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Abstract

In this paper we address the problem of topology discovery in unicast logical tree networks using end-
to-end measurements. Without any cooperation from the internal routers, topology estimation can be for-
mulated as hierarchical clustering of the leaf nodes based on pair-wise correlations as similarity metrics. We
investigate three types of similarity metrics: queueing delay measured by sandwich probes, delay variance
measured by packet pairs, and loss rate measured also by packet pairs. Unlike previous work which first
assumes the network topology is a binary tree and then tries to generalize to a non-binary tree, we provide a
framework which directly deals with general logical tree topologies. Based on our proposed finite mixture
model for the set of similarity measurements we develop a penalized hierarchical topology likelihood that
leads to a natural clustering of the leaf nodes level by level. A hierarchical algorithm to estimate the topol-
ogy is developed in a similar manner by finding the best partitions of the leaf nodes. Our simulations show
that the algorithm is more robust than binary-tree based methods. The three types of similarity metrics are
also evaluated under various network load conditions using ns-2.

1 Introduction

The infrastructure of a packet network is composed of switching devices (as nodes) and communication chan-

nels (as links). It is constantly changing due to devices going on-line and offline, and the corresponding routing

table updates. The topology information of the infrastructure can be revealed by packet routes across the entire

network. Tools such as traceroute trace a packet route by collecting responses from all the switching de-

vices on the route. This kind of cooperation from the network has a negative impact on network performance

and security, and such cooperation is likely to become more difficult in the future. Due to this reason the prob-

lem of discovering the network topology based only on end-to-end measurements has been of great interest

[1, 2, 3, 4, 5, 6].

Estimation of internal network statistics or parameters using end-to-end information belongs to the research

category called network tomography [7]. This type of network inference strongly resembles a standard inverse

problem dealing with estimated internal parameters of systems from external measurements. Network tomog-
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raphy approaches have been applied to the estimation of link statistics such as packet drop rates [8, 9, 10] and

delay distributions [11, 12, 13].

[1] and [3] provided pioneer work in discovery of multicast network topologies. They specifically targeted

the identification of the network’s logical tree structures. A logical network structure is an abstraction from the

physical topology which shows only the nodes that differentiate multiple paths. In other words, a node with a

single ingress and single egress link is absorbed into the link connecting its neighbors. By sending multicast

probes from the root node of the tree to a pair of the leaf nodes, one can estimate the successful transmission

rate on the shared portion of the probe paths based on end-to-end loss. Those rate estimates were used by the

deterministic binary tree classification algorithm (DBT) [2, 3, 4] to construct a binary logical tree in a bottom-

up mannar. This agglomerative algorithm selects the pair of leaf nodes which suffer the most severe loss on

the shared path, and connects them to a new parent node. The parent node is then treated as a leaf node which

represents the original pair of leaf nodes. The loss rates on the two newly added links are also computed. This

process is repeated until only one leaf node is left, which becomes the root of the binary tree. To our knowledge

all the agglomerative estimation algorithms for binary trees use similar methodology to the DBT [5]. The

extension to a general tree is basically done by pruning the links with loss rates less than some heuristically

selected threshold. The DBT algorithm was also extended to use other metrics such as packet delays [3, 4].

The fundamental idea of topology inference falls in the framework of metric-induced network topologies

(MINT) [14]. Every path is associated with a metric function, such as the successful transmission rate or

the average delay over the path. The identifiability of the topology using DBT is then guaranteed by the

monotonicity of this function. A metric is monotone if for any path its value is strictly less (such as successful

transmission rates) or greater (such as delays) than that of a subpath. Such monotonicity depends on the probing

scheme which estimates the shared path metric from the edge measurements. For example, when end-to-end

packet loss is measured from multicast probes, packet loss rate on the shared path from root to a pair of leaf

nodes can be estimated. The loss rate then has increasing mononicity given every link on the shared path has

non-zero packet drop rate.

Topology estimation in unicast networks was investigated by Castro et al. [5, 15, 16]. They invented a method

of probing, called sandwich probes, in which each probe sends a large packet, destined to one of the two selected

leaf nodes, between two small packets, destined to the other. The second small packet always queues behind

the large one until they seperate from each other. Its corresponding queueing delay over the shared probe

path becomes the path metric. Under a light load assumption, this metric value equals the delay difference

between the two small packets. Castro et al. also proposed a binary tree construction algorithm similar to
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DBT, called the agglomerative tree algorithm (ALT), which modifies DBT to account for the variability of the

measurements through the spread of its probability density function (pdf) [5]. The special case of Gaussian

distributed measurements was previously called the likelihood-based binary tree algorithm (LBT) [15]. To

compensate for the greedy behavior of the ALT, causing it to reach a local optimum in many cases, as well as

to extend the result to general trees without using a threshold, they introduced a Monte-Carlo Markov Chain

(MCMC) method to generate a sequence of tree candidates by birth (node insertion) and death (node deletion)

transitions [5, 16]. The tree candidate which gives the highest likelihood is adopted as the estimate of the

topology.

In this paper we propose a general method for estimation of unicast network topologies. As in [3] and [16]

we focus on estimation of the logical tree structure of the network. Unlike previous work in which a binary tree

is first estimated and then extended to a general tree using heuristic thresholds or Monte-Carlo methods, our

method accomplishes direct estimation of a general binary or non-binary logical tree. The key to our approach

is a formulation of the problem as a hierarchical clustering of the leaf nodes based on a set of measured pair-

wise similarities. Each internal node specifies a unique cluster of descendant leaf nodes which share the internal

node as their common ancester. Each leaf node itself is also considered as a single-node cluster. The clusters

specified by sibling nodes, i.e., nodes having the same parent, define a partition for the set of descendant leaf

nodes specified by the sibling nodes’ parent. Given a partition we call a pair of leaf nodes intra-cluster if each

node in the pair is in the same cluster, otherwise they are called inter-cluster [5].

The similarity of a pair of leaf nodes can be represented by an MINT metric function associated with the path

from the root to the nearest common ancestor of the two leaf nodes [5, 16]. Any probing scheme that produces

accurate estimates of a discriminating similarity metric can be applied here. We investigate three different types

of similarity metrics that can be estimated from end-to-end measurements: queueing delay using sandwich

probes, delay variance using packet pairs, and loss rate also using packet pairs. We modify the likelihood

model for the pair-wise similarities used in [5, 15, 16] to include a prior distribution on the nearest common

ancestor node of each pair of the leaf nodes. It results in a finite mixture model with every mixture component

corresponding to a distinct internal node. An unsupervised PML-EM algorithm is developed to estimate the

mixture model parameters using an MML-type of penalty for excessively high model order selection.

For the set of descendant leaf nodes specified by an internal node and the partiton defined by the internal

node’s children, the mixture component with the smallest mean corresponds to the inter-cluster pairs of leaf

nodes. We call this component the inter-cluster component. To define the likelihood of a partition we express

the set of leaf node pairs as the union of the set of inter-cluster pairs and the set of intra-cluster pairs for each
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cluster. The partition likelihood is then formulated as the product of individual intra-cluster likelihoods times

the inter-cluster likelihood. Each intra-cluster likelihood obeys a finite mixture model and the inter-cluster

likelihood is determined by the inter-cluster component. A new topology likelihood is then hierarchically

formulated as the product of each (conditional) partition likelihood resulting from the tree topology.

Topology estimation is performed by a recursive search for the best partitions of the leaf nodes from the

top to the bottom of the logical tree. The partition algorithm utilizes a clustering procedure based on the

connectivity of a complete graph derived from the finite mixture model of the leaf node similarities. To reduce

the complexity in the graph-based clustering we propose a pre-clustering step which aggregates only the highly

similar leaf nodes into a group. We also suggest a progressive search algorithm for the inter-cluster component,

which is the key element for deriving the complete graph. If the mixture model estimate is too coarse it is

possible to merge the inter-cluster component with others and produce an overly fine partition. We propose to

use a post-merging algorithm to solve this problem.

To summarize we list the major differences of our algorithm from the DBT and ALT algorithms: (1) the

use of hierarchical topology likelihood with finite mixture models and MML model order penalties; (2) the

top-down recursive partitioning of the leaf nodes which directly yields a general logical tree for the topology

estimate without using heuristic thresholds or Monte-Carlo methods; (3) the estimation of leaf node partitions

using graph-based clustering and unsupervised learning of the finite mixture models; (4) the intelligent search

of the partition likelihood surface using the graph clustering procedures.

