Stochastic Routing in
Ad Hoc Networks

Christopher Lott
Qualcomm, Inc., San Diego, CA 92121 (858)651-4393 clott@qualcomm.com
Demosthenis Teneketzis
Department of EECS, University of Michigan, Ann Arbor, MI 48109 (734)763-0598 teneketzis@eecs.umich.edu

Abstract— We investigate a network routing problem where
a probabilistic local broadcast transmission model is used to
determine routing. We discuss this model’s key features, and note
that the local broadcast transmission model can be viewed as soft
handoff for an ad hoc network. We present results showing that
an index policy is optimal for the routing problem. We extend
the network model to allow for control of transmission type,
and prove that the index nature of the optimal routing policy
remains unchanged. We present three distributed algorithms
which compute an optimal routing policy, discuss their conver-
gence properties, and demonstrate their performance through
simulation.

I. INTRODUCTION

The term ad hoc is applied to networks in which there is no
central network controller, each node can itself act as a store-
and-forward router, and in which the connection topology is
time-varying (e.g. see [11]). Such a network is in contrast to,
for example, a cellular network where each cell has a central
base station through which all cell data is transmitted. An ad
hoc network contains a number of packets, each of which is
destined for some set of destination nodes. The general routing
problem is to define a policy which, given the trajectory
histories of all the packets, chooses which nodes should next
transmit which packet. It is usually desirable that this policy be
implemented in a distributed form, so transmission decisions
can be decided locally without knowledge of other parts of
the network.

Many approaches are possible for network routing opti-
mization. A typical one is maximizing the overall network
throughput. But in many cases other considerations are at least
as important. In the case of a wireless network the energy
source is locally stored in a battery at each node, and a major
design goal is often to achieve satisfactory communication
while using up as little energy as possible. This low-energy
requirement takes an extreme form in sensor networks, where
large arrays of mobile information-gathering devices must
communicate under severe energy limitations [2].

This paper explores some design issues in network routing
algorithms for ad hoc networks, and provides a novel system
model which allows for optimal design in a number of realistic
situations. It is organized as follows. In the remainder of
Section I we present briefly a discussion of the literature
available on routing in ad hoc wireless networks, and a
summary of the contributions of this paper. In Section II we
define and solve a stochastic routing problem. In Section IIT we

extend this routing problem to include choice of transmission
type. In Section IV through Section VIII, we present three
distributed algorithms which compute an optimal routing pol-
icy, and discuss their convergence properties and performance.
Section IX provides conclusions and ideas for future work.

A. Ad Hoc Network Routing Literature

There has been much recent research activity on routing for
ad hoc networks. This work can perhaps most conveniently be
categorized as either on-demand or route maintenance (also
sometimes referred to as reactive and proactive [23]).

1) On-Demand Protocols: On-demand protocols are the
algorithms which only update routing tables when new packets
arrive. On-demand protocols usually store old routing informa-
tion and use it as long as packets still get to their destination.
When a given path fails, there is some mechanism for probing
the network to find a new path, which often involves flood-
ing the network. Link detection used to decide path failure
generally uses information from the Medium Access Control
(MAC) at the link layer. Usually the path found is not optimal
in any sense. The value of an on-demand protocol is that the
communication requirement to set up a route is minimized.
The idea is that in general it would cost more to find a better
path than the improved route would reduce cost. Hence, these
protocols can be valuable when network dynamics are rapid
compared to packet transmission frequency.

A number of on-demand routing protocols have been pro-
posed for ad hoc networks. The Temporally-Ordered Routing
Algorithm (TORA) [6], [22] is based on work originally in
[8]. TORA tries to quickly establish routes on demand using
a path reversal method which is guaranteed to find some route,
with no criteria for the quality of the route. Dynamic Source
Routing (DSR) [13], [19] uses source routing, where each
packet header contains the entire route for the packet. Existing
routes are used without update until one fails. When one fails,
a Route Discovery is executed, during which Route Request
packets flood the network until any route is found. The Ad
Hoc On-Demand Distance Vector (AODV) protocol [25] is a
kind of hybrid of on-demand and route maintenance protocols.
The link status between a node and its neighbors is maintained
through periodic beacon signals between nodes. But routes are
only updated when a packet routing fails, and then this link
status information is used. The route chosen by AODV is the
one with the minimum number of hops. The Zone Routing

Protocol (ZRP) [23] is another hybrid which allows trading off
of route update and route maintenance overheads. The network
nodes are partitioned into zones. As in route maintenance, each
node maintains a continuous knowledge of the topology of
all the nodes within its own zone. However, routes to nodes
outside a node’s zone are determined on-demand in a Route
Discovery process. Independent Zone Routing (IZR) is an
update to ZRP which allows zone size to vary per node [31].

2) Route Maintenance Protocols: As the name implies,
route maintenance protocols periodically expend the energy
and bandwidth necessary to maintain updated routing tables
under all traffic conditions. Given their wide acceptance, the
benchmarks for route maintenance protocols are often the
TCP/IP standards RIP (Routing Information Protocol) [18] and
OSPF (Open Shortest Path First) [21]. However the standard
Internet implementations of these algorithms are not well-
suited to the ad hoc network environment. In highly mobile
environments, communication overhead to implement a full
link-state algorithm is prohibitively costly. Alternatively, much
research has been performed to adapt distance vector type
algorithms to the mobile environment. In these approaches,
it is common to use a Distributed Bellman-Ford (DBF) type
algorithm [4] to update the routes and cost estimates. A com-
mon theme in the research, then, is to address the weaknesses
of this type of algorithm in a highly mobile and uncertain
environment.

An early effort along these lines is [20], which endeavors
to provide loop-free routing in a quasi-static environment. In
the Destination-Sequenced Distance Vector (DSDV) protocol
[24], routes are tagged with sequence numbers. This allows
the most up-to-date route information to be included, as well
as providing a quick means for propagating link breakage
information. In this way, loop-free routing is achieved. In Least
Resistance Routing (LRR) [26], [27], the link quality between
nodes and the current buffer length of the receiving node are
used to define a link resistance value. A DBF type algorithm
is then used to find a least resistance path for such a network.
The Loop-free Path-finding algorithm (LPA) [9] eliminates
the counting-to-infinity and packet looping problems with the
DBF algorithm by using predecessor information and loop-
detection at each router.

A minimum energy approach to routing in ad hoc networks
is taken in [28]. The most striking difference to our work
is in the channel model. In [28] communication is peer-to-
peer, and the stochastic nature of the channel is modeled
as a threshold value for transmission power that ensures
reliable communication. This threshold value is computed
from a signal transmission model requiring knowledge of node
positions (via global positioning system (GPS) fixes). Once
energy requirements to transmit to each node are determined,
a DPF algorithm is run to compute minimum energy routes.

An interesting approach to the multicast problem is devel-
oped in [33] and [34]. A deterministic local broadcast model
for the link, with a power threshold determining the availability
of a link, is used to set up a problem to find the minimum
energy to span a given set of destination nodes. An optimal
solution to this problem is computationally infeasible, but
the satisfactory performance of heuristic algorithms is studied

using simulation. This circuit-switched multicast problem with
deterministic local broadcast model is quite different from the
problems we define in this paper.

A detailed comparison via simulation of a few different rout-
ing protocols for ad hoc networks is described in [5]. To truly
understand the tradeoffs involved among the wide variety of
available algorithms, more such work is necessary. Even better
would be progress in our conceptual understanding, leading to
better methods for critiquing the different approaches.

For a useful guide to the large and growing literature on ad
hoc networks, see [11] and the references therein.

B. Contribution

In this work we present what is, to the best of our knowl-
edge, the first network routing protocol which uses a prob-
abilistic local broadcast model for transmission. This model
(i) provides an intimate coupling between lower network layers
through careful modeling of the key channel characteristics,
and (ii) allows for routing decisions to be made based on
immediate feedback from each transmission. In most network
models in the literature, nodes are connected by links, and
the routing algorithm dictates which set of links each packet
is to traverse. This is true even when through local broadcast
a packet can traverse multiple links in parallel. Typically at
each point in time, through an estimate of its SNR, a link
is designated as deterministically up or down, with SNR
sometimes used to determine the sustainable link rate. The
stochastic transmission nature is subsumed in a link cost or
delay, or in a success probability for the entire link layer
transmission protocol. In contrast, our protocol detects and
reacts to the stochastic result of each node’s local broadcast
transmission, and constructs an optimal route based on this
immediate feedback. In consequence, the actual route taken
by a packet depends on random system events, may vary
among packets heading to a common destination, and is
fully determined only via actual transmission. This reacting
to individual transmission results can be interpreted as the
ad hoc network analog of soft handoff in a cellular system,
as discussed further below. We show that such a protocol is
optimal for the stochastic local broadcast model. We also show
the protocol is well suited to a distributed implementation, as
it is based only on information local to a node.

We extend the model to allow for control of transmission
type at each node, and show how the fundamental nature of
this optimal protocol doesn’t change. Varying transmission
type to optimize routing decisions couples physical layer
considerations with the network layer routing function. For
example, in the particular case of power control, an optimal
protocol effectively resolves the tradeoffs between fewer long
hops vs. more short hops.

We present three distinct algorithms which compute an
optimal index policy for our stochastic routing problem in an
asynchronous distributed fashion, so that at each computation
only information local to each node is used. The algorithms are
all similar in the asynchronous nature of their value updates
and transmissions, with the fundamental difference being how
the update value is computed. The algorithm presented in

Section V uses an update motivated by the stochastic Dijkstra
algorithm we introduce in Section II. The algorithm presented
in Section VI implements Distributed Dynamic Programming
(DDP), as defined in [3], and this leads to an alternate update
computation. Finally, the algorithm presented in Section VII,
which we call the rank algorithm, is a third way to implement
the update. For each algorithm we prove the same fundamental
convergence result: 1) Asymptotic convergence of the value
function, 2) Finite time convergence to an optimal policy, and
3) Finite time convergence to an optimal index policy under
the condition that all nodes have distinct value functions. We
end by comparing the performance of these three algorithms
with other approaches in a realistic simulation environment.

There is an interesting precedent for the stochastic local
broadcast model used in this paper. In CDMA cellular systems
[32], soft handoff is used to improve network efficiency. On the
reverse link, even though the mobile is under transmit power
control, random channel variation makes it uncertain which
base station will successfully decode each mobile packet.
Efficient operation is achieved by having each base station
attempt to decode each packet, and the packet is successful
if any of them succeed. In effect, each base station is a
destination node and the random result of each mobile local
broadcast is used to decide on packet success. Our stochastic
routing problem can be viewed as a generalization of soft
handoff to the case of an ad hoc network, where intermediate
store-and-forward nodes may also receive each packet.

In CDMA cellular system reverse links [7][16], a mobile’s
transmit power is controlled to achieve a fixed packet error rate
(PER). Implicitly this relies on the fact that the recent interfer-
ence level seen by mobile transmissions is a good estimator of
future interference. No further attempt is made to coordinate
mobile transmissions across the network (interference cancel-
lation is a separate issue). In our approach here, rather than
controlling mobile transmit power to achieve a fixed PER, we
assume a given set of transmit power levels, and estimate the
resulting packet success probabilities to neighbors. By taking
this approach, we also implicitly rely on some persistence in
interference, and hence transmission success, statistics. And
in deference to the inherently distributed nature of an ad hoc
network, we also do not attempt any further coordination of
mobile transmissions, so that each mobile views other mobile
transmissions solely as random sources of interference.

Stochastic routing also can be viewed as a means to achieve
dynamic network load balancing. In effect, each mobile trans-
mission is a parallel attempt across neighbor channels, and
packet success depends on the concurrent loading. Packets thus
are naturally routed toward less loaded portions of the network,
with minimal retransmissions. For longer-term loading imbal-
ances, the transmission probability estimates themselves reflect
interference-limited regions of the network. These aspects of
stochastic routing are important for the network simulation
results presented in Section VIII.

II. THE STOCHASTIC ROUTING PROBLEM

A. Notation and Preliminaries

We begin by briefly summarizing notation and definitions
for the system model under consideration, which we refer to

as Model (M). In Model (M) control is centralized, meaning
the controller has access to all information in the network.
Also, Model (M) is probabilistic, with transitions described
by P(S]7).

N is the number of nodes in the network.

Q={1,..., N}, the set of all nodes. So || = N.

S C Q refers to a state of the system, defined as the set of
nodes which have received the packet. S; refers to the state at
time ¢.

R : 2% — R is the reward function, and R; := R({i}).
Also Rpqz := max;cq R;.

7 is a Markov policy. We write 7(S) = i to indicate policy
7 transmits at node ¢ when in state S.

