilities p(sI,l), p(sQ,l) are the apriori information about the I and Q signal

vectors at time l, which are assumed to be equally likely at the initialization of

the algorithm. To avoid positive feedback of apriori information, only extrinsic

information is passed to the I and Q decoders. The extrinsic information is

defined as the probabilities in (6.22) and (6.23) after removing the contribution

of the apriori information [2], and will be denoted as p(sI,l) and p(sQ,l).

The SISO module is a maximum aposteriori decoder that accepts soft in-

formation about signal vectors and updates them using the BCJR algorithm

in [37]. The I and Q SISO decoders use {p(sI,l)}N
l=1 and {p(sQ,l)}N

l=1 as their
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Figure 6.5: The structure of the IDD receiver.

observation vectors and compute soft information about signal vectors using

p
(
sI,l

∣∣Y,H
)

= K
∑

(m,m′ ):sI,l

γl(m, m
′
)hl−1(m

′
)βl(m), l = 1, . . . , N, (6.26)

where γl(m, m
′
) = p(yl|sI,l,hl) is the branch metric for a transition in the I code

from state m at time l to state m
′
at time l + 1, which is computed in the de-

tection stage using (6.22). The variables hl and βl are the standard forward

and backward recursions in the BCJR algorithm [37]. The same computation

is performed in the Q-SISO decoder, and extrinsic information about the signal

vectors are passed to the detection stage for the next iteration. The algorithm

continues for a certain number of iterations and decision is made in the last

iteration.

The detection stage needs to compute Mnt metrics given by (6.25). The com-

plexity of the I and Q SISO modules is linear in the number of states of the com-

ponent codes, which reduces the decoding complexity compared to super-trellis

significantly. Another decoding strategy with lower complexity is proposed in

the following.
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Figure 6.6: The structure of the ICD receiver.

6.4.2 Interference Cancellation Decoder (ICD)

In this algorithm, the decoding problem of I-Q ST codes is viewed as a mul-

tiuser detection problem. The block diagram of this decoder is shown in Figure

6.6, which is similar in spirit to parallel interference cancellation in [66,67]. It

consists of a detection stage, I and Q SISO modules and an interference cancel-

lation (IC) stage. In the detection stage, metrics corresponding to all possible

pairs of signal vectors {(sI , sQ) : sI ∈ AI , sQ ∈ AQ} in the frame are computed

using (6.25). The metric corresponding to each of the signal vectors sI , sQ is

ml(sI) = min
sQ∈AQ

m(yl, s)
∣∣
s=(sI ,sQ)

, sI ∈ AI , l = 1, . . . , N (6.27)

ml(sQ) = min
sI∈CI

m(yl, s)
∣∣
s=(sI ,sQ)

, sQ ∈ AQ, l = 1, . . . , N. (6.28)

These metrics are fed to the I and Q SISO modules, which employ the BCJR

algorithm. As in IDD, the SISO modules compute aposteriori probabilities of

signal vectors using (6.26), with γl(m, m
′
) for the I and Q decoders is given,
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respectively by

γI,l(m, m
′
) = exp

(
−ml(sI)

2ν

) ∣∣∣∣
sI :(m,m′ )

(6.29)

γQ,l(m, m
′
) = exp

(
−ml(sQ)

2ν

) ∣∣∣∣
sQ:(m,m′ )

(6.30)

Once the I and Q SISO modules finish one frame, they pass the extrinsic infor-

mation signal vectors to the IC stage. The IC stage forms new estimates of the

I and Q faded signals by looking at (6.21) and using

xI,l = yl −
√

Es

∑

∀sQ

p(sQ,l)
nt∑

i=1

si
Q,l(−hi

Q,l + jhi
I,l), l = 1, . . . , N (6.31)

xQ,l = yl −
√

Es

∑

∀sI

p(sI,l)
nt∑

i=1

si
I,l(h

i
I,l + jhi

Q,l), l = 1, . . . , N. (6.32)

These new observations along with the extrinsic information about signal vec-

tors are passed to the SISO modules in the next iteration. In the proceed-

ing iterations, the SISO modules operate on the vectors XI = {xI,l}N
l=1 and

xQ = {xQ,l}N
l=1 as their new observations and update the soft information of

the I and Q signal vectors. Note that the branch metric in the I and Q SISO

modules are computed using the likelihood functions of the new observations

obtained from the IC stage, i.e., p(xI,l|sI,l,hl) and p(xQ,l|sQ,l,hl). The algorithm

keeps exchanging extrinsic information between the SISO modules and the IC

stage for a number of iteration and decision is made in the last iteration.

