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ABSTRACT

ANALYSIS AND DESIGN OF EFFICIENT WIRELESS NETWORKS

by
Hua Wang

Chairman: Wayne E. Stark

We present a generic integrated design methodology that is suitable for many

kinds of mobile systems. The integrated design methodology takes into account the

coupling among the subsystems and simultaneously optimizes their operation under

an energy constraint. We show that significant improvement in performance can

be achieved by using the integrated design methodology compared with traditional

design methodologies. We evaluate the tradeoff between energy consumption and

performance for several network scenarios.

Routing is an efficient method for connectivity and low energy consumption of

wireless networks. When each node is equipped with an omni-directional antenna, a

point-to-multipoint connection is often available for routing. When the design goal

is to minimize the maximum power consumed by the nodes in a network, we provide

an algorithm with polynomial-time complexity that assigns power to each node for

unicast, broadcast, and multicast sessions. When the design goal is to minimize

the total power consumed by the nodes in a network, we provide an algorithm with



polynomial-time complexity that assigns power to each node for a unicast session

and show that the computational complexity of routing algorithms for broadcast

and multicast sessions is NP-hard.

We introduce transport efficiency to capture both bandwidth efficiency and en-

ergy efficiency of wireless networks. We show that for linear networks the optimal

transport efficiency is inversely proportional to the end-to-end distance for one physi-

cal layer model and observe through numerical results that the same is true for many

other physical layer models. We investigate the interference caused by space-time

coding and an ordinary end-fire antenna array to neighboring networks. We show

that the ordinary end-fire antenna array gives higher transport efficiency than space-

time coding when the number of receiving antennae is small and space-time coding

gives higher transport efficiency than the ordinary end-fire antenna array when the

number of receiving antennae is large. We indicate that cooperative communica-

tion between linear networks can improve transport efficiency, but it gives marginal

benefit if the cooperating networks are separated too far apart.
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CHAPTER I

OVERVIEW OF RESEARCH IN WIRELESS

COMMUNICATION NETWORKS

There has been tremendous progress in the wired and wireless networks during

the past decade. With the ever popularity of IEEE 802.11x wireless LAN protocol,

more and more wireless devices have been developed to accommodate the demand

for wireless connectivity. Wireless networks have significantly different characteristics

compared with wireless networks. Wireless channels are susceptible to interference

and fading, thus more prone to errors than wired channels. Since many wireless

devices are powered by batteries, energy efficiency is a big concern for the wireless

communications. We start with a survey of the development of communication theory

and practices that motivate us the research topics in this dissertation. A perfect

resource for many communication topics is [65].

1.1 Point-to-Point Communication

A simple scenario of communication is when there is only one transmitter and

one receiver as shown in Figure 1.1. For such scenario, the communication sys-

tem is usually modeled by the diagram shown in Figure 1.2. For the purposes of

this dissertation, we are interested in the channel coding aspect of point-to-point

1
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User 0 User 1

Channel

Figure 1.1: Point-to-point communication scenario.

Source
Decoder

Channel
DecoderChannelChannel

Encoder
Source

Encoder

Figure 1.2: Point-to-point communication system modeling.

communication. In 1948 Shannon published his seminal work on channel coding the-

ory for the point-to-point communication [73] in an additive white Gaussian noise

(AWGN) channel, where he characterized the point-to-point communication channel

by a parameter, which he named the capacity of the channel. Shannon showed that

reliable communication is only possible when the communication rate is less than

the channel capacity. For more than fifty years, researchers have tried to design

coded systems of reasonable complexity to achieve low error probability with signal-

to-noise ratio close to the Shannon limit. A true breakthrough occurred when turbo

codes were invented [7] in 1993. The later rediscovery of the Gallager’s low-density

parity check codes [27, 28] by MacKay [50] and the development of turbo-like cod-

ing and modulation techniques [51] allow point-to-point communication in AWGN

channels to be very close to the Shannon limit albeit large delays. To some extent,

the point-to-point communication problem has been successfully solved.

1.2 Broadcast and Multiple Access Communication

Other than the point-to-point communication scenario, we have broadcast sce-

nario and multiple access scenario shown in Figure 1.3 and Figure 1.4 respectively.

A typical example of broadcast scenario is when a transmitter is equipped with an

omni-directional antenna and there are many receivers around it. Typical examples
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of multiple-access scenario include Ethernet and cellular networks.

User 1

User 0

User 3

User 2

Figure 1.3: Point-to-multipoint communication scenario.

User 1

User 3

User 0User 2

Figure 1.4: multipoint-to-point communication scenario.

There have been extensions of Shannon’s theory from the point-to-point commu-

nication channels to the broadcast and multiple access communication channels. The

most successful extensions have been [21, 23] for the broadcast channels and [75] for

the multiple access channels. Cover gives a nice summary of the results for the ca-

pacity of broadcast channels in [22]. Unfortunately there has not been much interest

in the design of practical coding and modulation schemes for these channels.

1.3 Network Coding

Network coding considers the situation where a source node wants to deliver its

information bits to multiple destination nodes, possibly via multiple hops. The cur-

rent research in network coding is mainly limited to wired networks. If a source
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node is allowed to transmit only one bit via all its fixed connections, a fundamental

question is how many times the source has to transmit in order to deliver all its

information bits to the destinations. A method that can possibly reduce the number

of transmissions by the source is called network coding [2, 47, 49], where each partic-

ipating node in the network performs some transformation to all the bits it receives

via its incoming links and transmits the transformed bits out of its outgoing links.

The network coding technique, although promising for some applications, such

as multicasting in the Internet, requires cooperations of many nodes in a network in

some synchronized fashion, which may be too complicated for actual implementation.

Probably for this reason, there has not been much interest in the design of the

practical coding schemes for network coding.

1.4 Challenges in Wireless Communication Networks

There are many research problems typical of wireless networks. Since many

wireless devices operate on batteries, energy efficiency is a big challenge to system

designers. Since wireless channels are more prone to errors, reliable communication

is also a serious concern. The throughput of a wireless communication network may

be limited by both energy efficiency and communication reliability.

In order to design efficient and reliable wireless networks, a profound general

theory, analogous to the Shannon’s theory for the point-to-point communication, is

desired. However there has not been much progress along this direction [25]. There

have been some research [33, 84, 85] on the capacity of different wireless networks,

but its imminent practical application can not be easily seen.

The development of more efficient coding and modulation techniques, such as

space-time coding, antenna array, and orthogonal frequency division multiplexing
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(OFDM), provides wireless network designers with higher link capacity and higher

energy efficiency. The effective integration of techniques at different layers of wireless

communication systems will produce better wireless communication networks. This

motivates us to investigate the integrated design methodology for wireless commu-

nication systems and analyze the relation of network throughput to parameters at

other design layers in this dissertation.

1.5 Contributions

In this section we summarize our contributions in this thesis to the research in

wireless communications.

1. We describe a generic integrated design methodology that is suitable for many

kinds of mobile systems. The energy constraint for a communication system

causes coupling between different design layers and makes the traditional sepa-

rate layer design and optimization inappropriate. Drastically different from the

traditional design, the integrated design methodology takes into account the

coupling among the subsystems and simultaneously optimizes their operation

under an energy constraint. Using our methodology, we are able to optimize a

communication system across multiple design layers in a reasonable amount of

time. We illuminate why integrated design methodology is better than the tra-

ditional design methodologies and show the improvement in performance that

the integrated design methodology achieves over traditional design methodolo-

gies. The tradeoff between energy consumption and network performance is

also demonstrated.

2. We consider routing in wireless networks. To achieve connectivity and energy

efficiency, routing is an essential and efficient means for end-to-end communi-
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cation in wireless networks. For wireless networks where each node is equipped

with an omni-directional antenna, a point-to-multipoint connection can often

be exploited for routing purposes. When the goal is to minimize the maximum

power consumed by the nodes in a network, we provide a polynomial-time

complexity algorithm to assign power to each node for unicast, broadcast, and

multicast sessions. When the design goal is to minimize the total power con-

sumed by all nodes in a network, we provide a polynomial-time complexity

algorithm to assign power to each node for a unicast session and show that the

computational complexity of routing algorithms for broadcast and multicast

sessions is NP-hard. Our routing algorithms do not require the underlying

graph after the power assignment be strongly connected.

3. We study the effects of power amplifier characteristics and receiver processing

energy on the performance of a linear network. We introduce transport effi-

ciency that accounts for both bandwidth efficiency and energy efficiency. We

explicitly include the amplifier characteristics and receiver processing energy

in the analysis of transport efficiency. We show that the optimal transport

efficiency between two end nodes of a linear network at large distances is in-

versely proportional to the end-to-end distance for the threshold system. We

observe that the same is true for any other type of communication systems

under consideration from our numerical results.

4. We investigate the interference caused by space-time coding and the ordinary

end-fire antenna array to neighboring networks. Our analytical and numerical

results suggest that the ordinary end-fire antenna array gives higher transport

efficiency than space-time coding when the number of receiving antennae is
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small and gives transport efficiency close to that for space-time coding when

two linear networks are close to each other. On the other hand, space-time

coding gives higher transport efficiency than the ordinary end-fire antenna

array when the number of receiving antennae is large and when two linear

networks are far apart.

5. We show that cooperative communication with space-time coding between lin-

ear networks can improve transport efficiency, but it only gives marginal bene-

fit if the cooperating networks are separated too far apart. This suggests that

cooperative communication among networks should be used carefully since it

usually incurs significant signal processing at the receiver.

1.6 Organization of Dissertation

This dissertation focuses on the analysis and design of wireless communication

networks. In Chapter II we discuss about an integrated design methodology for

low energy wireless communication networks, which is an important issue for mobile

units operating on batteries. In Chapter III we describe energy-efficient routing

algorithms for a wireless network where each node in the network is equipped with an

omni-directional antenna, as it is the most common case for today’s communication

devices. In Chapter IV we investigate the transport efficiency of a linear network

with different transmitter and receiver models and show how amplifier characteristics

and receiver processing energy affect the transport efficiency. In Chapter V we

derive interference models between linear networks when either space-time coding

or an end-fire antenna array is used by each node and use transport efficiency to

compare the network performance for these two techniques. In Chapter VI we address

the problem of cooperative communication with space-time coding between different
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linear networks. In Chapter VII we conclude the dissertation with a summary of

contributions and indicate possible future research.



CHAPTER II

LOW ENERGY WIRELESS COMMUNICATION

NETWORK DESIGN

Energy-efficient wireless communication network design is an important and chal-

lenging problem. Its difficulty lies in the fact that the overall performance depends,

in a coupled way, on the following subsystems: antenna, power amplifier, modulation,

error control coding, and network protocols. In addition, given an energy constraint,

improved operation of one of the aforementioned subsystems may not yield a bet-

ter overall performance. Thus, to optimize performance one must account for the

coupling among the above subsystems and simultaneously optimize their operation

under an energy constraint. In this chapter we present a generic integrated design

methodology that is suitable for many kinds of mobile systems and achieves global op-

timization under an energy constraint. By pointing out some important connections

among different layers in the design procedure, we explain why our integrated design

methodology is better than traditional design methodologies. We present numeri-

cal results of the application of our design methodology to a situational awareness

scenario in a mobile wireless network with different mobility models. These results

illustrate: (i) the improvement in performance that our integrated design method-

ology achieves over traditional design methodologies; and (ii) the tradeoff between

9



10

energy consumption and performance.

2.1 Introduction

Energy-efficient wireless communication network design is an important and chal-

lenging problem. It is important because mobile units operate on batteries with

limited energy supply. It is challenging because there are many different issues that

must be dealt with when designing a low energy wireless communication system

(such as amplifier design, coding, modulation design, resource allocation and rout-

ing strategies), and these issues are coupled with one another. Furthermore, the

design and operation of each component of a wireless communication system present

tradeoffs between performance and energy consumption. The key observation is that

constraining the energy of the nodes in a wireless network imposes a coupling among

the design components that cannot be ignored in performing system optimization.

Therefore, the challenge is to exploit the coupling among the various components of

a wireless communication system and understand the tradeoff between performance

and energy consumption in each individual component/subsystem, in order to come

up with an overall integrated system design that has optimal performance with re-

spect to some performance metric and achieves low energy (power). Traditional

design methodologies that optimize each layer separately may not be appropriate

in terms of overall system optimality. The purpose of this chapter is to present a

methodology for the design, simulation and optimization of wireless communication

networks that achieves maximum performance under an energy constraint. The pre-

sentation of our methodology also gives some insight as to why traditional design

methodologies may not achieve overall system optimality. The integrated design

methodology is applied to several scenarios of mobile ad hoc networks. The results
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show that significant gains are possible with an integrated design approach compared

to traditional designs.

Before we proceed, we illustrate through simple examples, the coupling among

the different components of a wireless communication system, and highlight the

tradeoff between performance and energy consumption at individual components of

the system. To illustrate the coupling among different components of a wireless

communication system we first need to describe some key features of the amplifier’s

operation.

Consider the design and operation of an amplifier. The amplifier boosts the

power of the intended transmitted signal so that the antenna can radiate sufficient

power for reliable communication. However, typical power amplifiers have maximum

efficiency in converting DC power into RF power when the amplifier is driven into

saturation. In this region of operation, the amplifier voltage transfer function is

nonlinear. Because of this nonlinearity, the amplifier generates unwanted signals (so

called intermodulation products) in the band of the desired signal and in adjacent

bands. When the amplifier drive level is reduced significantly (large backoff), the

amplifier voltage transfer characteristic becomes approximately linear. In this case

it does not generate intermodulation products. However, with large backoff the am-

plifier is not able to efficiently convert DC power into RF power. Thus, there is

considerable wasting of power at low drive levels, whereas at high drive levels the

amplifier generates more interfering signals.

We can now illustrate the coupling among individual components arising in the

design of a wireless system. Consider packet routing in a wireless network that

contains no base stations (i.e., an ad hoc network). For simplicity, consider a network

with nodes A, B, and C, as shown in Figure 2.1. If node A wants to transmit a
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message to node C, it has two options: Transmit with power sufficient to reach node

C in a single transmission, or transmit first from A to B with smaller power, and then

from B to C. Since the received signal power typically decays with distance as dα,

for α between 2 and 4, there is significantly smaller power loss due to propagation

in the second option because dα
AC > dα

AB + dα
BC . However, even though node A

transmits with smaller output power, it does not necessarily proportionally decreases

the amount of power actually consumed because of the amplifier’s effect discussed

above. Furthermore, besides the energy required for packet transmission, there are

energy requirements for packet reception and information decoding. The probability

of packet error that is achieved depends on the energy allocated to the receiver. Thus

the optimal network protocol (direct transmission from A to C or routing from A

to B to C) depends on the amplifier characteristics as well as the energy needed to

demodulate and decode a packet. Consequently, there is a coupling among amplifier

design, coding and modulation design, decoding design, and routing protocols.

� � � � � �

� � �

A B C

Figure 2.1: Three nodes in a network.

To highlight the tradeoff between energy consumption and system wide perfor-

mance, consider the situational awareness problem in a mobile wireless network. In

this problem, the objective of each node is to be aware of the position of every other

node during a given time period. If energy consumption is ignored, and the overall

performance metric is the average (over all nodes and over time) position estimation

error, this error is minimized when all nodes continuously communicate their posi-
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tions with one another. Such a strategy requires significant energy. If, on the other

hand, the objective is to minimize the average position estimation error under an

energy constraint, the nodes will have to jointly decide when to communicate and

whom to communicate to during the given period, since a continuous communication

strategy would use all available energy too quickly and could lead to large average

position estimation error subsequent to the energy depletion of the battery.

Traditional design methodologies for wireless communication systems that at-

tempt to optimize each layer separately may achieve global system optimality only

by coincidence. However, through an understanding of the interactions and cou-

pling among the functions at the different layers, it is possible to design a wireless

communication system in a manner that truly integrates the functions of all layers.

Therefore, we propose a methodology that decomposes the system into coupled lay-

ers and exploits the interactions among them to come up with an energy efficient

design. The goal of the decomposition, besides a better understanding of the de-

sign procedure for global system optimality, is to obtain a computationally tractable

approach to quantifying system performance with respect to different optimization

criteria. Tackling such a problem can be a formidable task. We are not aware of any

previous design and optimization attempts that encompass all the layers. Most pre-

vious research [15, 67, 69, 72, 74, 87] on low-energy ad hoc mobile wireless networks

focuses on the optimization at the component/subsystem level. We hope that our

work will provide some guidelines for further research in global system optimization.

The remainder of this chapter is organized as follows. In Section 2.2 we present a

methodology for system design that incorporates the effect of the different layers on

system performance. This methodology is fairly general and can be applied to many

different applications besides the situational awareness scenario we consider later in
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this chapter. In Section 2.3 we give detailed descriptions of the component models

for the amplifier, propagation, coding, modulation, and network protocols for the

system under investigation. In Section 2.4 we explain how global optimization works

together with each system layer. In Section 2.5 optimization results for the situational

awareness application are given. We conclude the discussion in Section 2.6.

2.2 System Design Methodology

In this section, we first describe the system decomposition and optimization, both

of which form the constituent parts of our design methodology. We then comment

on the decomposition and optimization. We consider a wireless network consisting

of mobile nodes which need to communicate with one another in order to take some

action or to share information, such as their respective positions. The overall goal is

to characterize and optimize some performance metric under an energy constraint.

As we have pointed out in Section 2.1, in order to develop a systematic and com-

putationally tractable design methodology, we divide the problem into interacting

design layers as shown in Figure 2.2.

The system decomposition consists of three layers, namely, the device layer, the

processing layer, and the network layer. Each layer interacts with layers above or

below it in a well defined manner (described below). The device layer and the

processing layer each perform local optimization in a manner that will be explained

in more detail later in this section. In addition, there is a global optimization of an

application-dependent performance measure that encompasses all layers.

At the device layer, we consider physical components at each node, including the

antenna, the amplifier characteristics, and the circuit. At the processing layer, we

consider the signal processing operations, including the modulation, coding, demod-
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Figure 2.2: Layered design/optimization.

ulation, and decoding algorithms. At the network layer, we consider the collective

operation of all mobile units, including the routing protocols, information distribu-

tion issues, communication environment, mobility modeling, and overall performance

measure.

The system-wide objective is to optimize performance metric, that reflects, the

collective operation of the mobile units, under an energy constraint. This is achieved

by simultaneously optimizing over a number of parameters that characterize the

objective. Some of these parameters also describe the coupling among the different

layers, thus, they necessitate the development of an integrated design methodology.

The integrated design methodology we propose is described by the following steps:

Step 1. Identify the direct interactions (key coupling parameters) among layers;

indirect interactions will “trickle through” the model.

For example: (i) the packet error probability, provided by the process-

ing layer, is a key coupling parameter that directly affects network layer
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performance; (ii) certain receiver parameters, such as, the numbers of bits

of quantization for the equalizer input data, the equalizer coefficients and

the decoder, affect network layer decisions indirectly through the packet

error probability. For instance, hard decision decoding (one bit quanti-

zation) requires roughly 2 dB larger transmitted power to maintain the

same level of packet error probability but decreases the amount of receiver

energy necessary to process a packet.

Step 2. At each layer consider a local performance measure that captures the con-

tribution of that layer to the system-wide (global) performance criterion.

Such a performance measure is a function of three types of parameters:

(i) those that affect directly only the local performance criterion of the

individual layer; (ii) those that are controllable and affect directly the

performance of multiple layers; (iii) those that are uncontrollable and af-

fect directly the performance of multiple layers. Fix the parameters of

type (ii) and type (iii) and optimize the local performance criterion with

respect to the parameters of type (i).

For example: At the processing layer, the packet error probability is a

possible local performance criterion. It is a function of the three types of

parameters described above. The type (i) parameters include the receiver

parameters mentioned in Step 1. The type (ii) parameters include the

energy constraints for transmitting and receiving a packet. The type (iii)

parameters include the distances between each pair of nodes in the wireless

network. We fix the parameters of type (ii) and type (iii) and optimize

the packet error probability with respect to the type (i) parameters.

Step 3. Using the results of Step 2, construct a model of each individual layer that
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is a function of only the parameters of type (ii) and type (iii). Optimize

the global performance criterion with respect to the parameters of type (ii)

under an energy constraint.

For instance: Consider the situational awareness problem where the

system-wide (global) performance criterion is the position estimation er-

ror of the network nodes averaged over type (iii) parameters from different

layers (such as the distance between each pair of nodes). Optimize, under

a constraint on the energy available to each node, the position estima-

tion error with respect to type (ii) parameters (such as the energy for

transmitting and receiving a packet) from the network and device layers.

The following comments are in accordance with each of the steps described in the

integrated design methodology:

• In Step 2 the local optimization should be consistent with the global optimiza-

tion. The effect of the local optimization is to “filter” out the parameters of

type (i).

• In Step 2 and Step 3, the local and global optimization may have to be

simulation-based because complete analytical expressions for the performance

criteria of these steps may not be available.

• In Step 3 the model constructed for each individual layer may be based on table

lookups. The global performance criterion is only a function of the parameters

of type (ii), and the corresponding global optimization captures the complex

interactions among layers.

We illustrate our modeling philosophy and integrated design methodology within

the context of a situational awareness example presented in the next section.
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2.3 Design Example: Models for System Decomposition

We apply our integrated design methodology to a particular network design prob-

lem, namely, the situational awareness problem in wireless mobile networks. In the

situational awareness problem a number of mobile nodes desire to keep track of the

location of all the other nodes over some time duration. The nodes operate with

batteries and thus have a (finite) energy constraint. The transmission of informa-

tion by a node requires a certain amount of energy as does the processing of any

received signal. The goal of the design is to minimize the mean absolute error of the

position estimates. There are a plethora of parameters that could be considered for

optimization. We focus on a small set of parameters to illustrate the design and sim-

ulation methodology. In addition, we describe the system decomposition and justify

our choice of the coupling parameters among different layers. We present the sys-

tem optimization in Section 2.4. We proceed to describe each layer in a bottom-up

manner.

2.3.1 Device Layer

In this subsection, we present the model for the device layer and the coupling

parameters between the device layer and the processing layer considered. We justify

why the coupling parameters we choose are appropriate for the wireless communica-

tion systems under investigation. While not all parts of a transmitter and a receiver

have been considered in the model of this chapter, we have chosen a few parameters

that have an important coupling and illustrate the tradeoff between performance and

energy consumption.

At the device layer, we assume each node has an omni-directional dipole antenna

and a small amplifier. The amplifier is usually the component that consumes the
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most energy in a wireless device. In our simulation we have a relatively small power

amplifier model, with characteristics shown in Figure 2.3. Let Pin denote the input

power, Pout denote the output power, and Pdc denote the consumed DC power. The

power added efficiency is defined as

Power added efficiency =
Pout − Pin

Pdc

. (2.1)

The characteristics of our class AB power amplifier [12] are tabulated for use at the

processing layer.
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Figure 2.3: Characteristics of the power amplifier.

When the input power to the amplifier is low, the input-output voltage relation

of the amplifier is fairly linear; however, in this region the amplifier operates at a

very low efficiency, i.e., the ratio of useful output energy to consumed energy is low.

If we drive the amplifier harder with higher input power, the amplifier operates at

higher efficiency, with large input-output non-linearity. This non-linearity generates

in-band and out-of-band signals called intermodulation signals, which adversely af-

fect the performance of the processing layer, which in turn affects the design of the
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network layer protocols. Out-of-band signals of a user, say user A, affect the per-

formance of other users using adjacent frequencies, and out-of-band signals of other

users affect the performance of user A. Because our global objective is to achieve

high-precision situational awareness (i.e., low estimation errors) for every node under

an energy constraint, it is important to understand the role of the amplifier power

added efficiency in the overall optimization problem. In the current literature on

energy-efficient routing protocols, the transmitted energy (power) is usually chosen

as the routing metric. Unfortunately, this does not correspond to the actual con-

sumed energy with most amplifiers. To account for the energy consumed by the

amplifiers, we consider the following parameters associated with an amplifier’s op-

eration: the consumed DC power Pdc, the output power Pout, and the AM-to-AM

voltage characteristics. These parameters also describe the coupling between the

device layer and the processing layer, and depend on (are functions of) the energy

consumed for a packet transmission. We note here that the intermodulation interfer-

ence also depends on the modulation scheme chosen. Constant envelope modulation

schemes have no intermodulation interference but have poor spectral efficiency. Non-

constant modulation schemes can have significant intermodulation interference but

have better spectral efficiency. As discussed below, we consider a non-constant mod-

ulation scheme. For such a modulation scheme, we characterize the relation between

the average amplifier output power and the energy constraint Ect for transmitting a

packet by

Pout = g1(Ect). (2.2)

This relation is tabulated for use by higher layers.
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2.3.2 Processing Layer

At the processing layer one of the fundamental questions involves allocation of

energy to transmitter versus receiver. The receiver uses energy to process and recover

the data. More energy is used at the receiver by, for example, increasing the number

of quantization levels allowed in the demodulation and decoding. A key question

is to determine the optimal energy allocation between transmission and reception.

In this subsection, we present the model for the processing layer, and the coupling

parameters between the processing layer and the network layer. We further justify

why the coupling parameters are appropriate for the wireless communication systems

under investigation. A typical diagram of the processing layer is given in Figure 2.4.

Note that we only consider the power consumed by the power amplifier, demodulator

and channel decoder. The power consumed by other parts of the block diagram is

typically much less than the power consumed by these three subsystems. In addition,

the performance of these three subsystems is more sensitive to energy than other

parts of the system.

Channel

Encoder
Interleaver Modulator Spreader PA

Channel

DespreaderDemodulatorDeinterleaver
Channel
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Figure 2.4: Processing layer block diagram.

We now describe the components of the processing layer; define the performance

measures at the processing layer; identify the parameters that affect only the per-
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formance of the processing layer, as well as those that affect the performance of

additional layers; and present the results of optimizing the performance measures

with respect to the parameters that affect only the performance of the processing

layer.

We employ convolutional codes as error control codes. We consider BPSK with

raised cosine filtering along with frequency-hopped spread spectrum for modulation

and spreading. We use the Additive White Gaussian Noise (AWGN) channel as the

channel model. We consider a tapped delay line model for quantization/matched

filtering and coherent demodulation. We employ Viterbi decoding and iterative de-

coding. We fix several parameters such as the packet length, the preamble size

for synchronization and equalization, the number of bits per hop, the sample rate

at the input to the equalizer/matched filter, and the number of taps in the equal-

izer/matched filter. Some of the key characteristics of the above architecture of

the processing layer are: (i) the combination of coding and frequency hopping can

provide significant immunity to channel fading. (ii) The inclusion of error control

coding mitigates fading, interference and thermal noise. Error control coding can

significantly reduce the energy required for transmission for a given packet error rate

at the expense of reduced spectral efficiency (bits/sec/Hz) and increased processing

energy.

For the situational awareness problem considered in this chapter, the length of

information sequence for convolutional coding is 224 or 1018 bits. These information

bits are encoded using a standard rate 1/2 constraint length 7 convolutional code

to form 460 (2048) channel bits. The channel bits are modulated by BPSK and the

modulated signal is shaped by a square root raised cosine filter with rolloff param-

eter 0.3, which is implemented using 19 taps (without quantization). The symbol
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duration is 20 μs and the waveform of each symbol is transmitted using a frequency-

hopped spread spectrum with 23 (64) bits per hop, i.e., 20 (32) hops per packet.

Before transmission the waveform is passed through a nonlinearity which models the

amplifier voltage-to-voltage characteristic. This procedure generates inband interfer-

ence depending on the operating point of the amplifier. At the receiver, the received

signal with additive white Gaussian noise is sampled at four times the transmission

rate (50 kb/s) before being passed through an equalizer/matched filter consisting of

a tap delay line model with 19 taps and NE bits of quantization for the coefficients

and input samples. The decoder is a Viterbi algorithm with ND bits of quantization

for branch metrics.

The performance measures at the processing layer are defined to be the proba-

bility of packet error Pe and the bit error rate BER. Both Pe and BER affect the

performance of the network layer. In general, for any choice of coding and demodu-

lation schemes, Pe and BER depend on the energy constraint Ect for the transmitter

to send a packet, the energy constraint Ecr for the receiver to process a packet, the

received signal-to-noise ratio SNR, the number NE bits of quantization for equalizer

data input and equalizer coefficients, and the number ND bits of quantization for

decoding. The parameter NE and ND affect only the performance of the processing

layer. Consequently: (i) for given Ect, Ecr, and SNR, we locally optimize Pe and

BER with respect to NE and ND; (ii) we generate parameterized versions of Pe with

respect to Ect, Ecr, and SNR, and build a performance table for these parameterized

versions of Pe. The network layer (and global optimization) utilizes this table for

calculating its global performance by generating the Ect, Ecr, and SNR.

Figures 2.5 and 2.6 show the locally optimized packet error rate as a function of

the transmitter energy constraint and the receiver processing energy constraint for
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convolutional codes with the length of the information sequence being 224 bits and

1018 bits respectively. The surfaces are, from top down, SNR = 1 dB, 2 dB, 3 dB,

4 dB.
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Figure 2.5: Pe as a function of Ect and Ecr for convolutional code with the length of
information sequence being 224 bits.

For each level of Ect and Ecr, we estimate the power (energy) consumption by

modeling individual components comprising the transmitter and receiver. We derive

the actual energy consumption for transmitting a packet from the amplifier model

at the device layer through table lookups. For the power (energy) required by a

receiver to process an incoming packet, at the architectural and circuit levels, the

main contribution to power consumption in complementary metal oxide semicon-

ductor (CMOS) circuits is attributed to the charging and discharging of parasitic

capacitors that occur during logical transitions [66]. The average switching energy
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Figure 2.6: Pe as a function of Ect and Ecr for convolutional code with the length of
information sequence being 1018 bits.

Eop of a CMOS gate (or the power-delay product) is given by

Eop = CaveV
2
s , (2.3)

where Cave is the average capacitance being switched per clock cycle and Vs is the

supply voltage. The value of Cave is the product of physical capacitance and switching

activity. We assume that the switching activity is 50%. The capacitance of the gates

(or components) is obtained based on 0.5-μm CMOS standard cell technology. Even

though the quadratic dependence of energy on voltage makes it clear that operating

at the lowest possible voltage is desirable for minimizing the energy consumption,

the supply voltage of 3.3V is used in the power estimation process. The physical

layout is obtained by synthesizing the algorithms (or functions) using Epoch CAD

tool. At the architectural level, the algorithms and functions, such as pulse shaping

filters and decoders, are optimized locally for low power consumption. For example,
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FIR filters require multiplications of unknown data with known coefficients. This is

typically implemented with a shift and add type of circuit. The number of 1’s in the

coefficient determines the amount of energy needed to perform the operation [35, 37].

Scaling all the coefficients to minimize the number of 1’s will lead to lower power

with identical performance [35, 37]. Similarly, power optimization is carried out for

the convolutional decoders [36, 89].