We write 7(S) = r to indicate policy 7 retires and receives
reward R(S) when in state S. For convenience we write
7(S) = r; as shorthand that policy 7 retires and receives
R;,i € S. In this case, we say that policy 7 retires and receives
the reward of node 1.

By #(S) # i,7;, we mean both 7(S) # i and 7(S) # ;.

By 7(S) = 7(S), we mean either w(S) = 7(S) = 4, or
7(S) = 7(S) = r;, for some 1.

V7™(S) is the expected reward when starting in state S under
policy 7. We often write V;™ for V™ ({i}). When 7 is optimal,
we use V™ (-) to indicate the optimal value function.

We write P*(S’|S) to indicate the probability of reaching
state S’ from state S when choosing 4 for transmission, ¢ € S.
We write P*(S|i) as shorthand for P*(S|{i}).

We define P;j := Y., jcs P'(S]i).

j is called a neighbor of i if P;; > 0. N'(i) is the set of all
neighbors of 7, together with ¢ itself. Note that P;; # Pj; is
permitted.

By argmax;cgf(i), we mean the ser of values of ¢ from
the finite set S which maximizes f (7).

Definition 2.1 (Increasing Property): Model (M) is said to
be increasing if for any system realization under any policy
we have Sy, D Sy, Vii,Vta > 1.

Definition 2.2 (Decoupling Property): Model (M) is said to
be decoupled if

P(Sy]S1) = Y P(S2—S|81—Ss), V81,8, CQ, VSsC Sy
SCS3

The meaning of this definition is that transmission success
to a set of neighbors from a node at a given time is unaffected
by which other nodes already have the packet.

Definition 2.3: A function f : 2> — R is an index function
on () if f satisfies

£(8) = max f({i}) VS CQ M)

We next formulate the centralized version of the stochastic

routing problem.

B. Statement of Problem

Problem (P1)

We consider the transmission of a single packet, from a
given initial state S, (i.e. a given set of nodes) to a set of
destination states, in a wireless ad hoc network of N nodes
described by Model (M). Transmission instances occur at

discrete time points. Each transmission from a given node
incurs a fixed cost ¢; > 0. According to Model (M): (i) at
each transmission instance the transmitting node is chosen by
a central controller that always knows the current state of the
system (i.e. the set of nodes that have the packet); (ii) node
transmissions are local broadcasts, that is, multiple neighbor
nodes may all simultaneously receive the packet; (iii) given
the node chosen to transmit, the probability that a given set
of nodes receives the packet is known and fixed; (iv) The
central controller is informed, without any cost, as to which
nodes receive the packet. In general, control information flow
between the nodes and the controller is considered free in
energy and instantaneous in time; and (v) each transmission
event is assumed independent of those before and after. We
assume Model (M) is increasing and decoupled. A reward
function R is specified, where R is an index function. At each
instance, the central controller chooses either to terminate the
transmission process or to continue transmitting. The objective
is to choose: (i) the node to transmit at each transmission
instance, and (ii) the instance to terminate the transmission
process, to maximize

T—1
t=1

where 7 is the time when the transmission process is termi-
nated, Sy is the state at 7, and i(t) is the node chosen by the
transmission policy at time .

C. Analysis of Problem (Pq)

We analyze Problem (P;) and discuss the character of an
optimal policy m. The system of Problem (P;) is a time-
homogeneous Markov chain, hence we are faced with a finite-
state Markovian Decision Problem with perfect information.
We can thus restrict attention to Markov policies on 2%, and
we are guaranteed that such an optimal Markov policy exists
(cf. [29] Ch.3 p.51). We seek an optimal Markov policy 7 :
2 — (1,..., N) which minimizes (2).

To solve Problem (P7), we could directly apply stochastic
dynamic programming. But since the number of states is
2N the complexity of such an approach is at least O(2V),
and generally higher (see [10]). Instead, we use the special
structure of this problem to find a better algorithm.

1) Structure of an Optimal Policy for Problem (P1): We
begin with some definitions.

Definition 2.4: A Markov policy 7 is a priority policy if
there is a strict priority ordering of the nodes s.t. Vi € Q0 we
have 7(S U {i}) = n({i}) = i or r;, VS C §;, where Q; is
the set of nodes of priority lower than i.

Definition 2.5: For priority policy mw, we write ¢>,7 when
¢ has higher priority than 7 under .

Definition 2.6: A priority policy 7 is called an index policy
if V™(-) is an index function on €.

Note that a priority policy need not be an index policy.

Our main goal in this section is to prove that there exists an
index policy which is an optimal Markov policy for Problem
(P1). We state this result in the following theorem.

Theorem 2.1 (Index Policy): There is an optimal Markov
policy 7 for Problem (P) which is an index policy.

We develop a series of lemmas which are used to prove
Theorem 2.1. In the first lemma we show that the definition
of an index function is equivalent to requiring two properties
on f.

Lemma 2.1: Function f is an index function on 2 if and
only if the following two properties (3) and (4) both hold.

fSU{i}) > f(S), VS CQ,ieQ 3)
fS) #1{i}) = f(9) = f(S—{i}), vSCQieS (4
Proof: Assume f is an index function on 2. Then f can
be written in the form (1). We have VS C Q,i € Q)
fSU{i}) = max f({j}) =2 max f({j}) = f(S) (5)
jeSuU{i} jes
and (5) establishes (3). To establish (4), assume we have an
i € S where f(S) # f({i}). Then
f(S) =max f({j}) = max f({j})=f(S—-{i}) (6)
JjES jesS—{i}
Together (5) and (6) establish that if f is an index function,
then (3) and (4) both must hold.

Conversely, assume (3) and (4) hold. We proceed by induc-
tion on the number of elements in S. When |S| = 1, for any
S it is clear that f({i}) = max;c; f({j}), so the induction
base step is established. Now assume f(.S) can be written in
the form of (1) VS C Q s.t. |S| = K. Let S’ C Q be s.t.
|S’| = K + 1. We consider two cases.

Case 1 f({i}) = f({7}) Vi,j € &
Assume there is an ¢ € S st f(S') # f({i}). Then
by (4) and using the fact that |S" — {i}| = K with the
inductive hypothesis, we have f(S’) = f(S' — {i}) =
max;esi f({j}) = f({i}), which is a contradiction. So
we must have f(S') = f({i}) = maxjcs f({j}), and (1)
holds for this case.

Case 2 Ji,j €8 st f({i}) < f({5})

By (3), f(S") > f({j}) > f({i}). Then by (4), and using the
fact that |S” — {i}| = K with the inductive hypothesis, we

have
! / . . .

NS = 18"~ {ih) = max, ({7} = max /(5D D)
and (1) holds for this case.

In both cases f has the form of (1) for S’, and this completes
the induction step. So by induction f must be an index function
on 29, |

Next, we use the decoupling and increasing properties of
Problem (P;) to show that the optimal value function for
Problem (P1) possesses a monotonicity property.

Lemma 2.2: (Monotonicity) In Problem (P1), let 7 be an
optimal Markov policy, and let S;,S; C € and Sy C Sj.
Then VT‘-(SQ) < Vﬂ<Sl)

Proof: Given 7 and Sy C S7, we define a new policy
acting on state S as follows. Let i = m(S2), and suppose
Sy is the state resulting if at first m were to choose 7. At
the first step, © chooses ¢ from .S7, which is possible since
Sy C Si. @ learns the result of the transmission, and hence
knows the new actual state of the system, which we call Ss.

Furthermore, since & knows which nodes receive the packet
even if they already have it, it also knows what the new state
would be if the previous state were So instead of S;. By the
decoupling property, this new state is Sy. This fact together
with the increasing property also imply that Sy C S3, since
Sy C 5.

At the next step 7 acts on S3 by choosing the same node as
7w would use on Sy; this is possible because 7 knows Sy, and
Sy € S3. The process continues in this way until 7 retires at
the same time at which 7 would retire. Policy 7 knows 7’s
retirement time because it knows the state m “sees” at each
time. Let S¢; and Syo be the states at retirement for 7 and
m, respectively. By the above argument, we know Sro C Syy.
At retirement, 7= has incurred the same cost as , since =
and 7 use the same nodes to transmit. Because R is an index
function, by Lemma 2.1 (3) we have

V*(Sy) — V™(Ss) = R(Sp1) — R(Sf2) >0 (8)

Because 7 is optimal and 7 is suboptimal, we conclude
from (8) that

VT(S1) = VT(S1) > V™ (Sy))

This completes the proof. |

In the next lemma, we use the increasing property of
Problem (P1) to show that a Markov policy which is optimal
for all states that are a superset of some S; C (2, and that
takes an optimal action when in Sp, is also optimal when in
state S;.

Lemma 2.3: Let 7 be an optimal Markov policy for Prob-
lem (P1). Suppose we are given Sp, and let 7 be a Markov
policy which has the following two properties.

V™(S) = V7(S), VSO (10)
m(51) = 7(S51) (11)
Th _
- VT(S1) = V(S) (12)
Proof: If w(S1) = 7(S1) = 7y, for some ¢ € Sy, then
(12) holds.

Suppose 7(S1) = 7(S1) # r. We compare 7 and 7 when
both transmit in state S;. Let Sy and S, be the state after
transmitting when in S; for 7 and =, respectively. Due to
(11), we have

Sy =S, (13)
Due to the increasing property, we have
Sy =S80 9 (14)
By (10), we have
VW(SQ) = VT‘-(SQ); Sy =58,D5; (15)

Equations (13)-(15) mean that 7 and 7 choose the same node
from S for transmission, and either reach the same state Sy D
S1, which has the same value function for both policies, or
both stay in Sy = S1, at which point they again both play the
same node for transmission. Hence, (12) follows. [|

Next, we construct a Markov policy for Problem (P;)
which has many characteristics necessary for an index policy,
and then use the lemmas presented above to show that this
policy is optimal. The result of this lemma is instrumental in
proving Theorem 2.1.

Lemma 2.4: Let 7 be an optimal Markov policy for Prob-
lem (P1). Then there exists a Markov policy 7 which has the
following three properties.

1) For all S C Q where |S| > 2,

() =i = w(S—{j}) =i VjeS.jti
m(S)=r, = 7(S—={j})=r; VjES,j#i

2) For all S C 2 where |S| > 2, and 7(S) = 4,1,

V(S —{j}) =V™(S) =V7(S) = V(S - {j})
Vi€ S, j#i(8)

(16)
(7)

3) m is an optimal Markov policy.
Proof: We define 7 using the following rules:

() =7 () (19)

7(S — (1) =(S), VS C Qi n(S) £ 4y (20)

m(S = {i})=7(S —{j}), V§ € Q,j : 7(S) = j,r; 2D

If |Q| = by (19) the lemma is true. Assume || =
N > 2.

It follows directly from (19)-(21) that 7 satisfies (16) and
(17).

We prove (18) by backward induction on the cardinality
of S. By the optimality of 7, we know that 7(Q2) = r; for
some i € argmazcq ;. By (19) and (20) we have 7(£2) =
m(Q —{j}) =ri, Vj € Q,j # 4. That is, = acting on both
Q and Q — {j} immediately retires and receives reward R;.
We also have V7(Q) = R; = V*(Q — {j}), because 7 is
optimal and 4 is available for retirement in © — {;}. Hence,
when 7(Q2) = r;, we have Vj € Q,j # i

VT(Q—{j}) =VT(Q) = VT(Q-{j})

Equality (22) proves (18) for 7 when S = (2, and the basis
for induction is established.

If N = 2, the argument of (22) completes the proof of (18).
We now assume N > 2 and prove the induction step. Assume
(18) is true for any state S where |S| > L+ 1,2 < L < N.
Consider any state S; where |S1| = L

We first prove that

VT(S1) =

VT(Q) = = R; (22)

V7(51) (23)

If there exists j € Q — Sy such that (S U {j}) # 4,7,
then by (20) we have (S;) = w(S; U{j}). By the induction
hypothesis, equation (18) is true for S = Sy U {j}, because
|S1 U{j}| = L+ 1. We thus have

VTS Ui} = i) =V(S1u {5} - {i})

Equation (23) follows from (24).

If no such j exists, then by (21) we have 7(S7) = #(S1).
Because 7(S1) = 7(S1), and V™(S) = V7(S),VS O S
(because of the induction hypothesis), the conditions (10) and
(11) of Lemma 2.3 are satisfied by = and 7 for S;. Hence

V(1) = V7 (S1)

(24)

(25)

We have shown that (23) holds for any S where |S;| = L
We use (23) to show that (18) holds for all S; where | S| = L
For the remainder of the proof, assume that either 7(S;) =1

7T(Sl> =r;, and let j € S1,j # 1.