The complexities of the detection stage and the SISO blocks are the same

as in the IDD receiver. However, the detection stage in the ICD is used at the

initialization of the algorithm only. In the rest of the iterations, the IC stage

computes M (nt/2) metrics given by (6.31) and (6.32). Therefore, the ICD is less

complex than IDD at the cost of performance degradation as discussed below.
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Figure 6.7: Simulation of the I-Q QPSK code using IDD and ICD with perfect
SI. (itr: iterations, opt: optimal, no I-Q: QPSK code with single encoder).

6.4.3 Simulation Results

Figure 6.7 shows the performance of the 4-state I-Q QPSK code with IDD

and ICD. The frame size is N = 500. Note that for one iteration the two algo-

rithms are identical to the suboptimal algorithm in [33]. It can be seen that

using both algorithms with 3 iterations perform very close to the optimal de-

coding. Also, the figure shows the performance of a single-encoder ST QPSK

code that is optimized for independent fading channels [33]. This code uses a

4-state encoder and has double the complexity of the corresponding I-Q code

with the same throughput of 2 bits/s. From the figure, it is clear that decoding

the I-Q code using IDD with 3 iterations provides a coding gain of 5 dB at 10−4

bit error rate over the QPSK code with single encoder.

Figure 6.8 shows the performance of the 4-state 16-QAM I-Q ST code pre-

sented in Section 6.2.2. From the figure, the IDD algorithm with 3 iterations

performs only 0.5 dB worse than optimal decoding. Also, ICD algorithm with

3 iterations provides a gain of 1.5 dB over the case of one iteration. For the
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Figure 6.8: Simulation of the I-Q 16-QAM code using IDD and ICD with perfect
SI. (itr: iterations, opt: optimal).

16-QAM case, the gains obtained from the ICD algorithm is less than the gains

in the QPSK code. This is due to the reliability of the detection stage. As dis-

cussed in [33], the detection stage reliability is smaller for non-constant energy

constellations. It is clear that decoding the 16-QAM code using the ICD algo-

rithm does not converge to the optimum decoding as the number of iterations

is increased, unlike the IDD algorithm. In general, ICD is less complex than

IDD but at the cost of performance degradation.

Figure 6.9 shows the performance of the QPSK code with IDD and imperfect

SI with CER=20 and 15 dB. We can see that 3 iterations provide performance

close to the performance of the optimal decoder, which indicates that IDD is

robust to channel estimation errors. Note that the performance is degraded by

1 dB and 2 dB for the cases of CER = 20 db and 15 dB, respectively. The per-

formance degradation due to channel estimation errors is a common problem

in ST codes and it increases as the number of transmit antennas increases as

appears in (6.19). The effect of the frame size N on the performance of IDD and
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Figure 6.9: Simulation of the I-Q QPSK code with IDD using 3 iterations and
imperfect SI parameterized by CER= − log σ2

e . (itr: iterations, opt: optimal).

ICD receivers for the QPSK and 16-QAM codes is shown in Figure 6.10. From

the figure, the effect of reducing the frame size from N = 500 to N = 200 is

negligible. Hence, both IDD and ICD algorithms are not sensitive to decoding

delays and using them does not impose any delay constraint on the system.
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Figure 6.10: Simulation of the I-Q QPSK and 16-QAM codes using IDD and
ICD with 3 iterations and perfect SI for different frame sizes (solid: N = 500,
dash: N = 200).
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CHAPTER 7

Conclusions and Future Research

In this chapter, we conclude this thesis by summarizing the content of the

thesis and discussing possible future research directions.