For each bit transmitted, the total value of switching capacitance is estimated in

order to compute energy consumed per bit. Using this value, the energy per packet

is evaluated based on the number of the operations needed by each algorithm for

demodulating and decoding a packet. We then build a table for the actual energy

consumption Eta for transmitting a packet and the actual energy consumption Era

for receiving a packet based on the locally optimized NE and ND given the Ect and

Ecr constraint. The network layer utilizes this table by providing Ect and Ecr to the

processing layer. The actual energy can differ from the constrained energy because

only discrete quantization levels are allowed.

In summary, at the processing layer a table is generated from simulation which

contains the performance as a function of the energy Ect allowed at the transmitter,

the energy Ecr allowed at the receiver, and the signal-to-noise ratio SNR at the

receiver. This table is then used at the network layer in determining the overall

performance of the system.

2.3.3 Network Layer

In this subsection, we describe the model for the network layer and the parame-

ters of the network protocols that affect global performance. We explain why these

parameters are appropriate for the wireless communication systems under investiga-
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tion.

We consider a network of nine nodes. The nodes move according to a single

specific mobility model. In the situational awareness problem, each node attempts

to keep track of the positions of all the other nodes. This is accomplished by com-

munication and estimation. All nodes share their respective position information

according to a specific communication protocol. In the rest of this section we present

the mobility models, the propagation models, the communication protocols, and the

estimation schemes used by the nodes.

Mobility Models

We describe two mobility models which we use in the various optimization prob-

lems that we consider. In both mobility models, each node in the network moves to

a new location at the end of every Tm seconds. In the examples considered in this

chapter Tm = 1.

In mobility model 1, we consider a region of size 6 km × 6 km and a group of

nine nodes initially deployed in an area as shown in Figure 2.7. All nodes travel

toward the same destination which is located at G = (6000, 6000) m. Each node

travels at average speed v, where v = 1 m/s (not drawn to scale in Figure 2.7). Let

w
(i)
k =

[
w

(i)
x,k, w

(i)
y,k

]T
be node i’s position at time kTm. w

(i)
k is determined as follows:

1. Calculate a normalized direction vector θ
(i)
k−1 =

[
θ

(i)
x,k−1, θ

(i)
y,k−1

]T
from node i’s

position at time (k − 1)Tm toward the goal:

θ
(i)
k−1 =

G− w
(i)
k−1∥∥∥G− w
(i)
k−1

∥∥∥ . (2.4)

where ‖z‖ =
∥∥∥[zx, zy]

T
∥∥∥ =

√
(zx)2 + (zy)2 is the standard norm for z ∈ R

2.
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Figure 2.7: Mobility model 1.

2. Generate a random vector γ(i)
k

=
[
γ

(i)
x,k, γ

(i)
y,k)
]T

, where γ
(i)
x,k, γ

(i)
y,k are independent

and uniformly distributed over [−0.5, 0.5] m.

3. The position of node i at time kTm is determined by

w
(i)
k = w

(i)
k−1 + vTmθ

(i)
k−1 + γ(i)

k

= w
(i)
k−1 + vTm

G− w
(i)
k−1∥∥∥G− w
(i)
k−1

∥∥∥ + γ(i)

k
. (2.5)

If the position of any one of the nodes is within vTm of G, all nodes stop moving.

In mobility model 2, all nodes are initially deployed in a region of size 1332 m × 1332 m

and move within this region as shown in Figure 2.8. The mobility of each node is

characterized by a two-state discrete-time Markov chain as shown in Figure 2.9,

where the two states are labeled Stay and Move. The position of node i at time kTm

is determined as follows:
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Figure 2.8: Mobility model 2.
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Figure 2.9: Markov chain for mobility model 2, ρ = 0.05.
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1. The Markov chain at each node changes state with probability ρ and remains

at the same state with probability 1 − ρ.

2. Depending on the current state, generate a random vector γ(i)
k

=
[
γ

(i)
x,k, γ

(i)
y,k

]T
.

The random variables γ
(i)
x,k, γ

(i)
y,k are independent and uniformly distributed over

[−s, s] m, where s = 0.5 when the Markov chain is the state Stay and s = 5

when the Markov chain is the state Move.

3. The position of node i at time kTm is

w
(i)
k = f

(
w

(i)
k−1 + γ(i)

k

)
, (2.6)

where

f (z) =

⎡
⎢⎣ g (zx)

g (zy)

⎤
⎥⎦ (2.7)

and

g(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if x < 0,

x if 0 ≤ x ≤ 1332,

1332 if x > 1332.

(2.8)

Propagation Model

The transmitted signal from each node experiences propagation loss and fading.

In the results that follow, we assume a two-path propagation model shown in Fig-

ure 2.10. Table 2.1 shows the variables and their typical values needed to explain

the model.

The two-path propagation model consists of a direct path and a path reflected off

the ground with 180 degree phase change at the reflection point from the transmitter

to the receiver. The cumulative effect of both paths determines an attenuation A
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Figure 2.10: Two-Path Propagation Model.

Table 2.1: Variables used in wireless system modeling.
Variable Meaning Value Unit

λc carrier wavelength 10 m
ht height of transmitting antenna 1 m
hr height of receiving antenna 1 m
d propagation distance (0, 9000) m
Pt radiated power [10−7, 1] W
Pr received power (2.9) W

between received power and radiated power, which is given by [68]

A =
Pr

Pt

= 4

(
λc

4πd

)2

sin2

(
2πhthr

λcd

)
. (2.9)

It should be noted that (2.9) is valid only when the receiver is in the far zone of the

transmitter. In order for the receiver to be in the far zone of the transmitter, the

distance d between the transmitter and the receiver has to satisfy the following three

conditions:

1.

d ≥ 2D2

λc

, (2.10)

where D is the largest physical linear dimension of the antenna.

2.

d� D (2.11)
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3.

d� λc (2.12)

For instance, suppose D = 0.5 m, then it is required that d� 10m for the receiver to

be in the far zone of the transmitter. When d � max{ht, hr}, we can approximate

A in (2.9) by

A ≈ h2
th

2
r

d4
. (2.13)

The two-path propagation model characterizes the large-scale propagation loss of

many fading channels reasonably well and this is the reason why we adopt it in our

network layer simulation.

Communication Protocols

We describe the medium access control (MAC) strategy as well as the routing pro-

tocols. We consider two communication protocols, namely, a single-hop transmission

protocol (which may be considered as a single-hop routing protocol) and a multi-

hop routing protocol. For both communication protocols, the omni-directionality

of the antenna at each node makes the potential connections among nodes point-

to-multiple-points, i.e., if a node sends out a packet, the electro-magnetic wave will

propagate in all directions and may be received by many other nodes. Therefore in

the design of wireless communication protocols, communication occurs in a broadcast

medium, which is very different from traditional wired networks, where the connec-

tions are mostly point-to-point. Recall that in the situational awareness problem

the objective is for each node to keep track of the positions of all other nodes as

accurately as possible, so the omni-directionality property of the antenna that allows

multiple receptions can be exploited in the design.

Single-hop Transmission Protocol
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In the single-hop transmission protocol, each node transmits its position infor-

mation packets every T seconds, where T is a design parameter. The medium access

control is Time Division Multiple Access (TDMA), where each node is assigned a

transmission slot of duration T/I, where I = 9 for our case, as shown in Figure 2.11.

The slot duration is much larger than a packet duration. In a given slot, each packet

~~~

~~~

31 2 3 54 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 4 5 6 7 8 9

T T T

Figure 2.11: TDMA for single-hop transmission protocol.

transmission is followed, with probability q, by a retransmission, and so forth, until

the slot ends. The retransmission probability q is considered as a design parameter.

Since each node operates on a battery with limited capacity, we constrain the energy

used for each packet transmission or retransmission to be upper bounded by Ect,

which we consider as a design parameter. The position information packets may be

received by many other nodes, each of which consumes a certain amount of energy to

process the packets. Again, due to the limited capacity of the battery, we constrain

the energy used to process the incoming packets to be upper bounded by Ecr, which

we consider as a design parameter. When a node receives a packet, it does not send

back any acknowledgment, nor does it forward the packet it receives to other nodes.

As a consequence, every packet in the single-hop transmission protocol travels only

one hop. We therefore choose T, q, Ect, Ecr as the design parameters at the network

layer that affect global performance.

Mutli-hop Routing Protocol

In the multi-hop routing protocol, there are mainly two issues we need to consider.

These are (i) setting up a routing path; (ii) transmitting position information packets.
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We discuss each issue separately.

(i) For routing, we adapt the Open Shortest Path First (OSPF) protocol [54, 53],

which is a link state routing protocol, to our situational awareness scenario and take

advantage of the omni-directionality of the antenna. The objective of our routing

algorithm is to determine the first-hop nodes a node should reach, and the power this

node should use to reach these first-hop nodes when it transmits position information

packets originated by itself or when it forwards position information packets received

from other nodes. Our routing algorithm works as follows:

• When nodes are initially deployed in an area, they do not have the knowledge of

the topology of the network. In order to obtain and maintain their knowledge

of the network topology, each node sends out a hello packet every Tr seconds,

where Tr is a design parameter. The power used for transmitting the hello

packet is fixed at 5 mW, which, under the propagation model described in 2.3.3,

and for the transmission rate of 1 Mbps and the typical noise power spectral

density of −174 dBm/Hz, gives a signal-to-noise ratio of approximately 0 dB at

a receiver located 0.5 km from the transmitter. The hello packet contains the

identity and position of the advertising node. When a node correctly receives

a hello packet, it regards the sender as its neighbor. The receiver does not

forward the hello packet, so the hello packet only travels a single hop.

• Based on our propagation model, the link metric for the routing algorithm

is defined to be d4, where d is the distance between a pair of transmitter and

receiver nodes. Each node computes the link metrics to its neighbors and stores

them in its link database. Every node sends out packets containing the link

metrics in its database every Tr seconds. The power used for the transmission
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of packets containing link metrics is the same as that for the hello packets.

• When a node receives the packets containing the link metrics, it stores them

in its link database. Gradually each node accumulates enough knowledge of

the link metrics connecting each pair of nodes, thus obtaining the topology of

the network. We need to emphasize that Tr, which is a design parameter, is

very small compared to the speed of the nodes so that each node completes

the updating of its link database before the positions of the nodes change

significantly.

• Based on the link database, each node calculates the shortest path spanning

tree from it to all other nodes using Dijkstra’s algorithm [54, 53] and stores the

first-hop nodes to which it should forward the position information packets in

the routing table.

• Let dmax be the largest distance among the distances between a node and any of

its first-hop nodes. Since the antenna is omni-directional and the source node

knows its farthest first-hop node, it can take advantage of this by choosing

the radiated power for position information packets to be Cd4
max, where C is

a design parameter. Each node transmits only once with this power instead of

transmitting separately to each of its first-hop nodes.

• Since nodes are constantly moving, the neighbors of a node may be out of reach

and no longer be considered as neighbors. If node A does not receive any hello

packet of its neighbor node B for 8Tr seconds, node A removes node B’s link

information from its link database.

• A node recalculates its routes to all other nodes whenever it receives informa-
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tion about a new link or when a newly received link metric differs from previous

one, stored in the node’s link database, by more than 20%.

(ii) At the application layer, each node transmits its position information packets 1

every Tp seconds, using radiated power Cd4
max, where Tp is a design parameter.

The corresponding consumed energy Ect for each transmission is obtained using the

amplifier model.

In addition to the issues of routing path setup and position information trans-

mission discussed above, several other issues must also be taken into consideration;

these issues are briefly discussed below.

When a node receives a packet of any type, which can be a routing protocol packet

or a position information packet, it consumes energy Ecr to process it and accepts

the packet with a packet error probability, which depends on Ect, Ecr, and the signal-

to-noise ratio SNR. However, since we do not have a fixed-size packet (mostly due

to routing protocol packets), Ecr is different for received packets of different sizes.

We choose a nominal Ēcr for a single packet of length 224 bits (or 1018 bits) and use

this Ēcr as a design parameter. The energy Ecr consumed for packets of other sizes

is proportional to Ēcr.

Since the link database is distributed, there is a potential of infinite loops in

the network, thus wasting all the energy that a node can possibly have if a packet

is trapped in one of these loops. To prevent a packet from looping around in the

network forever, we implement a time-to-live (ttl) field in each packet as is done in

IP. The value of ttl is the number of hops remaining for the packet to travel in the

network. When a node receives a packet from other nodes, it reduces the packet’s

1While the hello packets contain the position information of nodes, we do not use this infor-
mation in the application. We do not allow this because the application may be different from a
situational awareness problem where the position information does not provide any information to
the application.



37

ttl by one. If ttl equals 0, the node does not forward the packet any more.

We conclude the discussion of the multi-hop routing protocol by addressing the

medium access control strategy. As in the case of the single-hop transmission proto-

col, we use a TDMA protocol at the medium access control layer except that in the

present case the slot duration allocated to each node is equal to the largest packet du-

ration plus a nominal guard interval. In addition, the medium access control layer of

a node may buffer the packets from the network and application layers, and it sends

the packets at the transmission slot assigned to the node by the MAC protocol.

In summary, at the network layer we choose Tr, Tp, C, Ēcr as the design parameters

that affect global performance.

Estimation Schemes

We consider two estimation schemes corresponding to the two mobility models

we described in 2.3.3. In both estimation schemes, each node updates its estimate of

another node’s position every Te seconds. In the examples considered in this chapter

Te = 2.

We first describe estimation scheme 1, which is used for mobility model 1. Let

ŵ
(i,j)
k =

[
ŵ

(i,j)
x,k , ŵ

(i,j)
y,k

]T
be node i’s estimate of node j’s position at time kTe, where

j ∈ {1, · · · , I}\{i} and I is the total number of nodes in the network. Depending

on whether node i correctly receives a packet from node j between time (k − 1)Te

and kTe, the position estimate is updated differently. If node i correctly receives a

packet from node j, then

ŵ
(i,j)
k = a

(i,j)
k−1 + v (kTe − tk−1) θ̂

(i,j)

a , (2.14)
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where a
(i,j)
k−1 is the actual position of node j at time tk−1 and

θ̂
(i,j)

a =
G− a

(i,j)
k−1∥∥∥G− a
(i,j)
k−1

∥∥∥ . (2.15)

If node i does not correctly receive a packet from node j, then

ŵ
(i,j)
k = ŵ

(i,j)
k−1 + vTeθ̂

(i,j)

e . (2.16)

where

θ̂
(i,j)

e =
G− ŵ

(i,j)
k−1∥∥∥G− ŵ
(i,j)
k−1

∥∥∥ . (2.17)

These estimates are based on the following strategy. Node i knows the mobility model

for all the other nodes. Since the mobility model is such that nodes move toward the

goal in a straight line subject to noise, the new estimate is the extrapolation toward

the goal, of the position contained in the packet that was last received correctly, by

an amount proportional to the product of velocity and time.

We now describe estimation scheme 2, which is used for mobility model 2. The

estimate ŵ
(i,j)
k is determined by:

ŵ
(i,j)
k = w

(j)
l , (2.18)

where w
(j)
l is the position of node j at time l contained in the packet from node j

last received by node i. Since the mean of the increment of node j’s position at any

time is zero, if node i does not correctly receive any packet between time l and kTe,

a reasonable estimate of node j’s position at time kTe is node j’s position at time l.

2.3.4 Performance Metric

For the purpose of optimization, we use mean absolute error as the performance

metric. For both estimation schemes, the estimation error of node j’s position made
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by node i at time kTe is defined as

e
(i,j)
k = w

(j)
k − ŵ

(i,j)
k , (2.19)

where w
(j)
k is the actual position of node j at time kTe. The performance metric J (i)

at node i is defined to be

J (i) = E

[
1

K(I − 1)

I∑
j=1,j �=i

K∑
k=1

∥∥∥e(i,j)k

∥∥∥
]
, (2.20)

whereKTe is the time horizon under consideration. In the above equation, the expec-

tation is with respect to the mobility, the noise in the receiver, and the randomness

in retransmission (in the case of single-hop transmission protocol only).

The overall network performance measure is given by the average of the position

estimation error contributed by all the nodes in the network:

J =
1

I

I∑
i=1

J (i). (2.21)

The goal is to minimize J over the parameters that affect global performance subject

to a constraint on the energy used by each node. Let E(i) denote the energy used by

node i over the time horizon KTe. The constraint on energy is

max
1≤i≤I

E(i) ≤ E. (2.22)

Based on the discussion in Section 2.2 and Sections 2.3.1 through 2.3.3, we have the

following objectives: For the single-hop transmission protocol the goal is to determine

the design parameters

[T ∗, q∗, E∗
ct, E

∗
cr]

T = arg min
[T,q,Ect,Ecr ]T

max E(i)≤E

J(T, q, Ect, Ecr) (2.23)

and the corresponding performance J∗ = J(T ∗, q∗, E∗
ct, E

∗
cr). For the multi-hop rout-

ing protocol the goal is to determine the design parameters

[T ∗
r , T

∗
p , C

∗, Ē∗
cr]

T = arg min
[Tr,Tp,C,Ēcr ]T

max E(i)≤E

J(Tr, Tp, C, Ēcr) (2.24)
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and the corresponding performance J∗ = J(T ∗
r , T

∗
p , C

∗, Ē∗
cr).

2.4 Design Example: Global Optimization

In this section, we illustrate how our methodology, described in Section 2.2, ap-

plies to a wireless system in the situational awareness scenario described in Sec-

tion 2.3. We consider the single-hop transmission protocol and mobility model 1.

Similar procedures apply to the other settings. The parameters that describe the

coupling among the layers and that must be shared by the different layers in the

setting under consideration are shown in Figure 2.12.

Network Layer
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T q
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Figure 2.12: Coupling of different layers.

The integrated design methodology of Section 2.2 is applied in an iterative fash-

ion. At each iteration the optimization is, in part, simulation-based because we do

not have precise analytical expressions for the local and global optimization crite-

ria we employ. The optimization program attempts to find the global minimum of

the objective function J in (2.21). The global optimization and simulation mod-

ules perform the following steps in attempting to find the globally optimal solution

(illustrated for scenario 1):
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Step 1. The “optimizer” module determines the (new) parameters [T, q, Ect, Ecr]
T ,

for which the network performance is to be evaluated.

Step 2. The “network simulator” module approximates the objective function

in (2.21) for the given [T, q, Ect, Ecr]
T using Monte-Carlo simulation tech-

niques. It returns the negative of the average position estimation error

to the “optimizer” module (since the optimization used is based on the

maximization of an objective function).

Step 3. Steps 1 and 2 are repeated until a terminating condition is reached.

We now describe each step in more detail. The “optimizer” module used in Step 1

is a type of simulated annealing algorithm. The method of simulated annealing is a

technique that has attracted significant attention as it is suitable for optimization

problems with a large number of parameters, especially ones where a desired global

extremum is hidden among many local extrema. The simulated annealing algorithm

used in our integrated design is called Hide-and-Seek and was developed by Romeijn

and Smith [70]. The steps of the Hide-and-Seek algorithm are given in Appendix A.

We have implemented the “network simulator” module in OPNET, a widely used

network development and analysis tool [59]. Our “network simulator” module has

the following steps that involve the interactions among the three layers for the above

global optimization of Step 2:

Step 2.1 Given the parameters Ect and Ecr selected by the “optimizer” module,

the device layer determines the amplifier output power Pout, the actual

consumed energy Eta for transmitting a packet, and the actual consumed

energy Era for receiving a packet:

Pout = g1(Ect), (2.25)
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Eta = g2(Ect), (2.26)

Era = g3(Ect, Ecr). (2.27)

The function g1 captures the result of the local optimization of the ampli-

fier model at the device layer, which is parameterized in terms of Ect, as

explained in Section 2.3.1. The resulting Pout is used at the network layer

(see Step 2.2 below). We assume that the energy used by the transmitter

is always all of Ect and therefore g2(Ect) = Ect. Due to the quantization

at the demodulator and the decoder at the receiver, the actual consumed

energy Era may be smaller than the energy constraint Ect; their relation

is determined by the function g3 that is well-defined and known.

Step 2.2 For each transmission scheduled at the network layer and for each receiver,

the network layer determines the SNR at the output of the receiving an-

tenna as follows. The radiated power Pt is the product of the amplifier

output power Pout, the gain Gt of the transmitting antenna, and the effi-

ciency ηt of the transmitting antenna, i.e.,

Pt = PoutGtηt. (2.28)

In the examples considered in this chapter, Gt = 1 and ηt = 0.2229. The

power received at the output of the receiving antenna is

Pr = AηrGrPt, (2.29)

where A is the channel attenuation given by (2.9), ηr is the efficiency

of the receiving antenna, and Gr is the gain of the receiving antenna.

In the examples considered in this chapter, Gr = 1 and ηr = 0.2229.
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Substituting (2.9) and (2.28) into (2.29) yields

Pr = Pout4

(
λc

4πd

)2

GtGrηtηr sin2

(
2πhthr

λcd

)
. (2.30)

The SNR is

SNR =
Pr · Ts

N0

, (2.31)

where Ts is the symbol duration and N0 is the power spectral density of

the thermal noise at the receiver. The remaining variables in the above

equations are defined in Table 2.1.

Step 2.3 For each transmission scheduled at the network layer and for each receiver,

the processing layer determines the packet error rate Pe using SNR ob-

tained from the network layer (Step 2.2) and using Ect and Ecr obtained

from the “optimizer” module. Pe is obtained at the processing layer from

Ect, Ecr, and SNR by solving an optimization problem with respect to

the parameters NE and ND as described in Section 2.3.2. For the sake

of computational efficiency, this optimization at the processing layer is

done off-line and its results are summarized using the function g4 whose

arguments are Ect, Ecr, and SNR:

Pe = g4(Ect, Ecr, SNR). (2.32)

Therefore, the “network simulator” module implements this step by table

look-up. For a given Pe, the network layer flips a biased coin to determine

if each packet is correctly received.

Step 2.4 Each node uses the estimation model described in Section 2.3.3 to update

its estimates of the position of the other nodes. The “network simulator”

module accumulates the position estimation errors of all nodes in the
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network. When the simulation terminates, the network layer averages

the accumulated value over all nodes and over time. Thirty “network

simulation” runs are produced and their average is the approximation of

the objective function in (2.21) that is returned to the “optimizer” module.

In Step 3, the termination condition that we chose for our experiments was to

stop after 200 iterations of Steps 1 and 2.

It is critical to understand that the simulation and optimization effort has been

carefully divided into a device layer simulation, a processing layer simulation, and

a network layer simulation. More importantly, the interactions between layers have

been identified and incorporated into the performance evaluation.

2.5 Performance Results

In this section, we present numerical results for two situational awareness scenar-

ios that highlight our integrated design methodology and compare its performance to

that of traditional design methodologies. In particular, within the context of mobility

model 1, we use our design methodology to compare the performance of a single-hop

transmission protocol with that of a multi-hop routing protocol. Furthermore, within

the context of mobility model 2 and single-hop transmission, we compare our design

methodology with traditional design methodologies and illustrate the improvement

in performance achieved by our approach.

2.5.1 Integrated Design for Mobility Model 1

First we consider mobility model 1 (please refer to Section 2.3.3) where the nodes

are initially located in either a 1 km × 1 km or a 2 km × 2 km area and move

towards a single goal. We evaluate and optimize the objective function given in (2.21)
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by Monte-Carlo simulation using the steps described in Section 2.4. The resulting

performance is shown in Figure 2.13. As can be seen in Figure 2.13, the single-
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Figure 2.13: Performance comparison of different algorithms with different drop ar-
eas.

hop transmission protocol does better than the multi-hop routing protocol when the

nodes are initially dropped in a 1 km × 1 km area. When the nodes are dropped in

a 2 km × 2 km area, the multi-hop routing protocol does better than the single-hop

transmission protocol for large battery capacities.

Many factors come into play to explain why single-hop transmission does better

than multi-hop routing in the case of the smaller drop area. Among these, we

mention: 1. propagation; 2. amplifier efficiency; 3. routing overhead. We briefly

discuss each one of these factors:

1. Propagation:

Propagation loss becomes much less significant at small distance due to our

propagation model, where the signal strength degrades proportionally to the
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fourth power of the propagation distance. In particular, if the distance between

a pair of nodes is increased from 1 km to 2 km, the signal attenuation will be

increased by a factor of 16. Thus, as the distances between nodes becomes

larger, the effect of propagation loss on performance grows dramatically.

2. Amplifier:

For small distances between nodes it is possible for the transmitter to reach

all nodes in the network. Transmitting to nodes very close does not save much

energy compared to transmitting to the farthest node since the amplifier will

be operating in the region of low efficiency. Thus the energy consumed does

not decrease proportionally to the decrease in desired output energy, as was

discussed in the example in Section 2.1. So by routing messages through very

close nodes the amount of energy saved does not increase proportionally to the

decrease in power loss from transmission.

3. Routing Overhead:

In multi-hop routing a certain amount of energy is needed to update routing

tables, which is not needed in single-hop transmission.

In summary, all these effects play a role in determining the overall system per-

formance shown in Figure 2.13. While we have made these conclusions for a very

specific set of parameters and models, we believe that when the nodes are close to

each other single-hop transmission is generally more efficient than multi-hop routing.

What changes is the threshold (in terms of distance) where one strategy is better

than the other. Finally, it is of interest to understand where energy is being con-

sumed in these systems. Within the context of the single-hop transmission protocol,

about 30% of the totally consumed energy is used for transmitting packets in both
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cases of drop areas (1 km × 1 km and 2 km × 2 km), and the other 70% is used

for receiving packets. Within the context of the multi-hop routing protocol, about

25% of the totally consumed energy is used for transmitting both position informa-

tion packets and routing protocol packets when the drop area is 1 km × 1 km; this

percentage changes to about 35% when the drop area is 2 km × 2 km. When the

multi-hop routing protocol is in use, depending on the different energy constraints,

about 40-70% of the total consumed energy is spent on transmitting and receiving

packets that are only used for updating routing tables. The remaining energy is used

for transmitting and receiving position information packets.

2.5.2 Merits of Integrated Design

To determine the merits of the integrated design (ID) methodology, we compare

its performance with two different traditional designs applied to the single-hop trans-

mission protocol. In the first design, called AD-1, the optimization of the processing

layer is done independently of the optimization at the network layer, but the network

layer uses the results of the optimization at the processing layer. We can view this

as a one way coupling between the processing layer and the network layer. In the

second design, called AD-2, the two layers are designed totally independently.

Alternative Design 1

In alternative design 1 (AD-1), we partially decouple the optimization by impos-

ing a constraint on the packet error probability for the transmission between the two

most distant nodes. Let SNRf be the signal-to-noise ratio between the two most

distant nodes. In our scenarios, this is when the nodes are at the two diagonally

opposite corners of the region under consideration. We first consider the following
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optimization problem at the processing layer:

[Êct, Êcr]
T = arg min

[Ect,Ecr ]T

Pe(Ect,Ecr,SNRf )≤10−2

Ect + Ecr. (2.33)

The goal in this first step is to minimize the total energy (transmitter and receiver)

needed for the longest possible transmission distance in order to maintain a packet

error probability of 0.01. The next step is to optimize the performance metric given

by (2.21) over the network parameters using the results of the optimization at the

processing layer design. Specifically, the goal is to determine

[T̃ , q̃]T = arg min
[T,q]T

max E(i)≤E

J(T, q, Êct, Êcr). (2.34)

In order to compare AD-1 with the integrated design approach, recall (2.23) for

the integrated design, which we restate here for convenience:

[T ∗, q∗, E∗
ct, E

∗
cr]

T = arg min
[T,q,Ect,Ecr ]T

max E(i)≤E

J(T, q, Ect, Ecr). (2.35)

Comparing (2.35) with (2.34) and (2.33) reveals that

J(T ∗, q∗, E∗
ct, E

∗
cr) ≤ J(T̃ , q̃, Êct, Êcr); (2.36)

thus the performance of the integrated design is at least as good as AD-1.

Numerical results illustrating the comparison of AD-1 with ID are shown in Fig-

ure 2.14, within the context of mobility model 2. These results show a degradation

in performance when AD-1 is used as compared with ID. In particular, there is a

degradation of about 0.8 dB in energy when the average position estimation error is

in the range of 60-100 m.

Alternative Design 2

We now consider alternative design 2 (AD-2). In this design we completely de-

couple the optimization at the network and processing layers. In AD-2, we proceed
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as follows: (i) we optimize Ect and Ecr as in AD-1; and (ii) we select the parameter

values T o = 60 s and qo = 0.01 at the network layer, without doing any optimization.

Design AD-2 is consistent with many traditional design methodologies where network

layer parameters are selected based on engineering and application considerations,

without any explicit optimization that would account for the processing and device

layers. Therefore the performance of AD-2 is J(T o, qo, E∗
ct, E

∗
cr), and it is clear that

J(T ∗, q∗, E∗
ct, E

∗
cr) ≤ J(T̃ , q̃, Êct, Êcr) ≤ J(T o, qo, Êct, Êcr). (2.37)

Thus the performance of AD-2 is the worst among the three designs.

Numerical results illustrating the performance of AD-2 are also shown in Fig-

ure 2.14. The degradation in performance of AD-2 as compared with ID is quite

significant. This is evident when we plot the energy in dB units (with a reference

of 1 Joule). In particular, about 14 dB more energy is required to obtain the same

average position estimation error when the average position estimation error is in

the range of 60-100 m. However, this observation is for one scenario only and should

not be generalized. Clearly, more simulation experiments, for a range of scenarios,

mobility models and channel models, are needed to quantify more completely the

benefits of our integrated design and optimization strategy.

2.6 Conclusion and Future Research

We have proposed an integrated design methodology and applied it to the opti-

mization of the situational awareness problem in ad hoc mobile wireless networks. We

have given evidence (presented in Section 2.5.2) why the integrated design method-

ology outperforms other design methodologies that do not account for or exploit

coupling among layers. This evidence is supported by simulation experiments. In
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Figure 2.14: Performance comparison of different design methodologies.

future research, it would be of interest to classify other cases where an integrated

design approach leads to large performance gains over traditional approaches.



CHAPTER III

ROUTING IN BROADCAST MODE

An ad hoc mobile wireless network (also called packet radio network, dynamic

network, etc) is a collection of mobile platforms (usually called nodes) that are dy-

namically and arbitrarily located without any fixed infrastructure. The communica-

tion channel between each pair of mobile platforms in the network may be changing

on a continual basis due to the mobility of each platform and the environment. Each

mobile platform in such a network may function as a router or as an end transmitter

or receiver. Examples of such networks include disaster relief operations where a tem-

porary network is needed for rescuers, meetings or conventions where people want to

share information quickly, data acquisition in a hostile environment where physically

setting fixed connection between sensors is impossible, and military operations where

small mobile units communicate their situational awareness data.