Consider first the case where 7(S1) = r;. By (20), 7(S; —
{j}) = ri, so that

VTS —{i}) =V"(%) = R (26)
By Lemma 2.2 and Ehe optimality of z”r, we have
VE(S1 —{j}) S V7™(S1) (27)
By 29 VA(S1) = V™($1) = Ry (28)
But i € S; — {j}, and 7 is an optimal policy, so
V™ (S, —{j}) > R; (29)
Relations (27), (2~8), and (29) toget~her imply that
VE(S1—={i}) =V (S) = R (30)

Equations (23), (26), and (30) imply that
VI(S1—{i})=V"(51)=V"(51)=V"(S1—{i})=V"(51-{j})
(31
and the induction step for (18) is proved when m(S;) = ;.
Now consider the case where

m(Sy) =i (32)

We claim that
n(S) # j,r; ¥S D S —{j}

We prove (33) as follows. Let S be any state where S O
S1—{j}. If j ¢ S, then n(S) # j,7;, and (33) follows.
Assume j € S. Then S D Sy and |S| > L. If |S| = L,
then S = S and 7(S) = i # j,r;. Assume |S| > L. If
m(S) = j, then by successively removing nodes k € Q — 54
and using (20) we obtain 7(S1) = j, which contradicts (32). If
7(S) = r;, then by successively removing nodes k € 2 — Sy
and using (20), we obtain 7(S1) = r;, which contradicts (32).
Hence (33) is true in all cases.

By the decoupling property and (33), we have V™ (S; —
{}) = V7(S1). Using V($1 — {j}) = V7(Sy) with 23),
Lemma 2.2, and noting the optimality of 7, we have
VT(S1—{iH=V"(S1)=V"(51)=V"(S1—{iH=V"(S1—{j})

(34
Relation (34) proves the induction step for (18) for 7(S1) = i.

This completes the induction step for (18). By induction,
we have proved that (18) is true for 7 for all S C) where
18] > 2.

Finally, we prove that 7 is an optimal policy. First, note that

(33)

by (18), VT(S) = V7(S), VS,|S| >2 (35)
Relation (18) also implies that for some i € ()
Vi =V {i}), VieQstx({itu{j}) =4 (36)

We are left to consider V™ ({j}) when no such i as in (36)
exists. By (21) we have 7({j}) = #({j}) when = ({j}U{i}) =
1,4 €). Under this condition and (18), and identifying S; =
{j}, m and 7 satisfy the requirements of Lemma 2.3 (10) and
(11). Lemma 2.3 (12) then implies that

VT{ih) =V"({i}), VieQstx({j}u{i}) =iVieQ

(37
Equations (35), (36), and (37) prove the optimality of 7. The
proof of the lemma is complete. |

Besides Lemma 2.4, we need one more result to prove
Theorem 2.1, which is that the value function for Problem
(P1) is always an index function. We present this lemma next.

Lemma 2.5: For any optimal Markov policy 7, V7 () is an
index function on 2.

Proof: First note that Lemma 2.2 implies Lemma 2.1 (3)
is satisfied for V7 (-) on Q.

Next, let m be the Markov policy satisfying (16) and (17) as
constructed in Lemma 2.4. Consider any state S and ¢ € S s.t.
V™(S) # V™({i}). If =(S) = 4, then by removing all nodes
except ¢ from S via repeated application of Lemma 2.4 we
would get V™(S) = V™ ({i}), a contradiction. Hence, w(S) #
i. So by Lemma 2.4 (18), we have V7(S) = V*(S — {i}).
Thus the requirement (4) of Lemma 2.1 is satisfied for V7 ()
on €.

Since both requirements of Lemma 2.1 are satisfied, we
have shown that V7 (-) is an index function on €. [|

We now use Lemma 2.1-Lemma 2.5 to prove Theorem 2.1.

Proof: [of Theorem 2.1]
Let m be the Markov policy satisfying (16) and (17) as
constructed in Lemma 2.4, By Lemma 2.4 (3.), 7 is an optimal
Markov policy. Hence, Lemma 2.5 indicates that V™ (-) is an
index function.
We next show that 7 is a priority policy. By (16) and (17)
we have

WSS) =1

=4, VS'CS,ies
71'(5 =T

= wgs’) (38)
— () =r;, V&' CS, ies

(39)

Properties (38) and (39) show that 7 is a is a priority policy
(cf. Definition 2.4), with node priority as follows. For any .S
where 7(S) = ¢ or w(S) = r;, i has priority higher than all
other nodes of S.

We have shown that 7w is a priority policy with index
function V™ (-). Hence 7 satisfies Definition 2.6, and is an
index policy. |

Note that (38) and (39) imply that w(S;) =4 and 7(Ss) =
r; cannot both occur for a given 7 for any S, So with i € Sy
and j € Sy. That is, for a given system for Problem (P) and
an optimal index policy , if there is a state where 7 transmits
from node 7, then there is no state where 7 retires and receives
the reward from ¢. Similarly, if there is a state where 7 retires
and receives the reward from node ¢, then there is no state
where 7 transmits at . We henceforth use this fact when we
write the node priority list for an index policy 7, where exactly
one of 7 and r; is listed for each i € 2. When r; occurs in the
list, this means that for states which include ¢ and no nodes
of higher priority than ¢, the optimal action is is to retire. The
reward received at retirement will be R;.

It is interesting to note that the total number of stationary
Markov policies for Problem (P;) with N nodes is N"),
whereas the total number of priority policies is /N!. Based on
the result of Theorem 2.1, we develop an algorithm which is
able to compute an optimal index policy for Problem (P+)
with computational complexity of only O(N?).

2) Description of Centralized Algorithm: As stated in Sec-
tion II-A, we use the notation V;™ := V™ ({i}).

Algorithm 1: (A Dijkstra-Type Algorithm for an Index Pol-
icy)

Define the sets A and X as follows.

Initially: A contains the nodes of highest retirement reward
R4, in arbitrary order (there must be at least one such node).

The action taken by the optimal index policy 7 on any node ¢ €
A is r; and the reward received is Ryqz. X is the unordered
complement (w.r.t. §2) of A.

During the construction of optimal policy 7: A contains
a priority list of a set S of nodes, S C (2, together with the
action specified by 7 on each node in S. & is the unordered
complement (w.r.t. §2) of A.

The algorithm proceeds as follows.

1) For each ¢ € X, let m; be an index policy with the same
priority list as 7 for the nodes of 4, with i as the next
highest priority node after .A, and with the priority of
the nodes X — {i} arbitrary, but lower than i. Compute
V™ from

Vv :max{

—¢i+ Lo qapmsyz L S1OVs) R,
ESD{i}?ﬂ'i(s)#i PZ(S|7,) y L3
(40)

2) Choose i € X' with the highest value of V™, with ties
broken arbitrarily. Append this node to the list 4 as the
next priority node, together with the action specified by
(40). Remove ¢ from X.

3) If X is empty, stop. If not, go to step 1.

Remark: In Step 1 the right-hand-side of (40) computes the
best expected reward for node ¢, assuming ¢ is the node of
next highest index in 7. This computation is feasible because
7 is a priority policy.

‘We now establish a relation between (40) and the optimality
equation for Problem (P1). Such a relation allows us to prove
that Algorithm 1 indeed computes an optimal index policy.
Theorem 2.1 states that there is an optimal index policy for
Problem (P1). Hence the Dynamic Programming equation for
Problem (P1) can be written Vi €

V™ = max max § —¢; + Z Pi(S\i)Vﬁﬁ(S) ,R;
52{i}
(41)

where the inner maximum is taken over all index policies 7.
In the following lemma we use the existence of optimal index
policy 7 to put the computation of V;™ into a more convenient
form.

Lemma 2.6: Assume 7 is an optimal index policy for
Problem (P1). Then Vi €

—c + , - PYS|) VT
Viﬂzma,x max a ZN(l)QSj{z}.W(S’);ﬁz Z(|) (S) ,Ri
7 YN ()28 i s)i PS5

(42)
where the inner maximum is taken over all index policies 7.
Proof: The proof of Lemma 2.6 is in Appendix A. ®

In the following corollary we show an important property
of the update (40) and its relation to (41).

Corollary 2.1: Assume 7 is an optimal index policy for
Problem (P7). Let m; be as defined in Algorithm 1, that is, m;
is the same as 7 for the set of highest priority nodes A of m,
and node ¢ is the node of highest priority in X according to ;.
Assume ¢ is also the node of highest priority in X according
to . If V;™ is computed as in (40), then

V= VT 43)

Proof: Corollary 2.1 follows from the fact that (40)
computes (42) with the policy @ = m;, which is optimal for
all nodes of priority ¢ or higher. |

Algorithm 1 also resembles Klimov’s algorithm [14] and
has the following feature.

Theorem 2.2: For Problem (P;), Algorithm 1 produces an
optimal index policy.

Proof: We prove the theorem by induction on the number
of nodes in the set A defined in the description of Algorithm 1.
Recall that for a Markov decision problem, the optimal policy
maximizes the value function for each state.

Let m be an optimal index policy. Suppose Algorithm 1 has
run to the point that |A| = L. Let i € X be the node with
the actual (L 4 1)’th highest priority according to 7, whether
retiring or not. Let j € X,j # 4. Let 7; denote the priority
policy that has the same priority as 7 in the first L nodes,
gives j the (L +1)’th node priority, retiring or not as optimal,
and arbitrarily gives priority lower than L+1 to the remaining
nodes.

Then we claim that

vrio= VT

i S Vi (44)

= Y
The equality of (44) follows from Corollary 2.1, because i is
assumed to be the actual (L+1)’th priority node of 7. The first
inequality of (44) follows because by assumption ¢ is higher
priority than j in 7. The second inequality follows because 7
is an optimal policy.

Relation (44) implies that any node 7 € X maximizing Vjﬂj
may optimally be made the (L + 1)’th priority node. Note that
this j is not necessarily unique. This is the procedure used to
find the node of next highest priority in Step 2 of Algorithm 1.

This completes the proof of the induction step. Hence, by
induction Algorithm 1 produces an optimal index policy. H

3) Remarks:

1) In typical network models the network layer requests
point-to-point communication from the link layer. How-
ever, the stochastic local broadcast nature of our link
model requires a control which describes alternative
courses of action depending on feedback from random
transmission events. In light of Theorem 2.1, we can
state precisely what this means for Problem (P7). The
instructions for transmission at a node consist of a
priority list of neighbors and the transmitting node
itself. The node transmits until a node of higher priority
successfully receives the packet. Note that there is no
one route, as the actual route a packet takes between
source and destination is sample path dependent.

2) The index policy result of Theorem 2.1 is very gen-
eral. It says that no matter what the actual values of
(P,c, R); are at each node, an index policy is always
one possible optimal policy structure. There might be
errors in knowledge of (P, ¢, R);, and this affects the
indices of the computed optimal index policy. But the
fact that some index policy is optimal is always true.

3) We have shown that Algorithm 1 computes an optimal
index policy for Problem (P1). It is important to note
that Algorithm 1 uses all of the network parameters,
meaning the (P, ¢, R); values at each node. To run

this algorithm, all of this information must be available
at the same location. In this sense, Algorithm 1 is a
centralized algorithm, like the Dijkstra algorithm used
in OSPF (see [15] Ch. 4). The number of updates of
(40) in Algorithm 1 is in the worst case O(N?).

4) Distributed Implementation of an Optimal Index Policy:
We note an interesting feature of an index policy used for
Problem (P;). The indices of the network nodes are fixed,
and at each transmission a node of highest index which has
the packet is chosen to transmit. This leads to the following

property.

Property 2.1: In an index policy for Problem (P4), the only
nodes of index higher than the transmitting node which can
receive the packet are neighbors of the transmitting node.

Property 2.1 allows for a natural disributed implementation of
the index policy, as follows. Imagine there is a token associated
with the packet that begins with the packet at the node of
origin. The token indicates which node is to transmit next.
After a node transmits, it passes the token to a neighbor (that
depends on the outcome of the transmission), or keeps the
token for retransmission. By Property 2.1, an optimal index
policy can be implemented in this way, as the optimal next
node is always a neighbor. Note that there is no central control
of this token passing mechanism. All decisions are made
locally, and involve only neighboring nodes.

It is important to distinguish distributed optimal routing
policy implementation from distributed computation of an
optimal index policy itself. For policy implementation, it is
assumed that the index policy has already been determined. We
consider the problem of distributed index policy computation
starting in Section IV.

ITII. THE STOCHASTIC ROUTING PROBLEM WITH
TRANSMISSION CONTROL

In this section we extend the model of Problem (P4) to
allow for control of transmission type at each node. That is, at
each time step the controller may choose a node for transmis-
sion, and also a type of transmission at that node. Transmission
type may be used to model various physical layer features,
such as multiple transmission power levels, modulation/coding
scheme, antenna directionality, and destination addressing. We
begin with some notation and definitions.