The performance of our algorithm is compared with the DBT and LBT using matlab model simulation

under a wide range of conditions on the magnitudes and variances of the similarity estimates. The results show

that our algorithm generally achieves a lower error distance to the true topology and a higher percentage of

correctly estimated trees when the distance is measured by a graph edit distance metric specialized to trees,

called tree edit distance [17, 18, 19, 20]. The three candidate probing schemes are evaluated on a ns-2 simu-

lated network using our algorithm. The Monte-Carlo simulation shows the queueing delay metric measured by

sandwich probes have the best performance when the network load is light. For a moderate load situation the

delay variance metric measured by packet pair probes provides the most reliable similarity estimate for the leaf

nodes. When the network is congested with heavy traffic the loss rate metric measured by packet pair probes

generates the most accurate topology estimates. We also use graph edit distance to define the distribution of

topology estimates and illustrate the idea with a network simulated in ns-2 [21].

This paper is organized as follows. In Section 2 we set up the logical tree network model. The probing

methods and the associated similarity metrics are also introduced. In Section 3 we derive the finite mixture
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model for the end-to-end similarity measurements. Based on this model we define the partition likelihood and

the hierarchical topology likelihood that will be used in the estimation algorithm. In Section 4 we provide

the PML-EM estimation algorithm for the proposed finite mixture model. Then we illustrate the hierarchical

topology estimation algorithm (HTE) which recursively partitions the leaf nodes based on graph connectivity.

In Section 5 we conduct comprehensive simulations in matlab and ns-2 to evaluate the performance of

our algorithm with different probing methods and under various network environments that violate the spatio

temporal stationarity assumptions. Section 6 provides the conclusion and discusses future work.

2 Background

2.1 Problem Formulation

Our work focuses on the problem of estimating logical tree network structures given end-to-end statistics mea-

sured by probes sent from the root to the leaf nodes. We assume the root and the leaf nodes are the only

accessible nodes to the estimator. There is no cooperation from routers or other devices on interior links of the

network. We do not exploit any prior information on the number of the internal nodes or their interconnections.

A directed logical tree is defined by two sets of objects: as the set of nodes, and as the set

of directed links. can be expressed as the union: , where the root is defined as node 0,

denotes the set of internal nodes and is the collection of leaf nodes. We let the root be the only node

having a single child node, while all internal nodes have at least two children and the leaf nodes have none.

Thus in order to translate a real network into a logical tree we have to ignore all of the internal devices which

have single inbound and outbound links, and connect their parent and child nodes by virtual links. Such devices

are not identifiable from the end-to-end measurements.

We also define the following useful notations regarding a logical tree . For a node ,

let be the parent node of . Then denotes the set of children of

. The nodes in are sibling nodes because they share the same parent. can be formulated as

the union of two disjoint sets: the set of leaf node children and the set of internal node

children . Let represent the set of internal nodes whose

children are not all leaf nodes. We define recursively the composite function with

. So we say is a descendant of , denoted by , if and only if for

some . Let be the set of descendant leaf nodes of .

We adopt the following labelling scheme for the logical tree. The leaf nodes are labelled from 1 to , where
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is the total number of leaf nodes. The labels for the internal nodes start from to . The

links are numbered corresponding to their child end nodes, i.e., link connects node to . The topology

estimation problem is illustrated in Figure 1, where the topology on the right is an example of a logical tree.

Topology estimation can be formulated as hierarchical clustering of the leaf nodes in which each group of

nodes may be recursively partitioned into subgroups [5, 6]. The corresponding tree is known as a dendrogram.

Each internal node in a dendrogram specifies a unique cluster of leaf nodes . The clusters specified

by children nodes in , i.e., , define a partition of . Each leaf node itself is also

considered as a cluster, called a trivial cluster. For example, the children of node 7 in Figure 1 divide up the

leaf nodes into two groups: 1,2 and 3,4,5,6 , where the second group contains subgroups 3 , 4 , and

5,6 according to the set of child nodes .

Hierarchical clustering has been widely studied in many areas such as database classification and machine

learning [22, 23, 24, 25, 26]. It relies on a measure of pair-wise information, e.g., similarity or inter-object

distance, to partition the input objects. The objects in one (sub)cluster must be more similar to each other than

to those in the remaining (sub)clusters. Suppose the similarity between each pair of leaf nodes can be expressed

by some quantitative measure , called a similarity metric. Let be the similarity metric value associated

with a specific pair of leaf nodes , . Assume that and . The latter indicates that an

object is the most similar to itself. Given a partition of leaf nodes, define the intra-cluster similarities as those

between two leaf nodes in the same cluster, and the inter-cluster similarities as those between two leaf nodes in

two different clusters [5]. Figure 2 shows an example of inter-cluster and intra-cluster pairs of leaf nodes with

respect to the partition specified by internal nodes 6 and 7 in the logical tree to the left. The intra-cluster pairs

are denoted by ’A’ and the inter-cluster pairs are denoted by ’B’ in the table to the right.

In general, if the clusters are good, the inter-cluster similarities should be smaller than the intra-cluster ones.

Define as a hierarchical clustering of the leaf nodes, i.e., a set of groups of leaf nodes into clusters and

subclusters, along with the set of for all leaf node pairs. We propose to define a similarity clustering

tree given a hierarchical clustering as follows. The root node in corresponds to the top-level

partition in , and is associated with the set of all inter-cluster similarities for that partition. Each cluster

containing two or more leaf nodes corresponds to a child node of the root and is associated with the set of all

inter-subcluster similarities. This process is repeated recursively for all the partitions having non-trival clusters.

The set of similarities associated with a node in is called a similarity set. A similarity set is called trivial

if all the inter-cluster similarities in the set are between two trivial clusters, otherwise it is non-trivial. All the

’s in the same set are assumed to be equal, and they are always greater valued than those associated with
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Figure 1: Illustration of the topology estimation problem. The logical tree (right) has
, and , where the links are numbered af-

ter their child end nodes.

the parent node of . Figure 3 shows the hierarchical clustering for the leaf nodes in Figure 1 and the

similarity clustering tree . The trivial similarity sets in are and . It is easy to verify

that is a bijective mapping from to a tree graph, which means topology estimation is also equivalent

to hierarchical grouping of the pair-wise similarities. This property will be the key to the development of our

algorithm.
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Figure 2: Illustration of inter-cluster and intra-cluster pairs of leaf nodes with respect to the partition specified
by internal node 6 and 7 in the tree to the left. The intra-cluster pairs are denoted by ’A’ and the inter-cluster
pairs are denoted by ’B’ in the table to the right.

In topology estimation, the concept of Metric-Induced Network Topology (MINT) introduced by Bestavros

et al. [14] provides a framework for defining the similarity metrics. Each path in an MINT is associated with

a metric function. Note that each node in the similarity clustering tree corresponds to a unique internal node

in the topology which is the nearest common ancester shared by each pair of the leaf nodes in the associated

similarity set. It implies the following connection between the MINT and the similarities. Define as the

directed path from node to for , which is expressed as the union of the links intersecting the path. To
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Figure 3: The hierarchical clustering C of the leaf nodes in Figure 1 (left) and the corresponding similarity
clustering tree (right).

simplify the notation we let for . Let be the nearest common ancestor of leaf

node and . Then each is uniquely mapped to a similarity set in which includes . Hence

we can define as the metric function for in the MINT [15, 16]. Moreover, one can observe that a

deeper node in the similarity clustering tree always corresponds to a longer . This means must

obey a (increasing) monotonicity property with respect to the length (number of hops) of the path . The

properties of are summarized as follows [14, 16]:

P1) Monotonicity: if is a proper subpath of , for and , .

P2) Consistency: if , for and , .

It is easy to verify that P1) and P2) are sufficient conditions for finding a unique similarity clustering tree based

on the set of ’s.

2.2 End-to-end Unicast Probing Schemes

In this section we discuss three possible schemes of unicast probing and induced similarity metrics that can be

used for topology discovery. We assume the network topology and the traffic routing remain unchanged during

the entire probing session. In our modeling we also assume the following statistical properties on the network

environment:

A1) Spatial Independence. The link delays of a packet over different links on its path are independent. The

link delays of different packets on different links are also independent.

A2) Temporal Independence and Stationarity. The delays of different packets over the same link are

identically and independently distributed (i.i.d.).
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In our ns-2 simulations we verify that these assumptions are not critical for satisfactory performance of the

model. All of the probing schemes can be implemented in a similar way to estimate and extract the

topology. Assume each probe contains multiple unicast packets which are sent from the root node to one of the

two (randomly) selected leaf nodes and . All the packets share the same traffic route until they diverge toward

different destinations. To make it easy to convey the idea, we define the binary logical tree formed by the union

of path and as a probe tree, denoted by . There are a total of probe trees in . Note that

is the intersection of and , and is called the shared path of probe tree . The two branches in

are and . In Figure 4 we depict an example of a probe tree for sandwich probes discussed

below. The shared path includes link 6 and 8. The branch includes link 9 and 5, and is

link 3. An estimate of is computed from the end-to-end statistics collected by the probe packets, denoted

by for the th sample for . Moreover, unlike delay tomography, the probe source and the receivers do

not need to have sychronized system clocks because a constant shift in the mean of delay measurements doesn’t

affect the estimate for any type of the similarity metric that is introduced below. [11, 12, 13].