3.1 Motivation for Routing in Ad Hoc Mobile Wireless Net-
works

Because the degradation of signal strength can be very significant when an electro-

magnetic wave propagates through a wireless environment, a mobile platform may

not have enough power to send its packets to another mobile platform in just a single

hop such that the signal to noise ratio at the receiver is acceptable. For example, the

51
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signal strength is usually degraded with the square of the propagation distance in free

space, while if there is a ground reflecting plane, the signal strength degrades with

the fourth power of the propagation distance. Because of the signal degradation,

packets may need to be routed through the network in order for them to reach their

final destinations with certain quality. Routing through multiple hops may save a

mobile platform a significant amount of energy since the total energy consumed by

each mobile platform involved in routing can be much less than the energy required

by a mobile platform to send its packets to a destination in just a single hop, as

demonstrated in Section 2.5. As can be seen in Figure 2.13, routing indeed gives

us some benefit when the average distances between nodes are large. Routing may

also allow us to configure wireless networks in a more flexible and robust fashion so

that a failure of a single mobile platform does not affect the operation of a network

significantly. In short, routing will play an important role in ad hoc mobile wireless

networks as more and more wireless applications grow popular.

In general, finding the best routing protocol of a complex communication system

can be too ambitious a task, especially when we want to design it analytically. Even

with the help of simulation-based optimization, finding an optimal routing protocol

over all parameters across different layers is still a formidable task. Therefore we

make simplifications by considering the routing problems over one parameter, namely,

the power assigned to each mobile platform to transmit a packet. We will also take

advantage of the omni-directional antenna carried by each node.

The remainder of this chapter is organized as follows. In Section 3.2 we present

a survey of wireless routing protocols. In Section 3.3 we give several definitions for

wireless networks. In Section 3.4 we specify the problems of routing in broadcast

mode. In Section 3.5 we list some previous research related to the routing problems
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specified in 3.4. In Section 3.6 we present our results for the routing problems in

broadcast mode specified in 3.4. We conclude the discussion and indicate future

research in Section 3.7.

3.2 Current Wireless Network Routing Protocols

There have been many proposed wireless network routing protocols [52, 71], which

can be divided into two broad categories: table-driven and on-demand, based on

when and how routes are discovered and maintained. In table-driven routing proto-

cols, consistent and up-to-date routing information to all other nodes are maintained

at each node, whereas in on-demand routing protocols, routes are created only

when they are needed. Figure 3.1 categorizes the current proposed routing protocols

whose acronyms are explained in Table 3.1. For details of each routing protocol,

please refer to its corresponding reference.

routing protocols in ad hoc mobile wireless network 

table-driven on-demand

DSDV ZHLS AODV ABR

CSGR SSR

HSRGSR

FSR

WRP DSRP LMR

TORA

CBRP

Figure 3.1: Categorization of routing protocols in ad hoc mobile wireless networks.

Ad-hoc network protocols are generally described using a layered structure. This

structure may include the application layer, the network layer, the medium access

control layer, and the physical layer. The routing protocols in Figure 3.1 function

at the network layer, where each of them assumes that there exists a medium access
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Table 3.1: List of current wireless routing protocols.

DSDV [61] Dynamic Destination-Sequenced Distance-Vector Routing Protocol
CGSR [17] Clusterhead Gateway Switch Routing Protocol
WRP [55] The Wireless Routing Protocol
GSR [16] Global State Routing
FSR [39] Fisheye State Routing
HSR [39] Hierarchical State Routing

ZHLS [34, 42] Zone-based Hierarchical Link State Routing Protocol
AODV [62] Ad Hoc On-demand Distance Vector Routing

DSRP [43, 44] Dynamic Source Routing Protocol
LMR [20] Lightweight Mobile Routing

TORA [60] Temporally Ordered Routing Algorithm
CBRP [41] Cluster Based Routing Protocols

ABR [82, 83] Associativity Based Routing
SSR [24] Signal Stability Routing

control (MAC) layer that reports to the network layer the state of the connections

between each pair of mobile platforms. The routing protocols in an ad hoc mo-

bile wireless network mostly deal with finding routing information and maintaining

routes. Since point-to-point connections are always assumed in the ad-hoc networks

for the routing algorithms in Figure 3.1, which resemble the connections in wired

networks, these routing protocols can still use the basic algorithms that are used in

wired networks, such as Bellman-Ford algorithms or Dijkstra’s algorithm, to compute

the shortest path (where the length of a path is usually defined as delay or number of

hops) from a source to a destination. If nodes in an ad-hoc network have directional

antennae, there is a very close relation between wired networks and wireless networks.

However with the omni-directional antennae, connections can be point-to-multipoint

and this makes wireless networks significantly different from wired networks. Con-

sequently we must view routing problems in ad hoc mobile wireless networks very

differently from the ones in wired networks.
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3.3 Definitions

Conventionally an ad hoc mobile wireless network is modeled as a graph where

two vertices have a directed (or an undirected) edge if and only if the correspond-

ing mobile platforms can communicate from one to another (or between the two).

However this representation of wireless networks hides many properties that are char-

acteristic of wireless communications and is sometimes not very realistic. We will

represent ad hoc mobile wireless networks in a different way in order to capture the

key properties of wireless communications and describe wireless network routing in

a regime of networks with point-to-multipoint connections (which we call routing

in broadcast mode). But first, we need a few definitions.

Definition 3.3.1 A node is a mobile platform. The set N of all nodes of interest

is called a node set. The cardinality of a set N is the number of elements in the

set N and is denoted by N .

Definition 3.3.2 A location function μ : N → R
3 is a mapping such that

μ(n) = (xn, yn, zn)T ∈ R
3 ∀n ∈ N , where (xn, yn, zn)T is the location of node n.

Definition 3.3.3 An adjustable parameter function θ : N → R
M is a mapping

such that θ(n) = (θ
(1)
n , θ

(2)
n , · · · , θ(M)

n )T ∈ R
M ∀n ∈ N , where (θ

(1)
n , θ

(2)
n , · · · , θ(M)

n )T

are adjustable parameters of node n.

Examples of adjustable parameters include interval between transmissions, coding

and modulation techniques, transmitting power, etc. In this chapter we restrict

our attention to the transmitting power and use η : N → R to represent a power

assignment to each n ∈ N , i.e., for each node n ∈ N , η(n) is the power that node n

should use to transmit its packets.
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Definition 3.3.4 An environment function ψ : R
3 ×R

3 → R is a mapping such

that ψ((x1, y1, z1)
T , (x2, y2, z2)

T ) = r ∈ R, where r characterizes the properties of

propagation from location (x1, y1, z1)
T to location (x2, y2, z2)

T .

Examples of environment function include path loss function, shadowing, mul-

tipath fading, etc. In this chapter we restrict our attention to path loss, which is

usually given by (2.30). In this case, the environment function will be

ψ((x1, y1, z1)
T , (x2, y2, z2)

T )) =
Pout

Pr

=

[
4

(
λc

4πd

)2

GtGr sin2

(
2πhthr

λcd

)]−1

(3.1)

where (x1, y1, z1)
T is the location of transmitter, (x2, y2, z2)

T is the location of re-

ceiver, and

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (3.2)

A symmetric channel satisfies

ψ((x1, y1, z1)
T , (x2, y2, z2)

T ) = ψ((x2, y2, z2)
T , (x1, y1, z1)

T ) (3.3)

Definition 3.3.5 An ad hoc mobile wireless network is a set M = (N , μ, θ, ψ),

where N , μ, θ, and ψ are defined in Definitions 3.3.1, 3.3.2, 3.3.3, and 3.3.4,

respectively.

We consider source-initiated multicast sessions in an ad hoc mobile wireless net-

work M = (N , μ, θ, ψ), where every node is permitted to initiate multicast sessions,

namely, every node is allowed to transmit to any subset of nodes in N . We as-

sume that each node n ∈ N has an omni-directional antenna and we say that M

is in broadcast mode under this condition. When the data rate and noise power

spectral density are fixed, the connectivity of M depends on the power assignment

function η : N → R, where η(j) is the power assigned to node j. In actuality, the
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power assignment function corresponds to the situation where each node can choose

its power level not exceeding the maximum power it can use. We assume that each

node n ∈ N has a fixed receiver sensitivity Sn, i.e, if the received power Pr at node

n satisfies Pr ≥ Sn, we assume perfect reception at node n, otherwise, we assume

a packet is lost at node n. We call this a threshold receiver model. Therefore

the least power function β : R
3 × R

3 → R, which indicates the least power that

a transmitter at location (x1, y1, z1)
T ∈ R

3 should use to ensure correct reception by

a receiver at location (x2, y2, z2)
T ∈ R

3, is given by

β((x1, y1, z1)
T , (x2, y2, z2)

T ) = ψ((x1, y1, z1)
T , (x2, y2, z2)

T ))S2 (3.4)

Thus it is possible for a node n ∈ N to reach a set of other nodes in N with just one

transmission, all we need is to assign the power level of node n the maximum of the

power required for n to reach any one of the nodes in the set individually. In contrast,

we don’t have this possibility in wired networks where connections are composed of

point-to-point links. Under the above assumptions on M, we want to find solutions

to the following six problems. Most importantly, we want to design efficient algo-

rithms for finding such solutions, if possible, where efficient algorithms is defined

to be the ones that have complexity polynomial in N .

3.4 Problems of Routing in Broadcast Mode

We formulate the problems of routing in broadcast mode into the following prob-

lems.

Problem 3.4.1 Given two nodes n0 and n1 in an ad hoc mobile wireless network

M = (N , μ, η, ψ), find a power assignment η : N → R such that the packet generated

by node n0 can be correctly sent to n1 (possibly in multiple hops) and max1≤n≤N η(n)
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is minimized.

Problem 3.4.2 Given a node n0 in an ad hoc mobile wireless network M = (N , μ, η, ψ),

find a power assignment η : N → R such that the packet generated by node n0 can be

correctly sent to every node in N\{n0} (possibly in multiple hops) and max1≤n≤N η(n)

is minimized.

Problem 3.4.3 Given a node n0 and a subset Q of nodes in an ad hoc mobile

wireless network M = (N , μ, η, ψ), find a power assignment η : N → R such that

the packet generated by node n0 can be correctly sent to every node in Q (possibly in

multiple hops) and max1≤n≤N η(n) is minimized.

Problem 3.4.4 Given two nodes n0 and n1 in an ad hoc mobile wireless network

M = (N , μ, η, ψ), find a power assignment η : N → R such that the packet generated

by node n0 can be correctly sent to n1 (possibly in multiple hops) and
∑N

n=1 η(n) is

minimized.

Problem 3.4.5 Given a node n0 in an ad hoc mobile wireless network M = (N , μ, η, ψ),

find a power assignment η : N → R such that the packet generated by node n0 can

be correctly sent to every node in N\{n0} (possibly in multiple hops) and
∑N

n=1 η(n)

is minimized.

Problem 3.4.6 Given a node n0 and a subset Q of nodes in an ad hoc mobile

wireless network M = (N , μ, η, ψ), find a power assignment η : N → R such that

the packet generated by node n0 can be correctly sent to every node in Q (possibly in

multiple hops) and
∑N

n=1 η(n) is minimized.

We see that Problem 3.4.1 and 3.4.2 are special cases of Problem 3.4.3 by letting

Q = {n1} and Q = N\{n0}, respectively. Similarly, Problem 3.4.4 and 3.4.5 are
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special cases of Problem 3.4.6. Both types of optimization in the problems 3.4.1

to 3.4.6 find their applications in actual wireless networks. The argument for seeking

solutions to Problem 3.4.1 through 3.4.3 is that battery life is usually a local resource

so that the minimization of total consumed power for multicasting one packet has

little practical value. However, we may also note that the solutions to Problem 3.4.1

through 3.4.3 may have their own drawback in that they may use more nodes involved

in routing packets from a source to a destination, thus may cause more delay. An

example of this situation is shown in Figure 3.2, where node 1 wants to send packets

to node 3. This example shows that solutions to Problem 3.4.4 is more appropriate

in terms of delay.

1 2 35 4 N N-1

Shorter path in terms of maximum power on the path

Shorter path in terms of total power on the path

Figure 3.2: Example of inappropriateness of solution to Problem 3.4.1.

Because of the threshold receiver model, we note that the power assignment

η(n) for each node n ∈ N need only be one of N values, where these N values

are: no power for transmission, least power required to reach the first nearest node,

least power required to reach the second nearest node, etc, as given in (3.4). Thus

there are a total of NN functions of power assignment that we can enumerate to find

whether a certain power assignment η is a solution to Problem 3.4.3 or Problem 3.4.6.

Even though this is an algorithm for finding solutions to our problems, it requires

a computational complexity exponential in N . Therefore our main objective is to
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design efficient algorithms that find solutions to Problem 3.4.3 and Problem 3.4.6

respectively. We hope that these efficient algorithms, if exist, will play the same

important role in ad hoc mobile wireless networks with point-to-multipoint connec-

tions, as their counterparts, such as Bellman-Ford algorithm, Dijkstra algorithm,

and Floyd-Warshall algorithm, in wired networks with point-to-point connections.

3.5 Previous Research

There have been some related previous research papers on problems stated in

Section 3.4, even though they do not quite address the same problems described in

Section 3.4.

3.5.1 Previous Results Related to Problem 3.4.1 through 3.4.3

In [67] the authors present a polynomial-time algorithm for finding a solution to a

special case of Problem 3.4.2, where it is assumed that each pair of nodes in N see a

symmetric channel, where the channel between node i and node j is symmetric if the

degradation from node i to node j is the same as the degradation from node j to i.

The algorithm in that paper finds a power assignment such that the maximum of the

power used by all nodes in the ad hoc mobile wireless network is minimized under

the condition that the underlying graph after the power assignment is strongly

connected, namely, between any pair of nodes i and j, there is a directional path

going from i to j and there is a directional path going from j to i. Note that in

Problem 3.4.2, we don’t have the assumption that each pair of nodes see a symmetric

channel and we don’t require the underlying graph to be strongly connected. Thus

our problem is more general than the one solved in [67].
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3.5.2 Previous Results Related to Problem 3.4.4 through 3.4.6

In [87] the authors state Problem 3.4.5 in a slightly different way and seek an

approximate solution to Problem 3.4.5, since the an exact efficient algorithm can not

be found by the authors. In [19, 45], however, the authors show that if an assumption

of strong connectivity is made on the underlying graph after the power assignment

in Problem 3.4.5, finding a exact solution to Problem 3.4.5 in 2-dimensional or 3-

dimensional space will be NP-hard, but there is an efficient algorithm for finding a

solution to Problem 3.4.5 in 1-dimensional space. We will link these results together

in Section 3.6 to draw conclusions for Problem 3.4.4 through 3.4.6.

3.6 Some Results of Routing in Broadcast Mode

We consider a quasi-static network where the channel between each pair of nodes

in an ad hoc mobile wireless network does not change or change very slowly with

respect to route information updating and route computation. We also assume cen-

tralized route computation, where each node has the same view of the topology of

the network. We want to design efficient algorithms for finding the solutions to Prob-

lem 3.4.1 through 3.4.6, if possible. We first deal with Problem 3.4.1 through 3.4.3.

Since Problem 3.4.1 and 3.4.2 are special cases of Problem 3.4.3, we will just describe

the algorithm for finding a solution to Problem 3.4.3.

3.6.1 Algorithm for Problem 3.4.1 through 3.4.3

We consider the underlying complete graph C of an ad hoc mobile wireless net-

work, where the weight of each edge is formed by the least power function between

each pair of nodes. We will use a modified Dijkstra’s algorithm in the description

of the algorithm for Problem 3.4.3, even though any shortest path algorithm can be
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modified in the same way and used in the algorithm for Problem 3.4.3. In the mod-

ified Dijkstra’s algorithm, the weight of a path is redefined as the maximum of the

weight of each edge on that path, instead of the usual definition as the cumulative

weight of edges on that path [8, 11]. The basic idea of the algorithm given below is

that we first build a minimum weight path tree from a source to all destinations in

the complete graph and then assign power to each node considering only the nodes

on the tree from the source to the set of desired destinations. As can be seen later,

this will provide us with an efficient power assignment algorithm.

Algorithm 3.6.1 (Algorithm for Problem 3.4.3) Let N be the set of nodes in

an ad hoc mobile wireless network M. Without loss of generality, we assume that

node 1 is the sender and Q := {m1,m2, · · · ,mt} ⊆ N\{1} is the set of destination

nodes to which node 1 wants to send packets. Let D : N → R be a path weight

function, i.e., the weight of a path from node 1 to node i is D(i). Let S be a set to

record the nodes whose shortest path from node 1 have been found. Let U : N → N

be an upstream-node function, i.e., the upstream-node of node i on the path from

node 1 to Q is U(i) . Let F : N → 2N be a first-hop function, i.e., F (i) is the set

of first-hop nodes that node i should use in order to forward packets from node 1 to

the nodes in Q. Let P : N → R be a power assignment function, i.e., P (i) is the

power that node i should use in order to forward packets from node 1 to the nodes in

Q. The algorithm for Problem 3.4.3 runs over the following steps:

1. Initialization

For each i ∈ N , calculate the weight di,j (which is the least power required for

node i to successfully send packets to node j based on the least power function)

to all nodes j ∈ N\{i}. Let D(1) = 0, D(j) = d1,j for j �= 1, U(j) = 1 for

j �= 1, F (j) := ∅ for j ∈ N , P (j) = 0 for j ∈ N , S := {1}, A := {1}, W := Q.
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2. Building shortest path tree from node 1 to all nodes in N\{1}

(a) (Finding the next closest node) Find i /∈ S such that D(i) = minj /∈S D(j).

Set S := S ∪ {i}. If S = N , stop and the shortest path tree is found.

(b) (Updating weights) For all j /∈ S, let D(j) = min(D(j),max(di,j, D(i))).

If D(j) > max(di,j, D(i)), let U(j) = i. Go to Step 2a.

3. Building multicast tree from node 1 to Q

(a) If W = ∅, stop and the multicast tree T is found.

Else, choose i ∈ W and let j = i.

i. Set F (U(i)) := F (U(i)) ∪ {i}.

ii. If U(i) �= 1, set i := U(i) and go to Step 3(a)i. Else, stop and a path

from node 1 to one of nodes in Q is found.

(b) W := W\{j}. Go to Step 3a.

4. Power Assignment

(a) If A = ∅, stop and power assignment is done.

Else, choose i ∈ A and let A := A\{i}.

(b) If F (i) �= ∅, set P (i) = maxj∈F (i)(di,j) and set A := A ∪ F (i). Go to

Step 4a.

Here is a concrete example to demonstrate in detail how the algorithm for Prob-

lem 3.4.3 works. It should be noted that the algorithm does not require symmetric

channels and the underlying graph for the final power assignment of the ad hoc mo-

bile wireless network is not necessarily strongly connected, as can be seen in the

solution to the following example.
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Example 3.6.1 A group of nodes form an ad hoc mobile wireless network as shown

in Figure 3.3 with node 1 as the sender and Q := {3, 4, 7, 9, 10} as the set of destina-

tion nodes. Table 3.2 shows the initialization steps, with di,j the least power required

for node i to to successfully send packets to node j. Note that some of the channels be-

tween pairs of nodes are not symmetric, such as d1,2 and d2,1. Figure 3.3 through 3.8

show each step of the algorithm while running. When the algorithm terminates, the

maximum power after the power assignment is 1024.

Table 3.2: Weight between each pair of nodes in Example 3.6.1.

di,j ↘ j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10
i = 1 0 169 2809 1681 625 324 9409 4096 1156 9409
i = 2 961 0 256 3364 4624 625 28900 11881 7225 32400
i = 3 2809 652 0 16900 21904 1681 58564 22201 22201 85264
i = 4 1681 3364 16900 0 676 12769 38416 34225 10201 11236
i = 5 625 4624 21904 676 0 5329 6724 7921 841 1024
i = 6 324 625 1681 12769 5329 0 7225 1156 1600 21025
i = 7 9409 28900 58564 38416 6724 7225 0 289 289 2500
i = 8 4096 11881 22201 34225 7921 1156 289 0 324 9409
i = 9 1156 7225 22201 10201 841 1600 289 324 0 1369
i = 10 9409 32400 85264 11236 1024 21025 2500 9409 1369 0

Theorem 3.6.1 (Correctness of Algorithm 3.6.1) Algorithm 3.6.1 is an effi-

cient algorithm that gives a solution to Problem 3.4.3 with complexity O(N2).

Proof of Theorem 3.6.1: We claim that at the beginning of each Step 2a

1. D(l) ≤ D(j) for all l ∈ S and j /∈ S.

2. D(j) is, for each node j, the minimum weight from 1 to j using paths with all

nodes, except possibly j, belonging to the set S.

We show that Claim 1 holds by induction. Claim 1 holds at the initialization

step, Step 1, of the algorithm because S = {1}, D(1) = 0 and D(j) = d1,j ≥ 0 for
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Figure 3.3: Demonstration of algorithm for Problem 3.4.3.



66

D(2) = 169

6

5

D(5) = 625
23

D(1) = 0

4

10

1

9

D(6) = 324

8

7

W = {3, 4, 7, 9, 10}

A = {1}

U(1) = 0

P(4) = 0

D(3) = 256

P(10) = 0 

U(2) = 1U(3) = 2 

P(6) = 0

P(2) = 0

P(5) = 0P(1) = 0

P(8) = 0

P(9) = 0

U(5) = 1

P(7) = 0

P(3) = 0

U(6) = 1

F(2) = F(3) = 

F(4) = 

F(1) = 

F(10) = 

F(5) = 

F(9) = 

F(6) = 

F(7) = 

F(8) = φ
φ

φ
φ

φ

φφ

φ

φ

φ

U(8) = 6
D(8) = 1156

U(9) = 5

U(4) = 5

U(7) = 5

U(10) = 5
D(10) = 1024

D(4) = 676

D(7) = 6724

D(9) = 841

S = {1, 2, 3, 6, 5}

(a) 5: Step 2a, 2b

D(2) = 169

6

5

D(5) = 625
23

D(1) = 0

4

10

1

9

D(6) = 324

8

7

W = {3, 4, 7, 9, 10}

A = {1}

U(1) = 0

P(4) = 0

D(3) = 256

P(10) = 0 

U(2) = 1U(3) = 2 

P(6) = 0

P(2) = 0

P(5) = 0P(1) = 0

P(8) = 0

P(9) = 0

U(5) = 1

P(7) = 0

P(3) = 0

U(6) = 1

F(2) = F(3) = 

F(4) = 

F(1) = 

F(10) = 

F(5) = 

F(9) = 

F(6) = 

F(7) = 

F(8) = φ
φ

φ
φ

φ

φφ

φ

φ

φ

U(8) = 6
D(8) = 1156

U(9) = 5

U(4) = 5

U(7) = 5

U(10) = 5
D(10) = 1024

D(4) = 676

D(7) = 6724

D(9) = 841

S = {1, 2, 3, 6, 5, 4}

(b) 6: Step 2a, 2b

D(2) = 169

6

5

D(5) = 625
23

D(1) = 0

4

10

1

9

D(6) = 324

8

7

W = {3, 4, 7, 9, 10}

A = {1}

U(1) = 0

P(4) = 0

D(3) = 256

P(10) = 0 

U(2) = 1U(3) = 2 

P(6) = 0

P(2) = 0

P(5) = 0P(1) = 0

P(8) = 0

P(9) = 0

U(5) = 1

P(7) = 0

P(3) = 0

U(6) = 1

F(2) = F(3) = 

F(4) = 

F(1) = 

F(10) = 

F(5) = 

F(9) = 

F(6) = 

F(7) = 

F(8) = φ
φ

φ
φ

φ

φφ

φ

φ

φ

U(9) = 5

U(4) = 5
D(4) = 676

U(10) = 5

D(9) = 841

D(10) = 1024

U(7) = 9

U(8) = 9
D(8) = 841

S = {1, 2, 3, 6, 5, 4, 9}

D(7) = 841

(c) 7: Step 2a, 2b

D(2) = 169

6

5

D(5) = 625
23

D(1) = 0

4

10

1

9

D(6) = 324

8

7

W = {3, 4, 7, 9, 10}

A = {1}

U(1) = 0

P(4) = 0

D(3) = 256

P(10) = 0 

U(2) = 1U(3) = 2 

P(6) = 0

P(2) = 0

P(5) = 0P(1) = 0

P(8) = 0

P(9) = 0

U(5) = 1

P(7) = 0

P(3) = 0

U(6) = 1

F(2) = F(3) = 

F(4) = 

F(1) = 

F(10) = 

F(5) = 

F(9) = 

F(6) = 

F(7) = 

F(8) = φ
φ

φ
φ

φ

φφ

φ

φ

φ

U(9) = 5

U(4) = 5
D(4) = 676

U(10) = 5

D(9) = 841

D(10) = 1024

U(7) = 9

U(8) = 9
D(8) = 841

S = {1, 2, 3, 6, 5, 4, 9, 7}

D(7) = 841

(d) 8: Step 2a, 2b

Figure 3.4: Demonstration of algorithm for Problem 3.4.3 (continued).
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Figure 3.5: Demonstration of algorithm for Problem 3.4.3 (continued).
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(b) 14: Step 3a, 3b
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Figure 3.6: Demonstration of algorithm for Problem 3.4.3 (continued).
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Figure 3.7: Demonstration of algorithm for Problem 3.4.3 (continued).
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Figure 3.8: Demonstration of algorithm for Problem 3.4.3 (continued).
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j �= 1 when the algorithm is initialized. Now suppose Claim 1 holds at the beginning

of Step 2a of some iteration, i.e., D(l) ≤ D(j) for all l ∈ S and j /∈ S, we show that

at the end of Step 2b, i.e., at the beginning of Step 2a of next iteration, Claim 1

still holds. Since D(i) = minj /∈S D(j) in Step 2a, we have D(i) ≤ D(j) for all j /∈ S.

By the induction hypothesis, we have D(l) ≤ D(i) for all l ∈ S. After Step 2a is

performed, we have S := S ∪ {i}. Therefore for this newly updated S, we have

D(l) ≤ D(i) for all l ∈ S and D(i) ≤ D(j) for all j /∈ S. Consequently, after

Step 2a, D(l) ≤ D(j) for all l ∈ S and j /∈ S. Since D(i) ≤ D(j) for all j /∈ S

and D(i) ≤ max(di,j, D(i)), we have D(i) ≤ min(D(j),max(di,j, D(i))) for all j /∈ S.

Therefore after Step 2b is performed, which sets D(j) = min(D(j),max(di,j, D(i)))

for all j /∈ S, we have D(i) ≤ D(j) for all j /∈ S. Consequently, after Step 2b,

D(l) ≤ D(j) for all l ∈ S and j /∈ S. Whence Claim 1 holds at the end of Step 2b

and the induction proof is thus complete.

We show that Claim 2 holds by induction. Claim 2 holds at the initialization

step, Step 1, of the algorithm because S = {1} and the minimum weight path from

node 1 to node j using nodes in S is d1,j, which is the initial value for D(j). Now

suppose Claim 2 holds at the beginning of Step 2a of some iteration, i.e., D(k) is,

for each node k, the minimum weight from 1 to k using paths with all nodes, except

possibly k, belonging to the set S, we show that at the end of Step 2b, i.e., at

the beginning of Step 2a of next iteration, Claim 2 still holds. Let i be the node

such that D(i) = minj /∈S D(j) in Step 2a, then after Step 2a is performed, we have

S := S ∪ {i} and for this newly updated S, D(i) is the minimum weight from 1

to i using paths with all nodes belonging to the set S. Recall that in the proof for

Claim 1, we have shown that after Step 2a is performed, we have D(l) ≤ D(i) for

all l ∈ S and D(i) ≤ D(j) for all j /∈ S. Since D(l) ≤ D(i) ≤ max(di,l, D(i)), it
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follows that for the newly updated S, D(l) is still, for each node l ∈ S, the minimum

weight from 1 to l using paths with all nodes belonging to the set S. After Step 2b

is performed, we see that S does not change and D(l) remains the same for all l ∈ S,

so D(l) is, for each node l ∈ S, the minimum weight from 1 to l using paths with

all nodes belonging to the set S at the end of Step 2b. We now need to consider all

j /∈ S in Step 2b. Consider a path from 1 to j which has minimum weight among

those paths with all nodes, except j, belonging to the set S in Step 2b and let D
′
(j)

be the corresponding minimum weight. Such a path must consist of dk,j for some

k ∈ S, preceded by a minimum weight path from 1 to k with nodes in S.

D
′
(j) = min

k∈S
{max(dk,j, D(k))} = min

(
min

k∈S\{i}
{max(dk,j, D(k))} ,max(di,j, D(i))

)

The induction hypothesis implies thatD(j) is, for each node j /∈ S\{i}, the minimum

weight from 1 to j using paths with all nodes, except j, belonging to the set S\{i}

(because we have updated S in Step 2a), i.e., D(j) = mink∈S\{i} {max(dk,j, D(k))},

so we obtain D
′
(j) = min(D(j),max(di,j, D(i))). Thus after Step 2b, which sets

D(j) = min (D(j),max(di,j, D(i))), we get that D(j) = D
′
(j), which is the minimum

weight from 1 to j using paths with all nodes, except j, belonging to S. Whence

Claim 2 holds at the end of Step 2b and the induction proof is thus complete.

We note that a new node is added to S with each iteration, so the algorithm

terminates after N − 1 iterations, with S containing all nodes. By Claim 2 D(j) is

then equal to the minimum weight from 1 to j.

We claim that the power assignment η : N → R after Step 4b of Algorithm 3.6.1

is a solution to Problem 3.4.3. We prove this claim by contradiction. Suppose that

there is another power assignment η
′

: N → R such that node 1 can successfully

send packets to Q := {m1,m2, · · · ,mt} and such that maxn∈N η
′
(n) < maxn∈N η(n).
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For power assignment η, let i be the node such that η(i) = maxn∈N η(n). Then there

must exist a node j such that di,j = η(i) and di,j is on the minimum weight path in

the complete graph C from node 1 to one of the destination nodes in Q according to

Algorithm 3.6.1. Let m ∈ Q be such destination node and recall that D(m) = η(i)

is the weight of that path. For the power assignment η
′
, there is at least a sequence

of nodes (a path) such that node 1 can successfully send packets to node m via these

intermediate nodes. We should caution that there may be several paths formed

from node 1 to node m for power assignment η
′
. For each such path, consider the

sequence of nodes on the path. Let B = {b1, b2, · · · , bk} be such sequence of nodes

that defines this path, with b1 = 1 and bk = m. The power assignment η
′
guarantees

that η
′
(b1) is enough for b1 to successfully send packets to b2, η

′
(b2) is enough for b2

to successfully send packets to b3, · · ·, η′
(bk−1) is enough for bk−1 to successfully send

packets to bk. Recall that db1,b2 is the least power required for b1 to have a successful

transmission to b2, db2,b3 is the least power for b2 to have a successful transmission

to b3, · · ·, dbk−1,bk
is the least power for bk−1 to have a successful transmission to

bk. Therefore the path defined by B = {b1, b2, · · · , bk} with weights db1,b2 , db2,b3 , · · ·,

dbk−1,bk
allows node 1 to successfully transmit packets to node m and db1,b2 ≤ η

′
(b1),

db2,b3 ≤ η
′
(b2), · · ·, dbk−1,bk

≤ η
′
(bk−1). Since maxn∈N η

′
(n) < maxn∈N η(n), we

have max1≤l≤k−1(dbl,bl+1
) ≤ maxn∈N η

′
(n) < maxn∈N η(n) = η(i) = D(m). The

weight of the path determined by B = {b1, b2, · · · , bk} in the complete graph C is

max1≤l≤k−1(dbl,bl+1
). Therefore we have found another path from 1 to m in the

complete graph C that has a weight strictly less than D(m), which is a contradiction

to what we have proved that D(m) is the minimum weight of the path from 1 to m

in the complete graph C. Thus there is no other power assignment η
′
: N → R such

that maxn∈N η
′
(n) < maxn∈N η(n). This completes the proof that Algorithm 3.6.1
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indeed gives a solution to Problem 3.4.3.