A. Notation and Definitions

Definition 3.1: W; refers to the number of transmission
types available at node 1.

Definition 3.2: We write 7(S) = (i, k) to mean that when
in state .S, policy 7 chooses node ¢ and transmission type k,
i€ Qk e {1...W;}. The expression 7(S) = (i,*) means
policy 7 chooses ¢ at some unspecified transmission type. The
notation for retirement 7(S) = r; is retained unchanged.

Definition 3.3: When in state S for which 7(S) = (4, k),
a cost c(; k) is incurred, and the transition probabilities are
written P(4F)(S’|9).

B. Statement of Problem

Problem (P3)

We consider Problem (P;), with the following addition.
At each time step the central controller chooses a node for
transmission, from among the nodes with the packet, and a
transmission fype from among the allowable types for that
node. To each node and transmission type is associated a
transmission cost and a probability that a given set of nodes
receives the packet. We seek a policy which maximizes (2)
under the conditions of Problem (P7) and the above addition.

C. Analysis of Problem (P3)

The time-homogenous Markov nature of Problem (Pq) is
not altered by adding in a choice of transmission type. We find
that with an appropriate mapping to a new larger space (each
transmission type becomes a node), we can apply the result of
Problem (P;) directly. To demonstrate this, we define a new
problem, Problem (Pg3), show its relation to Problem (P3),
and then show that it is equivalent to Problem (P1).

1) Notation and Definitions for Problem (P3): We define
a new space of nodes 2p as follows. As in Definition 3.2, we
list possible control choices for Problem (P2) as (i, k), where
i€ Qand k € {1...W;}. Every node of Qp corresponds to
exactly one such control choice of Problem (P2). Defining
Np to be the cardinality of 2p, we then have

N
Np == |Qp| = Z w; (45)
i=1
where as before N := |Q|. We write j € Qp to refer to a node
from Q2 p. We can also refer to the (i, k) pair of anode j € Qp,
which is the associated 7 and transmission type k € {1...W;}
in the original space). We say that the group of nodes in Qp
which corresponds to ¢ € € is the family of i, so that the
family of ¢ has WW; members. The family of S C 2 is the set
of all nodes in 2p which are in the family of any one of the
nodes of S.

The cost to transmit from a node j with (4, k) pair is defined
to be ¢(;,x), the cost for transmission type & at ¢ in Problem
(P2).

Transmissions in the Qp space are based on the correspond-
ing events in the Q) space, as follows. Say a node j with (i, k)
pair is chosen for transmission. This incurs a cost ¢(;). On €,
transmission from ¢ with transmission type & leads to a set of
nodes, say S; C (2, receiving the packet. Correspondingly, on
Qp by definition a node j € Qp with (I, k) pair receives the
packet if and only if [receives the packet on €2, [€ S;. That
is, nodes in 2p in the family of [receive the packet precisely
when [does. Note that this means that packet reception for
nodes of 2p in the same family are deterministically coupled,
in that they all receive or all do not receive it. This strongly
restricts the kinds of transitions that can occur in Qp.

Each member of the family of i € 2 gets the same reward
as 7. That is, let Rp be the reward function on Qp, an
index function on Qp. If j € Qp is in the family of i, then
Rp({j}) = R({i}). Because Rp is an index function, this
fully defines Rp on Qp.

2) Formulation of Problem (P3):

Problem (Pg3) is a formulation of Problem (P) for the
space {2p, with the transition probabilities, cost, and reward
described above. The starting state is the family of S,, the
initial state for Problem (P3).

At each time point the controller either chooses a node
from Qp for transmission, or retires. We seek a policy which
maximizes (2) under the conditions of Problem (P;) defined
on p.

3) Relation of Problem (P3) to Problem (P3): We show
the relation of Problem (Pg3) to Problem (P2). There is a
one-to-one mapping from the states of (2-space to the states
of Qp-space, as follows. Let 57 C be a state of Problem
(P2). The state of Problem (P3) corresponding to S is the
set of all nodes j € Q2p such that j is in the family of some
node i € Sj. There are states of Problem (Pg3) which do
not correspond to any state in Problem (P2). To see this, let
J,k € Qp both be in the family of ¢ €). Consider a state
S C Qp where j € S,k ¢ S; this state S is not the mapping
from any state S7; C 2. The one-to-one mapping from € to
Qp is not in general an onfo mapping, because |Qp| > [Q|.
Those states S C (2p that are not the image of any state S C ()
under the above-mentioned mapping are not reachable under
the state transition mechanism of Problem (Pg3), and play no
role in the analysis.

A control action for Problem (Pj3) has a a corresponding
action in Problem (P2), as follows. A node j € Qp, with
associated (i, k), chosen for transmission in Problem (P3)
corresponds to transmission at node i of type k in Problem
(P2). The cost c(; 1y incurred for this transmission is the same
in both problems, and the state reached by the transmission in
2 maps to the state reached in 2p. When retirement is chosen
for Problem (Pg3), this corresponds to retirement for Problem
(P2), and the same reward is received, because corresponding
states have the same reward.

Hence, Problem (P3) and Problem (P3) are entirely equiv-
alent, in that to each decision policy for Problem (Pg) there
is a corresponding decision policy for Problem (P2) which
results in exactly the same behavior, and hence expected
reward, for both systems. We can thus solve Problem (Pg2)
by finding an optimal policy for Problem (Pg3). We proceed
to solve Problem (P3).

4) Analysis of Problem (Ps): We show that the system
of Problem (Pg3) satisfies the requirements of Problem (Py),
and hence is a special case of that system. Specifically, we
show that the increasing and decoupling properties (cf. Defi-
nition 2.1 and Definition 2.2) are satisfied, and that the reward
function is an index function.

The increasing property on 2p follows directly from the
fact that the increasing property holds on the underlying space
), together with the way states of {2 map to Q2p. That is,
transmissions only lead to an increasing state in (2, leading to
an increasing state in Qp.

The decoupling property holds for Problem (P3) because it
holds for Problem (P2). The nodes that receive transmissions
in Problem (P2) are unaffected by what other nodes have the
packet.

Note that transmission events in {2p can be highly corre-

lated, in that nodes of 2p in the same family either all have
the packet, or none have it. However, such event correlations
are allowed by Model (M).

Finally, Rp satisfies the definition of an index function on
Qp, because R is an index function on 2 and Rp gives the
same reward for the associated states of 2p.

Hence, an index policy is optimal for Problem (Pg3), and
Algorithm 1 can be used to determine such a policy. This
policy is also optimal for Problem (P2). Thus, Algorithm 1
is effectively used to solve Problem (P3).

Note that in the resulting priority list of an optimal index
policy 7, nodes from the same family in Qp will appear in
some relative order. Since nodes in a given family either all
have the packet or none have it, it is clear that only one node
from each family will ever be used for transmission by the
algorithm. Hence, all the nodes that are not of the highest
priority within their family can be removed from the priority
list for simplicity. In the terms of Problem (P2), this means
that only one transmission type at each node is ever used for
transmission.

Algorithm 1 when applied to Problem (P2) in this
manner is O(N32) in complexity, that is, of complexity

o((x, w))

omment: The results in this section can be used to show
that when a choice exists among deterministic transmissions
to single neighbor nodes, then Algorithm 1 reverts to the
well-known Dikstra’s Algorithm ([15] Ch. 4). In this sense
Algorithm 1 is a generalization of Dikstra’s algorithm to the
case of stochastic local broadcast transmissions.

IV. NOTATION USED IN DISTRIBUTED ALGORITHMS FOR
PROBLEM (Py)

A. New Notation and Definitions

‘We summarize the notation and definitions we need for the
distributed algorithms in this paper.

A general Markov policy can be written

{mmy... 7.} (46)

where the subscript of 7 indexes time. Since Problem (Py)
is a time-homogeneous Markov decision problem, we know

there exists an optimal stationary policy of the form
{mm...7...

(47)

Further, from Theorem 2.1 we know that there exists a
stationary optimal policy of the form (47) where 7 is an index
policy.

When describing distributed algorithms to compute an op-
timal policy for Problem (P1), we need to consider a more
general type of policy.

Definition 4.1: A local index policy for node ¢ at t is written
7rg’, and defines a node ordering of A/ (i), i € 2, with retirement
for node 7 indicated by r; if desired. A distributed index policy
at t is written II; = {m}=? ... 7N}, where 7! is a local index
policy for node i. A distributed index policy is written II =
{I11,...11; .. .}.

A distributed index policy functions by transmitting at the
current node, say i, at ¢, then using the node ordering 7! to
choose the next node for transmission.

For local index pohcy wt, we write j> ; k when j has higher
priority than k under ¢, j, k € N (i).

Definition 4.2: Consider nodes ¢ and j, local index policies
7, and 7}, and let k,1 € N'(¢) NN (j). If either 1) k> ;1 and

k> Jl or 2) k<l and k< Jl then we say 7! and 7/ match
on k and . '

Definition 4.3: 1If wi and 7] match on k and [Vi,j €
O, Vk,l € N(i) N N(j), we say distributed index policy II,
is uniform at t.

When II; is uniform at ¢, a global order of the nodes is
induced. We call the index policy which has this global node
ordering the associated index policy of II,.

We write P'(S|i) to indicate the transmission probability
as known at node i.

V. A DISTRIBUTED ALGORITHM FOR PROBLEM (Py)

We present our first distributed algorithm (Algorithm 2
described below) which computes the optimal solution for
Problem (P1), and has the characteristic that computations at
each node use only information directly from neighbor nodes.
This property is critical to the distributed implementation of
an optimal policy in an ad hoc wireless network. We claim
convergence of the algorithm to the global node ordering and
value function consistent with the optimal index policy under
the following constraints.

1) Each node 7 keeps a current estimate, denoted by V;,
of its own optimal expected reward value, with initial
value 0 < Vi0 < R,,qz- Each node 7 also stores the
most recently received estimate of each of its neighbors’
optimal expected reward values, denoted V; ;, where j €
N (i), with initial value 0 < VZO] < Rimaz-

2) Information transfer among neighboring nodes consists
only of the current V; value of the transmitting node.

3) Each node’s V; information is transmitted asyn-
chronously.

4) A node’s V; update, defined below, is also asynchronous.

5) It is assumed that each node has knowledge of its
own P?(S|i) update structure. For example, node i may
estimate P?(S|i) based on all its communications, both
control signals and packets.

6) The energy required to run the algorithm is not included
in finding the optimal solution for Problem (Py).

The algorithm is as follows.

Algorithm 2: An event time n is when one or more of the
following two events occurs. Any number of events may occur
at an event time.

Event 1 A node ¢ receives V; from a neighbor j and stores

itas V77, j € N(i).

Event 2 A node 7 recomputes V; using the current V; ;

values, as follows.

—ci+ Srsyss PRSIV
‘/;:n —max{m_ax{ g ZSQ}V(Z)JN(S)#'L (|) 3,7 (S)

Lscnyas)z SN
(48)
The maximization in (48) is over all local priority
policies 7 of 4.
It is assumed that events 1 and 2 occur infinitely often at
each node i.

Note that P?(S|i) > 0 and 7(S) # 4 imply that S D i, and
for conciseness in (48) we write simply S C N (4).

We require no a priori time ordering on the above events,
nor on the nodes where they are occurring. At times when
neither of the above events is taking place, the system is in a
frozen state, with all system parameters remaining unchanged.
An event which occurs at some event time can have no effect
on other events at the same time. Hence, we can choose an
arbitrary order for all events occurring at a given time without
affecting the outcome. In this way, we can talk sensibly about
the n’th event in the system since the start, and we use this
convention hereafter.

The local policy which optimizes (48) for node ¢ at event n
is a local index policy at 1, Wén. For convenience we notate this
as m', where the context prevents ambiguity. The distributed
index policy after event n will be denoted by II

Let V;* be the expected reward for node ¢ just after event
n in the above system, so that V,° is this value at the start of
the algorithm, where the allowed range is 0 < VZ-O < Rnmaz-
Let V;"; be the value after event n of the last transmitted
% recelved at ¢, where m < n is the event index of this
transm1ss1on At the start, the VO values do not need to match
the neighbor’s V0 values, we only require that 0 < V0
Rmax

The computation of (48) is based on update (40) of Algo-
rithm 1. Given the nature of this update equation, finding the
maximum in (48) is easier than it might first appear.

A Method for Finding the Maximum Over 7 in (48)

Method 1: Let event n be i’s computation of V;". Our goal

is to compute
—c; + N PZSZVn~
H— max g ZSQN(z).W(S)#Z z(‘) i,7(S) (49)
Q ZSQN(i):-Fr(S);éi Pi(S|i)

When ¢ has no neighbors, we define H = —o0, and we have
V* = R;. If node 7 has at least one neighbor, proceed as

follows.