2.2.1 Sandwich Probes

Sandwich probes were invented by Castro et al. in [15] for the similar purpose of topology estimation. Each

probe contains three time-stamped packets: two small packets and one big packet sandwiched between the two

small ones. The small packets are sent to one of the two leaf nodes, while the large packet is sent to the other.

In Figure 4 the small packets A and C are sent to node 5 and the large packet B is sent to node 3. According

to [15] a little space is inserted between packets A and B to reduce the possibility of packet C catching up

to packet A after it seperates from B. The idea of sandwich probing is that the second small packet always

queues behind the large packet until they seperate from each other at node , suppose the probe is sent

along , so the additional queueing delay suffered by the second small packet can be considered as a metric

on . In the example shown in Figure 4, when the network is free from any background traffic packet B

causes (deterministic) queueing delays for packet C on link 6 and 8, while packet A encounters no delay at all

in any link queue. With a non-random transmission and processing delay for each link, the end-to-end delay

difference between A and C is exactly the sum of the queueing delays of C at link 6 and 8. It is obvious that

in this ideal case the delay difference satisfies P1) because it sums positive queueing delays over the links on

, and it also satisfies P2) as long as the size of the large packet remains fixed.

When there is background traffic in the network, the queueing delays become random. The delay difference

measurement can be approximated as its deterministic value in a load-free network (the signal) plus a zero mean
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Figure 4: A sandwich probe example. The small packets A and C are sent to node 5 and the large packet B is
sent to node 3. The probe tree is defined by the routes of the probe packets, which consists of links 3, 5, 6,
8, and 9. The metric is the end-to-end delay difference between A and C.

random noise. It is reasonable to assume the noise has zero mean because the variability in queueing delays

causes the two small packets to be further or closer to each other with approximately equal likelihood. The noise

might also be assumed to be i.i.d. due to the independence and stationarity assumptions. The performance of

the topology estimate will scale with the signal-to-noise ratio (SNR) defined as the square of the signal over

the noise variance. As the network load grows the variance of each queue size increases and the SNR reduces

accordingly. A possible failure in this situation occurs when the second small packet in the sandwich catches

up to the first small one after it jettisoning the large packet. Although the queueing delay variance may drop in

a saturated network where the link queues remain nearly full all the time (when the queue capacities are fixed

in bytes), other failures could occur. For example, the large packet could be discarded by the network before

it reaches the branching point of the probe tree. Besides, heavy packet loss may prevent us collecting enough

samples in a short period of time for which the network can be considered stationary. Therefore, one can expect

the sandwich probes to have the best performance in a lightly-loaded environment.

2.2.2 Packet Pair Probes

Packet pair techniques have been previously applied to flow control and bottleneck bandwidth estimation in

networks [27, 28, 29]. Recently packet pairs were also used to perform in network loss and delay tomography

[9, 12, 13]. A packet pair probe consists of two closely-spaced packets, generally with the same small size.

They are both sent from the root node but routed to two different leaf nodes. Figure 5 depicts an example of

packet pair probe. The main assumption justifying the use of packet pair probes is the following:
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Figure 5: A packet pair probe example. Packet A and B are sent back-to-back from the root node to node 5 and
3, respectively. We assume they stay together and encounter identical delays on shared path which includes
link 6 and 8.

A3) Delay Consistency: the queueing delays of the two packets in a packet pair probe are identical with

probability 1 when they travel along the shared path.

Practically speaking, even if the two packets stay close to each other until their paths diverge, the second packet

still tends to have larger queueing delays than the first one on the shared path due to possible intervening packets

from other traffic flows (cross traffic). Such effects can be reduced by randomly ordering the two packets [30].

Suppose the packet pair probes are sent through the probe tree . Let the queueing delay over the shared path

be for the packet sent to node and for the packet sent to node

, where denotes the queueing delay over for the first packet in the probe. The random ordering

of the two packets makes and have approximately the same mean, i.e., the mean of . Under

the stated statistical assumptions the difference can be modelled as an i.i.d noise process.

The first type of metric that can be retrieved from the packet pairs is delay variance. The independence

assumption A1) implies that the (queueing) delay over a path has a variance equal the sum of the delay variance

for each link. This variance is also monotonically increasing with respect to the number of links in the path as

long as each link introduces non-zero variance to the packet delay. The consistency property can be achieved

if the delay variance over can be calculated from end-to-end delays of packet pairs sent through . Let

be the end-to-end delays of the th packet pair sent along the probe tree , where

and denote the delays toward and , respectively. We also define , and as

the delays of the th packet pair over path , , and , respectively. From assumptions A1)–

A3) we know are independent for all . So the variance of can be computed by
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. This relationship is depicted in

Figure 6.

For each probe tree we need end-to-end delay measurements to obtain a sample of the delay variance

over using the unbiased covariance estimator

(1)

where , for . Experience has shown that is usually around

20 or 30. This means that the number of packet pairs needed to probe the network should be at least as large as

that of the sandwich probes multiplied by an order, provided the same number of metric samples are collected.

However, this does not necessarily imply the time length of the probing session or the overhead of the network

load is also as large or larger. The reason is that the size of a sandwich probe is generally larger than the packet

pair size. A typical packet pair probe consists of packets containing a few tens of bytes. However, a sandwich

probe normally contains hundreds of bytes due to the need for a large middle packet. Indeed the packet in

the middle of a sandwich probe needs to be large enough to induce distinguishable queueing delays. Its size

requirement will become higher and higher as the network speed of communication becomes increasingly

overprovisioned to accommodate larger and larger bursts of user traffic. Furthermore, the probing rate needs to

be controlled to keep a minimal impact on the network. When the rate is held fixed for packet pair and sandwich

schemes, it takes an order magnitude longer time to send the same number of sandwich probes as packet pair

probes.

For packet pair probing the identifiability of a link in the network relies on the relative magnitude of the

queueing delay variance in each link. Hence, one can expect packet pair probing to be ineffective for lightly-

loaded environments where there is little background traffic to provide sufficient variation in queueing delays.

On the other hand, when a link is congested, the high packet drop rate causes a similar problem for the sandwich

probes. Therefore the best situation for packet pair probes with delay variance metrics is a moderately-loaded

network.

The second type of metric we propose to use with the packet pair is packet loss rate. Assumption A1)-A3)

can be extended by interpreting packet losses as infinite delays. It implies for a probe tree the packet pair

either both survive (with finite delays) or both get dropped (with infinite delays) on the shared path . For

simplicity we do not consider the case where their loss events are correlated (with a correlation coefficient less

than 1). Coates and Nowak [9] studied this correlated case in network loss tomography and our methods can

be extended to this scenario once a suitable similarity metric has been identified.
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Figure 6: A logical probe tree is shown to illustrate the computation of the delay variance over from
end-to-end delays. Due to the independence of , , and , .

Figure 7 shows a probe tree with packet loss rates , and over path , and

, respectively. Define the following probabilities:

(2)

Let be empirical estimates of , respectively. Then the packet loss rate over

can be estimated by

for (3)

Eqn. (3) implies the consistency property for the loss metric, and the monotonicity property holds provided

each link has non-zero packet drop probability. Similar to the covariance estimator in (1), one needs to collect

packet pairs for a single sample of . Unlike the previously discussed two schemes, packet loss now

provides sufficient information to identify the topology for highly congested networks.
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Figure 7: A logical probe tree is shown to illustrate the estimation of the packet loss rate over from
end-to-end loss rates.

3 Hierarchical Topology Likelihood Using Finite Mixture Models

3.1 Finite Mixture Model for Similarity Estimation

Modelling the behavior and dynamics of today’s network has been an active research area for decades [31,

32, 33, 34, 35]. It is a difficult task due to the large-scale heterogeneity and non-stationarity of the network

environment. Several delay models in the network has been proposed based on theoretical analysis and/or

real network data (see, e.g., [36, 37, 38]). Most of them are theoretically justified for an M/M/1 or other

queueing system. Others are heuristically justified based on measurements of a given type of the network.

Some combined elements of both theoretical and experimental modelling. So far there is no evidence known to

us that any existing delay model will be applicable to all traffic conditions. An exception is modelling packet

loss in a stationary network. It is widely accepted to use Bernoulli process as the packet loss model for packet

loss in stationary environments [8, 9, 10].