7.1 Summary of Contributions

The most important contribution of this thesis is the performance analysis

of binary coded systems over block fading channels using the union bound ap-

proach. In deriving the bound, we considered different receivers with different

assumptions on the channel side information at the receiver. Expressions for

the pairwise error probability for single and multi-antenna systems were de-

rived. The tradeoff between the channel diversity and channel estimation was

investigated assuming pilot-aided channel estimation. We introduced two as-

sumptions to asses the performance of pilot-aided channel estimation; namely,

the only pilot estimation (OPE) and the correct data estimation (CDE). Using

the CDE assumption, a lower bound on the performance of iterative receivers

employing joint decoding and channel estimation was evaluated. It was ob-

served that the optimal channel memory tends to increase as under the CDE

assumption because the channel estimation improves with increasing channel

memory. Moreover, the optimal channel memory increases as the number of

transmit antennas is increased.
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The union bound of coded systems over block fading channels was extended

to the cases when the fading in each fading block is distributed according to Ri-

cian and Nakagami distributions. The performance loss due to channel mem-

ory was clear from the analytical results. We observed that this loss increases

as the channel becomes more fading, i.e., by reducing the specular-to-diffuse ra-

tio in Rician fading and increasing the fading amount in Nakagami fading. The

optimal channel memory was investigated for systems with different values of

the specular-to-diffuse ratio of the channel. It was shown that the optimal

channel memory increases as the specular-to-diffuse ratio of a Rician channel

is increased.

As an effort to improve channel estimation in systems employing multi-

antenna transmitters over block fading channels, an iterative receiver for de-

coding and channel estimation was presented. The iterative receiver performs

very close to the best performance dictated by the system, i.e., under the CDE

assumption. The convergence properties of the receiver were studied and it

was shown via simulations that updating the channel estimation in more than

3 iterations increases the complexity of the system with no significant perfor-

mance improvement. Also, the performance of the iterative receiver was tested

for a large frame size and a large number of transmit antennas, and results

show that the receiver performs well under these conditions. The tradeoff be-

tween channel estimation and channel diversity was investigated and the op-

timal channel memory was found via simulations. Moreover, the effect of the

code error correcting capabilities on the optimal channel memory was investi-

gated.

The performance of I-Q space-time codes was analyzed using the transfer

functions of the component codes. From this, code design criteria for I-Q ST

codes over independent fading channels were derived as functions of the pa-

rameters of the component codes rather than the super-trellis. The geomet-

rical uniformity of I-Q space-time codes was established from the geometrical

uniformity of the component codes. The decoding problem of I-Q codes was re-
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viewed and two iterative decoding receivers were proposed. The performance

and complexities of the proposed receivers were compared. Results showed

that using the iterative receivers with 3 iterations results in performance that

is very close to the optimal decoder.

7.2 Future Research

Since block fading channels approximate the fading behaviour in many im-

portant communication systems, different future research directions are pos-

sible. First, the union bound approach can be generalized to analyze the per-

formance of coded systems over block fading channels with correlated fading

blocks. An example of systems that encounter correlated fading blocks is multi-

carrier transmission systems. In general, the fading processes at different car-

riers in a multi-carrier system may be correlated according the frequency se-

lectivity of the channel. Another example is a system employing time-division

multiplexing with a very slow varying channel. In this case, the fading affect-

ing different time slots in the frame forms a correlated random process with a

certain correlation function. Thus the effect of the number of carriers as well

as the correlation function on the performance can be found from the analysis.

Furthermore, the tradeoff between the channel estimation and channel diver-

sity can be investigated. It would be interesting to investigate the effect of the

channel correlation function on the optimal channel memory.

Another research avenue is to generalize the union bound to coded systems

with arbitrary constellation size. By doing this, the performance of systems

employing trellis coded modulation, space-time trellis codes and space-time

block codes with arbitrary complex signal constellations can be analyzed. The

effect of channel estimation and optimal channel memory can be investigated

for constellations with constant and nonconstant-energy signals. Furthermore,

the effect of the size and shape of the constellation on the optimal channel

memory can be investigated, which may help in code and constellation designs
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for block fading channels.