1) Rank order the values V;"; that ¢ has most recently
received from its neighbors.
Let &1,&o, . .., & indicate the subscripts of ¢’s neighbors
in rank order, where [is the number of ¢’s neighbors.
That is, £; is the subscript of the j’th best neighbor
of ¢ according to the ranking of V;";. Ties are decided
arbitrarily. Denote by k the rank of node i w.rt. its
neighbors. Denote by 7, the priority policy which ranks
the k£ highest neighbors of node ¢ above <. Initially set
k = 2. (k is a dummy variable in this computation).

2) Compute

—¢i + Xseniymsz L SV s)
W = (50)
ZSCM'):frk(sm “(S17)
})}{‘f Vi, > W >V, then set H =W and halt (we
R thave found the rank of node 7 W.r.t. its neighbors).
4)°If k < [, modify 7, by moving neighbor & to higher
priority than i, leaving all else in 7; unchanged. Set
k=k+1, and go to 2.

5) If £ > [, then node 7 is the worst node of all the
neighbors. Set H = W and halt.

The process continues until either the condition of step 3.
or step 5. is satisfied. Termination is guaranteed, since the
condition of step 5. must eventually be satisfied.

Note that the denominator in (50) is not zero as long as @
has at least one neighbor.

Lemma 5.1: Method 1 finds a local policy © which maxi-
mizes (49).

Proof: Method 1 can be viewed as an implementation of
Algorithm 1 of Section I for Q = N (i) where R; = —oc,
and where for all nodes j, k € N (i), # i, we have

1) P, =0
2) Ry = "V,
Under these conditions, each V computation (given by (48))
for node j # i gives V/";, and Algorithm 1 of Section II
reduces to Method 1. Slnce Algorithm 1 of Section II finds
the optimal policy for all nodes, this policy maximizes (49).
|
Comments

1) Using Method 1 to compute (49) is in the worst case
O(1?), whereas an exhaustive search over all local poli-
cies 7 (i.e. local node rankings) would be O(1!).

2) In a practical implementation, there may be ways to
speed up Method 1 by changing the order in which the
neighbor nodes are put into or removed from the list of
better nodes. For example, we might want to always try
the order which worked at the last update, and then add
or remove nodes sequentially from there.

We proceed with the analysis of Algorithm 2. The following
theorem is our main result concerning Algorithm 2, summa-
rizing its convergence properties.

Theorem 5.1: For Algorithm 2 with any initial state s.t. 0 <
VZO1)g Rppar and 0 < Vi?j < Rppaz for all 4,5 € Q, we have

nan;cW":%”, Vi€ Q (51)

2) There exists an event n, < oo st II =

{11, M, 1 II, i»...} is an optimal distributed
policy

3) If VT £ VI Yie Q5 € N(i) (52)

a) V" =V Vn>n,VieQ
b) II = {an H71p+1 an+2 ..
index policy that is optimal

Before proving Theorem 5.1, we present a series of lemmas
which we make use of in the proof. Our method of proof of
Theorem 5.1 is influenced by the proof of the Asynchronous
Distributed Bellman-Ford algorithm in [4]. We begin with a
simple proof of an important property of the node update
procedure which is fundamental for the analysis.

Lemma 5.2 (Update Monotonicity): Consider two cases of
a node recomputation for 7 at event n using (48). In case 1,
the neighbor values are V” and the updated node value is V”

.} has an associated

In case 2 the nelghbor Values are V” and the updated node
value is V;". Assume V;; > V/%.Vj € N(i). Then

i, = Vi,j%
7 (53)
Proof: For a given 7, (50) is monotonic in each V. Let

7 be the policy chosen in (49) for case 1, and let 7 be the

policy chosen in (49) for case 2. Let H be the value in (50)

when case 2’s policy 7 is used with case 1’s values f/Z”J Then

H<H<H (54)

where the final inequality follows because 7 is optimal in (49).
Equation (48) and inequality (54) imply (53). [|
We say that the monotonicity property holds for a node

update due to the result of Lemma 5.2.

We now define two random sequences, D} and 5;, which
we use to provide bounds on node updates. Noting that at the
start of Algorithm 2 each node has a V' value between 0 and
R4z, and aiming at a kind of worst case initial state in light
of the monotonicity property just demonstrated, we define D}
and D as follows.

Definition 5.1: We define Vi € Q) such that R; # Raz

D! := Computed value for i after event n when V" = Vl-?j =0

:Rm ax

ﬁ? := Computed value for i after event n when VZ-OZVi?j
For ¢ such that R; = R,,4., define

Q:L = b? = Rmamavn
This last definition results from the fact that a node which can
retire and receive R, should always do so.

In the following, we assume 7 is an optimal policy, and that
V;™ is the optimal value function for 3.

In the next lemma, we demonstrate that D} is a monotoni-
cally non-decreasing sequence which lower bounds V", and in
turn is upper bounded by V;". Similarly, we demonstrate that
DZ— is a monotonically non-increasing sequence which upper
bounds V;, and in turn is lower bounded by V;*. Once these
facts are proved, it will remain to show that D}' converges to
V™ from below, and that ﬁ? converges to V;" from above, to
obtain covergence of V;" to V.

Lemma 5.3: We have

1) Dm<D”<V"<D <D}

2) Q;’_VfﬁDl Vi, n

Proof: We proceed by induction on event number. Con-
sider the following set of equations at some event n.

i)y D!< D" < V’"<D <D, Vi,l<m<n

ii) D”<V’T<D Vi
At n = 0, we have the starting values Q? = 0 and b? =
R,,q.- Hence (ii) is true. Also, the starting value for the actual
system must be between these extreme values 0 < VZ—0 <
Rynaq for any node 4, so (i) is true at n = 0 also.

Assume that after event n (i) and (ii) are true. We want to
prove that (i) and (ii) are true after event n + 1. We consider
the two possible event types at n + 1, as follows.

Yi,n, m<n

]

1) A node transmits its V value. This has no effect on (i)
and (ii) above, and they remain valid for n + 1.

2) A node (call it 7) recomputes its V value. Since all nodes
other than ¢ are unaffected, we can focus on ¢ at n + 1.
The last time i’s V value was computed, some estimate
of each neighbor’s V value was used. Consider neighbor
j, and let | be the past event at which j computed the
V value which was used by ¢ for j at its last V value
computation. Similarly, let m be the past event at which
j computed its value which is being used by ¢ for the

current computation at n + 1. Then clearly [< m < n,
and by (i) and the induction hypothesis we have
l m _m -t
DL <Dy <V <Dy <D, (55)
Since (55) is true for all neighbors of ¢, by the mono-
tonicity property (Lemma 5.2) we have

D <D <y <D <D (56)
Equation (56) and our assumption of (i) at n together
imply that (i) is also valid for ¢ at n + 1.

Next, by inductive assumption (ii) we have for any

neighbor j at event m, where m is as above,

D" < V7 <D (57)
By Lemma 2.6, if each neighbor j has its correct optimal
value Vj’T, then (48) for ¢ gives V,", the optimal value
for 7. So again monotonicity (Lemma 5.2) implies that

Dyt <yr <Dt (58)

and (i) is also true at n + 1.

Hence for both types of events (i) and (ii) remain true at n+1,
and the induction step is complete |
Comment: In Lemma 5.3, the first part follows directly
from the monotonicity property, and in fact is true for any
function that is computed at each node that has this property.
The second part further requires the property that when all
neighbors are correct, the correct value function gets com-
puted.
Corollary 5.1: We have
) D=V = Qﬁ =V7,Vm>n
2) D, =V =D, =V7,Ym>n
Proof: These two results follow directly from Lemma 5.3.
|
In the following lemma, we demonstrate convergence of D}
to the optimal value V;™ in a finite number of steps (we remind
the reader that m denotes an optimal policy).
Lemma 5.4: There exists n, < oo s.t. Vn > n,, D' =
VT, Vie Q.
Proof: The proof of Lemma 5.4 is in Appendix B. ®
Unfortunately, finite time convergence does not hold in
general for ﬁ?, as the following example demonstrates.
Example

Consider the system of Figure 1 with parameters 0 < p < 1,
0<q§1,01202:1,andR1:R2:O,R3:R.That
is, Q3 is the destination node. Assume that R > 1%, so the
system has a non-trivial optimal policy. Transmission success
from either (1 or ()2 to the other two nodes is independent,
with probabilities p and ¢ respectively. Assume Algorithm 2
begins with V* = V%, = R, Vi, j.

As Algorithm 2 runs, the node value computations in (g
and)2 ping-pong back and forth, as the update of one is
transmitted to be used in the other’s update. Letting V" denote
the update value at (); at the nth such update (i.e. the nth
update where V) actually changes value), it can be shown that

Fig. 1. System which takes infinite time to converge
forn>1,
no_ _(1-p?¢ w1, (PR—1)(p+2(1 —p)g)
o= 2Lyt .
»+(1-p) (p+(1-p))
= A V" '+B (59)

where V! = R, and A and B are defined by (59). Since
0 < A < 1, standard difference equation methods [35] yield
the closed form solution

Vit = (R 1—A>A tiZa
A similar equation holds for V3. Since A < 1 and % =
R— %, we obtain lim, ,.o V" = R —]%, which is the correct
value function. But because A > 0, this value is never reached
in finite time. O

Below we discuss the sense in which an optimal distributed
policy is reached in finite time in the above example.

Comment: The key fact in the preceding example is that
nodes 1 and 2 have identical value functions. As a result, the
V" values of these two nodes converge to the same value, and
hence interact in each computation at each event n, preventing
convergence in finite time. When limit values are different at
each node, a result similar to Lemma 5.4 for the ﬁ? sequence
follows easily, as shown in the following lemma.

Lemma 5.5: For Algorithm 2,

1) Vi, there exists W; € R s.t. D, | W,.

2) Assume W,; # VZZ-,W,]' with j # 4. Then dn, <

o0 s.t. Vn > np, Dy = V™, Vi.
Proof: The proof of Lemma 5.5 is in Appendix C. ®

We are able to prove asymptotic convergence for the ﬁ?
sequence in general. To accomplish this, we define a new
system, which we refer to as the round-robin (r-r) system.
In the r-r system, node update and transmission events follow
a fixed pre-defined order. The r-r system is more analytically
tractable than the general asynchronous system of Algorithm 2.
Using the monotonicity property (Lemma 5.2), we are able to
prove that E? is bounded above by a corresponding value
in the r-r system (specified in Definition 5.3), and then show
that they both must converge to V;". We begin with the basic
definitions.

Definition 5.2: The round-robin (r-r) system is defined as
the system of Problem (P1) restricted to the following order of
events. For each 1 <4 < N, node ¢ computes V;, successfully
transmits V; to its neighbors, and then these events are repeated
at (i4+1)mod N. For consistency in the following, we assume
the system starts at ¢ = 1.

Definition 5.3: For the r-r system:

(60)

- Define u, to be the event number of the nth computation
of the V' value of <.

- Let W} be the V value at !, for i with initial state
Ry for all nodes in the system.

For the actual system:

- Define v!, to be the event number of the first computation
of the V value at ¢ after each node j, 7 < ¢ has
completed the nth computation of its V' value, and each
node j, j > ¢ has completed the (n — 1)th computation
of its V' value.

Note that the u’’s and v’’s are all finite, since we have
assumed that each of these events occurs infinitely often. From
the above definitions, we immediately infer that

vi >l Yin (61)
We show that TW"" bounds D.".
Lemma 5.6: We have
D;" < W™, Vi,n (62)

That is, the nth computation of the V' value at ¢ in the actual
system is bounded above by that for the r-r system, when both
start all nodes at R,,q4z, for all ¢ and number of computations
n.
Proof: The proof of Lemma 5.6 is in Appendix D. ®
Since Lemma 5.3 is valid for any event order, the results
there are also valid for the r-r system. Hence for each i, W}
is a non-increasing sequence which is bounded below by V™.
Hence it converges to a limit (see [30] Thm 3.14). We will
show that this limit must be V", so that in general W} |
VT, Vi
ZDeﬁm‘tion 5.4: We write the update equation for ¢ in the r-r
system, and define the update function f; as follows.