To establish a simple and unified framework for metrics based on either packet delay or loss, we adopt the

following strategy. Firstly observe that the metric samples estimated from data along probe tree , e.g.,

the sandwich delay difference, packet pair delay covariance in (1), or packet loss rate in (3), are i.i.d according

to A1) and A2). If we average every samples , the result will be approximately Gaussian distributed

when is large, according to the Central Limit Theorem (C.L.T.). We call the averaged samples normal-

ized similarity samples, denoted by for the th sample for . Note that to compute one normalized

sample it requires sandwich probes, packet pairs using covariance metric, or

packet pairs using loss rate metric. are also i.i.d. for all . Secondly, we find if ,

then and have the same mean as . However, there is no guarantee that their variances are

also the same. As one averages and their variances decrease linearly by a factor of as does
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the variance of the difference between them. With being large, as required by the C.L.T., this difference

becomes negligible. We will make the large assumption that and have approximately iden-

tical Gaussian distribution with mean and variance . We state this approximation formally as a Lemma:

Lemma 1. Let be the average of i.i.d. metric samples . As , and

become equal in (Gaussian) distribution if , for and , .

A simple model can be drawn from Lemma 1 as follows. Let the set of normalized similarity samples for

be , and let . Also define and . For an internal

node in the logical tree network, we define as the set of probe

trees whose branches split at node . Let . The set of normalized similarity samples for

is . Let . According to Lemma 1 the samples in are i.i.d.

realizations of a Gaussian distribution with parameters . Therefore a simple model for can be

formulated by

(4)

where denotes the Gaussian pdf and . For the example in

Figure 1, , where

, , , and . Eqn. (4) is

similar to the model used in [5]. The problem in topology estimation is then to simultaneously determine the

, , and which maximize the likelihood. Although Eqn. (4) is simple and straightforward, it is

not suitable for efficient estimation algorithms. One must determine the topology, i.e., and , before

maximizing the likelihood with respect to because is only evaluated at . Therefore the global

maximum likelihood (ML) estimate can only be found by either exhaustive or Monte-Carlo search [5].

Herein we provide an alternative model which will be used later to develop an unsupervised estimation

algorithm. Suppose the set of internal nodes is known and the cardinality is provided for each ,

but there is no knowledge of the common parent node for any pair of leaf nodes . A reasonable prior

distribution of is for . Given

we have , which is known as a finite mixture model (see, e.g., [39]). A

finite mixture model is generally expressed as the convex combination of probability density functions:

, where , , and is an arbitrary pdf for .

The ’s are called the mixing probabilities, and the ’s are the mixture components. is the number of
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mixture components in the model, often referred as the model order of . If the ’s are all Gaussian (with

different parameters) then is a Gaussian mixture. Given the mixture models for the similarities the

distribution of becomes

(5)

Note that the model order for the similarities estimated from each probe tree equals the number of the

internal nodes of the tree. Each mixture component corresponds to a unique internal node and

is contributed by if . For the example in Figure 1, using the mixture model gives

. The key dif-

ference between the models in (4) and (5) is that in the common parent node is distributed

according to some discrete prior instead of being a deterministic value. This relaxation leaves the prior, along

with other parameters in the model, to be determined by unsupervised estimation of the mixture model, which

can be implemented using the expectation-maximization (EM) algorithm [40, 41]. To discover the topology,

the similarity sets in are determined by associating each with the component that the probability

of being contributed by it is the maximum over all the components in .

3.2 The MML Penalized Likelihood for The Mixture Model

Likelihood-based estimation of the parameter in the mixture model

(6)

for falls in the category of missing data problems. To avoid the complication

of optimzing the ’s over discrete values in the EM algorithm, we assume is continuously

distributed over the region , . For a given model order ( also denotes the number

of internal nodes) the unobserved data in our case is , which indicates the contributing component for

each . Define the unobserved indicator function for by if is contributed

by the th component, and otherwise. Along with the observed data , the set is

called the complete data. The ML estimate of with a given can be obtained by using the EM algorithm

[40, 42] which generates a sequence of estimates with nondecreasing likelihoods.

However, when is unknown this becomes a model selection problem and the ML criterion can cause an

overfitting problem in which a higher model order generally results in a higher likelihood. A strategy to

balance the model complexity and the goodness of data fitting is to add model order penalties to the likeli-

hood [43]. We adopt a criterion called Minimum Message Length (MML) [44] to derive the penalty function.

16



MML has been widely used in unsupervised learning of mixture models [12, 40, 41, 45]. The incomplete data

penalized log-likelihood is generally expressed as [40]

def (7)

for observed data Y and parameter set , where is the Fisher information matrix (FIM) associated with

, denotes the determinant operator, is the dimension of , and is the so-called optimal quantizing

lattice constant for .

For a given model order our choice for the prior distributions of the parameters follows the approach of

[41]. The mixing probabilities in have a uniform prior:

for and

For being a Gaussian mixture, for . The prior for is uniform between 0

and , where is the standard deviation of the entire population :

for

We also take a uniform prior for distributed within one standard deviation of , where is the mean

of the population :

for

The prior for the model order is assumed uniform between two pre-determined bounds and . It is

a constant and can be ignored. With the assumption that the parameters are independent, we have

(8)

In general it is difficult to derive a closed form for the FIM of finite mixture models with more than one com-

ponents. The authors of [41] suggested to replace the determinant of the FIM by the product of the determinant

of the FIM for each component times the FIM determinant for the mixing probabilities. Hence

(9)

where is the FIM for and is the FIM for the th component having associated parameters .

can be expressed as

(10)
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where is the FIM associated with for the th component:

(11)

Therefore

(12)

To determine the FIM for one can view the as being the parameters of a multinomial distribution which

selects ’s from internal nodes with the probability of choosing the th internal node being ,

where is the total number of probe trees. Hence

(13)

We do not require a particular ordering on the components, so the corresponding factorial term in the MML

expression (7) can be removed. Since there are a total of possible permutations for the components, the

likelihood penalty is then decreased by . Besides, we also approximate by as in [41].

Substituting (8)-(13) into (7) we have

(14)

The details of the algorithm maximizing (14) over will be provided in the next section.

3.3 The Hierarchical Topology Likelihood

Eqn. (14) is difficult to use directly for topology estimation due to identifiability problems even with the over-

modelling MML penalties. Recall that each internal node in the topology corresponds to a unique component

in the finite mixture model. Consider the example in Figure 1 once again. If , the estimates

and admit identical Gaussian distribution using an approximation similar to Lemma 1. Hence we are

not able to find the correct set of internal nodes because the two mixture components merge to a single one.

To overcome this problem we propose a hierarchical definition of the topology likelihood which recursively

evaluates each partition likelihood and hierarchically clusters the leaf node pairs into groups having common

similarities.

First consider a group of leaf nodes . Let be the set of pair-wise

similarity metrics for G, and be the normalized samples of . Let

be a partition of where are disjoint subsets of which may contain
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subclusters. Without loss of generality, let be the clusters containing two or more leaf nodes,

and be single-node clusters. According to the monotonicity property the inter-cluster ’s

share the smallest value in . Hence the set of all inter-cluster ’s, denoted by , obey a Gaussian

distribution which has the smallest mean over . This means for the finite mixture model of the

component with the smallest mean contributes . We call this component the inter-cluster component of

and let denote its parameter set. All other components are contributed by the intra-cluster

’s. Let be a cluster with two or more leaf nodes, i.e., . The set of intra-cluster ’s

in , denoted by , also follows a finite mixture model by itself. Let be the mixture parameter

set for . If has exactly two leaf nodes or all the subclusters in are trivial, i.e., single leaf

node subclusters, degenerates to a single component density function. We define the penalized

partition likelihood as:

def (15)

where . For example, the partition specified by the children of node 7 in

Figure 1 divides up into two clusters with

, , , and . Hence

(16)

Similarly for cluster , which has a subclustering due to

common parent node 9, we can also formulate its (conditional) partition likelihood as

(17)

where , , , and . Recall that the similarity

sets associated with a similarity clustering tree are sets of inter-(sub)cluster similarities. Comparing (16)

and (17) to the in Figure 3, the inter-cluster term in each partition likelihood represents the likelihood of

the normalized samples for a unique similarity set associated with .

This example motivates the following hierarchical topology likelihood for the logical tree in Figure 1:

(18)

where . recursively sums up the partition likelihoods whose inter-cluster terms

correspond to non-trival similarity sets. Those ’s corresponding to trivial similarity sets are not included
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because they already appear as intra-cluster terms in (18). For a logical tree the general formula

for the hierarchical topology likelihood is

(19)

where denotes the partition specified by child nodes in .