We now consider the efficiency of Algorithm 3.6.1. Step 1 takes O(N2) number of

operations. To estimate the computation complexity required by Step 2, we note that

there areN−1 iterations and the number of operations per iteration is proportional to

N . Therefore, in the worst case the computation is O(N2). Step 3 requires less than

O(tN) operations. Step 4 takes approximately O(N) operations. We have therefore

shown Algorithm 3.6.1 has complexity O(N2) and thus is an efficient algorithm by

our definition.

In actuality, the procedure for a calculating node to find out its power for a

(source, destination set) pair is as follows. The routing information of each node

is flooded through the entire network and each node eventually gets a full view of

the topology of the network. Based on the topological information, each node runs

Algorithm 3.6.1 for this (source, destination set) pair to get a source-rooted tree

from the source to the destination set. If the calculating node is on the tree, it

calculates its own power for this (source, destination set) pair and store the tuple

(source, destination set, first-hop nodes from the calculating node, power to use) in

its routing table. So in Step 4b of the algorithm, a calculating node does not have to

calculate and store other nodes’ power assignment, even though the calculating node

knows the power assignment of other nodes by Algorithm 3.6.1. If network is static

or changes relatively slowly, we will expect that each node has the same view of the

topology of the network and generates the same source-rooted tree for each (source,

destination set) pair, even though the route computation is done distributively.

The (source, destination set, first-hop nodes) information is stored in the header

of a packet. When a node receives a packet, it first checks whether itself is one of the
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first-hop nodes for the received packet. If it is not, it simply discards the received

packet. If it is, it then checks if itself is in the destination set. If it is, it keeps a

copy of the received packet. It also checks if it has an entry in its routing table that

matches (source, destination set) pair. If it has, it sends out the received packet

using the power in the matching entry in its routing table. Otherwise, it simply

discards the received packet.

3.6.2 Algorithm for Problem 3.4.4 through 3.4.6

We now solve the problems that minimize total power of the nodes in an ad hoc

mobile wireless network, namely, Problem 3.4.4 through 3.4.6. We should notice that

Problem 3.4.4 through 3.4.6 are very different from and much harder than the ones

that minimize the maximum power, namely, Problem 3.4.1 through 3.4.3. To get

an intuition why this is true, let us recall what Algorithm 3.6.1 gives us. After the

step of power assignment in Algorithm 3.6.1 is finished for Problem 3.4.3, we know

that one of the nodes has maximum power among all the nodes in the network. If

we allow any other node to transmit packets at power between its assigned value by

Algorithm 3.6.1 and this maximum value, we will have a different power assignment

such that it is also a solution to Problem 3.4.3. Therefore in some sense, we don’t

really need to care about exactly how much power other nodes use except for the

node that transmits packets at the maximum power. However, in the problems that

minimize the total power, how much power each node uses directly affects the value

of the total power. Therefore we may have to keep the exact power used by each node

as the state information when designing a power assignment algorithm for an ad hoc

mobile wireless network. Fortunately, we can still find an efficient algorithm for the

power assignment when we have only one source and one destination. However, when
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we have more than one destination nodes, the algorithm for the power assignment

turns out to be NP-hard for 2-dimensional space or 3-dimensional space in general.

Algorithm 3.6.2 (Algorithm for Problem 3.4.4) The algorithm for finding a

solution to Problem 3.4.4 is almost the same as Algorithm 3.6.1. We simply replace

max(di,j, D(i)) in Algorithm 3.6.1 by (di,j + D(i)) to get the algorithm description

for solving Problem 3.4.4. In this way, we actually define the weight of a path to be

the sum of the weights of each edge on the path in the complete graph C.

Theorem 3.6.2 (Correctness of Algorithm 3.6.2) Algorithm 3.6.2 is an effi-

cient algorithm that gives a solution to Problem 3.4.4 with complexity O(N2).

Proof of Theorem 3.6.2: The proof for the correctness and efficiency of Algo-

rithm 3.6.2 is completely analogous to the proof for the correctness and efficiency of

Algorithm 3.6.1, we simply replace max(di,j, D(i)) by (di,j + D(i)) in the proof for

Theorem 3.6.1 to get the proof for Theorem 3.6.2. Intuitively, if we find a minimum

weight path from a source to a destination, where the weight of the path is defined to

be the cumulative weight of each edge on the path, the total power used by nodes in

the network to forward packets from the source to the destination will be minimized.

When a source node needs to send its packets to more than one destination

nodes, the difficulty of solving such a problem grows drastically. In fact, we no

longer have the same nice results as that for Problem 3.4.4. In a general situation,

the algorithms for finding solutions to Problem 3.4.5 or 3.4.6 turn out to be NP-hard

in a 2-dimensional space or a 3-dimensional space.

Theorem 3.6.3 (Problem 3.4.5 is NP-hard) Problem 3.4.5 in a 2-dimensional

space or a 3-dimensional space is NP-hard.
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Proof of Theorem 3.6.3: We note that if we restrict Problem 3.4.5 to a sub-

problem in which we require bidirectionality of communication between each pair of

nodes in N , Problem 3.4.5 in 2-dimensional space or 3-dimensional space becomes the

problem in [19, 45], which has been proved to be NP-hard. Therefore Problem 3.4.5

in 2-dimensional space or 3-dimensional space is NP-hard by the restriction technique

in [30].

Theorem 3.6.4 (Problem 3.4.6 is NP-hard) Problem 3.4.6 in a 2-dimensional

space or a 3-dimensional space is NP-hard.

Proof of Theorem 3.6.4: We note that if we restrict Q = N\{n0}, Problem 3.4.6

becomes Problem 3.4.5, which in 2-dimensional space or 3-dimensional space has been

proved to be NP-hard in Theorem 3.6.3. Therefore Problem 3.4.6 in 2-dimensional

space or 3-dimensional space is NP-hard by the restriction technique in [30].

3.7 Conclusion and Future Research

3.7.1 Conclusion

We have shown that routing problems in ad hoc mobile wireless networks with

point-to-multipoint connections are very different from routing problems in wired

networks with point-to-point connections. We have found efficient algorithms to

assign power to each node in order to minimize the maximum power used by nodes in

an ad hoc mobile wireless network for unicast, broadcast, and multicast applications.

The efficient algorithm that assigns power to each node in order to minimize the

total power used by nodes in an ad hoc mobile wireless network exists only for

unicast application. For broadcast and multicast applications, we have shown that
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the problems to assign power to each node in order to minimize the total power

used by nodes in an ad hoc mobile wireless network in a 2-dimensional space or a

3-dimensional space are NP-hard.

3.7.2 Future Research

For future research, we may need to seek efficient algorithms for finding approx-

imate solutions to Problem 3.4.5 and 3.4.6. We may also need to study routing

algorithms when we change the receiver model to include probability of reception

and receiver processing energy.

More generally, we notice that each node repeats its received packet when it is

involved in routing, so there are correlated packets in transit in a network when a

packet is routed from a source to a set of destination nodes. Therefore there may

be a possibility of diffusing the received packets at each node (dividing packets into

pieces) and only sending out several selected pieces in order to efficiently use the

transmission rate. If nodes in a network collaborate well, the receivers may recover

the original packet, or part of the original packet of their own interest, from the

received pieces. In this way, more applications can be accommodated simultaneously.

There are techniques for the rate-efficient transmission of packets in wired networks,

such as network coding, multiple description coding, and distributed source coding.

We need to further investigate the rate-efficient transmission in ad hoc mobile wireless

networks.



CHAPTER IV

OPTIMAL TRANSPORT EFFICIENCY OF

LINEAR NETWORKS

In Chapter II we saw that there are many parameters affecting the performance

of communication networks. In this chapter we want to study the role of some of the

chosen parameters analytically and numerically. In particular, we want to study the

effect of different transmitter and receiver systems on communication networks and

include the amplifier characteristics and receiver processing energy from the physical

layer in our analysis.

4.1 Introduction

For wireless systems that must operate on batteries, total energy consumption

by nodes in a network is a critical design parameter. The energy consumed by a

node includes energy consumed by the power amplifier, processing energy at the re-

ceiver, etc.. Since a lot of power consumed by a communication system resides in

the power amplifier, it is important to consider the amplifier characteristics when we

evaluate the performance of a network. The processing energy at the receiver is an-

other important factor affecting the performance of a communication network. With

the proliferation of more and more handheld devices that operate on batteries and

79
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more and more sophisticated coding and modulation methods, the processing energy

becomes a large portion of consumed energy. Apart from the energy concerns in the

design of a wireless network, bandwidth is also a critical design parameter. Since

in wireless networks, nodes often share common communication media, such as the

same frequency band, how efficiently bandwidth is utilized affects the performance

of a communication network.

In this chapter, we want to measure the performance of a network by taking into

account of both the bandwidth efficiency and the energy efficiency and explicitly

considering the power amplifier characteristics and receiver processing energy. From

the bandwidth efficiency point of view, higher information bits per channel use is

preferred since it will take less number of channel uses to transmit the same amount

of information bits. However, with high rate code, the packet error probability is

usually higher than that of a low rate code. Consequently, the effective successful

transmission of information bits may be compromised. From the energy point of

view, if there are too few relay nodes, each transmission has to travel a large dis-

tance, which causes large transmitting energy to be used. On the other hand, if

there are too many relay nodes, too much energy will be turned into heat and too

much processing energy will be used by the relay nodes. Therefore there are many

parameters, such as code rate, input power to the power amplifier, distance between

adjacent nodes, etc. that should be considered in designing efficient wireless net-

works. In summary, both bandwidth efficiency and energy efficiency are important

measures of a communication network, which we should consider in deploying an

actual network.

The energy and bandwidth tradeoff for the point-to-point single-hop communi-

cation has been studied to a large extent. The development of turbo codes and
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LDPC [7, 50] is the culmination of the error-control coding for the point-to-point

single-hop communication. The received energy is usually considered to study the en-

ergy and bandwidth tradeoff for the point-to-point single-hop communication, while

the amplifier characteristics and the receiver processing energy have not been in-

cluded in such tradeoff. However, in any practical system design, both the amplifier

characteristics and the receiver processing energy are important.

In the literature, much of the study on network performance has ignored many fac-

tors from other design layers for tractability. Many simplified models for lower design

layers have been abstracted for the analysis at the network layer. A most common

receiver model seen in the literature is the threshold model, where received symbol is

considered to be correct if the received signal-to-noise (or signal-to-interference plus

noise) ratio is above certain threshold and the received symbol is considered to be

wrong otherwise. While this is quite a rough model from the physical layer point of

view, it usually makes the network analysis tractable, so many network researchers

tend to adopt this model for their analysis.

In [18, 19, 45, 67] the authors studied low-energy wireless network from the view

point of energy efficient routing paths and the complexity of finding such routing

paths, where they all assumed a threshold model for the calculation of routing met-

rics. In [69] the authors studied a position-based network and designed a local

optimization scheme that ensures strong connectivity of the entire network. For the

stationary network, the authors showed that their scheme achieves global minimum

energy. Even though the authors considered energy, they did not consider bandwidth

efficiency explicitly. In [31, 32] the authors studied the performance of a network by

a measure they defined as transport capacity. Roughly, it is defined as the product

of the average bit rate and average communication distance between a source and a
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destination. The transport capacity has a unit bit·m/s. The authors described two

communication models, namely, the protocol model and the physical model, used

in the network performance analysis. The transport capacity of a network, where

n nodes are arbitrarily located in a disk of unit area, was given under these two

models. However, the authors did not explicitly consider the bandwidth efficiency

and energy efficiency. In [46] the authors studied the network throughput, defined

as the expected number of successful source-destination sessions that a packet radio

network can sustain and found the optimum transmission radii in order to maximize

the network throughput. The analysis given in [46] is based on the parameters at the

network layer only, no physical layer characteristics, such as power power amplifier

or receiver processing energy, was considered in the analysis.

We are not aware that the power amplifier characteristics and receiver processing

energy are considered explicitly, or the bandwidth efficiency and energy efficiency are

considered together, in any of the previous research. We will analyze the performance

of a network by taking into account these factors. The remainder of this chapter

is organized as follows. In Section 4.2 we describe a linear network where nodes

are aligned on a straight line. Topologically this network can model a path in a

dense wireless network. In Section 4.3 we introduce a performance measure, called

transport efficiency, which takes into account of both bandwidth efficiency and energy

efficiency in wireless networks. We consider amplifier characteristics and receiver

processing energy explicitly when we compute transport efficiency. We show that

the transport efficiency, when optimized over the input power to the power amplifier

and the adjacent distance, is inversely proportional to the distance between a source

and a destination for the threshold model. We observe that the same conclusion is

true for the cutoff-rate model, uncoded model and convolutional-coded model. We
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show numerical results in Section 4.4 and conclude the discussion in Section 4.5.

4.2 Linear Network Topology

For tractability, we will use a linear network topology shown in Figure 4.1 to

investigate the effect of different communication models and the effect of amplifier

nonlinearity, processing energy, etc. on the performance of the network. This network

k+1k−1 k321

ed

...

Figure 4.1: Linear wireless network, where node 1 wants to transmit a packet to node
k + 1.

model, though simple, does represent quite many practical scenarios. For example,

in a two or three dimensional network, the best route for the unicast traffic between

a source and a destination is topologically a line, even though it may not be straight.

We make the following assumptions.

• There are k + 1 nodes on a straight line, where node 1 wants to send unicast

packets to node k + 1. Let de be the end-to-end distance between node 1

(source) and node k + 1 (destination).

• Each nodes uses a power amplifier whose characteristics is determined by two

functions fc and fo. Let Pin be the input power to the power amplifier, Pdc be

the consumed power, Pout be the output power of the power amplifier. Then

the characteristics of the power amplifier is determined by:

Pdc = fc(Pin) (4.1)

and

Pout = fo(Pin), (4.2)
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where fo(0) = 0.

Normally fc and fo are strictly increasing functions of Pin. The difference

Pdc − Pout is the power converted into heat, which is also a function of Pin.

Define

Ph = Pdc − Pout = fc(Pin) − fo(Pin). (4.3)

The set of allowed input power is

P = {P : 0 ≤ P ≤ Pmax} , (4.4)

where Pmax is the maximum allowed input power that the power amplifier can

sustain.

For example, we may have a simplified amplifier, whose characteristics is shown

in Figure 4.2. Usually Ph varies with respect to the input power, while in the

simplified amplifier, this difference is a constant. For this simplified amplifier

model, we have

fo (Pin) =

⎧⎪⎨
⎪⎩

s1Pin, if 0 ≤ Pin ≤ 1.5 mW;

c1, if 1.5 mW < Pin ≤ Pmax;

(4.5)

where s1 = 60 and c1 = 75 mW.

fc(Pin) = fo(Pin) + 35 mW. (4.6)

Since there is no reason to let input power be larger than 1.5 mW, we will

assume that Pmax = 1.5 mW.

• Let the distance between node i and node i + 1 be θide, where θi > 0 for

i = 1, · · · , k and
∑k

i=1 θi = 1. In particular, when nodes are evenly distributed

on a straight line, θi = 1
k

and the distance between adjacent nodes is

da =
de

k
. (4.7)



85

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

Input Power (mW)

O
ut

pu
t/C

on
su

m
ed

 P
ow

er
 (

m
W

)

Consumed Power
Output Power

Figure 4.2: Simplified power amplifier model for the class AB amplifier in Figure 2.3.
A constant power Ph = 35 mW is turned into heat when the amplifier is
in operation.

In this case, we require that all nodes use the same input power.

• We assume that the average received signal power and transmitted signal power

are related by a function which depends on the distance d between the trans-

mitter and the receiver, namely,

Pr = β(d)Pt, (4.8)

where β(d) is the large-scale propagation loss depending on d. We assume

that β is a continuous and strictly decreasing function of d. Without loss of

generality, we require that d ≥ 1 m in order for the receiver to be in the far

zone of the transmitter.

For example, a commonly used propagation model is

β(d) =
b

dq
. (4.9)
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where q is usually between 2 and 4 and b is a constant. For the propagation

model given in (2.30), where the received power and output power of the power

amplifier is related by

Pr = 4Pt

(
λc

4πd

)2

GtGrηtηr sin2

(
2πhthr

λcd

)
≈ PtηtηrGtGr

h2
th

2
r

d4
, (4.10)

we have q = 4 and

b = ηtηrGtGrh
2
th

2
r. (4.11)

• Each symbol is modulated using BPSK. Each transmitted symbol has a du-

ration of Ts. Node 1 sends packets of length N to node k + 1. Therefore

Nfc(Pin)Ts is the consumed energy for a node to send a packet.

• There is no interference between the transmission of different users. This may

be achieved via multiple access control protocols, such as TDMA, etc. Thus

all transmissions are independent of each other.

• The packet success probability depends on received symbol signal-to-noise ratio

γ =
Es

N0

, (4.12)

where

Es = PrTs (4.13)

is the received energy for a channel symbol.

• Each node, when receiving a packet, consumes Ep amount of energy to process

a received channel symbol. This amount of energy is usually consumed by the

demodulator and decoder as shown in Chapter II. In practice, different Ep for

the same received signal-to-noise ratio may result in different packet error rate.

It is also a fact that different coding and modulation techniques have different
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Ep for the same packet error rate. In our analysis, we assume that Ep is a

constant.

• Let each transmitter employ a coding technique with K information bits and

N coded bits. The code rate R = K/N . We will assume that each packet has

the same K, but the transmitter is allowed to choose R.

• Let P1,s(R, γ) be the probability of success for a packet when the symbol signal-

to-noise ratio at the receiver is γ. The packet success probability for k-hops is

given by Pk,s(R, γ) = [P1,s(R, γ)]
k.

• We assume that a packet is considered lost if any one of the nodes except node 1

does not receive the packet correctly. So there is no automatic repeat request

(ARQ) mechanism in the network.

4.3 Performance Analysis

We first assume that k+1 nodes are evenly placed on a straight line with adjacent

nodes separated by da. Assume that node 1 has packets that are intended to be

delivered to node k + 1. Let K(de) be the set of allowed number of hops for a given

end-to-end distance de in order for adjacent nodes to stay in the far zone of each

other, i.e.,

K(de) =

{
k ∈ N :

de

k
> 1 m

}
. (4.14)

Based on the propagation model in (4.8) and the amplifier model in (4.2), we have

that the received power at a node is related to the input power at its upstream node

by the following relation,

Pr = β(da)fo(Pin). (4.15)
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We assume that all end-to-end transmissions are independent and identically dis-

tributed, which allows us to define a performance measure for a linear network from

the performance of the transmission of one packet. A node needs energy Nfc(Pin)Ts

to send a packet to its downstream neighbor. A packet is received by a node at

the expense of processing energy NEp. Node 1 only consumes energy Nfc(Pin)Ts

without using any processing energy, while node k + 1 only consumes energy NEp

for processing a packet without using any transmitting energy. For a single packet

that is sent from node 1 to node k + 1, the total amount of energy for transmitting

and processing this packet is kN [fc(Pin)Ts + Ep]. We assume that if a packet is not

successfully received, every information bit in the packet is lost.

The energy efficiency is defined by

Eeff =
KPk,s

(
R, Es

N0

)
kN [fc(Pin)Ts + Ep]

=
R

k [fc(Pin)Ts + Ep]

[
P1,s

(
R,

β(da)fo(Pin)Ts

N0

)]k

. (4.16)

and the bandwidth efficiency is defined by

Beff =
K

N
= R (bits)/(channel use). (4.17)

In general, it is possible to achieve higher energy efficiency by trading off bandwidth

efficiency. However, bandwidth efficiency is not of negligible interest in wireless com-

munications. Since all communication nodes share a common media, high bandwidth

efficiency yields high throughput for nodes in a wireless network. One traditional

approach is to optimize energy efficiency with the constraint that R ≥ R0. Define

B(R) =

⎧⎪⎨
⎪⎩

1, R ≥ R0;

0, otherwise.

Then the constraint problem is equivalent to finding the largest B(R) × Eeff .
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By introducing a bandwidth-efficiency function B(R), we can convert a con-

strained optimum energy efficiency problem into an unconstrained problem that

considers not only energy efficiency but also bandwidth efficiency. In other words,

we attempt to optimize B(R) × Eeff rather than Eeff . In general B(R) is a mono-

tonic increasing function of R. When B(R) = R, we define transport efficiency

μ : K × P × [0, 1] × (1,∞) → R by

μ(k, Pin, R, de) = R× Eeff

=
R2

k [fc(Pin)Ts + Ep]

[
P1,s

(
R,

β(da)fo(Pin)Ts

N0

)]k

(4.18)

for the number of hops k, input power Pin, code rate R, and end-to-end distance de.

The basic system design problem is to maximize the transport efficiency over the

number of hops k, the input power Pin, and the code rate R, for a given end-to-end

distance de.

We now evaluate the performance of following different transmitter and receiver

models:

1. threshold model (capacity achieving transmitter and receiver);

2. cutoff-rate model;

3. uncoded model;

4. rate 1
2

convolutional-coded model.

The packet error rate for these models versus the received signal-to-noise ratio is

given in Figure 4.3. We see that there is a saving of 5.5 dB in received signal-to-

noise ratio for the rate 1
2

convolutional-coded model over the uncoded model when

the packet has 224 information bits and packet error rate is 10−2 and there is a saving
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Figure 4.3: Packet error probability versus signal-to-noise ratio per information bit
for the four different models, with each packet containing 224 bits or
1000 bits. The minimum signal-to-noise ratio for the channel capacity to
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, 7

8
, 15

16
, and 0.96 bit / (channel use) for the binary input antipodal

signaling (BPSK) AWGN channel is shown. The packet error rate for
the cutoff-rate model is shown for cutoff-rate 1

2
and cutoff-rate 0.97.
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of 8.5 dB in received signal-to-noise ratio for the threshold model when the channel

capacity is 1
2

over the uncoded model when the packet has 224 information bits and

packet error rate is 10−2.

4.3.1 Threshold Model

In the threshold model, the communication system employs capacity achiev-

ing transmitter and receiver. Because the output power of the power amplifier is

bounded, i.e., there is a minimum and maximum constraint on the output power, we

can not use the capacity for AWGN channel where there is only an average energy

constraint on the transmitted channel symbols. Under the assumption of binary in-

put antipodal signaling (BPSK) AWGN channel, we have that the capacity of the

channel is given by [65, 77]

C(γ) = 1 −
∫ ∞

−∞

1√
2π
e−

(x−√
2γ)2

2 log2

(
1 + e−2x

√
2γ
)
dx, (4.19)

where γ is the received signal-to-noise ratio. Note that we need to have R ≤ C(γ) in

order for the threshold receiver to be useful in practice. Define γt so that C(γt) = R,

i.e.,

γt = C−1(R). (4.20)

For the threshold model, we have

P1,s

(
R,

Es

N0

)
=

⎧⎪⎨
⎪⎩

1, if Es

N0
≥ γt;

0, otherwise.

(4.21)

Therefore in this model, the system employs capacity achieving receiver. Let P ∗
in

satisfy

β(da)fo(P
∗
in)Ts

N0

= γt. (4.22)
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Note that choosing Pin > P ∗
in does not give any further benefit in P1,s. The transport

efficiency with Pin = P ∗
in is

μ(k, P ∗
in, C(γt), de) =

[C(γt)]
2

k · [fc (P ∗
in)Ts + Ep]

. (4.23)

We require that P ∗
in ∈ P . Since fo is a continuous and strictly increasing function of

Pin, we have that P ∗
in ∈ P is equivalent to

0 ≤ γtN0

β(da)Ts

≤ fo(Pmax). (4.24)

Therefore

0 ≤ da ≤ β−1

(
γtN0

fo(Pmax)Ts

)
. (4.25)

Normally we require that da is large enough so that the receiver is in the far zone

of the transmitter. As indicated earlier, without loss of generality, we require that

da ≥ 1 m. For each γt ∈ (0,∞), define

Dγt =

{
d ∈ R : 1 ≤ d ≤ β−1

(
γtN0

fo(Pmax)Ts

)}
. (4.26)

Define an indicator function 1Dγt
: (1,∞) → R by

1Dγt
(d) =

⎧⎪⎨
⎪⎩

1, if d ∈ Dγt ;

0, otherwise.

(4.27)

Proposition 4.3.1 For a linear network with the threshold model where the source

and destination nodes are separated by de, we have

sup
k∈K(de)

de μ(k, P ∗
in, C(γt), de) ≤ A(γt), (4.28)

where A(γt) does not depend on de. Furthermore,

lim
de→∞

sup
k∈K(de)

de μ(k, P ∗
in, C(γt), de) = A(γt). (4.29)
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Proof of Proposition 4.3.1:

We derive from (4.18) that

μ(k, P ∗
in, C(γt), de) =

(
[C(γt)]

2

k (fc(P ∗
in)Ts + Ep)

)
1Dγt

(
de

k

)
(4.30)

=

(
1

de

)(
[C(γt)]

2 da

fc (P ∗
in)Ts + Ep

)
1Dγt

(da). (4.31)

Thus

de μ(k, P ∗
in, C(γt), de) =

(
[C(γt)]

2 da

fc (P ∗
in)Ts + Ep

)
1Dγt

(da). (4.32)

If we allow da to take any value in Dγt rather than the discrete values de/k, k ∈ K(de)

on the right-hand side of (4.32), it follows that the right-hand side of (4.32) is not

a function of de because P ∗
in is a function of da and γt, and Dγt is a function of γt.

Since deμ = 0 outside Dγt , we may maximize deμ on Dγt . Define

A(γt) = sup
da∈Dγt

[C(γt)]
2 da

fc (P ∗
in)Ts + Ep

. (4.33)

Then

sup
k∈K(de)

de μ(k, P ∗
in, C(γt), de) ≤ A(γt). (4.34)

Note A(γt) does not depend on de. Let

d∗a = arg sup
da∈Dγt

[C(γt)]
2 da

fc (P ∗
in)Ts + Ep

. (4.35)

Then d∗a depends on γt, but does not depend on de. For such d∗a, there exits an

integer k∗, such that

de

k∗ + 1
≤ d∗a ≤ de

k∗
. (4.36)

If de → ∞, we have that k∗ → ∞. Since

∣∣∣∣de

k∗
− d∗a

∣∣∣∣ ≤
∣∣∣∣de

k∗
− de

k∗ + 1

∣∣∣∣ ≤
∣∣∣∣ de

k∗(k∗ + 1)

∣∣∣∣ ≤ d∗a
1

k∗
→ 0 as k∗ → ∞ (4.37)
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and [C(γt)]
2da

fc(P ∗
in)Ts+Ep

is a continuous function of da on Dγt , we have that

[C(γt)]
2 de/k

∗

fc (P ∗
in)Ts + Ep

→ [C(γt)]
2 d∗a

fc (P ∗
in)Ts + Ep

as de → ∞. (4.38)

Thus

de μ(k∗, P ∗
in, C(γt), de) → de μ(d∗a, P

∗
in, C(γt), de) as de → ∞. (4.39)

Therefore

lim
de→∞

sup
k∈K(de)

de μ(k, P ∗
in, C(γt), de) = A(γt). (4.40)

Proposition 4.3.1 tells us that the transport efficiency, when optimized over the

number of hops, is inversely proportional to de when de is large. As an example, we

will calculate the transport efficiency for the specific power amplifier model fo and

fc given in (4.5) and (4.6), and the propagation model β given in (4.9), and find

optimal P ∗
in, d∗a, and γ∗t explicitly. From (4.22), we have

P ∗
in =

γtN0d
q
a

s1bTs

. (4.41)

From (4.26), we have for each γt ∈ (0,∞),

Dγt =

{
d ∈ R : 1 ≤ d ≤

(
bs1PmaxTs

γtN0

) 1
q

}
. (4.42)

From (4.32), we have

de μ(k, P ∗
in, C(γt), de) =

(
[C(γt)]

2 bda

γtN0d
q
a + b (PhTs + Ep)

)
1Dγt

(da). (4.43)

Define g : Dγt → R by

g(da) =

(
[C(γt)]

2 bda

γtN0d
q
a + b (PhTs + Ep)

)
. (4.44)
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For each da ∈ Dγt , we can take the derivative of g with respect to da,

∂g

∂da

=
(
[C(γt)]

2 b
)(b(PhTs + Ep) − (q − 1)γtN0d

q
a

(γtN0d
q
a + b(PhTs + Ep))

2

)
, (4.45)

and set it to zero to find optimal d∗a,

d∗a =

(
b(PhTs + Ep)

(q − 1)γtN0

) 1
q

. (4.46)

If d∗a ∈ Dγt , we have that d∗a is feasible. Note that d∗a in (4.46) does not depend on

de. Substituting d∗a into (4.43), we have

g(d∗a) = [C(γt)]
2

(
(q − 1)(q−1)bTs

qqγtN0(PhTs + Ep)(q−1)

) 1
q

. (4.47)

It follows from (4.33) that

A(γt) = [C(γt)]
2

(
(q − 1)(q−1)bTs

qqγtN0(PhTs + Ep)(q−1)

) 1
q

. (4.48)

We can now optimize A(γt) over the threshold γt to find the optimal γ∗t and the

optimal code rate R∗ = C(γ∗t ). Their values are given in Table 4.1 for different q

when Ts = 20 μs, N0 = 3.9991 × 10−21 W/Hz, Ep = 250 μJ, Ph = 35 mW, and

b = 4.97 × 10−2 m4. It is very interesting to note that if Ph = 0 and Ep = 0,

Table 4.1: Optimal Code Rate.
q γ∗t (channel bit) (Eb/N0)

∗ per info. bit (dB) R∗ (bit/(channel use))
2 1.82 3.09 0.89
3 2.33 3.94 0.94
4 2.69 4.48 0.96

we would have d∗a = 0, which means that we should place as many relay nodes as

possible. Therefore in practice we need to consider the amplifier characteristics and

receiver processing energy explicitly in the design of wireless networks.