' . k+1

k1 —Ci+ 2 scn(iymr ($)<i £ SIOWET (5

Wem me > sent (ST
SCN (i):mp 41 (S)#1

i a1k

+_EjsgAmomk+m5>>ifﬂ(sh)m9k+u5> _

: . T
ZSQN(i):wk+1(S)7£i Pi(S|i)

— k+1 prrk+1 k+1 7k
.—max{fi(Wl T W W

(3

L W), Ri}

(63)

For convenience, we will not notate the k’s in (63) when
writing the formula for f;, since they are fixed. Define

W = (WER W WL WE L WE) (64

where we have assumed that j < 7. Hence we can write (63)
as
WH = max{ f;(W), R;} (65)
Note the policy used at each step 7y is itself varying with
time, but is only a function of the neighbor nodes of 7 at k.
Also note that though in general f; is a function of all nodes in
the system other than ¢, often only some subset of these nodes
are actually neighbors of ¢ and affect the update computation.
Lemma 5.7: For every i, f;(W¥i") is component-wise
continuous and piecewise linear, of non-negative monotoni-
cally non-decreasing slope.
Proof: The proof of Lemma 5.7 is in Appendix E. |

We pick an arbitrary node from which to observe the update
of all the nodes in the r-r system. Without loss of generality,
we consider node N. Let W™ be the node values after the
nth computation and transmission of Wy (the components of
W™ are as in (63)).

Definition 5.5: Define the mapping 7 : RV — RV as

Wn—&-l — T(Wn>

where

Wit = max{fi(WE, . WR) R

Wit = max{fa(W, Wy WR), Ro}

WY = max{fy (W], WREL W), Ry 1}
VV]’\lz—H = maX{fN(erH_l""’Wfr\Lftll)’RN} (66)

Note that T' is fixed for all n. The fact that this 7' mapping
is fixed is the reason we have introduced this notion of a r-
r system. It allows for a fixed-point argument which we now
develop. Our procedure is to demonstrate the continuity of the
mapping 7', show that V™ is a unique fixed point of 7', and
then use continuity of 7" to show that the limit point of W" is
a fixed point of 7. We can then conclude that this limit point
is the value function.

Lemma 5.8: The mapping T' is component-wise continuous
for each output.

Proof: The assertion of Lemma 5.8 follows from (66),
Lemma 5.7, the fact that max{-,-} is continuous in its argu-
ments, and the fact that composition of continuous functions
results in a continuous function.]

Lemma 5.9: V™ = T(V™), and there are no other fixed
points of 7.
Proof: The proof of Lemma 5.9 is in Appendix F. |
Lemma 5.10: W} :=limy_,oo WF =V, Vi

Proof: We have
W = lim WhH — Jim. T(WF) = T(lim WF) = T(W*)
where the third equality holds because of Lemma 5.7,
Lemma 5.8, and Theorem 4.10 of [30]. Hence any limit point
of W must be a fixed point of 7. But by Lemma 5.9, the
only fixed point of 7" is V™, and the result follows.]

Based on Lemma 5.2-Lemma 5.10 we prove Theorem 5.1.
Proof of Theorem 5.1

Proof of 1. By Lemma 5.3 and Lemma 5.4, after finite time
n, we have

Vit >V, Vn >n,, Vie (67)
Combining Lemma 5.6 and Lemma 5.10, we have
lim D} < lim W) = lim Wr=V7, vieQ (68)
Lemma 5.3 (1) and (68) ensure that
lim V" < lim bf? <V, VieQ (69)

n—oo n—oo

Inequalities (67) and (69) imply that lim,,_, ., V" = V™.
Proof of 2. Because of (51) there exists n,, after which the

node values at each node ¢ and its neighbors N(i) are in the

order of some local index policy that coincides with the order

of an optimal index policy. At each event n > n,, this local

Fig. 2. System with optimal distributed policy

ordering can change, but the new local order coincides with
the order of an optimal index policy. Hence, at each node ¢ an
optimal action is taken at each event n > n,. Consequently,
the distributed policy is optimal.

Proof of 3. Because of (51), (52), and Lemma 5.3, there
exists n, after which node values for each node 7 and its
neighbors A/ (i) are in the order of the unique optimal local
index policy and there are no subsequent changes in this order.
After ny, once a full round of node updates occurs, each node
has its correct V;™ and its correct local index policy, which
subsequently do not change. O

We give an example where Algorithm 2 does not converge
to an optimal index policy, but still converges to an optimal
distributed policy.

Example

Consider the system of Figure 2 with parameters 0 < p < 1,
0<qg<1l,¢g =ca=c4=1,and Ri = Ry = Ry =
0, Rs = R. Assume node recomputations and successful value
transmissions occur in the order [1,4,2,4,1,4,2,4,...]. Then
node 1 and 2 updates are still represented by (60). The policy
at node 1 is fixed at 7} = (3,2,1), Vt, and the policy at node 2
is fixed at 7 = (3,1, 2),Vt. But at each update of node 4, the
policy changes, as the ranking of the values of nodes 1 and 2
alternate. That is, the policy computed at node 4 is

7721 = {(132a4) (27 134) (17234) (25 154) (13254) .- } (70)

Of course, 7} = r3. The overall policy is IT; = (7} 72 7} 7}),

which is not a stationary policy, due to . It is, however, an
optimal distributed policy.

VI. DISTRIBUTED DYNAMIC PROGRAMMING
FORMULATION

We develop a distributed algorithm, different from but
related to Algorithm 2, using the methodology of Distributed
Dynamic Programming (DDP) [3]. DDP is a technique for
solving dynamic programming problems using distributed
computation. The technique may only be used for problems
formulated so that a standard dynamic programming equation
applies, and for which a suitable partitioning of the state space
among processors (“computation centers”) can be made. See

[3] for a description of DDP, and [17] for further details on
applying DDP to Problem (Pq).

A. Solution of Problem (P1) Using DDP

The model of Problem (P) is a standard controlled Markov
chain with finite state space 2’ and action space i € (.
Dynamic programming can be directly applied to Problem
(P1) on state space 2%, but this approach is inefficient and
does not lead to a direct application of DDP. This is because
it is not possible to define useful computation centers as in
[3] through partition of S = 2 (on this state space, to define
computation centers in a way that leads to the application of
DDP, we would need to know a priori the optimal priority
list of nodes as dictated by Theorem 2.1). Our approach is to
use the index structure of an optimal policy demonstrated in
Theorem 2.1 to define a new state space on which DDP can
be applied.

To solve Problem (P;) using DDP, we proceed in three
steps.

1) Formulate a new problem, Problem (F;) below
2) Show that an optimal policy for Problem (F;) can be
mapped to an optimal distributed policy for Problem
(P1)
3) Apply DDP to Problem (F;)
Below we present the details of each of the steps above.
1) Formulation of Problem (F1): We formulate Problem
(Fy).
Problem (F;)

The state space is €2, the set of nodes. The policy space is
the set of all local index policies 7 for all i € . When
transmitting in state ¢, a cost ¢; is incurred and transition to a
new state j € €2 occurs. Define Pi’;l to be the probability of
transition from state i to state j, j € N(i), under policy .

Then,
>

St (S)=j,r;

Py = Pi(Sli) (71)

When we retire in state 4, the process terminates and a reward
R; is received. The objective is to choose for each state i the
local index policy 7" to maximize

—1
E {Rm) - %)}
t=1

where 7 is the time when the transmission process is termi-
nated, and i(¢) is the state at time t.

2) Mapping of Optimal Policy from Problem (F1) to Prob-
lem (P1): We define a mapping of policies for Problem (F4)
to policies for Problem (Pq).

Mapping 1: A general (possibly time-varying) policy for
Problem (F1) consists of a sequence of local index policies
for each i € Q2. For each ¢ we define

(72)

I, = {x}7x2...xN} (73)
A policy for Problem (F;) is then specified as
0= {ILIL,...IL,...} (74)

We map a policy for Problem (F;) represented as (74) into a
distributed index policy for Problem (P1) (cf. Definition 4.1)
in the obvious way. That is, at each time ¢ the local index
policy 7 at each node i €) is the same for Problem (Py)
as for Problem (F4).

We show that mapping an optimal policy of Problem (F1)
by Mapping 1 leads to an optimal policy for Problem (Pq).

Lemma 6.1: If TI is an optimal policy for Problem (F1),
then IT mapped to a policy for Problem (P4)using Mapping 1
is an optimal distributed policy for Problem (P1).

Proof: The assertion of Lemma 6.1 follows from Map-
ping 1 and the fact that an optimal policy for Problem (Py)
is of the index type. |

3) A Distributed Dynamic Programming Implementation
for Problem (F1): We formulate a DDP solution of Problem
(F1) by translating the notation of [3] into our notation. Each
node ¢ in our model is a computation center for itself alone,
so that S; = 4,Vi € (). We associate

S Q
Set of all priority orderings of A/ (i),Vi € Q}
U (7’3)1 gSet of all priority orderings of N’ 27;}
—0Q, Rmaa:]
We also note the notational correspondences V' <« .J, and
V* < JE, which are equivalent assuming event n occurs at
time .

A neighbor of a node in the sense of [3] corresponds to
our notion of neighbor. That is, the neighbors of node i are
those nodes with positive marginal probability of receiving the
packet when ¢ transmits. These are precisely the nodes whose
values can affect node ¢’s update. However, the notation for the
neighbors of 4 used in [3], N (i), does not include ¢, whereas
for our notation i € N (7).

For Problem (F;) we define the H function of [3] Vi €
Q, 7t e U(i) as

H(i,n",V) = —max{ —c; + »_ P(S[)V(7'(S)), Ri
SCN(4)
(75)
The negative sign in the RHS of (75) is used to conform to
the convention of [3] that the goal is to minimize cost. Thus,
the dynamic programming equation for Problem (Fp) is

V' =min H(i, 7", V™) (76)
Note that H is monotone in V in the sense of [3].
The update for state < € 2 by DDP at event n is
V" = min H (i, 7", V"))]

We suppose that Assumption 1 of [3] is true for node
updates and transmissions. The functions
V., = Vi € Q

ALY 7Rmaaca

Vi = 0

(78)
(79)

satisfy part (i) of Assumption 2 of [3] due to (75) and (77),
and part (ii) of Assumption 2 due to (76) and the standard
result on value iteration for a dynamic program. We require
that, when running DDP for Problem (F;), we start with a
value between V and V at each node.

This completes the DDP formulation of Problem (F1). We
now briefly state the results from [3] which apply to Problem

(F1). Assumption 1, Assumption 2, and the requirements
of Proposition 1 in [3] are satisfied. Proposition 1 of [3],

translating into our notation, then implies that
lim V" =V, VieQ

n—oo

(80)

Because for fixed m’ update (75) is continuous in the
components of V, the requirements of Proposition 3 of [3]
are also satisfied. Translating to our notation, we obtain from
Proposition 3 that there exists a n; > 0 such that for all
n > n;, if a local index policy 7rfl satisfies

H(i,w,, V") =min H(:, 7", V"), VieQ (81)
pars

then H(i,n!, V™) = min H(i,x", V™)

T n
Tt

(82)

Equation (82) states that 7’ takes an optimal action for state i
at event n.

Thus, we have shown how Problem (F7) can be solved with
the DDP methodology of [3] using update (77).

B. Relation Between DDP Solution to Problem (F1) and
Algorithm 2

Event 1 of Algorithm 2 corresponds precisely to the transmit
state, which is update 1) of [3]. Event 2 of Algorithm 2 is
related to update 2) of [3]. However, the update equations
(48) for Algorithm 2 and (77) for DDP are not the same. For
an update at node i € () at event n + 1, the key difference is
that in (77) the value V;* affects the updated value V;"“,
whereas in (48) it does not. Another difference, relatively
minor, between the DDP formulation and Algorithm 2 is that
where Algorithm 2 assumes Events 1 and 2 occur infinitely
often, the DDP formulation of Problem (F;) requires the
somewhat more restrictive Assumption 1.

Though Algorithm 2 and the DDP formulation differ in the
ways just mentioned, the results proved for each algorithm are
quite similar. As remarked in (80), Proposition 1 in [3] implies
that lim V" = V7,VieQ (83)

n—oo

Equation (83) shows asymptotic convergence to the value
function for Problem (Fi), and hence for Problem (P4),
and is similar to result Theorem 5.1, (1.). The result of
Proposition 3 (82) is similar to our Theorem 5.1, (2.). No
results similar to Theorem 5.1, (3.) for Problem (P;) under
the DDP formulation follow directly from a result of [3].

As these results show, once Theorem 2.1 is proved for
Problem (P+), application of Distributed Dynamic Program-
ming on an appropriate state space provides a new distributed
algorithm for Problem (P;) with certain properties nearly
equivalent to those of Algorithm 2.

VII. DISTRIBUTED RANK METHOD

We define a third distributed algorithm for Problem (P),
which is similar in spirit to Algorithm 2, except that a different
method is used to update the node value function. We define
the following

Algorithm 3: At each event time, any number of the fol-
lowing two events can occur.

Event 1 A node i receives V; from a neighbor j, j € N (i).

Event 2 A node ¢ recomputes V; using the current V; ;
values, as follows.