The evaluation of mimics exactly the construction of the similarity clustering tree with each

corresponding to a unique node in associated with a non-trivial similarity set. It may seem that estimation

using the hierarchical topology likelihood will lose the ability to perform unsupervised learning because one

needs to specify the hierarchical clustering of the leaf nodes before evaluating . This is not true because

the clustering itself is performed using the parameter estimates of the finite mixture model. Note that the

partition for is uniquely determined by the inter-cluster similarity set corresponding to , which

can be inferred by the inter-cluster component in because that component is supported by the

normalized samples of the particular similarity set. The details of the clustering algorithm will be provided in

the next section. Before explaining the algorithm we would like to make a comment about our model. So far the

model is restricted to Gaussian mixture components due to the C.L.T. approximation. In fact, (5) also holds for

non-Gaussian ’s as long as and are approximately equal in distribution when . This

non-Gaussian mixture approach may be useful in the small sample regime, e.g., where the metric might

be approximated by a multivariate Gamma distribution. In that case our model can be extended accordingly,

which may be useful when new probing and/or approximation methods are proposed in the future.

4 Topology Estimation Algorithm

4.1 Estimation of The Finite Mixture Model

We first illustrate the estimation of the proposed finite mixture model in (6) using the EM algorithm.

Lets assume the model order is known for the time being. As discussed in the previous section the complete

data for our model is , which has log-likelihood (without model order penalties) equal

(20)
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The E-step in the -th iteration computes the conditional expectation

(21)

where

(22)

and

(23)

The M-step maximizes (21) with respect to :

(24)

argmax (25)

When is Gaussian the M-step for becomes

(26)

(27)

The optimal model order can be determined as follows. We assume and are the lower and upper

bounds for , respectively, which are determined according to some a priori information. If such information is

unavailable, when the maximum possible value for is , which corresponds to a binary (sub)tree

with dangling leaf nodes (see Figure 8(a)), and the minimum possible value for is 1, which corresponds to the

case where all the leaf nodes are siblings (see Figure 8(b)). For each we obtain the maximum

likelihood estimate of the parameters using the EM algorithm, and compute the penalized log-likelihood

by (14). The optimal model order is then chosen as the one which achieves the maximum

penalized likelihood.
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Figure 8: Illustration of logical tree topologies corresponding to mixture models with maximal possible model
order (a) and minimal possible model order (b) when there are 4 leaf nodes in the network.

4.2 Hierarchical Topology Estimation Algorithm

We propose a greedy algorithm to estimate the logical tree topology hierarchically. It is a top-down approach

that partitions the leaf nodes recursively. First we use to find the most coarse partition specified by the

sibling nodes in for being the root node’s child, then we determine if there exists any finer subpartition

within each cluster. This process is repeated until no finer partitions are found. Figure 9 shows an example

which illustrates how the algorithm works. Figure 9(a) is the true topology of the network. The estimator first

identifies 3 clusters in : , which are the 3 encircled groups in Figure

9(b). The two shaded vertices are the internal nodes found by this initial clustering. In the next iteration

the estimator determines there is no subpartition existing in the second cluster, but the third cluster includes

4 subclusters. These subclusters are illustrated in Figure 9(c) and they define two more internal nodes in

the topology which are depicted again as two shaded vertices. This iterative procedure is greedy because in

each iteration it focuses on finding the optimal partition within the current cluster of the leaf nodes without

considering other clusters or any possible subpartitions in the subsequent iterations.

The key to the hierarchical topology estimation algorithm is to find the partition of the leaf nodes. Our

algorithm is motivated by the following observation. First we label the component having the smallest mean in

by component 1 for some subset of leaf nodes . Assume there is no estimation error in the

mixture model. In this ideal case component 1 is the inter-cluster component supported exactly by all the inter-

cluster ’s. Then the conditional mean in (22) for has a value if is an inter-cluster pair

and otherwise, because can be viewed as a conditional mean estimator (CME) of the function

indicating whether is contributed by the inter-cluster component. Consider an undirected complete

graph whose vertices are the leaf nodes in such that there exists an edge between every pair of the
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Figure 9: Illustration of the hierarchical topology estimation. (a) depicts the true topology. (b) and (c) are the
first and second iterations in the estimation process, respectively. The encircled groups of leaf nodes are the
clusters found by the estimator, which are used to identify the shaded internal nodes.
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Figure 10: The partition of leaf nodes in Figure 9(c) based on graph connectivity. The solid
edges have weights , and the dotted edges have weights . The vertices enclosed by the same circle
denote a cluster of the leaf nodes.

vertices. If we specify a weight

weight (28)

to every edge , one can easily find that a vertex in strongly connects only to its peers in the same cluster.

This implies that the partition of the leaf nodes can be estimated from the connectivity of . The partition in

Figure 9(c) using graph connectivity is depicted in Figure 10.

Clustering algorithms using graph-theoretic approaches can be found in many research areas such as the

clustering of gene expression data and the information retrieval in the WWW [46, 47, 48, 49, 50]. Basically any

graph-based clustering algorithm for weighted graphs could work for our purpose. Here we describe a simple

algorithm proposed in [48], the Highly Connected Subgraph (HCS) algorithm. It was originally developed for

unweighted graphs where all the edge weights equal to one, but can be easily generalized for weighted graphs.

Let be a graph both undirected and weighted, where is the set of vertices and is the

set of edges. Every edge in has a nonnegative real weight . The degree of a vertex , , is

the number of edges connected to . A cut in a graph is defined as a set of edges whose removal results in a

disconnected graph. The total weight of the edges in a cut is called the cut weight of , denoted by . A

minimum cut (mincut) is a cut with a minimum weight. The weight of a mincut is called the connectivity of the

graph, denoted by . Note that the mincut of a graph may not be unique, especially when the graph is

unweighted.

The key definition for HCS is the following: A graph with vertices is called highly connected if

. An important property of a highly connected complete graph can be obtained by modification

of Theorem 1 in [48], which is provided below:
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Table 1: The HCS algorithm.

HCS( )
begin

MINCUT( )
if ( is highly connected)

return ( )
else

HCS( )
HCS( )

end if
end

Theorem 5.1. The average weight of the edges connected to a vertex in a highly connected complete graph

is larger than .

Proof. Let be the number of vertices in . Since is a complete graph, every vertex has a degree equal to

. Suppose there exists a vertex such that the average weight of the edges connected to is less than or

equal to . Denote those edges by . Then the cut weight of is

weight

which contradicts the fact that is highly connected.

The HCS algorithm requires a subroutine MINCUT( ) which accepts graph as the input and returns

, where is a mincut of that divides into two disjoint subgraphs and . The prob-

lem of finding a mincut for a connected graph is one of the classical subjects in graph theory. It has many

applications in, for example, circuit design and communication networks. Several algorithms for solving the

mincut problem can be found in the literature [51, 52, 53, 54, 55, 56, 57]. The HCS algorithm is summarized

in Table 1 [48].

Before applying the HCS algorithm to topology discovery, we would like to discuss several detailed im-

provements which can be made to our hierarchical estimation algorithm. In order to make it more com-

patible with the HCS algorithm we define a new indicator function as follows. Let and be two

clusters in a partition of the leaf node set . Suppose the finite mixture model estimate for

is which has components. Let be a subset of the components. Define

to be the set of i.i.d. normalized samples for the inter-cluster similarities

between and . Let denote the composite component formed by . Then we
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define as an indicator function for , where , , , such

that if is contributed by the composite component , and otherwise.

is i.i.d. and assumed to have mean .

4.3 Robust Edge Weights for Complete Graphs

The probability used by edge weights in (28) is not a robust estimator for . Indeed, a single poor

estimate in the inter-cluster could make because the numerator in (22) is times the product of

each for . To overcome this problem we propose to replace by the average of the

conditional mean estimates of with each estimate using only single in . As contrasted to the

original definition in (22), this estimate is smoothed over all the samples in . The general form of the new

edge weight between two clusters of leaf nodes and with respect to a composite inter-cluster component

is then given by

(29)

where . Since is i.i.d. for , according

to the Weak Law of Large Numbers (W.L.L.N.) we have

(30)

where is an arbitrarily small positive number. Note that the edge weights always fall in the region .

4.4 Pre-cluster Algorithm

TheMINCUT procedure in the HCS algorithm can be computationally demanding when there are many vertices

in the complete graph. For example, the algorithm proposed in [56] has an overall run time complexity of

for any graph . One way to reduce the complexity is to pre-cluster the

vertices in into groups which are obviously in the same cluster.