Our next proposition shows that for a linear network with threshold model and for

a given number of hops k, evenly placing relay nodes between source and destination
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nodes yields higher transport efficiency than unevenly placing relay nodes under

certain conditions.

Proposition 4.3.2 If k−1 relay nodes are allowed to place on a straight line between

source and destination nodes, where all nodes have the same threshold γt, and if

fc

(
f−1

o

(
a

β(x)

))
is a convex cup function of x for any a > 0, evenly placing relay

nodes between source and destination nodes yields higher transport efficiency than

unevenly placing relay nodes.

Proof of Proposition 4.3.2:

Suppose we place k − 1 relay nodes in such a way that each hop has length θide,

where i = 1, 2, · · · , k, 0 ≤ θi ≤ 1,
∑k

i=1 θi = 1. For the threshold model where each

node has the same threshold γt, the input power P
(i)
in

∗
at node i satisfies

β(θide)fo

(
P

(i)
in

∗)
Ts

N0

= γt. (4.49)

Then

P
(i)
in

∗
= f−1

o

(
γtN0

β(θide)Ts

)
. (4.50)

The packet success probability from node 1 to node k + 1 is

Pk,s =
k∏

i=1

P1,s

⎛
⎝R, β(θide)fo

(
P

(i)
in

∗)
Ts

N0

⎞
⎠ . (4.51)

The total consumed energy for a packet transmitted by node 1 to reach node k + 1

is
∑k

i=1N
(
fc

(
P

(i)
in

∗)
Ts + Ep

)
. The transport efficiency is

μuneven(θ1, · · · , θk, γt, de) =
[C(γt)]

2∑k
i=1

(
fc

(
P

(i)
in

)
Ts + Ep

) k∏
i=1

1Dγt
(θide).

=
[C(γt)]

2∑k
i=1

(
fc

(
f−1

o

(
γtN0

β(θide)Ts

))
Ts + Ep

) k∏
i=1

1Dγt
(θide).

(4.52)
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Define ft : (1,∞) × (0,∞) → R by

ft(x, y) = fc

(
f−1

o

(
yN0

β(x)Ts

))
. (4.53)

Then according to our assumption, we know that ft is a convex cup function of x.

From (4.52), we have

μuneven(θ1, · · · , θk, γt, de) =
[C(γt)]

2∑k
i=1 (ft (θide, γt)Ts + Ep)

k∏
i=1

1Dγt
(θide). (4.54)

Form (4.30), we have for θi = 1
k

μ(k, Pin, γt, de) =
[C(γt)]

2

k (ft (da, γt)Ts + Ep)
1Dγt

(da). (4.55)

Comparing (4.54) with (4.55), we notice that we only need to find out the minimum

of
∑k

i=1 ft(θide, γt) in order to see which strategy gives better transport efficiency.

We use Lagrange multiplier method to covert the following constraint optimization

problem

inf

(
k∑

i=1

ft (θide, γt)

)
subject to

∑
i

θi = 1 (4.56)

to the unconditional optimization problem

inf

(
k∑

i=1

ft(θide, γt) − λ

(∑
i

θi − 1

))
, (4.57)

where λ ∈ R. Since ft is a convex cup function of x, it follows that the optimal

θ∗i = 1
k

for i = 1, · · · , k. Therefore for each k, evenly placing relay nodes yields higher

transport efficiency than unevenly placing relay nodes.

As an example, for the amplifier model given in (4.5) and (4.6), and the propa-

gation model given in (4.9), we have

ft(x, y) =
yN0

bTs

xq + 35, (4.58)
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which is a convex cup function of x if q > 1. Therefore under these conditions,

evenly placing relay nodes yields higher transport efficiency than unevenly placing

relay nodes.

4.3.2 Cutoff-Rate Model

The cutoff rate is obtained via the calculation of the codeword error probability

of an ensemble of codes. The codeword probability is given by

Pe = 2−N(R0−R), (4.59)

where N is the block length of a codeword, R = K/N is the code rate, and R0 is the

cutoff rate. For the binary input antipodal signaling AWGN channel, the cutoff

rate is given by

R0 = 1 − log2

(
1 + e−Es/N0

)
, (4.60)

where Es is the received energy per channel symbol and is given by

Es = PrTs = β(da)fo(Pin)Ts. (4.61)

We say that a communication system achieves cutoff rate if the codeword error rate

between a transmitter and a receiver is given by (4.59).

The packet success probability is

P1,s

(
R,

Es

N0

)
= 1 − Pe (4.62)

= 1 − 2−N(R0−R)

= 1 − 2−K(R0
R

−1).

Substituting (4.62) into (4.18), we have

μ(k, Pin, R, de) =

(
R2

k(fc(Pin)Ts + Ep)

)(
1 − 2−K(R0

R
−1)
)k

. (4.63)
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From (4.60) and (4.61), we know R0 is a function of da and Pin. For each fixed

k, we can find supPin∈P supR∈[0,1] μ. We can also find the optimized transport effi-

ciency supk∈K(de) supPin∈P supR∈[0,1] μ. The optimization is not easily done analyti-

cally. Therefore we resort to numerical methods.

4.3.3 Uncoded Model

If each node does not perform any coding to the information blocks, we have the

code rate R = 1. The packet success probability is

P1,s

(
1,
Es

N0

)
=

⎛
⎝1 −Q

⎛
⎝
√

2β(da)fo(Pin)Ts

N0

⎞
⎠
⎞
⎠

N

, (4.64)

where

Q(x) =

∫ ∞

x

1√
2π
e−

t2

2 dt. (4.65)

The packet error probability 1 − P1,s

(
1, Es

N0

)
for the uncoded model is shown in

Figure 4.3. Substituting R and (4.64) into (4.18), we have

μ(k, Pin, 1, de) =

(
1

k(fc(Pin)Ts + Ep)

)⎡⎣
⎛
⎝1 −Q

⎛
⎝
√

2β(de/k)fo(Pin)Ts

N0

⎞
⎠
⎞
⎠

N⎤
⎦

k

.

(4.66)

For each fixed k, we can find supPin∈P μ. We can also find the optimized transport

efficiency supk∈K(de) supPin∈P μ. The optimization is not easily done analytically.

Therefore we resort to numerical methods.

4.3.4 Convolutional-Coded Model

For the convolutional-coded model, the transmitter uses a standard rate 1/2 con-

straint length 7 convolutional code and the receiver uses Viterbi decoding. The

packet success probability between adjacent nodes is P1,s

(
R, Es

N0

)
. The packet error

probability 1−P1,s

(
1, Es

N0

)
for the convolutional-coded model is shown in Figure 4.3.
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Due to the finite trellis length, we have two code rates based on the lengths of infor-

mation sequences for this rate 1
2

convolutional code. If the length of the information

sequence is 224 bits, we have

R =
224

2(224 + 6)
=

224

460
. (4.67)

If the length of the information sequence is 1000 bits, we have

R =
1000

2(1000 + 6)
=

1000

2012
. (4.68)

Substituting R and the packet success probability into (4.18), we have

μ(k, Pin, R, de) =

(
R2

k(fc(Pin)Ts + Ep)

)[
P1,s

(
R,

β(de/k)fo(Pin)Ts

N0

)]k

. (4.69)

For each fixed k, we can find supPin∈P μ. We can also find the optimized transport

efficiency supk∈K(de) supPin∈P μ. The optimization is not easily done analytically.

Therefore we resort to numerical methods.

4.4 Numerical Results

In this section, we give numerical results of the transport efficiency for the trans-

mitter and receiver models described before. We assume the following values for our

numerical evaluation.

transmission rate 1
Ts

= 50 × 103 b/s,

white noise N0 = 3.9991 × 10−21 W/Hz,

packet length K = 224 or 1000 bits,

processing energy Ep = 0.000250 J,

power into heat Ph = 35 mW,

maximum transmit power Pmax = 1.5 mW,

The propagation model is β(d) = b
d4 , where

b = 4.97 × 10−2 m4. (4.70)
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4.4.1 Transport Efficiency for Packet Size 224 Bits

For the threshold model, we have the optimal d∗a = 1171 m. We see that the

optimal number of hops varies linearly with the end-to-end distance de when de

is large. When the end-to-end distance is between 1 m and 1600 m, the optimal

number of hops is 1. This means that single-hop transmission is better than multi-

hop transmission when the source and destination are close to each other. For each

k, we can optimize transport efficiency over Pin and R. The optimized transport

efficiency for each fixed k and optimal k (where k is allowed to be a non-integer

greater than or equal to 1) for different models is shown in Figures 4.4 to 4.7. The

optimal number of hops for different models is given in Figures 4.8 to 4.11. The

optimal packet error probability is shown in Figures 4.12 to 4.14.
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Figure 4.4: Optimized transport efficiency for each fixed k and optimized transport
efficiency for optimal k for threshold model.
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Figure 4.5: Optimized transport efficiency for each fixed k and optimized transport
efficiency for optimal k for cutoff-rate model. The length of information
sequence is 224 bits.
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Figure 4.6: Optimized transport efficiency for each fixed k and optimized transport
efficiency for optimal k for uncoded model. The length of information
sequence is 224 bits.
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Figure 4.7: Optimized transport efficiency for each fixed k and optimized transport
efficiency for optimal k for convolutional-coded model. The length of
information sequence is 224 bits.
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Figure 4.8: Optimal number of hops for threshold model.
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Figure 4.9: Optimal number of hops for cutoff-rate model. The length of information
sequence is 224 bits.
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Figure 4.10: Optimal number of hops for uncoded model. The length of information
sequence is 224 bits.
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Figure 4.11: Optimal number of hops for convolutional-coded model. The length of
information sequence is 224 bits.
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Figure 4.12: Optimal packet error probability for cutoff-rate model. The length of
information sequence is 224 bits.
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Figure 4.13: Optimal packet error probability for uncoded model. The length of
information sequence is 224 bits.
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Figure 4.14: Optimal packet error probability for convolutional-coded model. The
length of information sequence is 224 bits.
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4.4.2 Transport Efficiency for Packet Size 1000 Bits

We now change the length of information sequence from 224 bits to 1000 bits

and re-evaluate the transport efficiency for the cutoff-rate model, uncoded model,

and convolutional-coded model. The transport efficiency for the threshold model

does not depend on the length of information sequence. Therefore the transport

efficiency for the threshold model with 1000-bit long information sequence is the

same as that for the threshold model with 224-bit long information sequence. The

optimized transport efficiency for each fixed k and optimal k (where k is allowed to

be a non-integer greater than or equal to 1) for the cutoff-rate model, uncoded model,

and convolutional-coded model is given in Figures 4.15 to 4.17. The optimal number

of hops is shown in Figures 4.18 to 4.20. The optimal packet error probability is

shown in Figures 4.21 to 4.23.
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Figure 4.15: Optimized transport efficiency for each fixed k and optimized transport
efficiency for optimal k for cutoff-rate model. The length of information
sequence is 1000 bits.
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Figure 4.16: Optimized transport efficiency for each fixed k and optimized transport
efficiency for optimal k for uncoded model. The length of information
sequence is 1000 bits.
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Figure 4.17: Optimized transport efficiency for each fixed k and optimized transport
efficiency for optimal k for convolutional-coded model. The length of
information sequence is 1000 bits.
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Figure 4.18: Optimal number of hops for cutoff-rate model. The length of informa-
tion sequence is 1000 bits.
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Figure 4.19: Optimal number of hops for uncoded model. The length of information
sequence is 1000 bits.
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Figure 4.20: Optimal number of hops for convolutional-coded model. The length of
information sequence is 1000 bits.
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Figure 4.21: Optimal packet error probability for cutoff-rate model. The length of
information sequence is 1000 bits.
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Figure 4.22: Optimal packet error probability for uncoded model. The length of
information sequence is 1000 bits.
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Figure 4.23: Optimal packet error probability for convolutional-coded model. The
length of information sequence is 1000 bits.
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4.4.3 Comparison of All Models

We now show the optimal transport efficiency for the threshold model, cutoff-

rate model, uncoded model, and convolutional-coded model on the same graph in

Figure 4.24. We observe that the length of information sequence plays a negligible

role in the transport efficiency.
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Figure 4.24: Optimal transport efficiency in log-log scale for the threshold model,
cutoff-rate model, uncoded model, and convolutional-coded model.

4.4.4 Observation

For a linear network model given in Figure 4.1, where the source and the destina-

tion are at both ends, and when relay nodes are placed evenly on a straight line, we

observe from our numerical results that supk∈K(de) supPin∈P supR∈[0,1] μ(k, Pin, R, de)

for the cutoff-rate model, supk∈K(de) supPin∈P μ(k, Pin, 1, de) for the uncoded model,

and supk∈K(de) supPin∈P μ(k, Pin, R, de) for the convolutional-coded model, are ap-

proximately inversely proportional to the end-to-end distance de when de is large,
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Figure 4.25: Optimal number of hops for the threshold model, cutoff-rate model,
uncoded model, and convolutional-coded model.

i.e.,

sup
k∈K(de)

sup
Pin∈P

sup
R∈[0,1]

μ(k, Pin, R, de) ≈
A

de

, (4.71)

where A does not depend on de. The supremum over R in (4.71) is not needed for

the uncoded model and convolutional-coded model.

4.4.5 Discussion

The reason that the linear network with the uncoded model has better trans-

port efficiency than with the convolutional-coded model is that the optimal adja-

cent distance is small enough to make high code rate a better choice, but for the

convolutional-coded model, the rate is only about 1
2
. We also assumed that the

processing energy of an received channel symbol is the same for the uncoded model

and convolutional-coded model. Normally the processing energy for the uncoded

model is less than that for the convolutional-coded model. This makes the transport
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efficiency for the uncoded model given in the above figures a lower bound for the

actual transport efficiency for the uncoded model. As we can see in Figure 4.25, in

order to achieve high transport efficiency, the uncoded model requires more nodes

to relay packets, which may result in higher density requirement for the deploy-

ment of a network. This is a drawback to the uncoded model compared with the

convolutional-coded model.

4.5 Conclusion and Future Research

We introduced the transport efficiency as a network performance measure that

captures both bandwidth efficiency and energy efficiency. Our numerical results

showed that the transport efficiency is not very sensitive to packet size. We saw

that even though rate 1
2

convolutional coding saves about 5.5 dB in energy compared

with no coding, it does not give high transport efficiency due to its low code rate.

Therefore, in order to optimize a communication network based on transport effi-

ciency, we should consider both code rate and energy saving. We proved that the

optimal transport efficiency is inversely proportional to de for the threshold model

and observed from our numerical results that the optimal transport efficiency is ap-

proximately inversely proportional to de for the cutoff-rate model, uncoded model

and convolutional-coded model when de is large.

For future research, we may consider turbo codes and other coding techniques.

We may also consider fading channels, such as log-normal and Rayleigh fading chan-

nels. We may then investigate the transport efficiency under these assumptions and

compare it with the results we obtained in this chapter.



CHAPTER V

TRANSPORT EFFICIENCY OF LINEAR

NETWORKS WITH SPACE-TIME CODING

AND ORDINARY END-FIRE ANTENNA

ARRAYS

5.1 Introduction

With the fast development of wireless devices and networks, higher and higher

information rates are desired. The IEEE 802.11b standards specify an information

rate up to 11 Mb/s, while the newly developed IEEE 802.11g standards specify an

information rate up to 54 Mb/s. In order to achieve even higher information rates,

spectrally efficient wireless coding and modulation technologies are desired. It’s very

likely that some form of multiple-input and multiple-output (MIMO) technology will

form the basis for future IEEE 802.11n standards. Multiple transmitting and receiv-

ing antennae as well as orthogonal frequency division multiplexing (OFDM) are two

techniques that are being considered for high-throughput wireless networks. MIMO

communication systems have attracted considerable interest due to its potential for

high capacity. The combination of error control coding with multiple antennae, such

as space-time coding, allows large data rates to be achieved. The use of an an-

tenna array is another approach to achieving high data rates. An antenna array uses

115
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multiple radiating elements to increase the intensity of an electric field in a given

direction. In this chapter, we study how space-time coding and an antenna array

affect the transport efficiency of linear wireless networks.

Much of the study on the throughput of wireless networks focuses on the per-

formance of particular protocols. In [76] the effect of space-time block codes on the

performance of 802.11a wireless local area network was studied via simulation. It

was shown that the gain of utilizing space-time block codes at the physical layer gives

rise to significant improvement in network layer performance of 801.11a wireless local

area networks.

The transport capacity of a network was defined in [31, 32] to measure the per-

formance of a wireless network. The transport capacity has a unit bit·m/s and it

measures the average capability of a network to communicate bits from sources to

destinations. In [31, 32] the transport capacity was given for a network where n

nodes are arbitrarily located on a disk of unit area under two communication mod-

els, namely, the protocol model and the physical model, defined by the authors.

However, the authors did not consider the bandwidth efficiency and energy efficiency

explicitly.

Since in general the performance and energy tradeoff is a very complicated func-

tion of network topology and the traffic pattern, we will constrain ourselves to find

performance limits for a simple linear network topology, where nodes lie on a straight

line. We further assume that there is only unicast traffic between two end nodes on

the linear networks. Normally when several transmissions happen at the same time,

they cause interference to each other. We are going to investigate the effect of inter-

ference on the transport efficiency introduced in Chapter IV, when either space-time

coding or an antenna array is used at each node. Space-time coding, even though
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having high capacity, may incur large interference to nearby nodes. On the other

hand, an antenna array, not possessing as high a capacity as space-time coding,

causes less interference to neighboring nodes due to its properly designed amplitude

pattern. We will show that space-time coding and an antenna array each yield a

better transport efficiency under different circumstances.

The remainder of this chapter is organized as follows. In Section 5.2 we explain

how space-time coding and antenna arrays work. In Section 5.3 we introduce an

ordinary end-fire antenna array. In Section 5.4 we introduce the interfering network

model and analyze the transport efficiency of a linear network for space-time coding

and the ordinary end-fire antenna array. In Section 5.5 we present numerical results.

We conclude the discussion in Section 5.6.

5.2 Space-Time Coding and Beam-Forming

In this section, we conduct a brief survey of space-time coding and beam-forming

from both the information theoretic perspective and practical design point of view.

Consider a point-to-point single-hop communication with a frequency non-selective

slowly fading channel as given by

y = Hx + n, (5.1)

where x ∈ C
t is the transmitted vector, y ∈ C

r is the received vector, n ∈ C
r is

the additive noise at the receiving antennae, and H ∈ C
r×t is the channel matrix.

Let Q = E
[
xx†] be the correlation matrix of x. The energy constraint for x is

tr(Q) ≤ E. Note that for each given Q, when the receiver knows the realization of

H and the transmitter does not know the realization of H, the distribution of x that

maximizes the mutual information between x and y is a proper complex Gaussian

distribution with mean 0.
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The purpose of space-time coding is to design signaling x to exploit the diversity

given by H. Normally, the higher the rank(Q), the higher the diversity that can be

achieved. Even though space-time coding provides very high information capacity

by exploiting the diversity of channel matrix H, the signal processing complexity

can be very high at the transmitter and at the receiver. Therefore it is desirable

to find some alternative scheme that provides high enough capacity with much less

complexity. A transmission strategy is said to have δ-fold diversity if rank(Q) = δ.

A transmission strategy to said to be beam-forming if rank(Q) = 1. Note that the

definition of diversity (or beam-forming) itself does not depend on the number of

receiving antennae. Similar definitions can be found in [56, 57, 86, 40]. Recall that

for space-time coding, there is no restriction on rank(Q). Therefore beam-forming

is a special case of space-time coding. Consequently, beam-forming may not achieve

as high a capacity as that of space-time coding. In order for beam-forming to be

effective, the transmitter usually has to utilize some knowledge about the status of the

channel matrix H, so beam-forming generally requires some form of feedback about

the channel in order to achieve a capacity close to that for space-time coding. On

the other hand, for space-time coding, the transmitter does not need the knowledge

about the channel, even though an even higher capacity is possible if the transmitter

has some feedback about the channel.

There are two categories of feedback in general, namely, perfect feedback and

imperfect feedback. The perfect feedback is the case when the transmitter knows

exactly the realization of H, while the imperfect feedback is the case when the

transmitter has partial knowledge of the channel. Most commonly, partial knowledge

refers to some statistics of the channel. By utilizing feedback about the channel from

the receiver to the transmitter, the transmitter can apply appropriate distributions
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of x, i.e., adjust the transmitted signal on each of the transmitting antennae.

We first describe imperfect feedback. There are in general two types of imperfect

feedback, one is called mean feedback, the other is called covariance feedback. In

order to describe these two types of imperfect feedback, we need several notations.

Suppose now there is only one receiving antenna. Let the row vector H be a proper

complex Gaussian random vector with mean μ and covariance matrix K. Let K =

UKΛK (UK)†, where UK is the eigenvector matrix of K and ΛK is a diagonal matrix

containing the eigenvalues of K on the diagonal in descending order.

For the mean feedback, we have that K = α2I, and both μ and K are known to

the transmitter. The feedback information is completely contained in μ. It is shown

in [86] that in this case the distribution of x maximizing the mutual information

between x and y is that x is a proper complex Gaussian random vector with mean

0 and covariance matrix Q such that (i) Q = UQΛQ (UQ)†, where UQ is a unitary

matrix with the first column vector being μ†/‖μ†‖ and the other column vectors

being arbitrarily chosen; and (ii) ΛQ is a real diagonal matrix with the first entry on

the diagonal being λ1 and all other entries on the diagonal being (E − λ1)/(t − 1).

The exact value of λ1 for Q to be optimal has to be determined numerically. The

beam-forming scheme under mean feedback corresponds to setting λ1 = E and is

shown to be optimal when the feedback signal-to-noise ratio ‖μ‖2/α2 is greater than

a threshold.

For the covariance feedback, we have that μ = 0, and both μ and K are known to

the transmitter. The feedback information is completely contained in K. It is shown

in [86] that the distribution of x maximizing the mutual information between x and

y is that x is a proper complex Gaussian random vector with mean 0 and covariance

matrix Q such that (i) Q = UQΛQ (UQ)†, where UQ is a unitary matrix satisfying
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UQ = UK and ΛQ is a real diagonal matrix; and (ii) the diagonal entries of ΛQ are

arranged in descending order, the same order for the diagonal entries of ΛK . The

exact values of diagonal entries of ΛQ have to be determined numerically. In [40]

the authors extend the capacity result for the covariance feedback to the case when

there is more than one receiving antenna, with the assumption that all row vectors

of H are independent and identically distributed proper complex Gaussian random

vectors with mean 0 and covariance matrix K. The optimal Q when there is more

than one receiving antenna is shown to be the same as the optimal Q when there

is only one receiving antenna. The beam-forming scheme under covariance feedback

corresponds to choosing the first entry on the diagonal of ΛQ to be E and all other

entries on the diagonal of ΛQ to be 0. The necessary and sufficient conditions for

beam-forming to be optimal are also given in [40].

In general, for both mean feedback and covariance feedback, if there is a moderate

disparity between the strengths of different paths from the transmitter to the receiver,

it is nearly optimal to employ the simple beam-forming strategy of transmitting all

available power in the direction given by the eigenvector of Q which the mean or

covariance feedback indicates the strongest.

We now consider perfect feedback. Suppose there is only one receiving antenna,

i.e., r = 1, and there is perfect feedback from the receiver to the transmitter, i.e., the

transmitter knows the realization of H, it is shown in [56, 57] that beam-forming is

the optimal communication strategy and is equivalent to maximum ratio combining

at the transmitter, i.e., the vector of the transmitted energy assigned to transmitting

antennae is proportional to H†/‖H†‖.

We finally consider the case when there is no feedback from the receiver to the

transmitter. Suppose that r > 1 and all entries of H are independent and identically
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distributed proper complex Gaussian random variables with mean 0 and variance

α2. Then all row vectors of H are independent and identically distributed proper

complex Gaussian random vectors with mean 0 and covariance matrix K = α2It.

This corresponds to the case where there is no feedback from the receiver to the

transmitter. In [26, 80] the authors derived the capacity of the channel given in (5.1)

under this condition. It was shown that the optimal distribution for x that maximizes

mutual information between x and y is that x is a proper complex Gaussian random

vector with mean 0 and covariance matrix Q = E
t
It. Consequently, rank(Q) = t.

According to Theorem C.3.1, we conclude that the beam-forming scheme, which

requires rank(Q) = 1, can not be optimum under the above assumptions for H. Since

we are going to analyze network transport efficiency based on the above assumptions

for H, we will not consider beam-forming for the rest of the chapter.

Besides the above information-theoretic study of the multiple-antenna communi-

cation, the practical space-time coding schemes have also been designed and their

performance has been analyzed in literature. In [3] a simple transmission scheme,

now known as the “Alamouti code”, for two transmitting antennae and one receiving

antenna communication system using maximum likelihood detector is described. It is

shown that the “Alamouti code” provides the same the diversity order as a communi-

cation system with one transmitting antenna and two receiving antennae. In [78, 79]

the authors show that the pair-wise sequence error rate between two distinct code

sequences is determined by matrices constructed from these two distinct code se-

quences. The authors use the minimum rank and minimum determinant among the

matrices constructed from all pairs of distinct sequences to design trellis codes for

the multiple transmitting antennae and multiple receiving antennae communication

systems.
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We will use the capacity result when there is no feedback from the receiver to

the transmitter in our analysis of network transport efficiency in later sections. We

are more interested in the information-theoretic aspect of results rather the practical

design issues.

5.3 Ordinary End-Fire Antenna Array

Given t transmitting antennae, communication system designers can either place

the radiating elements with enough separation to exploit the spatial diversity and use

space-time coding or configure the radiating elements in an electrical and geometrical

way to form an antenna array to enhance directivity. The simplest and most practical

antenna array is a linear array where all radiating elements lie on a straight line.

We are interested in a linear antenna array which consists of identical radiating

elements with uniform spacing as shown in Figure 5.1. Let d be this uniform spacing.

Appropriate current excitation can be applied to the radiating elements to make each

of them have different amplitude and phase. The progressive phase is defined to be

the phase lead of a radiating element over its immediate predecessor. An array of

identical elements all of identical magnitude and each with a constant progressive

phase is referred to as a uniform array [6]. Let γ be this constant progressive phase.

We can characterize the electric field radiated by a linear uniform antenna array

through the array factor of the antenna array. The array factor is defined such that

the total electric field at a far zone can be formed by multiplying the array factor

with the electric field radiated by a single element at a reference point of the antenna

array. Let E1 be the electric field radiated by a single element at a reference point

of the antenna array (usually the origin). Then the total electric field Etotal radiated

by the antenna array, assuming no coupling between the radiating elements, can be
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Figure 5.1: Far-zone geometry for a linear antenna array, where d is the distance
between adjacent elements in the antenna array, θ is the angle between
the line connecting the reference point of the antenna array (usually the
origin) with the point of field observation and the line where radiating
elements lie.
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obtained via pattern multiplication of the array factor (AF ) with E1, i.e.,

Etotal = E1 × (AF ). (5.2)

The line connecting the reference point of the antenna array with the point of field

observation and the line where radiating elements lie form an angle θ as shown in

Figure 5.1. The array factor (AF ) of a linear uniform array when the reference point

is at the origin is given by [6]

(AF ) =
t∑

l=1

ei(l−1)( 2π
λ

d cos(θ)+γ), (5.3)

where λ is the wavelength of the electromagnetic wave. Note that (AF ) is a function

of θ, γ and d. If the reference point is chosen to be the physical center of the linear

uniform antenna array, the array factor in (5.3) reduces to

(AF ) =
sin
(

t
2

(
2π
λ
d cos(θ) + γ

))
sin
(

1
2

(
2π
λ
d cos(θ) + γ

)) . (5.4)

Many kinds of linear uniform arrays can be formed by different choices of γ and d.

The linear uniform array we are interested in is called the ordinary end-fire array.

To have only one maximum in the array factor of the end-fire array and to avoid

any grating lobes, the maximum spacing dmax between the radiating elements should

satisfy dmax < λ/2. To direct this maximum toward θ = 0, we have

(
2π

λ
d cos(θ) + γ

)∣∣∣∣
θ=0o

=
2π

λ
d+ γ = 0 ⇒ γ = −2π

λ
d. (5.5)

The array factor is then given by

(AF ) =
sin
(

t
2

2π
λ
d (cos(θ) − 1)

)
sin
(

1
2

2π
λ
d (cos(θ) − 1)

) . (5.6)

The normalized array factor is given by

(AF ) =
1

t

sin
(

t
2

2π
λ
d (cos(θ) − 1)

)
sin
(

1
2

2π
λ
d (cos(θ) − 1)

) . (5.7)
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A typical amplitude pattern
∣∣∣(AF )

∣∣∣ of the ordinary end-fire array is shown in Fig-

ure 5.2, where we show the amplitude pattern in a two dimensional space. If we

rotate the amplitude pattern given in Figure 5.2 around the z-axis, we will have the

amplitude pattern in a three dimensional space. The length of the vector from the

origin to the point on the curve in Figure 5.2 represents the amplitude of (AF ) in

that given direction.
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Figure 5.2: Amplitude pattern
∣∣∣(AF )

∣∣∣ of the ordinary end-fire antenna for t radiating

elements when d = λ
4
.
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In essence, we can treat the ordinary end-fire antenna array as a single antenna

that has an amplitude pattern given in (5.6). The benefit of utilizing transmitting

antenna array is that if the transmitter only knows the direction of the receiver, it

can form an amplitude pattern of electric field in favor of the receiver. Usually as a

bonus, it will cause less interference to other nearby receivers as well.