1) The set of V;; and V; values are ranked,
high-to-low. A local index policy 7 for @ is
created which uses this ranking (ties are broken
arbitrarily). If V; > V;; Vj € N (i), then 7
uses any ranking of the neighbors, so long as ¢
is given a ranking below at least one neighbor.

2) The following is computed.

v e] ZG T Dsenaaez P SIVins) o
' doscn(ya(s)2i DS T

(84)

We assume events 1 and 2 occur infinitely often at each
node 1i.

Before we proceed with the analysis of the convergence
properties of Algorithm 3, we define certain types of events
associated with the execution of Algorithm 3.

Definition 7.1: We call a node reset the event where V; is
equal to or larger than all neighbors in Step (1) of Algorithm 3,
at which point the algorithm sets ¢’s rank somewhere lower
than the highest neighbor, and the left-hand term using 7 is
the larger term in (84) in Step (2).

When a node reset occurs for node ¢, the new ranking used
for m is an implementation decision. All of the following
results for Algorithm 3 are valid for any choice of @ when
resetting, so long as node ¢ is not ranked highest. Of course, the
choice of 7 affects the convergence properties of Algorithm 3.
An example of this choice would be to always make ¢ the
node of lowest rank among neighbors when resetting. Another
choice would be to always make ¢ the second highest ranked
node among the neighbors when resetting.

Definition 7.2: When a node value recomputation using
(84) occurs at node ¢ which is not a node reset, we say a
standard update has occurred.

Definition 7.3: When a standard update occurs without the
retirement value R; being the optimal choice, so that the left
term in the RHS of (84) is chosen, we say a rank update has
occurred.

We state our main results for Algorithm 3 in the following
theorem.

Theorem 7.1: For Algorithm 3 with any initial state s.t. 0 <
Vi < Rypae and 0 < V)5 < Rypgg for all 4, j € Q, we have

1) lim, oo V* =V, Vi€ Q

2) There exists an event n, < oo st II =

{IL,, IL, 41 IL, 42...} is an optimal distributed
policy

3) If

Vi # VI Vi€ Q5 € N(i) (85)

then there exists an event n, < oo S.t.
a) V"=V Vn>n,VieQ
b) II = {II,,, II,, 11 I, 4o...} has an associated
index policy that is optimal
Before proving Theorem 7.1, we present a series of lemmas
which will be used in the proof. But first we note that the
monotonicity property in the sense of Lemma 5.2 does not

Fig. 3. System Demonstrating Violation of Monotonicity for Rank Update

hold in general for the update of Algorithm 3. We show this
by the following example.
Example

Consider the system of Figure 3. Given R3, V3, V3, and V2,
assume at time 1 there is a node update using (84) for node 3.
We consider the following two cases. The values used in the
update are: Case 1) Rz, V3, V3, and ‘73(32, and Case 2) R,
VY, V4, and V4),. Assume R3 = 0 and that

- . —c
V3(32 < V5 < V30,2 <4 V3Cj1 (86)

Case 1 From (84) we have 73 = (1,2,3). Then V3! =
753+pV30.1+(1*p)p‘730‘2
p+(1-p)p
Case 2 From (84) we have 73
*C3+pV30.1

(1,3,2). Then V;' =

P
Noting that 173?2 <R 4 Vi1, we find that Vi < V. But
since Vi, > V2, and all else is equal in the two cases, update
monotonicity is violated.

To make the example concrete, let Vi = 5, Vi1 =10,p =
5,c3 =1 Let Vi, =3, 0 Vit = —2+10 = 8. Let V&, =6,
so Vi = —14(.5)10+.25(6)

5(L5) = 7% < ‘731, violating monotonicity.
O

Because the update monotonicity property does not hold
for Algorithm 3, we must take a very different approach to
proving its convergence than what we used for Algorithm 2.
In the following lemma we prove what may appear as a
technical result of unclear utility, but which proves crucial
in the approach we take. It says that when two index policies
share the top of a priority list, but differ further down, then
their updated values can be usefully related.

Lemma 7.1: Assume we are given two local non-retiring
index policies 7 and 7 and a full set of neighbor values {V; ;}
for node 7. Let A C N (i) be the nodes which 7 ranks above
node i. Assume that policy 7 uses this same ranking for the
nodes in A, but that there is also a set B C N (i) — A, B #),
each member of which 7 ranks above node ¢ and below the
nodes of A.

Define Y7 := max;cp Vi,j’ and Y5 := minjcp Vi’j. Then
there exists 0 < a < 1 such that

(1—a)VF+aYa <VF<(1—a)Vf+aY: (87)

Proof: The proof of Lemma 7.1 is in Appendix G. H

In the next lemma, we prove a straightforward fact about a

rank update, which is that the updated value is upper bounded
by the highest neighbor value minus the cost c;.

Lemma 7.2: Suppose there is a rank update for node ¢ at
event n, with neighbor node values Vi’fj_l, j € N(i), and
neighbor ranking 7. Define Vinar = maxjen(iy.j>zi Vi'?j*l
Then

V;n S Vma.r — G (88)
Proof: The proof of Lemma 7.1 is in Appendix H. ®

As before, we use V™(-) to denote the optimal value
function for Problem (P1).

In the following lemma, we use use a continuity property of
the Algorithm 3 update to translate bounds on neighbor values
into bounds on the updated value.

Lemma 7.3: Suppose 7; is an optimal local policy for
node j, and let B := {k € N(j) : k>r,j}. Then for any
€ > 0 there is > 0 such that

Vig 2V —6YVke B= V" > V[—¢ (89)

Suppose 7; is a local policy (possibly suboptimal) for
node j, let B := {k € N(j) : k>z,j}, and assume that
B C B. Then for any € > 0 there is § > 0 such that

Vin SVI+0VkeB= V7 <V +e (90

Proof: The proof of Lemma 7.3 is in Appendix L. |

The fact that Lemma 7.1 guarantees the existence of an

0 < a < 1 satisfying (87) is key to the arguments we develop

in this section. We simplify the use of this fact by defining a
maximum over all such a’s.

Definition 7.4: For a given node ¢ € €2 and a pair of local

index policies 7 and 7, let a(i, 7,) be given by (120), (121),

and (126). Define

O

Umax ‘= Max a(iaﬁ-a A)
1€EQ, T,
Note that 0 < apmae < 1.
The following lemma is our main substantive result for the
rank algorithm, and leads directly to Theorem 7.1.
Lemma 7.4: For Algorithm 3 we have lim, .., V" =
VT, VieQ
Proof: The proof of Lemma 7.4 is in Appendix J. |
We are now ready to present the proof of Theorem 7.1.
Proof: [of Theorem 7.1]
Proof of 1. Relation 1. follows directly from Lemma 7.4.
Proof of 2. Because of 1. there exists n, after which the
node values at each node i and its N(i) are in the order
of some local index policy with an optimal associated index
policy. At each event n > n,, this local ordering can change,
but it always corresponds to some optimal associated index
policy. Hence, at each node i an optimal action is taken at
each event n > n,. Hence, the distributed policy is optimal.
Proof of 3. Because of 1. and Lemma 7.4, there exists n,
after which node values for each node ¢ and its A/(¢) are in the
order of the unique optimal local index policy. and there are
no subsequent changes in this order. Subsequent to n,, once
a full round of node updates occurs, each node has its correct
V;™ and its correct local index policy, which subsequently do
not change. |
Discussion
It is interesting to note the relation of Algorithm 3 to the
results in [8]. Major differences include the on-going nature
of the node updates in Algorithm 3, and that node values are

[[Alg. | V™ Update]
—Cit+ SCN (i) (S)#i Pi(s‘i)virf;(é)
Alg. 2 max{ maxﬁ{ S sex(om(s) PTETD , R
il m—1
DDP max{max,r{ —c; + ZSQN('L) PZ(S|Z)ViT,L7r(S)} ,Ri}
Alg. 3 7 set to rank order of Vi"].*1
—Cit Y SCA(i)im(S) i Pi(SIi)Vf;({q)
(Rank) max{ S scn sy PP , R;

TABLE I
UPDATE FUNCTION FOR THREE DISTRIBUTED ALGORITHMS

interpreted as the expected reward at a given node, whose
estimates are constantly being updated by (84). The direction
flipping action of [8] corresponds to resetting in Algorithm 3.
The proof of Theorem 7.1 is more difficult than the analogous
result in [8], due to the fact that in Algorithm 3 node values
can change not just when being reset but also when normally
computing updated estimates.

VIII. ALGORITHM COMPARISON AND SIMULATION
RESULTS

For ease of reference, we summarize the update functions
of this paper’s three algorithms in Table 1. All three algorithms
run in a similar fashion, with the main difference being this
update function. In terms of computational complexity of the
update, Alg. 2 and the DDP algorithm are roughly comparable,
while the Rank algorithm is somewhat less complex. In The-
orem 5.1, the DDP results, and Theorem 7.1 we have shown
finite-time convergence of each algorithm to an optimal policy
in a static network. There remain important questions about
how each algorithm dynamically behaves during convergence,
such as the convergence rate, which have not been addressed
in this paper. Understanding dynamic behavior would allow
us to characterize these algorithms more completely.

An ad hoc network simulation has been conducted to
compare performance of the three distributed algorithms of
Table I, along with the performance of other algorithms in
the literature. The simulation is setup so that the frequency
of packet arrival justifies a route-maintenance approach. The
density of mobiles in the simulated network is chosen so that
the local broadcast nature of transmission is beneficial. Hence,
the results presented here are not conclusive in comparing the
different approaches, but they do represent an important class
of networks for which our approach performs very well.

The network consists of 12 mobiles on a field 2 km x 2
km. Each mobile moves at the same constant speed, which
can be varied over different simulation runs. Each mobile
chooses a waypoint which is a random point in the field of
operation, moves toward this waypoint at a fixed speed, and
then chooses a new random waypoint once the previous one
is reached. Messages arrive at a fixed rate at each mobile,
and they all have the same destination node, which is also

moving. Mobiles transmit each packet as it arrives at fixed
power, and take statistics on which other mobiles receive the
packet by keeping a moving average of the success rate to
each other mobile. Mobiles are assumed to be transmitting
pilot signals from which the active set of neighbors can be
determined for both control signaling and decoding attempts.
Transmission instances are assumed synchronous across all
mobiles. Each mobile has a single omnidirectional antenna
for both transmitting and receiving.

Transmission channels and interference are modelled using
the method from the 3GPP2 1xEV-DO Evaluation Methodol-
ogy [1] for CDMA transmission. In the present simulation,
only Channel A (a 3kmph single-path Rayleigh fading chan-
nel) is used, and short-term curves (PER vs. Eb/No) generated
for this channel are used to determine packet success. When
variation in velociy is indicated in the simulation results, this
indicates the rate of network topology change, not of the
fading process. Signal propagation loss is determined using
a power of 3.5 dropoff in distance. Path loss to each neigh-
boring mobile consists of a propagation loss, time-varying
shadowing, and short-term fading. The propagation loss is
based on distance, the time-varying shadowing is assumed
.5 correlated across neighbors, and the short-term fading is
assumed independent across neighbors. Each time instant, the
power received at each node is determined and an interference
term is used in the Eb/No computation for each mobile packet
transmission. We model a carrier frequency of 1.9GHz, a chip
rate of 1.25Mcps, and a spreading gain of 20, which implies an
approximate 60kbps transmission rate. We assume each packet
is 50msec in duration.

Each transmission is assumed to cost a fixed energy of
1 unit and occur at a fixed power. After each transmission
from a mobile, the routing protocol uses the set of neighbor
mobiles successfully receiving the packet to determine whether
to retransmit the packet or to pass control of the packet to a
neighbor mobile. The energy cost of the packet reception and
control signaling is assumed negligible in these simulations.

As the mobiles move toward their waypoints, and as
shadowing and fading vary with time, transmission success
probability to each neighbor dynamically changes. Transmis-
sion probabilities are estimated for all algorithms using a
moving window average of recent success frequency. These
successes are kept individually for each neighbor and as-
sumed independent. Though this is not exactly true physically
(nor in the simulation transmission model itself), the effect
of fading over packet transmission times often means this
model is a reasonable approximation and useful for making
routing decisions. Note that nothing in the optimality of these
algorithms depends on such independence, but it is assumed
for computational simplicity of the routing algorithms used in
this simulation.

We simulate the performance of six algorithms. The first
three are those presented in this paper and summarized in
Table I. The remaining three are version of well-known algo-
rithms: Distributed Bellman-Ford (DBF) [4] with a hop-count
metric (DBF-HC), DBF with an expected energy cost metric
(DBF-EN), and the method of Gafni-Bertsekas (GB) [8],
which has also been adapted for use in the TORA algorithm

[22]. In DBF-HC, the path with fewest links to the destination
is used. In DBF-EN, a metric for each link is determined based
on the expected energy to transmit across the link, which in
our model is the inverse of the success probability, and the
path of smallest cumulative expected energy is used. In GB,
the same path is used until a link in the path is broken, at
which time a distributed algorithm runs which is guaranteed
to determine a new path to the destination. In the DBF-HC and
GB algorithms, a strict binary decision is made as to whether
or not each link is connected. In our simulation, we use a fixed
probability threshold to make this determination.