For a set of leaf nodes and finite mixture estimate , we assume the inter-cluster

component in is identified as the composite component formed by components in the sub-

set , where is the model order of . If there is no estimation error in
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, includes only the component having the smallest mean, denoted by component 1 for sim-

plicity. A simple way to determine if a leaf node resides in a different cluster from is to check whether the

edge weight between them is less than . Define the set of foreign leaf nodes for node with respect to as

(31)

contains all possible nodes which are not in the same cluster as . Then we simply group nodes and

in the same cluster if and only if .

When there exists significant error in the finite mixture model estimates, it is possible that component 1 may

not be correctly estimated as the inter-cluster component. Two possible situations may occur: a mixture model

estimate with too fine resolution could decompose the inter-cluster components into several subcomponents

among which component 1 is only one of them; or, an estimate with too coarse resolution could merge the

inter-cluster component with other intra-cluster components and result in an overly fine clustering (too many

clusters) of the leaf nodes.

4.5 Progressive Search Algorithm

We deal with the first situation by a progressive searchmethod. Let the estimated components in

be sorted by ascending order of their means, i.e., component 1 has the least mean and component has the

largest. The search starts with applying to form the inter-cluster component and estimating a

pre-clustering using (31). Then expand the component subset to and estimate another

pre-clustering . Repeat this procedure until which includes all the components in

. Then we select the pre-clusterings with the least number of clusters as the pre-clustering

estimates:

(32)

A complete graph can be drawn from each pre-clustering estimate with its vertices now representing the clusters

which may contain two or more leaf nodes in one cluster. The proposed robust edge weights in (29) can be

applied to this new definition of vertices. Let be the complete graph whose vertices represent the

clusters in and edge weights are computed using . Then the graphs for

are used as inputs of the HCS algorithm and the output with the highest is adopted as the HCS clustering

estimate , denoted by . Since it is possible that can be produced from multiple HCS inputs using different

’s, we specify the smallest component subset used to obtain as and use it in the following post-merge

algorithm.
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4.6 Post-merge Algorithm

To address the second situation described at the end of Section 4.4 we propose a post-merge algorithm to deal

with overly fine clusters. Given the optimal HCS clustering we form the complete graph using

as the inter-cluster component set. For every cluster represented by a vertex in the graph we define its

closest cluster as the cluster represented by the strongest vertex connected to , i.e.,

argmax (33)

Then for each we get a new partition by merging and into one cluster, and evalute the penalized

partition likelihood. If the highest likelihood obtained by merging a pair of clusters is greater than the likelihood

of , we update by the corresponding new partition and repeat the process until no improvement is made by

any pair-wise merge. Note that when a pair of clusters are the closest to each other their respective merges result

in the same partition. The number of merges needed to be tested when there are clusters in the partition

is lower bounded by and upper bounded by . The complete algorithm for hierarchical topology

estimation is summarized in Table 2, where the finite mixture model for an internal node

has estimated parameter set . As for the progressive search algorithm,

we assume have means in ascending order, i.e., if and only if . Note that

except for the first iteration, each is estimated in the previous iteration when the partition

likelihood is computed.

5 Computer Simulations

Both matlab and ns-2 simulations were performed to test our modelling and estimation procedures. First we

describe our matlab simulations whose purpose is to establish the ability to estimate topology from simulated

similarity metrics with additive noise. Then an ns-2 simulation is performed to test the algorithm when

similarities are estimated from probe data.

5.1 MATLAB Model Simulation

First we simulated a small network with the simple non-binary virtual topology shown in Figure 11. The

simulations were implemented in matlab and for each pair of leaf nodes we generated 200 similarity samples

as follows. Given a pair of leaf nodes , a similarity sample was obtained by the sum of randomly

generated metric samples over all the links in the path using matlab. Each metric sample for a link was
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Table 2: Hierarchical Topology Estimation (HTE) algorithm.

Input: , ,
Output:

Finish false

,

,
Estimate
while ( Finish) do

, Finish true
for all do

for to do

form pre-clustering
end for

for all do
HCS

Compute
end for

if do
stop false
while ( stop) do

for all do
argmax

Compute
end for

if do

else
stop true

end if
end while

end if
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if do
for all do

if do

if do

Finish false
end if

end if
end for

end if
end for

end while

generated according to a Gaussian distribution with a randomly generated mean and a standard deviation

proportional to the mean. Note that the true link metric was specified by . was generated according to a

uniform distribution over a region centered at with width equal to , i.e., . The standard

deviation was obtained by multiplying with a positive factor .

We implemented the proposed hierarchical topology estimator (HTE) with an averaging factor

to compute the normalized similarity samples, which means for each probe tree there were 10 samples of

. We also implemented to other topology discovery algorithms: the LBT algorithm [5, 15] and the DBT

algorithm [2, 4]. The latter was originally designed for multicast networks, but can also be directly applied to

unicast networks. For a pair of the leaf nodes in the DBT algorithm we used the average of similarity

samples as the metric. Since here the pair-wise similarities of the leaf nodes were designed to be

sums of additive link metrics, the metric estimate for each link computed by the DBT algorithm became the

difference between the similarity metric values whose corresponding shared paths differ by the specific link

(see Figure 1 in [4] for comparison). Both algorithms estimated a binary tree given the similarity samples. A

second stage was applied to generalize the binary tree by pruning the links whose metric estimates were smaller

than a threshold . Defining and be the empirical mean and standard deviation of the estimated link

metrics from the DBT or LBT over all the links, respectively, we set to be .

The performance of the algorithms was evaluated in terms of the graph edit distance between the estimated

tree and the true topology. The problem of comparing and matching trees has diverse applications in areas

such as compiler design and pattern recognition [59]. Several distance metrics between a pair of trees had been

proposed in the past decades, such as the edit distance [17, 18, 19, 20, 60, 61, 62], the alignment distance [63],
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Figure 11: The logical tree topology for the network used in computer simulations in Section 5.

the isolated-subtree distance [64], the top-down distance [65] and the bottom-up distance [59]. We adopted the

simple edit distance as our performance metric. The tree edit distance is analogous to the edit distance between

two strings which is given by the least-cost sequence of elementary operations that transforms one string into

the other. Let be a rooted tree. is a labelled tree if each node is given a symbol from a finite alphabet.

is called an ordered tree if a left-to-right order among siblings is assigned. The basic editing operations for

an ordered tree are: Replacement – relabel a node in . If the label remains unchanged, it is an identical

replacement, otherwise it is a non-identical replacement; Insertion – insert a node in . If is the parent of

in , becomes the parent of the children of whose consecutive subsequence is replaced by ; Deletion –

delete a non-root node in . If is the parent of in , the children of become a subsequence of nodes

which are inserted in the place of in the left-to-right order of the children of .

A mapping from to is defined as a set of operations which allows to transform to . If a mapping

includes non-identical replacements, insertions, and deletions, then the cost of mapping is given

by , where is the cost of a non-identical replacement, is the cost of an insertion, is the

cost of a deletion, and the cost of identical replacement is ususally 0. The set of costs is called unit cost if

. The graph edit distance between and is then defined as the cost of a minimum-cost

mapping between and . Figure 12 illustrates a mapping example from to which has 6 identical

replacements, 1 non-identical replacement, 1 insertion and 3 deletion. Under the assumption of unit cost, the

cost of the mapping is 5. Algorithms computing the edit distance between two ordered trees can be found in

[18, 19]. The graph edit distance problem for unordered trees has been shown to be NP-complete [66].

To transform the true and estimated topology into ordered trees we applied the following rule. Recall that

we label the leaf nodes by , where is the set of leaf nodes. Define the score of a leaf node to be

the number specified by the leaf node’s label, known to the estimator. The score of an internal node was given

by the average score over the descendant leaf nodes of the internal node. Then the left-to-right order among
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sibling nodes was determined by the ascending order of the node scores. For example, in Figure 1 the score

of node 8 is 1.5 and the score of node 9 is 4.5. So the left-to-right order is . Throughout the computer

experiments we adopted the unit cost of deletion, insertion, and non-identical replacement.
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Figure 12: Illustration of the editing operations between two ordered trees.

We conducted two experiments using the proposed HTE algorithm, along with the DBT and LBT. These

experiments were intended to clarify the advantages and drawbacks of each method and should not be consid-

ered as a thorough comparison of performance. In the first experiment we let each obey the same uniform

distribution with a fixed width equal 2 and a mean varied from 3 to 13. We also fixed the noise variance

scale factor . The result is illustrated in Figure 13. Each data point was obtained from 1000 independent

simulations. The magnitudes of the link metrics determine the distance between any two different components

in the finite mixture model. The separability among different internal nodes increases as the link metrics be-

come large. Compared to DBT and LBT the HTE generally achieved a lower average edit distance to the true

topology and a higher percentage of correctly identified trees. The performances of DBT and LBT are quite

close to each other. They still provided reasonably accurate estimates as long as the variance of the similarity

estimates remained small.