The research in iterative decoding and channel estimation for multi-antenna

systems can be directed towards designing low complexity receivers. As was

demonstrated, the complexity of the channel update block is exponential in the

number of transmit antennas. Thus iterative receivers with lower complexities

are necessary for systems employing large number of transmit antennas.
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APPENDIX A

Appendix for Chapter 3

A.1 Derivation of (3.27) (for Section 3.2.3)

In the following, a complete derivation of (3.27) is presented which follows

[12] in spirit. Expanding (3.26),

Pc(d|f) ≤
L∏

f=1

exp
(
− 2λ

m∑

l=1

afsf,l|sf,l − ŝf,l|
)

×Ez

[
exp
(
− 2λ

m∑

l=1

zf,l|sf,l − ŝf,l|
)]

. (A.1)

For constant-energy signal constellations, 2sf,l|sf,l − ŝf,l| = |sf,l − ŝf,l|2. As in [7],

it can be shown that

Ez

[
e(−2λ

∑m
l=1 zl|sl−ŝl|)

]
= e(λ

2N0
∑m

l=1 |sl−ŝl|2). (A.2)

Substituting back in (A.1), the conditional pairwise error probability simplifies

to

Pc(d|f) ≤
L∏

f=1

exp
(
− λaf

m∑

l=1

|sf,l − ŝf,l|2 + λ2N0

m∑

l=1

|sf,l − ŝf,l|2
)
. (A.3)
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Since
∑m

l=1 |sf,l − ŝf,l|2 = 4Esdf , where df is the number of nonzero locations in

block f , (A.3) simplifies to

Pc(d|f) ≤
L∏

f=1

exp
(
−4Esλafdf + 4Esλ

2N0df

)
. (A.4)

For the sake of simplifying presentation, we define γ = 2Rcγb, where γb = Es
RcN0

.

Substituting λ̃ = λN0,

Pc(d|f) ≤
L∏

f=1

exp
(
−2λ̃dfafγ + 2λ̃2dfγ

)
. (A.5)

Averaging over the fading gains {af}F
f=1 as

Pu(d|f) ≤
L∏

f=1

exp
(
2λ̃2dfγ

)
Ea

[
exp
(
−2λ̃dfafγ

)]

=
F∏

f=1

exp
(
2λ̃2γ

) [
1 − 2

√
πβf exp(β2

f )Q(
√

2βf )
]
, (A.6)

where βf = λ̃dfγ. To find λ̃ that minimizes the bound, the approximation

Q(x) ≈ 1
2
√
π exp(−x2

2 )(1 − 1
x2 ) is used and (A.6) becomes

Pu(d|f) !
w∏

v=1

(
1

2β2
v

)fv

exp
(
2λ̃2fvγ

)
, (A.7)

where in this case βv = λ̃vγ. Recall that d =
∑w

v=1 vfv, then the unconditional

pairwise error probability simplifies to

Pu(d|f) !
exp
(
2λ̃2dγ

)

2L(λ̃γ)2L
∏w

v=1 v2fv
. (A.8)

This can be minimized over λ̃ resulting in an optimum value λ2
opt = L/(2dγ).

Substituting for λopt and γ, (3.27) follows directly.
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APPENDIX B

Appendix for Chapter 4

B.1 Derivation of (4.9) (for Section 4.1.3)

In the following, complete derivation of (4.9) is presented which follows in

general [12]. By averaging (A.5) over the density in (4.1),

Pu(d|f) ≤
L∏

f=1

exp
(
2λ̃2dfγ

)
Ea

[
exp
(
−2λ̃dfafγ

)]

=
L∏

f=1

e(2λ̃2γ)e−K

[
1 − 1√

π

∫ π

0

ψ(τ)eψ
2(τ)Q(

√
2ψ(τ))dτ

]
, (B.1)

where γ = 2Rcγb and the second line was taken from [12], where there was no

proof provided.

ψ(τ) =
λ̃dfγ√
1 + K

−
√

K cos τ. (B.2)

For sufficiently large γ, ψ(τ) is dominated by its first term and it becomes in-

dependent of τ . In this case, (B.1) reduces to

Pu(d|f) !
L∏

f=1

exp
(
2λ̃2dfγ

)
e−K

[

1 − 2
√
πλ̃dfγ√
1 + K

exp

(
λ̃2d2

fγ
2

√
1 + K

)

Q

(√
2λ̃dfγ√
1 + K

)]

.

(B.3)
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To find λ̃ that minimizes the bound, the approximation Q(x) ≈ 1
2
√
πx exp(−x2

2 )(1−
1
x2 ) is used

Pu(d|f) !
w∏

v=1

e−K(1 + K)

(
1

2β2
v

)fv

exp
(
2λ̃2fvγ

)
, (B.4)

where βv = λ̃vγ. Recall that d =
∑w

v=1 vfv, then the pairwise error probability

simplifies to

Pu(d|f) !
e−K(1 + K)L exp

(
2λ̃2dγ

)

2L(λ̃γ)2L
∏w

v=1 v2fv
. (B.5)

This can be minimized over λ̃, resulting in an optimum value λ2
opt = L/(2dγ).