The array factor (AF ) given in (5.3) can be viewed as the inner product of two

vectors. The first vector

v =
[
1, ei 2π

λ
d cos(θ), · · · , ei(t−1) 2π

λ
d cos(θ)

]T
(5.8)

relates to channel and the second vector

u =
[
1, eiγ, · · · , ei(t−1)γ

]T
. (5.9)

relates to the excitation. We can write (AF ) as

(AF ) = vTu. (5.10)

From the total electric field Etotal given in (5.2), we can derive a channel model for

communication purposes. Let s be the distance between the reference point of the

antenna array and the point of field observation. Define

α(s) =
√
β(s), (5.11)

where β(·) is the propagation loss function for power given in (4.9). For a determin-

istic channel, we have a channel matrix H (now a scalar)

H = (α)(AF ) = αvTu. (5.12)

Thus if x is the input random signal to the antenna array and y is the received signal

at the point of field observation, we have that

y = Hx. (5.13)
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Recall that for the channel matrix H given in (5.1) for space-time coding, we assumed

that all entries of H are independent and identically distributed proper complex

Gaussian random variables with mean 0 and variance α2. In order to make fair

comparisons between the channel for the ordinary end-fire antenna array and the

channel for space-time coding, we assume that for the ordinary end-fire antenna array

the electric signal from each radiating element of the antenna array experiences a

common multi-path fading due to the fact that the radiating elements are close to

each other. We assume that there are enough local scatters around the point of field

observation to make the received signal Rayleigh faded. The channel matrix H for

the ordinary end-fire antenna array with Rayleigh fading is

H = (α) |(AF )| z(θ) = α
∣∣vTu

∣∣ z(θ), (5.14)

where z(θ) is a proper complex Gaussian random variable with mean 0 and variance

1. The received signal is

y = Hx. (5.15)

Note that ux is the transmitted vector out of the radiating elements of the antenna

array. Therefore we should impose the same energy constraint on ux as we have

done for the transmitted vector for space-time coding. Thus we have

E
[
(ux)†(ux)

]
≤ E, (5.16)

where E is the energy constraint on the transmitter. Therefore

E [x∗x]u†u = tE [x∗x] ≤ E. (5.17)

Equivalently,

E [x∗x] ≤ E

t
. (5.18)
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For the ordinary end-fire antenna array with maximum amplitude directed to 0o,

we have

v =
[
1, ei 2π

λ
d cos(θ), · · · , ei(t−1) 2π

λ
d cos(θ)

]T
(5.19)

and

u =
[
1, e−i 2π

λ
d, · · · , e−i 2π

λ
(t−1)d

]T
. (5.20)

Furthermore, when d = λ
4
, as is assumed in our analysis, we have

v =
[
1, eiπ/2 cos(θ), · · · , ei(t−1)π/2 cos(θ)

]T
(5.21)

and

u =
[
1, e−iπ/2, · · · , e−i(t−1)π/2

]
. (5.22)

Consequently,

H =
sin
(

tπ
4

(cos(θ) − 1)
)

sin
(

π
4

(cos(θ) − 1)
) αz(θ). (5.23)

Our analysis of network transport efficiency when each node uses the ordinary

end-fire antenna array is based on the channel matrix given in (5.23). For the same

number of radiating elements at the transmitter, we can compare the network trans-

port efficiency for space-time coding and for the ordinary end-fire antenna array and

draw conclusion about the optimal operating conditions for the two schemes.

5.4 Interfering Communication for Linear Networks

5.4.1 Interfering Linear Networks

Consider a network with topological model shown in Figure 5.3. For the scenario

considered in this chapter, each node on linear network A treats the signal it receives

from the nodes on linear network B as noise, and vice versa. The network model we

present here can be two actual linear networks in the real world or they correspond

topologically to two paths within some larger wireless network containing them. For
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. . .1 k−1 k k+1B B B BB 2θ2
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Figure 5.3: Two parallel linear wireless networks that are separated by distance db.
The upper linear network is referred to as linear network A and the lower
linear network is referred to as linear network B.

linear network A and B, we have very similar assumptions as the ones given in

Chapter IV. In addition, we have the following assumptions.

• Nodes are evenly spaced on each linear network with distance between adjacent

nodes being da. Two linear networks are separated by db.

• Each node on linear network A and B has t transmitting antennae.

• All nodes on both linear networks use the maximum input power Pmax and con-

sume the same amount of energy to transmit a channel symbol. Let the symbol

duration be Ts. Therefore the consumed energy for a transmitted symbol is

Ec = fc(Pmax)Ts. (5.24)

The amplifier output energy for a transmitted symbol is

Eo = fo(Pmax)Ts. (5.25)

• The transmitted signal from each node experiences large-scale propagation loss

and fading. The propagation loss model when the transmitter and the receiver

are separated by distance s is

Pr = β(s)Pt, (5.26)

where β(·) is the large-scale propagation loss depending on s.
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• We assume that each receiver consumes Ep amount of energy to process a re-

ceived channel symbol. In practice, the processing energy per symbol is related

to the packet error rate, but we will not consider this factor in our analysis.

We assume that Ep is a constant regardless of the coding and modulation

techniques used.

• Each node Ai on linear network A sends its information to its immediate down-

stream node Ai+1, meanwhile, each node Bi on linear network B, sends its

information to its immediate downstream node Bi+1, where i = 1, · · · , k.

• The transmission from Bi to Bi+1 causes interference at Ai+1 when Ai+1 is

receiving information from Ai. Similarly, the transmission from Ai to Ai+1

causes interference at Bi+1 when Bi+1 is receiving information from Bi.

• For each linear network, only one node on that network can transmit at a time.

Because of the symmetry of linear network A and linear network B, we will

only analyze the transport efficiency of linear network A, with the interference from

linear network B. Let y be the received signal by A2 on linear network A, x(1) be

the transmitted signal from A1 to node A2, x(2) be the transmitted signal from B1

to node B2, H(1) be the channel matrix from A1 to node A2, H(2) be the channel

matrix from B1 to node A2, and n is the additive noise at the receiver. The received

signal y is given by

y = H(1)x(1) + H(2)x(2) + n. (5.27)

For different transmission strategies, such as space-time coding and an ordinary end-

fire antenna array, we have different expressions for H(1), H(2), x(1), x(2), and n. We
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will give specific evaluation of H(1) and H(2) in the following sections. Define

α1 =
√
β (de/k); (5.28)

α2 =

√
β

(√
d2

b + (de/k)2

)
. (5.29)

Then α2
1 is the propagation loss of power from A1 to A2 and α2

2 is the propagation loss

of power from B1 to A2. We assume threshold model (capacity-achieving transmitter

and receiver) for each node in the network for the evaluation of transport efficiency.

5.4.2 Transport Efficiency for Space-Time Coding

When the spacing between the transmitting elements and the spacing between

the receiving elements are large so that the channel matrix has independent and

identically distributed entries, we utilize space-time coding for communication. As

shown in Figure 5.3, when node A1 wants to communicate with node A2, the prop-

agation loss of power for the desired signal is α2
1. Due to many local scatters at the

receiver, the channel with space-time coding can be modeled by the channel matrix

H(1,stc) = α1Z
(1), (5.30)

where Z(1) =
[
z

(1)
i,j

]
for i = 1, · · · , r and j = 1, · · · , t. Each entry z

(1)
i,j is a proper

complex Gaussian random variable with mean 0 and variance 1. All z
(1)
i,j , i = 1, · · · , r

and j = 1, · · · , t are independent. We assume that the input vector x(1,stc) to the

transmitting antennae is a proper complex Gaussian random vector with mean 0 and

covariance matrix Cx(1,stc),x(1,stc) , where

Cx(1,stc),x(1,stc) =
Eo

t
It. (5.31)

Then

tr
(
Cx(1,stc),x(1,stc)

)
= Eo. (5.32)
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When node B1 wants to communicate with B2, it causes interference to A2. The

propagation loss of power for the interference from node B1 to A2 is α2
2. Due to

local scatters at the receiver, the interference channel can be modeled by the channel

matrix

H(2,stc) = α2Z
(2), (5.33)

where Z(2) =
[
z

(2)
i,j

]
for i = 1, · · · , r and j = 1, · · · , t. Each entry z

(2)
i,j is a proper

complex Gaussian random variable with mean 0 and variance 1. All z
(2)
i,j , i = 1, · · · , r

and j = 1, · · · , t are independent. We assume that the input vector x(2,stc) to the

transmitting antennae is a proper complex Gaussian random vector with mean 0 and

covariance matrix Cx(2,stc),x(2,stc) , where

Cx(2,stc),x(2,stc) =
Eo

t
It. (5.34)

Then

tr
(
Cx(2,stc),x(2,stc)

)
= Eo. (5.35)

Define

v(stc) = H(2,stc)x(2,stc). (5.36)

Then we have

E
[
v(stc)

]
= E

[
H(2,stc)x(2,stc)

]
= E

[
H(2,stc)

]
E
[
x(2,stc)

]
= 0 (5.37)

and the covariance matrix

Cv(stc),v(stc) = E

[(
v(stc) − E

[
v(stc)

]) (
v(stc) − E

[
v(stc)

])†]
= E

[
v(stc)

(
v(stc)

)†]
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= E

[
H(2,stc)x(2,stc)

(
x(2,stc)

)† (
H(2,stc)

)†]
= E

[
E

[
H(2,stc)x(2,stc)

(
x(2,stc)

)† (
H(2,stc)

)† | H(2,stc)
]]

= E

[
H(2,stc)

E

[
x(2,stc)

(
x(2,stc)

)† | H(2,stc)
] (

H(2,stc)
)†]

(5.38)

= E

[
H(2,stc)

E

[
x(2,stc)

(
x(2,stc)

)†] (
H(2,stc)

)†]
(5.39)

= E

[
H(2,stc)Eo

t
It
(
H(2,stc)

)†]

=
Eo

t
E

[
H(2,stc)

(
H(2,stc)

)†]
=

Eo

t
E

[
α2

2Z
(2)
(
Z(2)

)†]
=

α2
2Eo

t
E

[
Z(2)

(
Z(2)

)†]
=

α2
2Eo

t
tIr

= α2
2EoIr, (5.40)

where from (5.38) to (5.39), we used the fact that H(2,stc) and x(2,stc) are independent.

Define

γ(stc) =
√
α2

2Eo

=

√
β

(√
d2

b + (de/k)2

)
Eo. (5.41)

Then the mean of v(stc) is

E
[
v(stc)

]
= 0 (5.42)

and the covariance matrix of v(stc) is

Cv(stc),v(stc) =
(
γ(stc)

)2
Ir. (5.43)

The channel model can now be modeled as

y(stc) = H(stc)x(stc) + v(stc) + n(stc), (5.44)

where H(stc) = H(1,stc), x(stc) = x(1,stc) and n(stc) is a proper complex Gaussian vector

with mean 0 and covariance matrix σ2Ir. The computation of exact joint probability
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density function for v(stc) involves finding the probability density function of the inner

product of two proper complex Gaussian random vectors and is difficult to compute.

From the information theoretic point of view, the worst case of channel (5.44) is

when v(stc) is a proper complex Gaussian random vector. We assume the worst case

for the rest of the analysis. Define

w(stc) = v(stc) + n(stc) (5.45)

and let (
ζ(stc)

)2
=
(
γ(stc)

)2
+ σ2. (5.46)

Then according to Lemma B.2.2, we know that w(stc) is a proper complex Gaussian

random vector with

E
[
w(stc)

]
= 0. (5.47)

and covariance matrix

Cw(stc),w(stc) =
(
ζ(stc)

)2
Ir. (5.48)

Thus the channel model for space-time coding can be rewritten as

y(stc) = H(stc)x(stc) + w(stc) (5.49)

We can now apply the capacity result in (C.20) to obtain the capacity of channel

given in (5.49) to get

C(stc) (de/k, db) =

∫ ∞

0

log2

(
1 +

s (α1)
2Eo

(ζ(stc))
2
t

)
Nmin−1∑

j=0

j!

(j +Nmax −Nmin)!
·

(
LNmax−Nmin

j (s)
)2
sNmax−Nmine−sds bits/(channel use).(5.50)

Since we use the capacity achieving transmitter and receiver, the transport efficiency

of linear network A when space-time coding is used is given by

μ(stc)
(
k, Pmax, C

(stc) (de/k, db) , de

)
=

(
1

de

)(
C(stc)(de/k, db)

)2( de/k

Ec + Ep

)
. (5.51)
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As we did in Chapter IV, we can replace de/k by da. Let

g(stc)(da, db) = da

(
C(stc)(da, db)

)2
. (5.52)

Then

μ(stc)
(
k, Pmax, C

(stc) (de/k, db) , de

)
=
g(stc)(da, db)

de(Ec + Ep)
. (5.53)

We will use g(stc) as a performance measure and compare it with the performance of

other transmission schemes. Note that the unit of g(stc) is bit2· m/(channel use). For

each db, we optimize g(stc) over da.

5.4.3 Transport Efficiency for the Ordinary End-Fire Antenna Array

In Section 5.3, we saw how the ordinary end-fire antenna array works when we

have a deterministic channel. We also derived fading channel when the radiating

elements are placed close together and there are many local scatters around each of

the receiving antennae. From (5.14), we have a channel matrix

H = α |(AF )| z(θ), (5.54)

where z(θ) is a proper complex Gaussian random variable with mean 0 and variance

1. For the ordinary end-fire antenna array, the channel model given in (5.27) can be

specified. In particular, we have

H(1,aa) = α1 |(AF )|θ=0o| z(θ)|θ=0o = α1tz1 (5.55)

and

H(2,aa) = α2

∣∣(AF )|θ=θ2

∣∣ z2(θ)|θ=θ2
= α2

∣∣(AF )|θ=θ2

∣∣ z2, (5.56)

where z1 and z2 are independent proper complex Gaussian random variables with

mean 0 and variance 1. From Figure 5.3, we see that

cos (θ2) =
de/k√

d2
b + (de/k)2

, (5.57)
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where 0 ≤ θ2 ≤ π/2. We also assume that all the receiving elements are placed close

to each other and they receive identical signals. The j-th receiving antenna receives

signal

yj = H(1,aa)x(1,aa) + H(2,aa)x(2,aa) + nj

= α1tz1x
(1,aa) + α2

∣∣(AF )|θ=θ2

∣∣ z2x
(2,aa) + nj for j = 1, · · · , r, (5.58)

where x(1,aa) is the input random variable to the ordinary end-fire antenna array

at A1, x(2,aa) is the input random variable to the ordinary end-fire antenna array

at A2, and nj, being a proper complex Gaussian random variable with mean 0 and

variance σ2, is the additive noise at the j-th receiving antenna. We assume equal

gain combining at the receiver. Let y(aa) be the received signal after combining.

Then

y(aa) =
r∑

j=1

yj

= rH(1,aa)x(1,aa) + rH(2,aa)x(2,aa) +
r∑

j=1

nj

= α1rtz1x
(1,aa) + α2r

∣∣(AF )|θ=θ2

∣∣ z2x
(2,aa) +

r∑
j=1

nj. (5.59)

Define

v(aa) = α2r
∣∣(AF )|θ=θ2

∣∣ z2x
(2,aa). (5.60)

Then

E
[
v(aa)

]
= E

[
α2r

∣∣(AF )|θ=θ2

∣∣ z2x
(2,aa)

]
= rα2

∣∣(AF )|θ=θ2

∣∣E [z2] E
[
x(2,aa)

]
= 0 (5.61)

and the covariance

Cv(aa),v(aa) = E

[(
v(aa) − E

[
v(aa)

]) (
v(aa) − E

[
v(aa)

])∗]
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= E

[
v(aa)

(
v(aa)

)∗]
= E

[
α2

2r
2
∣∣(AF )|θ=θ2

∣∣2 |z2|2
∣∣x(2,aa)

∣∣2]
= α2

2r
2
∣∣(AF )|θ=θ2

∣∣2 E
[
|z2|2

]
E

[∣∣x(2,aa)
∣∣2]

= α2
2r

2
(
(AF )|θ=θ2

)2 Eo

t
. (5.62)

Define

γ(aa) =

√
α2

2r
2
(
(AF )|θ=θ2

)2
Eo

t

=

√√√√β
(√

d2
b + (de/k)2

)
r2
(
(AF )|θ=θ2

)2
Eo

t
. (5.63)

Then the mean of v(aa) is

E
[
v(aa)

]
= 0 (5.64)

and the covariance of v(aa) is

Cv(aa),v(aa) =
(
γ(aa)

)2
. (5.65)

The computation of exact joint probability density function for v(aa) involves finding

the probability density function of the product of two proper complex Gaussian

random variables and is difficult to compute. From the information theoretic point

of view, the worst case of channel (5.59) is when v(aa) is a proper complex Gaussian

random variable. We assume the worst case for the rest of the analysis. Define

n(aa) =
r∑

j=1

nj. (5.66)

Then

E
[
n(aa)

]
= E

[
r∑

j=1

nj

]

=
r∑

j=1

E [nj]

= 0 (5.67)
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and

Cn(aa),n(aa) = E

[(
r∑

j=1

nj

)(
r∑

j=1

nj

)∗]

=
r∑

j=1

E
[
njn

∗
j

]
= rσ2. (5.68)

Define

α = α1rt. (5.69)

Thus the channel model for the ordinary end-fire antenna array can be written as

y = H(aa)x(aa) + v(aa) + n(aa) (5.70)

where

H(aa) = αz1 (5.71)

and x(aa) = x(1,aa). The transmitted energy from the desired transmitting antennae

is Eo. Therefore

E

[
x(aa)

(
x(aa)

)∗]
=
Eo

t
. (5.72)

Define

w(aa) = v(aa) + n(aa) (5.73)

and let (
ζ(aa)

)2
=
(
γ(aa)

)2
+ σ2. (5.74)

Then according to Lemma B.2.2, we know that w(aa) is a proper complex Gaussian

variable with mean 0 and variance
(
ζ(aa)

)2
. Therefore we can write the interference

channel model for the ordinary end-fire antenna array as

y(aa) = H(aa)x(aa) + w(aa). (5.75)
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We can now apply the capacity result in Theorem C.3.1 and get the capacity of the

channel given in (5.75)

C(aa) (de/k, db) =

∫ ∞

0

log2

(
1 + sα2Eo/

(
ζ(aa)

)2)
e−s ds bits/(channel use).

(5.76)

The transport efficiency for the antenna array is given by

μ(aa)
(
k, Pmax, , C

(aa) (de/k, db) , de

)
=

(
1

de

)(
C(aa)(de/k, db)

)2 de/k

Ec + Ep

. (5.77)

As we did in Chapter IV, we can replace d/k by da. Let

g(aa)(da, db) = da

(
C(aa)(da, db)

)2
. (5.78)

Then

μ(aa)
(
k, Pmax, , C

(aa) (de/k, db) , de

)
=
g(aa)(da, db)

de(Ec + Ep)
. (5.79)

We will use g(aa) as a performance measure and compare it with the performance of

other transmission schemes. Note that the unit of g(aa) is bit2· m/(channel use). For

each db, we optimize g(aa) over da.

5.5 Numerical Results

We compute (5.52) and (5.78) based on the above derivation of the transport

efficiency in order to understand in what situation space-time coding is better than

the ordinary end-fire antenna array, or the other way. For the numerical calculation,

we assume the numerical values for the parameters given in Section 4.4. For those

values, we have Eo = 1.5×10−6 J and Ec = 2.2×10−6 J. We set σ2 = N0

2
. We fix the

number of receiving antennae, but vary the number of transmitting antennae. Doing

so would allow us to see how many receiving antennae are needed for space-time

coding to be better than the ordinary end-fire antenna array. The optimal g and
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optimal adjacent distance for space-time coding and the ordinary end-fire antenna

array are shown in Figures 5.4 to 5.7 and Figures 5.8 to 5.11, respectively, with solid

lines for the performance of space-time coding and dashed lines for the performance

of the ordinary end-fire antenna array.
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Figure 5.4: Optimal g(stc) and g(aa) with respect to the distance between linear net-
works when r = 1 receiving antenna is used. Solid lines show the per-
formance of space-time coding and dashed lines show the performance of
the ordinary end-fire antenna array.

We see from Figures 5.4 to 5.7 that when r = 1, the ordinary end-fire antenna

array always provides better transport efficiency than space-time coding. This is due

to the fact that the ordinary end-fire antenna array has an amplitude pattern that

causes less interference to the neighboring network and provides high signal-to-noise
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Figure 5.5: Optimal g(stc) and g(aa) with respect to the distance between linear net-
works when r = 2 receiving antennae are used. Solid lines show the per-
formance of space-time coding and dashed lines show the performance of
the ordinary end-fire antenna array.
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Figure 5.6: Optimal g(stc) and g(aa) with respect to the distance between linear net-
works when r = 3 receiving antennae are used. Solid lines show the per-
formance of space-time coding and dashed lines show the performance of
the ordinary end-fire antenna array.
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Figure 5.7: Optimal g(stc) and g(aa) with respect to the distance between linear net-
works when r = 4 receiving antennae are used. Solid lines show the per-
formance of space-time coding and dashed lines show the performance of
the ordinary end-fire antenna array.
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Figure 5.8: Optimal adjacent distance with respect to the distance between linear
networks when r = 1 receiving antenna is used. Solid lines show the
performance of space-time coding and dashed lines show the performance
of the ordinary end-fire antenna array.
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Figure 5.9: Optimal adjacent distance with respect to the distance between linear
networks when r = 2 receiving antennae are used. Solid lines show the
performance of space-time coding and dashed lines show the performance
of the ordinary end-fire antenna array.
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Figure 5.10: Optimal adjacent distance with respect to the distance between linear
networks when r = 3 receiving antennae are used. Solid lines show
the performance of space-time coding and dashed lines show the per-
formance of the ordinary end-fire antenna array.
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Figure 5.11: Optimal adjacent distance with respect to the distance between linear
networks when r = 4 receiving antennae are used. Solid lines show
the performance of space-time coding and dashed lines show the per-
formance of the ordinary end-fire antenna array.
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ratio in the desired direction. When r ≥ 2, the potential of high channel capacity

of space-time coding provides means to achieve higher transport efficiency. The

drawback of space-time coding is its complexity, where extensive signal processing

may be required at the receiver.

5.6 Conclusion

In this chapter we showed how space-time coding and the ordinary end-fire an-

tenna array affect the transport efficiency of interfering networks. When the number

of receiving antennae is small and when the distance between interfering networks

is small, the antenna array provides higher transport efficiency. On the other hand,

when the number of receiving antennae is large and the distance between interfering

networks is large, space-time coding provides higher transport efficiency.



CHAPTER VI

DISTRIBUTED SPACE-TIME CODING AND

COOPERATIVE COMMUNICATION

In Chapter V we investigated the transport efficiency of linear networks when

nodes on different linear networks communicate without any cooperation, thus caus-

ing interference to the communications in nearby networks. In this chapter we will

investigate a scenario where cooperative communication can occur. We use transport

efficiency as a performance measure and show how cooperative communications can

improve the transport efficiency when nodes use space-time coding.

6.1 Introduction

In wireless communication networks, an important question to ask is how much

throughput a network can deliver from sources to destinations per unit bandwidth,

per unit energy. With the implementation of multiple transmitting antennae and

receiving antennae, it is possible to realize some form of cooperative communication

to improve the performance of a wireless network.

Cooperative transmission for wireless networks is studied in [48]. The authors in-

vestigate a scenario where a source communicates with a destination via at most two

hops. The destination has one receiving antenna and it receives signals from both

149
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the source node and the relay nodes. If a relay node can successfully decode the

received signal, it can either repeat the decoded signal to perform a repetition based

cooperative communication or work with other relay nodes that have also success-

fully decoded the received signal to perform a space-time coding based cooperative

communication. The authors use outage probability as a performance measure for

both cooperative communication schemes and show that space-time coding based

scheme achieves higher spectral efficiencies than repetition-based scheme.

We will measure the effectiveness of cooperative communication by the transport

efficiency introduced in Chapter IV. Before we proceed to look into the cooper-

ative communication of linear networks, we derive some capacity results for dis-

tributed space-time coding. We will use some basic results of space-time coding in

Appendix C.

The remainder of this chapter is organized as follows. In Section 6.2 we derive

the capacity for distributed space-time coding with individual energy constraint and

covariance feedback. In Section 6.3 we calculate the capacity for distributed space-

time coding when there is only one receiving antenna. In Section 6.4 we investigate

the transport efficiency of cooperative communication for linear networks. We show

numerical results and draw conclusions in Section 6.5.

6.2 Capacity for Distributed Space-Time Coding with Indi-
vidual Constraint and Covariance Feedback

We are going to derive capacity for a channel where there are m geometrically

distributed transmitters trying to communicate with a single receiver. The i-th

transmitter has ti number of transmitting antennae and the receiver has r receiving

antennae. Let x(i) ∈ C
ti be the transmitted vector from the i-th transmitter for
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i = 1, · · · ,m. We don’t assume that x(i) ∈ C
ti , i = 1, · · · ,m are independent. Let

t = t1 + · · · + tm and

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(1)

x(2)

...

x(m)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.1)

Then x ∈ C
t is the transmitted vector from the m transmitters. Let n ∈ C

r be the

additive noise at the receiving antennae. We assume that n ∈ C
r is a proper [58]

complex Gaussian random vector with mean 0 and covariance matrix σ2Ir. Let y ∈

C
r be the received signal at the receiving antennae. Let H(i) ∈ C

r×ti , i = 1, · · · ,m

be the channel matrix from the transmitter i to the receiver. We assume that H(i),

i = 1, · · · ,m are mutually independent. Furthermore, for each i, the row vectors of

H(i) are independent and identically distributed proper complex Gaussian random

vectors with mean 0 and covariance matrix K(i). If row vectors of H(i) are not

proper, we have to consider the real part and imaginary part of the row vectors and

reformulate the problem using real numbers. Define

H =
[
H(1) H(2) · · · H(m)

]
. (6.2)

Then H ∈ C
r×t and row vectors of H are independent and identically distributed

proper complex Gaussian random vectors with mean 0 and covariance matrix

K =

⎡
⎢⎢⎢⎢⎢⎣
K(1)

. . .

K(m)

⎤
⎥⎥⎥⎥⎥⎦ . (6.3)

With x, y, n, and H defined above, we consider a frequency non-selective slowly

fading channel model [65]

y = Hx + n, (6.4)
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where each channel use by each transmitter is energy limited. More precisely,

E

[(
x(i)
)†

x(i)
]
≤ Ei for i = 1, · · · ,m, (6.5)

or equivalently,

tr
(
E

[
x(i)
(
x(i)
)†]) ≤ Ei for i = 1, · · · ,m. (6.6)

Let

Q(i,j) = E

[
x(i)
(
x(j)
)†]

for i = 1, · · · ,m, j = 1, · · · ,m. (6.7)

The constraint in (6.6) is equivalent to

tr
(
Q(i,i)

)
≤ Ei for i = 1, . . . ,m. (6.8)

Define

Q(i) =
{
Q(i,i) : Q(i,i) is specified in (6.7) and satisfies (6.8)

}
for i = 1, . . . ,m. (6.9)

Let Q be the correlation matrix of the transmitted vector x, then

Q =

⎡
⎢⎢⎢⎢⎢⎣
Q(1,1) · · · Q(1,m)

...
. . .

...

Q(m,1) · · · Q(m,m)

⎤
⎥⎥⎥⎥⎥⎦ . (6.10)

Define

Q =
{
Q : Q is specified in (6.10) and Q(i,i) ∈ Q(i) for i = 1, . . . ,m

}
. (6.11)

Recall that K(i) is the covariance matrix of any row vector of H(i). Then K(i) is

a positive semidefinite Hermitian matrix. Therefore there exists a unitary matrix

U (i) ∈ C
ti×ti such that (

U (i)
)†
K(i)U (i) = Λ(i), (6.12)
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where

Λ(i) =

⎡
⎢⎢⎢⎢⎢⎣
λ

(i)
1,1

. . .

λ
(i)
ti,ti

⎤
⎥⎥⎥⎥⎥⎦ (6.13)

is a real positive semidefinite diagonal matrix and entries on the diagonal are arranged

in descending order, i.e., λ
(i)
1,1 ≥ · · · ≥ λ

(i)
ti,ti ≥ 0. Let

U =

⎡
⎢⎢⎢⎢⎢⎣
U (1)

. . .

U (m)

⎤
⎥⎥⎥⎥⎥⎦ (6.14)

and

Λ =

⎡
⎢⎢⎢⎢⎢⎣

Λ(1)

. . .

Λ(m)

⎤
⎥⎥⎥⎥⎥⎦ , (6.15)

then we have

Λ = U †KU. (6.16)

Let

D(i) =

⎡
⎢⎢⎢⎢⎢⎣
d

(i)
1,1

. . .

d
(i)
ti,ti

⎤
⎥⎥⎥⎥⎥⎦ (6.17)

be a real positive semidefinite diagonal matrix and entries on the diagonal are ar-

ranged in descending order, i.e., d
(i)
1,1 ≥ · · · ≥ d

(i)
ti,ti ≥ 0. Define

D(i) =
{
D(i) : D(i) is specified in (6.17) and tr

((
Λ(i)
)− 1

2 D(i)
(
Λ(i)
)− 1

2

)
≤ Ei

}
for i = 1, . . . ,m. (6.18)
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Let

D =

⎡
⎢⎢⎢⎢⎢⎣
D(1)

. . .

D(m)

⎤
⎥⎥⎥⎥⎥⎦ , (6.19)

where D(i) ∈ D(i). Define

D = {D : D is specified in (6.19)} . (6.20)

Theorem 6.2.1 gives the capacity for the channel model given by (6.4).

Theorem 6.2.1 (Capacity of Channel with Covariance Feedback) Let the re-

alization of H be known to the receiver and K(i) be known the transmitter i for

i = 1, · · · ,m. The capacity of distributed space-time coding for the channel model

given in (6.4) is

C = max
D(i)∈D(i), i=1,···,m

E

[
log

(
det

(
Ir +

m∑
i=1

Z(i)D(i)
(
Z(i)
)†

σ2

))]
, (6.21)

where for each i, all entries of Z(i) ∈ C
r×ti are independent and identically distributed

proper complex Gaussian random variables with mean 0 and variance 1, and Z(i) ∈

C
r×ti, i = 1, · · · ,m are independent.

Proof of Theorem 6.2.1:

We know that the capacity for channel (6.4) when H is known to the receiver is

given by [80, 88]

C = max
Q∈Q

E

[
log

(
det

(
Ir +

HQH†

σ2

))]
. (6.22)

For each fixed Q ∈ Q, the mutual information I (x;y) is maximized and

I (x;y) = E

[
log

(
det

(
Ir +

HQH†

σ2

))]
(6.23)
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when the input vector x is a proper complex Gaussian random vector with mean 0

and covariance matrix Q. Define

Z = HUΛ− 1
2 . (6.24)

Then by Lemma B.2.2, we have that the row vectors of Z are independent and

identically distributed proper complex Gaussian random vectors with mean 0 an

covariance matrix It. From (6.24), we have

H = ZΛ
1
2U †. (6.25)

We can then rewrite (6.22) as

C = max
Q∈Q

E

[
log

(
det

(
Ir +

ZΛ
1
2U †QUΛ

1
2Z†

σ2

))]
. (6.26)

We first partition Q into four blocks and have

Q =

⎡
⎢⎣ Q(1,1) A

A† B

⎤
⎥⎦ , (6.27)

where

A =

[
Q(1,2) · · · Q(1,m)

]
(6.28)

and

B =

⎡
⎢⎢⎢⎢⎢⎣
Q(2,2) · · · Q(2,m)

...
. . .

...