In the second experiment we fixed the range of the uniform distribution for each link metric to . The

scale factor for sample standard deviations was varied from 1 to 10 for link 16 and 17, and fixed at

for the others. The result is illustrated in Figure 14. Each data point was averaged from the outcomes of

1000 independent simulations. As the accuracy of topology estimation decreased with the increasing , HTE
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exhibited a minor loss in its performance while DBT and LBT both suffered from a serious degradation in the

estimation capability.

The outperforming of our algorithm is mainly due to the following reason. Although all the algorithms of

HTE, LBT, and DBT are greedy in the sense that they all depend on local information to construct the topology,

HTE is much less greedy than LBT and DBT. Recall that in the introduction we explained the DBT and LBT

both being agglomerative algorithms which repeat the process of selecting the two most similar leaf nodes,

connecting them to a parent node, and treating the new parent node as a leaf node which represents the selected

pair of original leaf nodes. It means that each iteration in the DBT or LBT algorithm focuses on a small region

in the topology parameter space which determines only the two most similar subclusters of the leaf nodes to be

combined into one cluster. On the other hand, our HTE algorithm tries to find a local optimum over a larger

region of the parameter space in each level of the hierarchical topology estimation which decides the partition

of a (sub)set of the leaf nodes. This implies the estimates obtained from the HTE algorithm are generally closer

to the global optimal topology than those estimated by the DBT or LBT algorithm.

5.2 NS Simulation

For a more practical environment we used ns-2 to simulate the network in Figure 11. Two types of links were

used: the links attached to the leaf nodes were assigned with bandwidth 1Mbps and latency 1ms and the others

were assigned with bandwidth 2Mbps and latency 2ms. Each link was modelled by an FIFO queue with buffer

size being 50 packets long. Cross traffic was also generated by ns-2 to simulate various network conditions.

The cross traffic comprises 10% UDP streams and 90% TCP flows in terms of the bandwith utilization. The

UDP streams had constant bit rates but a random noise was added to the scheduled packet departure time. The

TCP flows were bursty processes with Pareto On-Off models. We tested the three probing schemes described

in Section 2: queueing delay using sandwich probes, delay variance using packet pairs, the loss rate also using

packet pairs. The packet size in a packet pair probe was set to 10 bytes. The size of the large packet and

the small packets in a sandwich probe was 500 bytes and 10 bytes, respectively. The probes were sent by

UDP streams with Poisson departure. The departure interval had a mean equal to 8 times the transmission

delay of a single probe on the outgoing link of the root node. The pair of leaf node destinations was randomly

selected for each probe. The simulation was repeated until at least probes were sent through every probe

tree. for sandwich probes and or for packet pair

probes, where is the specified number of normalized similarity samples expected to be collected at each

probe tree. Here we let . The parameters specifying the number of probes used in ns-2
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Figure 13: Average graph edit distance (a) and percentage of correctly identified trees (b) versus the mean of
uniformly distributed link metrics in model simulation. The range of the uniform distribution was fixed at 2.
The Gaussian samples of a link metric had standard deviation equal to the link metric times . The DBT and
LBT algorithms were also implemented for comparison with the proposed HTE.
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Figure 14: Average graph edit distance (a) and percentage of correctly identified trees (b) versus the propor-
tional factor for link 16 and 17 in model simulation. The true link metrics were uniformly distributed in .
The DBT and LBT algorithms were also implemented for comparison with the proposed HTE algorithm.
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Table 3: The parameters specifying the number of probes used in ns simulation.
5 7 9 11 13 15 15 15 15 15 15 15 15 15 15 15
5 5 5 5 5 5 7 9 11 13 15 15 15 15 15 15
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25 25 25 25 25 25 25 25 25
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Figure 15: Illustration of the computation of normalized similarity samples. Each normalized sample is the
average of similarity estimates. For packet pair probes each similarity estimate is obtained using
measurements. In this figure it shows the delay measurement of packet pair probes.

simulation are listed in Table 3. Each column gives a set of parameters for a simulation. Figure 15 shows

how to collect normalized similarity samples for each probe tree. Each normalized sample was the

average of similarity estimates , which were estimated from end-to-end delay differences, delay

covariances, or packet drop rates. For packet pair probes each similarity estimate was obtained using

measurements. If any probe was dropped for a set of packet pairs, the similarity estimate was computed

with the remaining probes. If too many probes were lost to obtain a reliable estimate, we simply discarded

it and averaged the remaining estimates to get an approximately normalized Gaussian sample. Similar rules

applied to the sandwich probes for computing the normalized samples.

We first compared the three probing schemes under three different network conditions. Each graph edit

distance between the estimated tree and the true topology was averaged over 30 independent simulations using

the proposed hierarchical topology estimator. Figure 16 (a),(c),(e) show the performance in a lightly-loaded,

moderately-loaded, and heavily-loaded network respectively, where the horizontal axes denote the number

of similarity estimates used in each simulation. The average packet delay (ms), packet delay standard
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deviation (ms), and packet drop rate for each link is plotted in Figure 16 (b),(d),(f). The notation in the

titles of Figure 16 (a),(c),(e) denotes the average condition for the whole network in which , , and are the

average packet delay, packet delay variance, and packet drop rate over all the links, respectively. Throughout

the experiments in ns-2 we used this notation to indicate the load condition of the network. The legends for

queueing delay, delay variance, and loss rate similaritie metrics were marked by ’Sandwich’, ’Cov’, and ’Loss’,

respectively.

As predicted in Section 2 the sandwich probes provided the most reliable topology estimate in a lightly-

loaded network. From Figure 16(b) we found some of links had very small packet delay variances and hence

could not be identified using delay variance metrics. A similar situation occured for packet drop rates for light

loading since the drop packet rate was very small. The curves for packet pair probing with delay covariance

and dropped packet measurements do not converge, as shown in Figure 16(a). In a moderately-loaded network

each link queue provided enough delay variation to perform topology estimation using packet pair delay co-

variance. Figure 16(c) shows the packet pair delay covariances achieved the best performance. The average

edit distance to the true topology still converged to zero for sandwich probes, but with a slower rate due to the

noise introduced by delay variations. The curve for packet pairs using loss rate similarity did not converge to

zero. This is because of identifiability problems on the links which did not experience any dropped packets.

For a heavily-loaded network, each link had a substantial packet drop probability which made the loss rate

similarities contain the most reliable information about the network structure. Although the delay variance on

each link increased in the heavily-loaded case compared to the moderate loading, the packet pair delay covari-

ance method performed worse since the number of successfully received probes was significantly reduced due

to packet losses. The sandwich probes suffered from both the high packet drop rate and high delay variance.

Hence, sandwich probing gave the least reliable estimates for this heavily loaded situation. Note that some

data points in the ’Sandwich’ and ’Cov’ curves were missing because for those cases almost every probe failed

to pass through the network, leaving insufficient samples to perform topology estimation. To assess the influ-

ence of ambient traffic on the similarity estimates, we also plot the graph edit distance curves for each probing

scheme seperately in Figure 17.

The edit distance provides us a metric to describe the distribution of the topology estimates. To illustrate,

we simulated a larger network in ns-2, whose topology is shown as the top tree in Figure 18. The bandwidth

and latency for the internal links which are not attached to the leaf nodes were assigned 5Mbps and 5ms,

respectively. The edge links at the leaf nodes had bandwidth equal to 1Mbps or 2Mbps, and latency equal

to 1ms or 2ms. Similar cross traffic as before was generated to establish a light load condition. Here we

37



100 200 300 400 500 600 700 800 900 10000

1

2

3

4

5

6

7

8

9

Av
er

ag
e 

Ed
it 

Di
st

an
ce

N1 x Nnorm

Lightly Loaded Net (0.54 / 0.79 / 0.07%)

Sandwich
Cov
Loss

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

1

2

De
la

y 
(m

s)

Lightly Loaded Network

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

1

2

De
la

y 
St

d
(m

s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.005

0.01

Dr
op

 R
at

e

link

(b)

Figure 16: (a),(c),(e) The average graph edit distance between the estimated tree and the true topology versus
the number of normalized similarity samples in a lightly, moderately, and heavily loaded network
simulated in ns, respectively, for the three probing schemes introduced in Section 2. (b),(d),(e) The average
condition for each link queue in the lightly, moderately, and heavily loaded network, respectively. The units for
delay and delay standard deviation (Delay Std) are both ms.