Substituting for λopt and γ, (4.9) follows directly.

B.2 Derivation of (4.14) (for Section 4.2.2)

In the following, (4.14) is derived in details. By averaging (A.5) over the

density in (4.12) and using Eq. (3.462) from [68]

Pu(d|f) ≤
L∏

f=1

exp(2λ̃2dfγ)Ea

[
exp
(
−2λ̃dfafγ

)] F∏

f=1

exp(2λ̃2dfγ)
Γ(2M)

Γ(M)2M−1
(B.6)

× exp

(
λ̃2d2

fγ
2

2M

)
D−2M

(√
2λ̃dfγ

M

)
, (B.7)

where Dp(z) is the parabolic cylindrical function. Using Eq. (9.246) from [68],

Dp(z) ≈ zpe−z2/4 for z 1 1, |z| 1 |p|. Thus, for sufficiently large γ (i.e., for

λ̃dfγ >> M√
2
and λ̃dfγ >>

√
2M3/2)

D−2M

(√
2λ̃dfγ

M

)
≈
(√

2λ̃dfγ

M

)−2M

exp

(
−
λ̃2d2

fγ
2

2M

)
. (B.8)
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Substituting (B.8) in (B.7), the unconditional error probability is approximately

upper bounded as

Pu(d|f) !
L∏

f=1

exp(2λ̃2dγ)
Γ(2M)

Γ(M)2M−1

(
2λ̃2d2

fγ
2

M

)−M

=

(
Γ(2M)

Γ(M)2M−1

)L

exp(2λ̃2dγ)

(
2λ̃2γ2

m

)−ML( w∏

v=1

v2Mfv

)−1

, (B.9)

where d =
∑w

v=1 vfv by definition. The expression (B.9) can be minimized over

λ̃, resulting in an optimum value λ2
opt = ML/(2dγ). Substituting for λopt and γ

in (B.9), the final expression of the pairwise error probability over Nakagami

block fading channel with no amplitude SI is given in (4.13)
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APPENDIX C

Appendix for Chapter 6

C.1 The Transfer Function of ST codes (for Sec-

tion 6.2)

In this appendix, the transfer function of a ST trellis code is reviewed. It is

a function that enumerates the number of codewords at every input weight and

output distance and can be calculated using the error state diagram [64]. The

label associated with each branch connecting two states in the error state di-

agram depends on the error vector between the signal associated with that

branch and the zero signal vector s0, i.e., e = s − s0. If an M-ary signal

constellation is used at each transmit antenna, there are Mnt − 1 different

error vectors. Denote the distinct squared Euclidean distances from s0 as

{ξ1, ξ2, . . . , ξn} = {ξ : ξ = Es||s − s0||2, s ∈ Ant}, where ||x||2 denotes the norm of

a vector x. In the error state diagram, each branch is labeled by JuDv1
1 . . .Dvn

n

where vl = 1 if the corresponding signal vector has distance ξl. Also, the expo-

nent of the variable J is the weight of the input vector causing the transition.

For example, a state transition with input weight u and signal vector with dis-

tance ξl is represented by JuDl. The reader is referred to [64] for the complete

details of computing the transfer function of trellis codes. The transfer function
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of the ST code is written as

T (J, D1, . . . , Dn) =
∑

u

∑

v1,...,vn

a(u, v1, . . . , vn)J
uDv1

1 . . .Dvn
n , (C.1)

where a(u, v1, . . . , vn) is the number of codewords with input weight u and vi er-

ror vectors with distance ξi from s0, for i = 1, . . . , n. Comparing the expressions

in (6.9) and (C.1) and using the integral expression of the Q-function [45], the

bit error probability can be written as

Pb ≤
1

πk

∫ π/2

0

∂T (J, D1, . . . , Dn)

∂J

∣∣∣∣
J=1,Dv=

(
1+ ξv

4N0 sin2 θ

)−nr
,v=1,...,n

dθ. (C.2)
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