Q(m,2) · · · Q(m,m)

⎤
⎥⎥⎥⎥⎥⎦ . (6.29)

Define another matrix Q̃ by

Q̃ =

⎡
⎢⎣ Q(1,1) −A

−A† B

⎤
⎥⎦ . (6.30)
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Since Q is a positive semidefinite matrix, the matrix Q̃ is also a positive semidefinite

matrix by the observation that

Q̃ =

⎡
⎢⎣ Q(1,1) −A

−A† B

⎤
⎥⎦ =

⎡
⎢⎣ It1 0

0 −It2+···+tm

⎤
⎥⎦
⎡
⎢⎣ Q(1,1) A

A† B

⎤
⎥⎦
⎡
⎢⎣ It1 0

0 −It2+···+tm

⎤
⎥⎦ .

(6.31)

We now show that

E

[
log

(
det

(
Ir +

ZΛ
1
2U †Q̃UΛ

1
2Z†

σ2

))]
= E

[
log

(
det

(
Ir +

ZΛ
1
2U †QUΛ

1
2Z†

σ2

))]
.

(6.32)

Let

Z(i) = H(i)U (i)
(
Λ(i)
)− 1

2 . (6.33)

Then all entries of Z(i) are independent and identically distributed proper complex

Gaussian random variables with mean 0 and variance 1. From (6.24), we have

Z =
[
Z(1) Z(2) · · · Z(m)

]
(6.34)

Define V(i) ∈ C
r×ti for i = 1, · · · ,m as follows

V(1) = Z(1); (6.35)

V(i) = −Z(i) for i = 2, · · · ,m. (6.36)

Let

V =
[
V(1) V(2) · · · V(m)

]
. (6.37)

Then V has the same distribution as Z and consequently

E

[
log

(
det

(
Ir +

VΛ
1
2U †QUΛ

1
2V†

σ2

))]
= E

[
log

(
det

(
Ir +

ZΛ
1
2U †QUΛ

1
2Z†

σ2

))]
.

(6.38)
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Let

ZB =
[
Z(2) · · ·Z(m)

]
;

VB =
[
V(2) · · ·V(m)

]
. (6.39)

Then

VB = −ZB. (6.40)

Define

UB =

⎡
⎢⎢⎢⎢⎢⎣
U (2)

. . .

U (m)

⎤
⎥⎥⎥⎥⎥⎦ (6.41)

and

ΛB =

⎡
⎢⎢⎢⎢⎢⎣

Λ(2)

. . .

Λ(m)

⎤
⎥⎥⎥⎥⎥⎦ . (6.42)

We have that

ZΛ
1
2U †Q̃UΛ

1
2Z†

= Z(1)
(
Λ(1)

) 1
2
(
U (1)

)†
Q(1,1)U (1)

(
Λ(1)

) 1
2
(
Z(1)

)† −
ZBΛ

1
2
B (UB)†A†U (1)

(
Λ(1)

) 1
2
(
Z(1)

)† −
Z(1)

(
Λ(1)

) 1
2
(
U (1)

)†
AUBΛ

1
2
BZ†

B +

ZBΛ
1
2
BU

†
BBUBΛ

1
2
BZ†

B

= Z(1)
(
Λ(1)

) 1
2
(
U (1)

)†
Q(1,1)U (1)

(
Λ(1)

) 1
2
(
Z(1)

)†
+

VBΛ
1
2
B (UB)†A†U (1)

(
Λ(1)

) 1
2
(
Z(1)

)†
+

Z(1)
(
Λ(1)

) 1
2
(
U (1)

)†
AUBΛ

1
2
BV†

B +

VBΛ
1
2
BU

†
BBUBΛ

1
2
BV†

B

= VΛ
1
2U †QUΛ

1
2V†. (6.43)
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Therefore

E

[
log

(
det

(
Ir +

ZΛ
1
2U †Q̃UΛ

1
2Z†

σ2

))]
= E

[
log

(
det

(
Ir +

VΛ
1
2U †QUΛ

1
2V†

σ2

))]
.

(6.44)

It follows from (6.38) and (6.44) that

E

[
log

(
det

(
Ir +

ZΛ
1
2U †Q̃UΛ

1
2Z†

σ2

))]
= E

[
log

(
det

(
Ir +

ZΛ
1
2U †QUΛ

1
2Z†

σ2

))]
.

(6.45)

Let

Q(d,1) =
1

2

(
Q+ Q̃

)
=

⎡
⎢⎣ Q(1,1) 0

0 B

⎤
⎥⎦ . (6.46)

We next show that

E

[
log

(
det

(
Ir +

ZΛ
1
2U †Q(d,1)UΛ

1
2Z†

σ2

))]

≥ E

[
log

(
det

(
Ir +

ZΛ
1
2U †QUΛ

1
2Z†

σ2

))]
. (6.47)

Since log(det(·)) is a strictly convex cap function on the set of positive definite

Hermitian matrices [38](7.6.7) [13], we have

log

(
det

(
Ir +

ZΛ
1
2U †Q(d,1)UΛ

1
2Z†

σ2

))

= log

⎛
⎝det

⎛
⎝Ir +

ZΛ
1
2U † 1

2

(
Q+ Q̃

)
UΛ

1
2Z†

σ2

⎞
⎠
⎞
⎠

≥ 1

2
log

(
det

(
Ir +

ZΛ
1
2U †QUΛ

1
2Z†

σ2

))
+

1

2
log

(
det

(
Ir +

ZΛ
1
2U †Q̃UΛ

1
2Z†

σ2

))
.

(6.48)

Therefore

E

[
log

(
det

(
Ir +

ZΛ
1
2U †Q(d,1)UΛ

1
2Z†

σ2

))]
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≥ 1

2
E

[
log

(
det

(
Ir +

ZΛ
1
2U †QUΛ

1
2Z†

σ2

))]
+

1

2
E

[
log

(
det

(
Ir +

ZΛ
1
2U †Q̃UΛ

1
2Z†

σ2

))]

= E

[
log

(
det

(
Ir +

ZΛ
1
2U †QUΛ

1
2Z†

σ2

))]
, (6.49)

where the equality in (6.49) follows from (6.45). We can now write

E

[
log

(
det

(
Ir +

ZΛ
1
2U †Q(d,1)UΛ

1
2Z†

σ2

))]
=

E

⎡
⎣log

⎛
⎝det

⎛
⎝Ir +

Z(1)
(
Λ(1)

) 1
2
(
U (1)

)†
Q(1,1)U (1)

(
Λ(1)

) 1
2
(
Z(1)

)†
σ2

+

ZB (ΛB)
1
2 (UB)†BUB (ΛB)

1
2 (ZB)†

σ2

))]
. (6.50)

Applying the above procedure for the proof of (6.47) iteratively to B in (6.50), we

have

E

[
log

(
det

(
Ir +

ZΛ
1
2U †QUΛ

1
2Z†

σ2

))]

≤ E

[
log

(
det

(
Ir +

ZΛ
1
2U †Q(d)UΛ

1
2Z†

σ2

))]
. (6.51)

where Q(d) is formed from Q in (6.10) by taking the block matrices on the diagonal

of Q, i.e.,

Q(d) =

⎡
⎢⎢⎢⎢⎢⎣
Q(1,1)

. . .

Q(m,m)

⎤
⎥⎥⎥⎥⎥⎦ . (6.52)

We conclude that in order to find the capacity C in (6.22), we only need to

consider those matrices Q that are block diagonal, i.e.,

Q(i,j) = O(i,j) for i �= j, (6.53)
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where O(i,j) is a ti × tj matrix with all entries being 0. Therefore we only need to

consider the covariance matrix

Q =

⎡
⎢⎢⎢⎢⎢⎣
Q(1,1)

. . .

Q(m,m)

⎤
⎥⎥⎥⎥⎥⎦ . (6.54)

This implies that in order to find the capacity C in (6.22), we may assume that the

transmitted vector x(i), i = 1, · · · ,m are independent. Define

R =
{
R : R = Λ

1
2U †QUΛ

1
2 for Q ∈ Q and Q satisfies (6.54)

}
. (6.55)

We can then rewrite (6.26) as

C = max
R∈R

E

[
log

(
det

(
Ir +

ZRZ†

σ2

))]
. (6.56)

We now show that for every R ∈ R, there exists a corresponding D ∈ D such

that

E

[
log

(
det

(
Ir +

ZRZ†

σ2

))]
= E

[
log

(
det

(
Ir +

ZDZ†

σ2

))]
. (6.57)

For each R ∈ R, let

R =

⎡
⎢⎢⎢⎢⎢⎣
R(1,1) · · · R(1,m)

...
. . .

...

R(m,1) · · · R(m,m)

⎤
⎥⎥⎥⎥⎥⎦ , (6.58)

where R(i,j) is a ti × tj matrix for i = 1, · · · ,m, j = 1, · · · ,m. Then

R(i,j) = O(i,j) for i �= j (6.59)

and

R(i,i) =
(
Λ(i,i)

) 1
2
(
U (i,i)

)†
Q(i,i)U (i,i)

(
Λ(i,i)

) 1
2 for i = 1, · · · ,m. (6.60)
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Consequently

tr
((

Λ(i,i)
)− 1

2 R(i,i)
(
Λ(i,i)

)− 1
2

)
= tr

((
U (i,i)

)†
Q(i,i)U (i,i)

)
(6.61)

= tr
(
Q(i,i)

)
(6.62)

≤ Ei for i = 1, · · · ,m. (6.63)

Since R(i,i) is positive semidefinite, it follows that there exists a unitary matrix W (i)

such that (
W (i)

)†
R(i,i)W (i) = D(i) for i = 1, · · · ,m, (6.64)

where D(i) is a real positive semidefinite diagonal matrix and entries on the diagonal

are arranged in descending order, i.e., d
(i)
1,1 ≥ · · · ≥ d

(i)
ti,ti ≥ 0. Note that

tr
(
D(i)

)
= tr

(
R(i,i)

)
for i = 1, · · · ,m. (6.65)

By a result from majorization theory proved in [40], we have that

tr
((

Λ(i)
)− 1

2 R(i,i)
(
Λ(i)
)− 1

2

)
≥ tr

((
Λ(i)
)− 1

2 D(i)
(
Λ(i)
)− 1

2

)
for i = 1, · · · ,m. (6.66)

Then from (6.63), we have

tr
((

Λ(i)
)− 1

2 D(i)
(
Λ(i)
)− 1

2

)
≤ Ei for i = 1, · · · ,m. (6.67)

Let

W =

⎡
⎢⎢⎢⎢⎢⎣
W (1)

. . .

W (m)

⎤
⎥⎥⎥⎥⎥⎦ . (6.68)

Then W is a unitary matrix. Let

D =

⎡
⎢⎢⎢⎢⎢⎣
D(1)

. . .

D(m)

⎤
⎥⎥⎥⎥⎥⎦ . (6.69)
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Then

D = W †RW, (6.70)

and D ∈ D. From (6.70), we have

R = WDW †. (6.71)

Then

E

[
log

(
det

(
Ir +

ZRZ†

σ2

))]
= E

[
log

(
det

(
Ir +

ZWDW †Z†

σ2

))]
. (6.72)

Since W is a unitary matrix, we have that ZW has the same distribution as that of

Z. Thus

E

[
log

(
det

(
Ir +

ZWDW †Z†

σ2

))]
= E

[
log

(
det

(
Ir +

ZDZ†

σ2

))]
. (6.73)

From (6.72) and (6.73), we have

E

[
log

(
det

(
Ir +

ZRZ†

σ2

))]
= E

[
log

(
det

(
Ir +

ZDZ†

σ2

))]
. (6.74)

Therefore, for each R ∈ R, we have found a D ∈ D such that (6.57) holds. Since

D ⊂ R, we have

C = max
D∈D

E

[
log

(
det

(
Ir +

ZDZ†

σ2

))]
. (6.75)

Equivalently,

C = max
D(i)∈D(i), i=1,···,m

E

[
log

(
det

(
Ir +

m∑
i=1

Z(i)D(i)
(
Z(i)
)†

σ2

))]
.

In the proof of Theorem 6.2.1, we realize that for the calculation of (6.21) trans-

mitter i only needs to know K(i), but does not need to know K(j) for j �= i; further-

more, we only need to consider the case when x(i) ∈ C
ti , i = 1, · · · ,m are indepen-

dent. As an application of Theorem 6.2.1, we derive the capacity for a special case



163

of H. When the covariance matrix K(i) of any row vector of H(i) satisfies

K(i) = α2
i Iti for i = 1, · · · ,m, (6.76)

where αi ≥ 0, we can find out optimal covariance matrix of transmitted vector

explicitly. For K(i) given in (6.76), we have Λ(i) = α2
i Iti . The assumption of K(i)

in (6.76) corresponds to many actual situations in communication. The capacity for

the channel matrix H satisfying (6.76) is given by the following corollary.

Corollary 6.2.1 Let H satisfy (6.76). The capacity for channel (6.4) is

C = E

[
log

(
det

(
Ir +

1

σ2

m∑
i=1

α2
iEi

ti
Z(i)

(
Z(i)
)†))]

. (6.77)

Before we prove Corollary 6.2.1, we need several lemmas. We are going to state

Lemma 6.2.1, which is proved in [38](4.3.3). Let A and B be two Hermitian matrices.

We arrange the eigenvalues of A and A + B in descending order 1. Let λk(A) be

k-th eigenvalue of A and λk(A+B) be k-th eigenvalue of A+B. Then we have the

following lemma.

Lemma 6.2.1 Let A and B be two Hermitian matrices. Assume that B is positive

semidefinite and that the eigenvalues of A and A + B are arranged in descending

order, then

λk(A) ≤ λk(A+B) for k = 1, 2, · · · , n. (6.78)

Lemma 6.2.2 Let Z(i) ∈ C
r×ti be a complex random matrix and let 0 ≤ ai ≤ bi for

i = 1, · · · ,m. Then

E

[
log

(
det

(
Ir +

m∑
i=1

(
aiZ

(i)
(
Z(i)
)†)))]

≤ E

[
log

(
det

(
Ir +

m∑
i=1

(
biZ

(i)
(
Z(i)
)†)))]

. (6.79)

1The eigenvalues of Hermitian matrices are arranged in increasing order in [38](4.3.3).
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Proof of Lemma 6.2.2:

Let Z(i) = Z(i) for i = 1, · · · ,m. Since ai ≤ bi, we have bi − ai ≥ 0. Since

Z(i)
(
Z(i)
)†

is positive semidefinite for i = 1, · · · ,m, we have that (bi − ai)Z
(i)
(
Z(i)
)†

is positive semidefinite for i = 1, · · · ,m. Therefore
∑m

i=1

(
(bi − ai)Z

(i)
(
Z(i)
)†)

is

positive semidefinite. Let

A = Ir +
m∑

i=1

(
aiZ

(i)
(
Z(i)
)†)

and

B =
m∑

i=1

(
(bi − ai)Z

(i)
(
Z(i)
)†)

.

Then by Lemma 6.2.1, we have

det

(
Ir +

m∑
i=1

(
aiZ

(i)
(
Z(i)
)†))

≤ det

(
Ir +

m∑
i=1

(
aiZ

(i)
(
Z(i)
)†)

+
m∑

i=1

(
(bi − ai)Z

(i)
(
Z(i)
)†))

. (6.80)

Therefore

det

(
Ir +

m∑
i=1

(
aiZ

(i)
(
Z(i)
)†)) ≤ det

(
Ir +

m∑
i=1

(
biZ

(i)
(
Z(i)
)†))

. (6.81)

Since log : R+ → R is a strictly increasing function, we have that

log

(
det

(
Ir +

m∑
i=1

(
aiZ

(i)
(
Z(i)
)†))) ≤ log

(
det

(
Ir +

m∑
i=1

(
biZ

(i)
(
Z(i)
)†)))

.

Therefore

E

[
log

(
det

(
Ir +

m∑
i=1

(
aiZ

(i)
(
Z(i)
)†)))]

≤ E

[
log

(
det

(
Ir +

m∑
i=1

(
biZ

(i)
(
Z(i)
)†)))]

.
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Define Ψ : Q(1) × · · · × Q(m) → R by

Ψ(Q(1), · · · , Q(m)) = E

[
log

(
det

(
Ir +

m∑
i=1

Z(i)Q(i)
(
Z(i)
)†

σ2

))]
. (6.82)

Lemma 6.2.3 Ψ has the following property

Ψ

⎛
⎝ L1∑

j(1)=1

a
(1)

j(1)B
(1)

j(1) , · · · ,
Lm∑

j(m)=1

a
(m)

j(m)B
(m)

j(m)

⎞
⎠

≥
L1∑

j(1)=1

· · ·
Lm∑

j(m)=1

a
(1)

j(1) · · · a(m)

j(m)Ψ
(
B

(1)

j(1) , · · ·B(m)

j(m)

)
. (6.83)

where
∑Li

j(i)=1
a

(i)

j(i) = 1 for i = 1, · · · ,m, a
(i)

j(i) ≥ 0 and B
(i)

j(i) ∈ Q(i) for j(i) = 1, · · · , Li,

i = 1, · · · ,m.

Proof of Lemma 6.2.3:

We note that
∑Li

j(i)=1
a

(i)

j(1)B
(i)

j(i) ∈ Qti , for i = 1, · · · ,m. Then

Ψ

⎛
⎝ L1∑

j(1)=1

a
(1)

j(1)B
(1)

j(1) , · · · ,
Lm∑

j(m)=1

a
(m)

j(m)B
(m)

j(m)

⎞
⎠

= E

⎡
⎣log

⎛
⎝det

⎛
⎝Ir +

1

σ2

m∑
i=1

Z(i)

⎛
⎝ Li∑

j(i)=1

a
(i)

j(i)B
(i)

j(i)

⎞
⎠(Z(i)

)†⎞⎠
⎞
⎠
⎤
⎦

= E

⎡
⎣log

⎛
⎝det

⎛
⎝ L1∑

j(1)=1

a
(1)

j(1)

⎛
⎝Ir +

1

σ2

m∑
i=2

Z(i)

⎛
⎝ Li∑

j(i)=1

a
(i)

j(i)B
(i)

j(i)

⎞
⎠(Z(i)

)†
+

1

σ2
Z(1)B

(1)

j(1)

(
Z(1)

)†)))]
(6.84)

≥
L1∑

j(1)=1

a
(1)

j(1)E

⎡
⎣log

⎛
⎝det

⎛
⎝Ir +

1

σ2

m∑
i=2

Z(i)

⎛
⎝ Li∑

j(i)=1

a
(i)

j(i)B
(i)

j(i)

⎞
⎠(Z(i)

)†
+

1

σ2
Z(1)B

(1)

j(1)

(
Z(1)

)†))]
, (6.85)

where from (6.84) to (6.85) we used the property that log(det(·)) is a strictly convex

cap function on the set of positive definite Hermitian matrices [38](7.6.7) [13]. We
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now carry out the above steps to i = 2, · · · ,m and have that

Ψ

⎛
⎝ L1∑

j(1)=1

a
(1)

j(1)B
(1)

j(1) , · · · ,
Lm∑

j(m)=1

a
(m)

j(m)B
(m)

j(m)

⎞
⎠

≥
L1∑

j(1)=1

· · ·
Lm∑

j(m)=1

a
(1)

j(1) · · · a(m)

j(m)Ψ
(
B

(1)

j(1) , · · ·B(m)

j(m)

)
.

Proof of Corollary 6.2.1:

The proof procedure here is similar to that in [80]. Define

Pti = {Π : Π is a ti × ti permutation matrix} for i = 1, · · · ,m. (6.86)

and

Li = Cardinality of Pti . (6.87)

Let Π
(i)

j(i) ∈ Pti and

a
(i)

j(i) =
1

Li

for j(i) = 1, · · · , Li, i = 1, · · · ,m. (6.88)

From Lemma 6.2.3, we have that

E

⎡
⎣log

⎛
⎝det

⎛
⎝Ir +

1

σ2

m∑
i=1

Z(i)

⎛
⎝ Li∑

j(i)=1

a
(i)

j(i)Π
(i)

j(i)D
(i)
(
Π

(i)

j(i)

)†⎞⎠(Z(i)
)†⎞⎠

⎞
⎠
⎤
⎦

≥
L1∑
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· · ·
Lm∑
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a
(1)
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j(m) ·

E

[
log

(
det

(
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σ2
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Z(i)Π
(i)

j(i)D
(i)
(
Π

(i)

j(i)

)† (
Z(i)
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(6.89)

Note that for any permutation matrix Π, we have

Π = Π†
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Since ZΠ has the same distribution as that of Z, we have that

E

[
log

(
det

(
Ir +

ZQZ†

σ2

))]
= E

[
log

(
det

(
Ir +

ZΠQΠZ†

σ2

))]
. (6.90)

Therefore

E

[
log

(
det

(
Ir +

m∑
i=1

1

σ2
Z(i)Π

(i)

j(i)D
(i)
(
Π

(i)

j(i)

)† (
Z(i)
)†))]

= E

[
log

(
det

(
Ir +

m∑
i=1

1

σ2
Z(i)D(i)

(
Z(i)
)†))]

. (6.91)

Substituting (6.88) and (6.91) into the right-hand side of (6.89), we have that

E

⎡
⎣log

⎛
⎝det

⎛
⎝Ir +

1

σ2

m∑
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Z(i)

⎛
⎝ Li∑
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1

Li

Π
(i)

j(i)D
(i)
(
Π

(i)

j(i)

)†⎞⎠(Z(i)
)†⎞⎠

⎞
⎠
⎤
⎦

≥
L1∑

j(1)=1

· · ·
Lm∑

j(m)=1

1

L1

· · · 1

Lm

E

[
log

(
det

(
Ir +

1

σ2

m∑
i=1

Z(i)D(i)
(
Z(i)
)†))]

. (6.92)

Note that
Li∑

j(i)=1

1

Li

Π
(i)

j(i)D
(i)(Π

(i)

j(i))
† =

tr(D(i))

ti
Iti for i = 1, · · · ,m. (6.93)

Therefore we have

E

[
log

(
det

(
Ir +

1

σ2

m∑
i=1

tr(D(i))

ti
Z(i)Iti

(
Z(i)
)†))]

≥ E

[
log

(
det

(
Ir +

1

σ2

m∑
i=1

Z(i)D(i)
(
Z(i)
)†))]

. (6.94)

Recall that

Λ(i) = α2
i Iti

for the K(i) given in (6.76). Since

tr
((

Λ(i)
)− 1

2 D(i)
(
Λ(i)
)− 1

2

)
≤ Ei for i = 1, · · · ,m,

we have that

tr
(
D(i)

)
≤ α2

iEi for i = 1, · · · ,m.
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Thus by Lemma 6.2.2, we have

E
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log

(
det

(
Ir +

1

σ2

m∑
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iEi

ti
Z(i)Iti

(
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≥ E
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log
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det
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1

σ2

m∑
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ti
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(
Z(i)
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. (6.95)

Therefore from (6.94) and (6.95), we have

E

[
log

(
det

(
Ir +

1

σ2

m∑
i=1

α2
iEi

ti
Z(i)Iti

(
Z(i)
)†))]

≥ E

[
log

(
det

(
Ir +

1

σ2

m∑
i=1

Z(i)D(i)
(
Z(i)
)†))]

. (6.96)

If we choose

D(i) =
α2

iEi

ti
Iti for i = 1, · · · ,m, (6.97)

we will achieve the maximum in (6.96) and consequently from (6.21)

C = E

[
log

(
det

(
Ir +

1

σ2

m∑
i=1

α2
iEi

ti
Z(i)

(
Z(i)
)†))]

.

From Corollary 6.2.1, we see that if H satisfies (6.76), each transmitter just

divides its energy evenly among its transmitting antennae and it does not need any

feedback of the channel status. The capacity formula for distributed space-time

coding with individual energy constraint is useful when we consider the transport

efficiency for the network with cooperative communication.

6.3 Calculation of Capacity

For the calculation of (6.77), we see that we can not apply the method in [80],

where the author simplified the calculation by only considering the eigenvalues of

Z(i)
(
Z(i)
)†

. Such a method would require that Z(i)
(
Z(i)
)†

be simultaneously di-

agonalizable for i = 1, · · · ,m, which may not always be true. In general, when
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t1 + · · · tm > r, Z(i)
(
Z(i)
)†

follows Wishart distribution [4], which can be thought

of as a generalization of χ2 distribution. We give the calculation of capacity for the

simple case when r = 1. When r ≥ 2 and t ≥ r, the integral will then be multidi-

mensional and the calculation of C is quite involved since Z(i)
(
Z(i)
)†

follows Wishart

distribution.

When r = 1, we have that

C = E

[
log

(
det

(
Ir +

1

σ2

m∑
i=1

α2
iEi

ti
Z(i)

(
Z(i)
)†))]
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log
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[
log
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σ2ti
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)]
(6.98)

= E

[
log

(
1 +

m∑
i=1

α2
iEi

2σ2ti
ui

)]
, (6.99)

where vi =
∑ti

j=1

(
(�(Z

(i)
j ))2 + (�(Z

(i)
j ))2

)
in (6.98), and ui in (6.99) is χ2-distributed

with 2ti degrees of freedom. The probability density function is given by [91]

fui
(ui) =

⎧⎪⎨
⎪⎩

e−ui/2u
ti−1
i

2tiΓ(ti)
ui ≥ 0

0 ui < 0.

for i = 1, · · · ,m. (6.100)

Therefore

C =

∫ ∞
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· · ·
∫ ∞
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iEi

2σ2ti
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)
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i

2tiΓ(ti)
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Let si = ui

2
, we have

C =
m∏
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1
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∫ ∞
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· · ·
∫ ∞
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log
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1

σ2
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siα
2
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(6.102)

From (6.102), we see that when ti = 1 for i = 1, · · · ,m, we have that

C =

∫ ∞

0

· · ·
∫ ∞

0

log

(
1 +

1

σ2

m∑
i=1

siα
2
iEi

)
e−

Pm
i=1 sids1 · · · dsm. (6.103)
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This is the same as the capacity for the multiple access Gaussian channel given

in [23].

6.4 Cooperative Communication for Linear Networks

In this section, we are going to investigate cooperative communication between

two linear networks.

6.4.1 Cooperative Linear Networks

We consider two linear networks shown in Figure 5.3. The assumptions in this

section for the two linear networks are almost the same as the assumptions in Sec-

tion 5.4.1, except for the ones about interference. In this section, we assume that

Ai and Bi on both linear networks have the same information source to transmit to

Ai+1 and Bi+1, respectively. Therefore it is possible for nodes Ai and Bi to cooperate

in the form of distributed space-time coding. Under this situation, Ai+1 treats the

signals that it receives from both Ai and Bi as useful information and tries to decode

both signals. Similarly, Bi+1 performs the same operation. We assume threshold

model for each node so that nodes in the linear networks are able to communicate

at the rate of the channel capacity given in Section 6.2.

6.4.2 Transport Efficiency

In order to prevent confusion about notation, we will analyze the transport effi-

ciency of linear network A when cooperative transmission is present. The analysis

for the transport efficiency of linear network B can be done similarly. Let us consider

node A2 on linear network A. Let y ∈ C
r be the received signal at A2, x(1) ∈ C

t1

be transmitted signal from A1 on linear network A, x(2) ∈ C
t2 be transmitted sig-

nal from B1 on linear network B, and n ∈ Cr be the additive noise at A2. Let
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H(1) ∈ Cr×t1 be the channel matrix from A1 to A2 and H(2) ∈ Cr×t2 be the channel

matrix from B1 to A2. We assume that

H(j) = αjZ
(j) for j = 1, 2, (6.104)

where αj captures the large scale propagation loss and Z(j) captures the small scale

variation of the channel. From the discussion of channel models given in Chapter V,

we have that

α1 =
√
β(de/k) (6.105)

and

α2 =

√
β

(√
d2

b + (de/k)2

)
. (6.106)

Furthermore, all entries in Z(j) are independent and identically distributed proper

Gaussian random variables with mean 0 and variance 1. Let n be a proper complex

Gaussian vector with mean 0 and covariance matrix σ2Ir. Define

x =

⎡
⎢⎣ x(1)

x(2)

⎤
⎥⎦ (6.107)

and

H =
[
H(1) H(2)

]
. (6.108)

For a frequency non-selective slowly fading channel, we have the following channel

model

y = Hx + n, (6.109)

with the constraint that tr
(
E

[
x(i)
(
x(i)
)†])

= Eo, for i = 1, 2, where Eo is given

in (5.25). From Corollary 6.2.1, we know that the mutual information between x

and y is maximized when the sub-vector x(1) is a proper complex Gaussian random

vector with mean 0 and covariance matrix Eo

t1
It1 and the sub-vector x(2) is a proper
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complex Gaussian random vector with mean 0 and covariance matrix Eo

t2
It2 . The

capacity of the channel in (6.109) is given by (6.102), i.e.,

C(ct)(de/k, db) =
1

Γ(t1)

1

Γ(t2)

∫ ∞

0

∫ ∞

0

log

(
1 +

s1α
2
1Eo

σ2t1
+
s2α

2
2Eo

σ2t2

)
·

st1−1
1 st2−1

2 e−(s1+s2)ds1ds2. (6.110)

The transport efficiency of the linear network A is given by

μ(ct)(k, Pmax, C
(ct)(de/k, db), de) =

1

de

(
C(ct)(de/k, db)

)2 de/k

Ec + Ep

. (6.111)

As we did in Chapter IV, we can replace de/k by da. Let

g(ct)(da, db) = da

(
C(ct) (da, db)

)2
. (6.112)

Then

μ(ct)
(
k, Pmax, C

(ct) (de/k, db) , de

)
=

g(ct)(da, db)

de(Ec + Ep)
. (6.113)

We will use g(ct) as a performance measure to compare the performance of linear

networks when different number of transmitting antennae is used. Note that the unit

of g(ct) is bit2· m/(channel use). For each db, we optimize g(ct) over da.

6.5 Numerical Results and Discussion

For numerical calculation, we assume the numerical values for the parameters

given in Section 5.5. We also set t1 = t2 = t and r = 1. The optimized g(ct) and

optimal adjacent distance are shown in Figure 6.1 and Figure 6.2, respectively.

Intuitively we know that the transport efficiency for both networks decreases as

the distance between the two linear networks increases. From the result presented

in Figure 6.1, we see if db is above 2000 m, the transport efficiency starts to flatten,
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Figure 6.1: Optimal g(ct) versus the distance between two linear networks, where
each node has r = 1 receiving antenna.
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works, where each node has r = 1 receiving antenna.
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and there is not much benefit of using cooperative communication. Also for large

enough distance between the two linear networks, increasing the number of trans-

mitting antennae above 3 does not generate too much gain in transport efficiency.

Cooperative communication in our scenario is most useful when destination nodes

on both linear networks want to receive the same information. In this case, each

receiver on each linear network really has some bonus signal from the transmission

on the other linear network. As a practical example, if there are some mirror sites in

the Internet around several nodes which request the same file, it may be beneficial

to allow more than one mirror site to communicate with these nodes simultaneously.

From the energy consumption point of view, since distributed space-time coding de-

mands very high signal processing complexity, it may not be desirable to perform

cooperative communication when the distance between two linear networks is large.