38



100 200 300 400 500 600 700 800 900 10000

1

2

3

4

5

6

7

8

9

Av
er

ag
e 

Ed
it 

Di
st

an
ce

N1 x Nnorm

Moderately Loaded Net (4.75 / 12.04 / 3.42%)

Sandwich
Cov
Loss

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

10

20

De
la

y 
(m

s)

Moderately Loaded Network

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

5

10

De
la

y 
St

d
(m

s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.1

0.2

Dr
op

 R
at

e

link

(d)

Figure 16 (continued)
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Figure 16 (continued)
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Figure 17: The performance of HTE using delay difference measured by sandwich probes (a), delay covariance
measured by packet pairs (b) and loss rate measured by packet pairs (c) under various network conditions. The
vertical axes show the average graph edit distance between the estimated tree and the true topology over 30
independent simulations. The horizontal axes are the number of normalized similarity samples used
in each simulation.
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Figure 17 (continued)

used sandwich probes to collect similarity estimates via delay differences. For each probe tree 200 similarity

estimates were collected and we set to obtain 20 normalized samples for the HTE algorithm.

For a total of independent simulations we defined the median topology as the topology estimate obtained

from the median of the similarity samples over all the simulations. For example, given a probe tree the

first normalized similarity sample used for the estimation of the median topology equals the median of the first

normalized samples for the probe tree over the simulations. Then the distribution of the topology estimates

can be described by the one-sided pmf of the graph edit distance between the estimate and the median topology.

The median topology obtained from 30 independent simulations on the top tree network in Figure 18 is shown

in the bottom of the same figure, and the corresponding distribution of the topology estimates is shown in

Figure 19 as the pmf for the edit distance to the median topology. For these simulations the median topology

was equal to the true topology. We will say that the topology estimate is median unbiased. The edit distances

corresponding to the 50th and 90th percentiles are also indicated. Some examples of the estimated topology

along with their distances to the median topology are depicted in Figure 20. The top tree shows one of the

closest estimates to the median topology. The tree in the middle corresponds to the 50th percentile of the edit

distance, and the tree in the bottom has the largest distance to the median topology over all the estimates. One

can observe that the error distances came mainly from the failure to estimate fine subclusters of the leaf nodes

at the bottom of the tree.
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Finally we would like to address the effect on the performance of our model when the spatio and temporal

independence assumptions in (A1) and (A2) are violated in the ns-2 simulations. Recall that link packet

loss is equivalent to infinite packet queueing delay over the link. The spatial and temporal independence

assumptions of delays are violated since ns-2 was configured to simulate bursty TCP background data flows

that cross multiple links. Our experimental results demonstrate that the proposed HTE algorithm is relatively

insensitive to such violations. Indeed, the proposed finite mixture models for the normalized similarity samples

are able to accurately cluster end-to-end delay samples even though the similarity estimates are computed under

assumptions (A1) and (A2).

6 Conclusion and Future Work

The estimation of the logical tree topology from end-to-end unicast measurements of the network was inves-

tigated. We established a general framework for this problem that requires no assumptions on the logical tree

structure. The topology estimation problem was transformed into a hierarchical clustering problem for group-

ing the leaf nodes based on pair-wise similarities. We proposed to use a similarity clustering tree to describe the

hierarchical clustering for the leaf nodes in terms of that for the pair-wise similarities, and we established a one-

to-one mapping between the similarity clutsering tree and the network topology. We described three possible

similarity metrics along with the probing schemes used to estimate these metrics: sandwich probes measuring

the queueing delay; packet pair probes measuring the delay variance; and packet pair probes measuring the

loss rate. A new finite mixture modelling approach was proposed for clustering the similarity estimates using a

prior pmf on the nearest common ancester of each pair of leaf nodes. The penalized likelihood approach using

MML-type penalty was also derived for model selection, which was used in an unsupervised EM algorithm for

the estimation of the finite mixture model. The key to the use of the mixture model is the association of mix-

ture components attached to the similarity of leaf node pairs and belong to different clusters, called

inter-cluster components. Based on the observation that the component having the smallest mean contains

information important for splitting the leaf node clusters, we defined a new recursive partition likelihood as a

clustering metric. The hierarchical topology likelihood was then formulated as the product of all the conditional

partition likelihoods.

Topology estimation was achieved by recursively finding the best partitions of the leaf nodes to expose

internal node structure. We derived from the finite mixture estimate a complete graph with the vertices being the

leaf nodes to be partitioned. A robust estimator was proposed for the indicator function showing whether a pair

of leaf nodes belong to two different clusters, based on the inter-cluster component of the finite mixture model.
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Figure 18: The true topology (upper) used in ns simulation to illustrate the distribution of the topology esti-
mates. The median topology over 30 independent simulations is also shown in the bottom which is identical to
the true topology, and thus our topology estimator is median unbiased.
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Figure 19: The pmf of the graph edit distance with respect to the median topology for the estimates from the
ns simulation using the network in Figure 18. The locations of the 50th and 90th percentiles are also indicated.

The estimator was used to compute the edge weights indicating the pair-wise similarities. A simple clustering

algorithm based on the graph connectivity was then applied to partition the leaf nodes. To reduce the complexity

of the graph-based clustering when the number of leaf nodes is large we proposed a pre-clustering algorithm

to reduce the vertices in the graph. When there is estimation error in the finite mixture model, the inter-cluster

component could be decomposed into several small components or be merged with other components. The

former problem was solved by a pre-cluster algorithm which progressively includes components, starting with

the one having the smallest mean. The latter was overcome by a post-merge algorithm which tests various ways

to merge pairs of closely similar clusters.

We used matlab model simulations on a small network to demonstrate the proposed algorithm and com-

pared it with the DBT and LBT algorithms. The proposed algorithm achieved a lower error edit distance to

the true topology and higher percentage of correctly estimated trees than the DBT and LBT, under various

conditions on the magnitudes and variances of the similarity estimates. Our algorithm outperformed the DBT

and LBT algorithms because we adopted a less greedy approach in finding the optimal topology based on end-

to-end observations. For a more practical situation we simulated the same network in ns-2 and tested the

performance of the three similarity metrics along with the corresponding probing schemes using the proposed

algorithm. The Monte-Carlo simulation results showed the delay difference measured by the sandwich probes

had the best performance when the network load is light. For a moderate load situation the delay variance

metric using packet pair probes provided the most reliable estimates for the leaf node similarities. When there

was a good chance for packets to be discarded by a congested network the loss rate measured by packet pair
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Figure 20: Examples of the estimated topology along with their tree edit distance to the median topology for
the ns simulated network in Figure 18.
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probes generated the topology estimates with the lowest error distance. We also defined the median topology

of topology estimates obtained from Monte-Carlo experiments. Median topology was used to describe the dis-

tribution of topology estimates by the pmf of its graph edit distance to every topology estimate. The idea was

illustrated by Monte-Carlo ns-2 simulations on a larger network using sandwich probes.

Future work could focus on the use of hybrid probing schemes, which might better adapt to all the possible

conditions in a network. The similarity samples would be a multi-dimensional vector including the measure-

ments from different types of probes. This work could also be extended to better estimate topology of the

network by sending the probes from multiple sources, as in [67, 68, 69]. Extensive real network experiments

should be implemented in the future to compare to ground truth real network topologies.

References

[1] S. Ratnasamy, S. McCanne, “Inference of multicast routing trees and bottleneck bandwidths using end-

to-end measurements,” IEEE Infocom 1999, New York, NY, Mar. 1999.

[2] N.G. Duffield, J. Horowitz, F. Lo Presti, D. Towsley, “Multicast topology inference from end-to-end

measurements,” ITC Seminar on IP traffic, Measurement and Modelling, Monterey, CA, Sep. 2000.

[3] N.G. Duffield, J. Horowitz, F. Lo Presti, D. Towsley, “Multicast topology inference from measured end-

to-end loss,” IEEE Trans. Info. Theory, vol.48, pp.26-45, Jan. 2002.

[4] N.G. Duffield, J. Horowitz, F. Lo Presti, “Adaptive multicast topology inference,” IEEE Infocom 2001,

Anchorage, Alaska, April 2001.

[5] R. Castro, M. Coates, R. Nowak, “Likelihood based hierarchical clustering,” IEEE Trans. on Signal Pro-

cessing, vol. 52, no. 8, pp. 2308-2321, Aug. 2004.

[6] M. Shih, A. Hero, “Network topology discovery using finite mixture models,” IEEE Int’l Conf. on Acous-

tics, Speech, and Signal Processing (ICASSP) 2003, Montreal, Canada, May 2003.

[7] Y. Vardi, “Network tomography: estimating source-destination traffic intensities from link data,” J. Am.

Stat. Assoc., vol.91, pp.365-377, 1996.
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