CHAPTER VII

CONCLUSION AND FUTURE RESEARCH

7.1 Summary of Contributions and Conclusion

We presented a generic integrated design methodology that is suitable for many

kinds of mobile systems. The integrated design methodology takes into account the

coupling among the subsystems and simultaneously optimizes their operation under

an energy constraint. Using our methodology, we were able to optimize a communi-

cation system from network level down to circuit level in a reasonable amount of time.

We showed the improvement in performance that the integrated design methodol-

ogy achieves over traditional design methodologies and the tradeoff between energy

consumption and performance.

Routing is an efficient method for connectivity and low energy consumption of

wireless networks. When each node is equipped with an omni-directional antenna,

a point-to-multipoint connection is often available for routing purposes. When the

design goal is to minimize the maximum power consumed by the nodes in a network,

we described a polynomial-time complexity algorithm to assign power to each node

for unicast, broadcast, and multicast sessions. When the design goal is to minimize

the total power consumed by the nodes in a network, we described a polynomial-time

complexity algorithm to assign power to each node for a unicast session and showed
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that the computational complexity of routing algorithms for broadcast and multicast

sessions is NP-hard. Our routing algorithms do not require the underlying graph we

get after the power assignment be strongly connected.

We introduced transport efficiency as a network performance measure to capture

both bandwidth efficiency and energy efficiency of a linear network. We showed that

the optimal transport efficiency is inversely proportional to the end-to-end distance

for the threshold model. We observed from our numerical results that the optimal

transport efficiency is approximately inversely proportional to the end-to-end dis-

tance for the cutoff-rate model, uncoded model and convolutional-coded model. We

demonstrated that amplifier characteristics and receiver processing energy has an

direct effect on the optimal transport efficiency.

We investigated the interference caused by space-time coding and the ordinary

end-fire antenna array to neighboring networks. Our analytical and numerical results

suggested that the end-fire antenna array gives higher transport efficiency than space-

time coding when the number of receiving antennae is small and gives transport

efficiency close to that for space-time coding when two linear networks are close to

each other. On the other hand, space-time coding gives higher transport efficiency

than the ordinary end-fire antenna array when the number of receiving antennae is

large and when two linear networks are far apart.

We showed that cooperative communication with space-time coding between lin-

ear networks can improve transport efficiency, but it only gives marginal benefit if

the cooperating networks are separated too far apart. This suggests that coopera-

tive communication among networks should be used carefully since it usually incurs

significant signal processing at the receiver.
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7.2 Future Research

It should be interesting to apply our integrated design methodology to more

network scenarios. It will also be interesting to see how transport efficiency for linear

networks can be extended to two-dimensional and three-dimensional networks. Of

course, a general theory to measure network performance is always desirable.

Shannon’s channel coding theory provides a long-term performance limit for

point-to-point communication in the additive white Gaussian noise (AWGN) chan-

nel. This performance limit has essentially been reached with the invention of turbo

codes, LDPC, and turbo-like coding techniques. There have been extensions to Shan-

non’s theory to provide long-term performance limit for communications in broadcast

channels and multiple-access channels. There have also been extensions to Shannon’s

theory to provide delay-limited capacity for communications with delay constraints.

Network protocol information has been studied from an information-theoretic per-

spective [29]. Researchers also tried to combine queueing theory and information

theory to study the multi-access channel [81]. However, we still lack a profound the-

ory in the wireless or wired communication networks that can play the same role as

Shannon’s theory for point-to-point communications. Wireless communication net-

works do present a lot of challenges in many different aspects, most often researchers

tried to answer the challenges in each aspect separately. The transit and burstiness

nature of networks may require a whole new profound theory rather than extensions

of Shannon’s theory.
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APPENDIX A

SIMULATED ANNEALING ALGORITHM

Hide-and-Seek is a global continuous optimization algorithm of the simulated-

annealing-type [70]. The algorithm can find the maximum of a continuous function

(differentiability is not required) over an arbitrary closed and bounded feasible region

(convexity is not required). It is guaranteed to converge (in probability) under mild

assumptions on the cooling schedule used; the reader is referred to [70] for the precise

technical details. Hide-and-Seek is an iterative algorithm where at each iteration a

new candidate successor point in the feasible region is generated randomly accord-

ing to the following strategy: from the current iteration point a search direction is

chosen at random inside the feasible region; then the candidate successor is obtained

according to a uniform distribution in the direction chosen within the feasible region.

(In our implementation of the algorithm, the standard deviation of each component

in the search direction vector is proportional to the difference of the corresponding

upper and lower bounds on that component.) The initial candidate point can be

any point in the feasible region. Candidate successors are “accepted” according to

the familiar Metropolis criterion of simulated annealing algorithms [70]. A feature of

Hide-and-Seek is that the cooling schedule parameterizing the Metropolis criterion

is adaptive in the sense that it depends on all previously accepted points.
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In our integrated design methodology, the function to optimize is evaluated by

means of a simulation in OPNET. Hence, we cannot formally prove that it satisfies

the required continuity assumption for convergence of Hide-and-Seek. In our sim-

ulation experiments, we let the algorithm run for 200 iterations. By the time we

reached 200 iterations, the change in the best maximum found so far was negligible.

The detailed steps of the Hide-and-Seek algorithm used in the global optimization

Step 1 in Section 2.4 are described below.

Step 1.1 Let M1,M2,M3,M4 and m1,m2,m3,m4 be the upper and lower bounds

of the design variables T, q, Ect, Ecr respectively. The “optimizer” module

arbitrarily chooses an initial feasible design x = [T, q, Ect, Ecr]
T whose per-

formance, denoted by g(x), is to be evaluated by the “network simulator”

module. The “optimizer” module sets xbsf = x and fbsf = f(x) = −g(x),

where bsf stands for “best so far”. It also sets the loop counter k = 0,

sets the initial temperature τ to be a very large value, and sets the total

number of iterations numiter to the desired value.

Step 1.2 The “optimizer” module generates N zero-mean and unit-variance Gaus-

sian random variables ξ1, · · · , ξN , where N is the total number of design

variables (N = 4 in our example). It then generates a search direction

ζ = [ζ1, · · · , ζN ]T according to

ζi = ξi(Mi −mi), i = 1, · · · , N. (A.1)

Let r = ζ/‖ζ‖ and let dn and dp be the largest distances from x to the

boundary of the feasible region along the direction −r and r respectively.

The “optimizer” module generates a new candidate feasible design y
k

=
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[T, q, Ect, Ecr]
T according to

y
k

= x+ (−dn(1 − u) + u ∗ dp)r, (A.2)

where u is uniformly distributed random variable on [0, 1]. The cor-

responding performance f(y
k
) is evaluated by the “network simulator”

module as in Step 1.1.

Step 1.3 The “optimizer” module accepts y
k

with probability β(τ, f(x), f(y
k
)),

where τ stands for current temperature and

β(τ, f(x), f(y
k
)) = min(1, e(f(y

k
)−f(x))/τ ). (A.3)

This is called Metropolis acceptance criterion. If the “optimizer” module

accepts y
k
, it sets x = y

k
and f(x) = f(y

k
).

Step 1.4 If f(x) > fbsf , the “optimizer” module sets

f1 = min(fbsf + (f(x) − fbsf )/α, 0.0), (A.4)

τ =
2(f1 − f(x))

η(N)
, (A.5)

fbsf = f(x), (A.6)

xbsf = x, (A.7)

where α is a fixed scaling factor and is set to

α =
1

0.9N/2.0
− 1. (A.8)

The denominator η(N) in (A.5) is chosen such that the CDF of the χ2

distribution with N degrees of freedom evaluated at η(N) is 0.99.

Next, the “optimizer” module increments k. If k does not exceed numiter,

go to Step 1.2. Otherwise the “optimizer” module stops and returns the

best design found xbsf and its corresponding value fbsf .
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APPENDIX B

PROPER COMPLEX RANDOM VARIABLES,

VECTORS, AND PROCESSES

We introduce some properties of proper complex random variables, vectors, and

processes which are commonly used in communication literature, but not always

explicitly explained. We assume that all the properties of real random variables,

vectors, and processes have already been well defined. For example, a real random

variable has a cumulative distribution function; a real random vector has a joint

cumulative distribution function; a continuous real random variable has a probability

density function; etc. For ease of reference, we state definitions and theorems relevant

to this dissertation without any proof because most of them can be found in [58].

We assume the reader has some basic understanding of measure theory [10, 14, 64].

Let (Ω,F ,P) be a probability space with σ-algebra F being a collection of measurable

sets of Ω and P being a probability measure. Recall that x : Ω → R is a real random

variable if x is Borel-measurable.

B.1 Proper Complex Random Variables

Definition B.1.1 x : Ω → C is a complex random variable if

x = xR + ixI, (B.1)
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where xR : Ω → R and xI : Ω → R are both real random variables. xR is called the

real part of x and xI is called the imaginary part of x.

Definition B.1.2 The probability density function of a complex random

variable x = xR + ixI is

px(xR + ixI) = pxR ,xI
(xR, xI). (B.2)

Definition B.1.3 The expectation of a complex random variable x = xR +

ixI is

E [x] = E [xR] + iE [xI] . (B.3)

Let x ∈ C be a complex number and let x∗ be the complex conjugate of x.

Definition B.1.4 The variance of a complex random variable x is

Var(x) = E [(x − E [x]) (x − E [x])∗] . (B.4)

Definition B.1.5 A complex random variable x is proper if

E
[
(x − E [x])2] = 0. (B.5)

Note that (B.5) implies

Var (xR) = Var (xI) and Cov (xR,xI) = 0. (B.6)

Therefore the real part and imaginary part of X are uncorrelated. Let

Image(x) = x(Ω) = {x(ω) : ω ∈ Ω} . (B.7)

Let x(Ω) ⊆ D ⊆ C and let F : D → C be a measurable function.
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Definition B.1.6 The expectation of F is defined

E [F (x)] = E [(F (xR + ixI))R] + iE [(F (xR + ixI))I] . (B.8)

Equivalently,

E [F (x)] =

∫ ∞

−∞

∫ ∞

−∞
F (xR + ixI)px(xR + ixI)dxRdxI (B.9)

=

∫ ∞

−∞

∫ ∞

−∞
(F (xR + ixI))R pxR ,xI

(xR, xI) dxRdxI +

i

∫ ∞

−∞

∫ ∞

−∞
(F (xR + ixI))I pxR ,xI

(xR, xI) dxRdxI. (B.10)

B.2 Proper Complex Random Vectors

Definition B.2.1 x : Ω → C
n is a complex random vector if

x = xR + ixI, (B.11)

where xR : Ω → R
n and xI : Ω → R

n are both real random vectors. xR is called the

real part of x and xI is called the imaginary part of x. Z : Ω → C
m×n is a complex

random matrix if

Z = ZR + iZI, (B.12)

where ZR : Ω → R
m×n and ZI : Ω → R

m×n are both real random matrices. ZR is

called the real part of Z and ZI is called the imaginary part of Z.

Definition B.2.2 The probability density function of a complex random

vector x = xR + ixI is

px(xR + ixI) = pxR ,xI
(xR, xI). (B.13)

Definition B.2.3 Two complex random vectors x and y are independent if⎡
⎢⎣ xR

xI

⎤
⎥⎦ and

⎡
⎢⎣ yR

yI

⎤
⎥⎦

are independent real random vectors.
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Definition B.2.4 The expectation of a complex random vector

x =

⎡
⎢⎢⎢⎢⎢⎣

x1

...

xm

⎤
⎥⎥⎥⎥⎥⎦

is

mx = E [x] =

⎡
⎢⎢⎢⎢⎢⎣

E [x1]

...

E [xm]

⎤
⎥⎥⎥⎥⎥⎦ . (B.14)

The expectation of a complex random matrix

Z =

⎡
⎢⎢⎢⎢⎢⎣

z1,1 · · · z1,n

...
. . .

...

zm,1 · · · zm,n

⎤
⎥⎥⎥⎥⎥⎦

is

mZ = E [Z] =

⎡
⎢⎢⎢⎢⎢⎣

E [z1,1] · · · E [z1,n]

...
. . .

...

E [zm,1] · · · E [zm,n]

⎤
⎥⎥⎥⎥⎥⎦ . (B.15)

Let A ∈ C
m×n be a complex matrix. Let A† be the conjugate transpose of A and

let AT be the transpose of A.

Definition B.2.5 The cross-correlation matrix of complex random vectors

x and y is

Rx,y = E
[
xy†] . (B.16)

The pseudo-cross-correlation matrix of complex random vectors x and y is

R̃x,y = E
[
xyT

]
. (B.17)
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Definition B.2.6 The covariance matrix of complex random vectors of x =

xR + ixI and y = yR + iyI is

Cx,y = E

[
(x −mx) (y −my)†

]
. (B.18)

The pseudo-covariance matrix of complex random vectors of x = xR + ixI

and y = yR + iyI is

C̃x,y = E

[
(x −my) (y −my)T

]
. (B.19)

Note that

Cx,y = E

[
(x −mx) (y −my)†

]
= (Cov(xR,yR) + Cov(xI,yI)) +

i (Cov(xI,yR) − Cov(xR,yI)) ; (B.20)

C̃x,y = E

[
(x −mx) (y −my)T

]
= (Cov(xR,yR) − Cov(xI,yI)) +

i (Cov(xI,yR) + Cov(xR,yI)) . (B.21)

Conversely, we have

Cov(xR,yR) =
1

2

(
Cx,x + C̃x,y

)
R

; (B.22)

Cov(xI,yI) =
1

2

(
Cx,y − C̃x,y

)
R

; (B.23)

Cov(xI,yR) =
1

2

(
Cx,y + C̃x,y

)
I
; (B.24)

Cov(xR,yI) = −1

2

(
Cx,y − C̃x,y

)
I
. (B.25)

Definition B.2.7 Two complex random vectors x = xR + ixI and y = yR + iyI

are uncorrelated if

Cov(xR,yR) = 0, (B.26)
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Cov(xR,yI) = 0, (B.27)

Cov(xI,yR) = 0, (B.28)

Cov(xI,yI) = 0. (B.29)

Lemma B.2.1 The complex random vectors x and y are uncorrelated if and only if

Cx,y = 0 and C̃x,y = 0.

Definition B.2.8 A complex random vector x is proper if and only if C̃x,x = 0.

The complex random vectors x1 and x2 are jointly proper if the composite complex

random vector

x =

⎡
⎢⎣ x1

x2

⎤
⎥⎦

is proper.

From (B.21) we have that

C̃x,x = 0 ⇐⇒ Cov(xR,xR) = Cov(xI,xI) and Cov(xI,xR) = −Cov(xR,xI).

(B.30)

Note that

Cov(xR,xI) = Cov(xI,xR)T . (B.31)

Therefore

C̃x,x = 0 ⇐⇒ Cov(xR,xR) = Cov(xI,xI) and Cov(xI,xR) = −Cov(xI,xR)T .

(B.32)

The skew-symmetry of Cov(xI,xR) implies that the main diagonal of Cov(xI,xR) is

zero, which means that the real and imaginary part of each component xi of x are

uncorrelated. However, C̃x,x = 0 does not imply that real part of xi and the imagi-

nary part of xj are uncorrelated for i �= j. If x is a real random vector, we have that
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xI = 0. Consequently, Cov(xI,xI) = 0 and Cov(xI,xR) = Cov(xR,xI) = 0. There-

fore a real random vector x is proper if and only if Cov(xR,xR) = Cov(xI,xI) = 0,

i.e., if and only if x is a constant with probability 1.

Lemma B.2.2 Let x be a proper complex n-dimensional random vector. Then any

random vector obtained from x by a linear or affine transformation, i.e., any random

vector y = Ax + b, where A ∈ C
m×n and b ∈ C

m are constant, is also proper.

Lemma B.2.3 Let x1 and x2 be two independent complex random vectors and let

x2 be proper. Then the linear combination y = a1x1 + a2x2, where a1 and a2 are

complex numbers and a1 �= 0, is proper, if and only if x1 is proper.

Lemma B.2.4 Two jointly proper, complex random vectors x1 and x2 are uncorre-

lated, if and only if their covariance matrix Cx1,x2 = 0.

Definition B.2.9 A complex random vector x = xR+ixI is a complex Gaussian

random vector if xR and xI are jointly Gaussian.

Lemma B.2.5 Two jointly proper Gaussian random vectors x1 and x2 are indepen-

dent, if and only if Cx1,x2 = 0.

Theorem B.2.1 Let x be a proper complex n-dimensional Gaussian random vector

with mean m = E[x] and nonsingular covariance matrix C = E[(x −m)(x −m)†].

The probability density function of x is

px(xR + ixI) = pxR ,xI
(xR, xI)

=
1

πn det(C)
exp

{
−(x−m)†C−1(x−m)

}
. (B.33)
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Definition B.2.10 The differential entropy of a complex random vector

x = xR + ixI is the joint differential entropy of its real and imaginary parts.

h(x) = h(xR,xI). (B.34)

Recall that if x is a real, continuous, n-dimensional Gaussian random vector with

mean m and nonsingular covariance matrix Cx, we have that the differential entropy

of x is

h(x) =
1

2
log [(2πe)n det (Cx)] . (B.35)

Let x be any real, continuous, n-dimensional random vector with nonsingular corre-

lation matrix Rx = E[xxT ]. Then

h(x) ≤ 1

2
log [(2πe)n det (Rx)] , (B.36)

with equality if and only if x is a real Gaussian random vector with zero mean.

Theorem B.2.2 Let x be a proper, complex, continuous, n-dimensional Gaussian

random vector with mean m and nonsingular covariance matrix Cx. Then the dif-

ferential entropy of x is

h(x) = log [(πe)n det (Cx)] . (B.37)

Theorem B.2.3 Let x be any complex, continuous, n-dimensional random vector

with nonsingular correlation matrix Rx = E[xx†]. Then

h(x) ≤ log [(πe)n det (Rx)] , (B.38)

with equality if and only if x is a proper complex Gaussian random vector with zero

mean.
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It is important to note that Theorem B.2.3 points out that x must be proper to

maximize the differential entropy. Based on our discussion (preceding Lemma B.2.2)

of proper real random vectors, we conclude that no real random vector can maximize

the differential entropy for a given correlation matrix Rx if complex random vectors

are allowed.

In [80], the author uses the terminology “circularly symmetric n-dimensional

complex Gaussian random vector” to mean “proper n-dimensional complex Gaussian

random vector”. The terminology “circularly symmetric complex Gaussian random

vector” also appears in other papers, either explicitly or implicitly.

B.3 Proper Complex Random Processes

Definition B.3.1 x(t) ∈ C, t ∈ T is a continuous-time complex random pro-

cess if

x(t) = xR(t) + ixI(t), (B.39)

where xR(t) ∈ R, t ∈ T and xI(t) ∈ R, t ∈ T are a pair of real continuous-time

random processes. xR(t), t ∈ T is called the real part of x(t), t ∈ T and xI(t), t ∈ T

is called the imaginary part of x(t), t ∈ T . x(n) ∈ C, n ∈ N is a discrete-time

complex random process if

x(n) = xR(n) + ixI(n), (B.40)

where xR(n) ∈ R, n ∈ N and xI(n) ∈ R, n ∈ N are a pair of real discrete-time

random processes. xR(n), n ∈ N is called the real part of x(n), n ∈ N and xI(n), n ∈

N is called the imaginary part of x(n), n ∈ N .

Definition B.3.2 Two continuous-time complex random processes x(t) ∈ C, t ∈ T
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and y(t) ∈ C, t ∈ T are independent if real random vector processes⎡
⎢⎣ xR(t)

xI(t)

⎤
⎥⎦ and

⎡
⎢⎣ yR(t)

yI(t)

⎤
⎥⎦

are independent.

Definition B.3.3 A complex random process is wide-sense stationary (w.s.s.)

if its real and imaginary parts are jointly wide-sense stationary.

Definition B.3.4 The mean of a continuous-time complex random process x(t) ∈

C, t ∈ T is

mx(t) = E [x(t)] . (B.41)

The mean of a discrete-time complex random process x(n) ∈ C, n ∈ N is

mx(n) = E [x(n)] . (B.42)

Definition B.3.5 The autocorrelation function of a continuous-time complex

random process x(t) ∈ C, t ∈ T is

rx(t, τ) = E [x(t+ τ)x∗(t)] , (B.43)

and the pseudo-autocorrelation function of x(t) ∈ C, t ∈ T is

r̃x(t, τ) = E [x(t+ τ)x(t)] . (B.44)

The autocorrelation function of a discrete-time complex random process x(n) ∈

C, n ∈ N is

rx(n, k) = E [x(n+ k)x∗(n)] (B.45)

and the pseudo-autocorrelation function of x(n) ∈ C, n ∈ N is

r̃x(n, k) = E [x(n+ k)x(n)] . (B.46)
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Definition B.3.6 The covariance function of a continuous-time complex random

process x(t) ∈ C, t ∈ T is

cx(t, τ) = E [(x(t+ τ) −mx(t+ τ)) (x(t) −mx(t))
∗] , (B.47)

and the pseudo-covariance function of x(t) ∈ C, t ∈ T is

c̃x(t, τ) = E [(x(t+ τ) −mx(t+ τ)) (x(t) −mx(t))] . (B.48)

The covariance function of a discrete-time complex random process x(n) ∈ C, n ∈

N is

cx(n, k) = E [(x(n+ k) −mx(n+ k)) (x(n) −mx(n))∗] , (B.49)

and the pseudo-covariance function of x(n) ∈ C, n ∈ N is

c̃x(n, k) = E [(x(n+ k) −mx(n+ k)) (x(n) −mx(n))] . (B.50)

Lemma B.3.1 A continuous-time (discrete-time) complex random process x(t) ∈

C, t ∈ T (x(n) ∈ C, n ∈ N ) is w.s.s. if and only if mx(t), rx(t, τ), r̃x(t, τ) are

independent of t (mx(n), rx(n, k), r̃x(n, k) are independent of n).

Definition B.3.7 A continuous-time (discrete-time) complex random process x(t) ∈

C, t ∈ T (x(n) ∈ C, n ∈ N ) is proper if its pseudo-covariance function c̃x(t, τ) = 0

for all t and τ (c̃x(n, k) = 0 for all n and k).

Lemma B.3.2 Any linear or affine transformation of a proper complex random pro-

cess is proper. Any linear combination of independent proper complex random pro-

cesses is proper. Any vector of samples taken from a proper complex random process

is proper.
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Proper complex random processes arise in equivalent baseband representations

of bandpass communication systems and signals, the equivalent baseband signal rep-

resentation of a passband signal is a proper complex random process. Interested

readers are referred to [77, 90] for details.
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APPENDIX C

CAPACITY OF MULTIPLE-ANTENNA

COMPLEX GAUSSIAN CHANNELS

We state some important results about the capacities of channels between a single

transmitter and a single receiver, where both the transmitter and the receiver may

have multiple antennae. The proof for these results can be found in [80], probably

with minor modification.

C.1 Multiple-Antenna Complex Gaussian Channels

We consider a transmitter with t transmitting antennae and a receiver with r

receiving antennae. Let x ∈ C
t be the transmitted signal, y ∈ C

r be the received

signal, and n ∈ C
r be the additive noise at the receiving antennae. We assume that

the channel under consideration is frequency non-selective and slow fading [9, 65, 68].

Under such an assumption, we have a channel matrix H ∈ C
r×t and a channel

model given by

y = Hx + n, (C.1)

where H, x, n are independent. The transmitted energy per channel use is con-

strained by

E
[
x†x
]
≤ E, (C.2)
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Define

Q = E
[
xx†] . (C.3)

Then (C.2) is equivalent to

tr (Q) ≤ E. (C.4)

Let

P = {px : px is a probability density function of x that satisfies (C.4).} . (C.5)

When the realization of H is known to the receiver, the capacity of the channel given

in (C.1) with energy constraint given in (C.4) is [5, 63, 88]

C = sup
px∈P

E [I (x;y|H = H)] (C.6)

= sup
px∈P

I (x;y|H) , (C.7)

where the expectation in (C.6) is taken with respect to the cumulative distribution

function of H and I (x;y|H) in (C.7) is the conditional mutual information between

x and y given H [23].

When n is a proper [58] complex Gaussian random vector with mean 0 and

covariance matrix σ2Ir, the channel given in (C.1) is called a multiple-antenna

additive white complex Gaussian noise channel. We will only consider such

a channel for the remainder of this chapter. For any given correlation matrix Q of

x, we know that I (x;y|H = H) is maximized if and only x is a proper complex

Gaussian random vector with mean 0 and covariance matrix Q. The corresponding

maximized mutual information between x and y when H = H is

I (x;y|H = H) = log2

(
Ir +

HQH†

σ2

)
. (C.8)

Therefore, in order to evaluate C in (C.6), we may only consider proper complex

Gaussian random vectors that satisfy (C.4), and the evaluation of C in (C.6) is
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equivalent to

C = sup
tr(Q)≤E

E

[
log2

(
Ir +

HQH†

σ2

)]
. (C.9)

Different cumulative distribution functions of H result in different channel capacities.

For the multiple-antenna additive white complex Gaussian noise channel, we are

interested in the capacities under two cases. One is when H is deterministic. The

other is when all entries of H are independent and identically distributed proper

complex Gaussian random variables with mean 0 and variance α2, where α > 0.

C.2 Capacity of Deterministic Channels

When H = H is deterministic, the channel given by (C.1) is called a determin-

istic channel. By singular value decomposition [38], any H ∈ C
r×t can be written

as

H = UDV †,

where U ∈ C
r×r and V ∈ C

t×t are both unitary matrices, and D ∈ R
r×t is a non-

negative diagonal matrix. We can rewrite (C.1) as

y = UDV †x + n. (C.10)

We consider the capacity of the channel given in (C.10) when n is a proper [58]

complex Gaussian random vector with mean 0 and covariance matrix σ2Ir. Let

ỹ = U †y, x̃ = V †x, and ñ = U †n. Then

ỹ = Dx̃ + ñ, (C.11)

where ñ is a proper complex Gaussian random vector with mean 0 and covariance

matrix

E
[
ññ†] = E

[
U †nn†U

]
= U †

E
[
nn†]U = U †σ2IrU = σ2Ir. (C.12)
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Note that the channel given in (C.10) is equivalent to the channel given in (C.11)

in terms of mutual information between the transmitted signal and received signal.

Since H is of rank at most min{r, t}, we have that at most min{r, t} of the singular

values of H are non-zero. Let these singular values be λ
1/2
i , i = 1, · · · ,min{r, t}. We

can write (C.11) component-wise to get

ỹi = λ
1/2
i x̃i + ñi for 1 ≤ i ≤ min{r, t}. (C.13)

Let a+ = max{0, a} ∀a ∈ R. The “water filling” argument (or Kuhn-Kucker The-

orem) [23] can be applied here to show that the mutual information I(x̃; ỹ) is

maximized when x̃i, i = 1, · · · ,min{r, t} are independent and identically distributed

proper complex Gaussian random variables with

E
[
(Re (x̃i))

2] = E
[
(Im (x̃i))

2] =
1

2

(
μ− λ−1

i

)+
for i = 1, · · · ,min{r, t}, (C.14)

where μ ∈ R satisfies
min{r,t}∑

i=1

(
μ− λ−1

i

)+
= E. (C.15)

The maximum mutual information between x̃ and ỹ is given by

C =

min{r,t}∑
i=1

(
log2

(
μλi

σ2

))+

bits/(channel use). (C.16)

For a deterministic channel, we have the following theorem [80].

Theorem C.2.1 (Capacity of Deterministic Channel) Let H = H be deter-

ministic and known to both the transmitter and the receiver. Then the capacity of

the channel specified in (C.10) is given by (C.16).

C.3 Capacity of Rayleigh Fading Channels

Let H = [hj,k], where j = 1, · · · , r, k = 1 · · · , t, be random. We assume that hj,k,

j = 1, · · · , r, k = 1 · · · , t are independent and identically distributed proper complex
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Gaussian random variables with mean 0 and variance α2, where α > 0, i.e.,

E
[
hj,kh

∗
j,k

]
= E

[
|hj,k|2

]
= α2 for j = 1, · · · , r, k = 1 · · · , t.

Then |hj,k| is Rayleigh distributed and |hj,k|2 is χ2-distributed with 2 degrees of

freedom. (In this case, |hj,k|2 is also exponentially distributed.) We assume that

the channel is memoryless: for each use of the channel an independent realization of

H is drawn. We also assume that the receiver knows the realization of H. Under

the above assumptions, the channel given by (C.1) is called a Rayleigh fading

channel. Let

Z =
1

α
H. (C.17)

Then all entries of Z are independent and identically distributed proper complex

Gaussian random variables with mean 0 and variance 1. We may rewrite (C.1) as

y = αZx + n. (C.18)

We consider the capacity of the Rayleigh fading channel given in (C.18) when n is

a proper [58] complex Gaussian random vector with mean 0 and covariance matrix

σ2Ir. For such a channel, we have the following theorem [80].

Theorem C.3.1 (Capacity of Rayleigh Fading Channel) The mutual informa-

tion between x and y of the Rayleigh fading channel specified in (C.18) is maximized

if and only if x is a proper complex Gaussian vector with mean 0 and covariance

matrix E
t
It. The capacity of such a channel is given by

C = E

[
log2

(
det

(
Ir +

α2E

σ2t
ZZ†

))]
bits/(channel use). (C.19)

The following theorem [80] tells us how to evaluate (C.19).
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Theorem C.3.2 (Evaluation of Capacity) (C.19) can be computed by

C =

∫ ∞

0

log2

(
1 +

λα2E

σ2t

)Nmin−1∑
j=0

j!

(j +Nmax −Nmin)!
·

[
LNmax−Nmin

j (λ)
]2
λNmax−Nmine−λdλ bits/(channel use), (C.20)

where Nmin = min{r, t}, Nmax = max{r, t}, and Li
j’s are the associated Laguerre

polynomials [1].

When r = t, we have Nmin = Nmax = r = t. Then (C.20) gives

C =

∫ ∞

0

log2

(
1 +

λα2E

σ2t

) r−1∑
j=0

[Lj(λ)]2 e−λdλ bits/(channel use), (C.21)

where Lj = L0
j is the Laguerre polynomial of order j. In particular, when t = r = 1,

we have Nmin = Nmax = 1 and (C.21) gives

C =

∫ ∞

0

log2

(
1 +

λα2E

σ2

)
e−λdλ bits/(channel use). (C.22)

When t = 1, we have Nmin = 1 and Nmax = r. Then (C.20) gives

C =
1

Γ(r)

∫ ∞

0

log2

(
1 +

λα2E

σ2

)
λr−1e−λdλ bits/(channel use). (C.23)

When r = 1, we have Nmin = 1 and Nmax = t. Then (C.20) gives

C =
1

Γ(t)

∫ ∞

0

log2

(
1 +

λα2E

tσ2

)
λt−1e−λdλ bits/(channel use). (C.24)
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