We simulate two cases, that of a loaded network, and that
of a partially loaded network. In the case of a loaded network,
it is assumed that each mobile is transmitting and generating
interference nearly all of the time, even when the mobile does
not currently have any packet destined for the destination
being simulated. This accounts for the fact that though we
simulate packets for just one destination, in the actual network
there may be many such destinations and their packets are
constantly flowing in the network. The loaded network is the
case where transmission opportunities are close to saturation.
In the partially loaded network, we assume that each mobile
transmits only a fraction of the time, with these times chosen
randomly, when generating neighbor interference.

In summary, the algorithms simulated were:

o Algorithm 2

« Algorithm 3, Rank Algorithm

« DDP Algorithm

« Distributed Bellman-Ford (DBF-HC), where link cost is

always 1 (i.e. count number of hops)

o Distributed Bellman-Ford (DBF-EN), where link cost is

expected energy cost to transmit across the link

« Gafni-Bertsekas algorithm (GB), related to the TORA

class of ad hoc algorithms

We first show the nature of convergence of the average
energy expended per packet (EPP) to reach its destination.
Because each packet transmission requires one unit of energy,
average EPP also indicates the number of times on average a
transmission attempt was made per packet before it finally
reaches the destination. A running total of this average is
recorded in the simulation each time step. The average EPP vs.
time value is plotted in Figure 4 for the 3kmph case for all six
algorithms for a loaded network. The overhead signaling for
each of these algorithms was not accounted for (e.g. for GB
upon occasion the entire path must be updated with extensive
control signaling, but we ignore the cost of that here). Because
the energy cost of a packet is only recorded once it reaches
the destination, early measurements of EPP are biased toward
good packets, and hence are optimistic. As the simulation
progresses, the average settles to a steady-state value indicating
the correct overall EPP.

The three algorithms using stochastic routing outperform
the three algorithms that do not by nearly 3dB. We note in
passing that this is also the order of improvement claimed
for soft handoff in cellular systems [32]. Interestingly, the
Alg2, DDP, and Rank algorithms all converge to the same
value, though in this example the DDP algorithm is slightly
less efficient while doing so. It is important to recognize that,

3kmph, Average Energy/Pkt vs. Time
T T

)

o

Average Energy/Pkt

I

Alg 2
Alg 3 (Rank)
DDP

BellFord (prob)
BellFord (hop)
G&B

T

3000

I x %S0+

I I I
1500 2000 2500

Time (sec)

I
500 1000 3500

Fig. 4. Convergence of Average Energy per Packet for Six Distributed
Routing Algorithms, Loaded Network

though we have proved that these three algorithms converge to
the optimal routing algorithm in the steady-state, their dynamic
performance is potentially different in this more realistic non-
stationary context with accurate channel models. As expected,
DBF-EN moderately outperforms DBF-HC, while GB con-
verges to a value slightly better than DBF-HC. It is difficult
to predict in general how DBF-HC and GB will compare to
each other. There is no guarantee that the hop-count metric is
actually better than the path in use by GB, because, though
the GB path is chosen in a somewhat arbitrary manner, the
actual cost of the hop-count path may also vary widely based
on the link channel quality. The DBF-EN algorithm takes the
link quality into account, and so should be the best of the
algorithms which update a fixed path.

Figure 5 shows average EPP for the six algorithms as a
function of mobile velocity, which is used to update network
topology. Note that in general the performance of each al-
gorithm suffers as the velocity increases. The basic effect
is that the estimate of transmission probability from past
events becomes less relevant to future transmission success
as the topology changes more and more rapidly. For the three
stochastic routing algorithms and for DBF-EN, the inaccuracy
in probability estimation translates directly into routing inef-
ficiency. For DBF-HC and GB, which use a channel quality
threshold, the effect is to postpone when link state change
detection occurs, and the quality of the path in use suffers
accordingly. Note also that Alg 2 very slightly outperforms
DDP and Rank for thise case at higher velocity.

Figure 6 also shows average EPP for the six algorithms as
a function of mobile velocity, but for the case of a partially
loaded network. Note that the average EPP is about half that
of Figure 5, but the ratio of each algorithms performance
is roughly comparable. This indicates that the advantages of
stochastic routing extend to the case of multiple loading levels
of a network. One question to pursue about this plot is why
the DBF-HC, DBF-EN, and GB algorithms actually improve at

Average energy/packet vs. mobile velocity
9 T

- |

Average energy/packet

—+— Alg 2
—©- Alg 3 (Rank)
DDP

35 L
10" 10
Velocity (kmph)

—#— BellFord (prob)
—< BellFord (hop)
- G&B

Fig. 5. Average Energy per Packet vs. Velocity for Six Distributed Routing
Algorithms, Loaded Network

Average energy/packet vs. mobile velocity
5 T

S

45

Average energy/packet

25F

—— Alg 2

-6~ Alg 3 (Rank)
—— DDP

—+— BellFord (prob)

21 —<— BellFord (hop)
-~ G&B

10° 10' 10°

Velocity (kmph)

Fig. 6. Average Energy per Packet for Six Distributed Routing Algorithms,
Partially Loaded Network

the highest velocity. Along these lines note that though higher
velocity has the effect of impeding probability estimation,
it can also be beneficial in keeping the network sufficiently
mixing to keep fixed paths from clogging up.

Finally, we consider delivery delay per packet. Delivery
delay is different from EPP because packets can also incur
queuing delay at each mobile. This queuing delay is generally
worse for the fixed-path algorithms, because packets locally
tend to take the same path. Note that if load-balancing were
implemented to improve delay, then EPP would generally
increase, at least for DBF-EN. In contrast, the stochastic
routing approach naturally leads to more spreading out of
packet transmissions among mobiles, greatly reducing the need
for an explicit load balancing algorithm.

20

3kmph, Average Packet Delivery Delay vs. Time
25 T T T T T

+ Alg2
O Alg 3 (Rank)
<& DDP
* BellFord (prob)
x BellFord (hop)
20H v G&B |
)
[
@2
>151- -
@
[}
o
g
o
]
a
(o)
g10- 4
2
5L 4
o s o & & & o
-
[} Il Il Il Il Il
0 500 1000 1500 2000 2500 3000 3500

Time (sec)

Fig. 7. Convergence of Delivery Delay per Packet for Six Distributed Routing
Algorithms, Loaded Network

Figure 7 shows the time trace of average delivery delay per
packet for each algorithm in the loaded network for the case
of 3 kmph. Note that the stochastic routing delay performance
is substantially better than that of the other algorithms. Also,
DBF-EN outperforms DBF-HC and GB more significantly in
delay. This is because the expected energy metric leads to
more variation in the path used, which leads to less congestion.
Though none of these algorithms has been optimized for delay,
the delay statistic is still of interest in understanding algorithm
performance. It is useful when an algorithm achieves both
better energy and delay performance, as stochastic routing
does in these examples.

IX. CONCLUSION
A. Summary

We have presented a network routing problem which uses a
probabilistic local broadcast model for wireless transmission.
We then presented results showing that an index policy is
optimal for this problem. We extended the model to allow for
transmission control, and showed that the index nature of the
optimal policy remains unchanged. Finally, we presented three
distinct asynchronous distributed algorithms which compute
an optimal policy, and provided results on each algorithm’s
convergence properties.

B. Future Research Directions

Future work in this area can take many forms. We summa-
rize potential research on routing in ad hoc networks beyond
that presented in this paper.

Time-Varying System
Quality of Service aspects of packet delivery can be included
in the network model by allowing the network parameters to
vary with time. A partial characterization and solution of the
time-varying problem can be found in [17].

Estimation of Transmission Probabilities
The models of Section II assumed knowledge of the trans-
mission probabilities. To actually implement the algorithms,
methods to estimate these probabilities must be investigated.
There is a complex interaction between the behavior of these
estimation methods and how the resulting probabilities are
used in the network. Numerous relevant questions arise, such
as the dynamic behavior of the estimation procedure, and
to what extent physical modeling of the transmission system
should be incorporated into the estimation technique (as op-
posed to purely measurement-based approaches).

Parameter Sensitivity Analysis

Estimation of channel transmission probabilities introduces
some error in the values used for routing. Other system param-
eters may also be only estimates, such as transmission energy
cost or packet reward value. We know from Theorem 2.1 that
the optimal policy for Problem (P7) is an index policy for
any value of these system parameters. But the node indices
computed using system parameters in error will be different
from the actual optimal indices. It is of great practical interest
to determine how sensitive node indices are to errors in these
system parameters. Initial results on sensitivity analysis can
be found in [12].

Markov Chain Channel

It is interesting to ask what happens when the channel model
is no longer a fixed iid transition probability structure, but
is modeled instead by a Markov Chain. This allows for
correlation in time of transition events at the same node,
allowing accommodation of more general channel models.
The Markov Chain channel model in general leads to a more
complicated optimal policy than the Index Policy of Section II-
C.

Multidestination
Problem (P3) defines the destination to be any one node
from a set of nodes, the anycast problem. Another important
problem is the multicast problem, which is to send the packet
to all the nodes in a given destination set.

General Distributed Algorithms
Algorithm 2, DDP, and Algorithm 3 are three ways to compute
the optimal policy for Problem (P1) in a distributed fashion.
There are more such algorithms, and it would be useful to
relate these results to a general theory of distributed conver-
gence.

Distributed Algorithm Properties
It would be useful to characterize the convergence behavior
for the algorithms presented in this paper, such as convergence
rate, the counting to infinity problem, and packet looping ([15]
p-252).

X. ACKNOWLEDGEMENTS

This research was supported in part by ARO Grant
DAAHO04-96-1-0377, AFOSR Grants F49620-96-1-0028 and
F49620-98-1-0370, NSF Grants ECS-9979347 and CCR-
0082784, and ONR grant N00014-03-1-0232.

(1]
[2]

(31
(4]
[5]

(61
(71
(8]

[91

[10]
[11]

[12]

[13]

[14]
[15]
[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

REFERENCES

“IxEV-DO Evaluation Methodology (v1.4)”, 3GPP2 Technical Specifi-
cation Group C, C30-DOAH-20031020-0004, 2003

I. AKYILDIZ, W. SU, Y. SANKARASUBRAMANIAM, E. CAYIRCI, “A
Survey on Sensor Networks”, IEEE Communications Magazine, August
2002

D. BERTSEKAS, “Distributed Dynamic Programming”, IEEE Transac-
tions on Automatic Control 27:3, p.610-616, June 1982

D. BERTSEKAS AND R. GALLAGER, Data Networks, Prentice-Hall,
1992

J. BROCH, D. MALTZ, D. B. JOHNSON, Y. C. HU, J. JETCHEVA,
“A Performance Comparison of Multi-Hop Wireless Ad Hoc Network
Routing Protocols”, Proceedings of the Fourth Annual ACM/IEEE In-
ternational Conference on Mobile Computing and Networking, October
25-30, 1998

M. CORSON AND A. EPHREMIDES, “A Distributed Routing Algorithm
for Mobile Wireless Networks”, Wireless Networks 1, p. 61-81, 1995
M. FAN, ET. AL, “On the Reverse Link Performance of cdma2000 1xEV-
DO Revision A System”, ICC 2005

E. GAFNI AND D. BERTSEKAS “Distributed Algorithms for Generating
Loop-Free Routes in Networks with Frequently Changing Topology”,
IEEE Transactions on Communications 29:1, p.11-18, 1981

J. GARCIA-LUNA-ACEVES AND S. MURTHY “A Path-Finding Algo-
rithm for Loop-Free Routing”, IEEE/ACM Transactions on Networking,
v 5n 1, p.148-160, Feb 1997

M. GAREY AND D. JOHNSON Computers and Intractability : a Guide
to the Theory of NP-Completeness, W. H. Freeman, 1979

Z. HAAS “Guest Editorial, Wireless Ad Hoc Networks”, IEEE Journal
on Selected Areas in Communications 17:8, p.1329-1330, August 1999
T. JAVIDI AND D. TENEKETZIS, “Sensitivity Analysis of an Optimal
Routing Policy in an Ad Hoc Wireless Network™, To appear in [EEE
Transitions on Automatic Control,

D. B. JOHNSON, “Routing in Ad Hoc Networks of Mobile Hosts”,
Proceedings of the IEEE Workshop on Mobile Computing Systems and
Applications, p.158-163, December 1994

G. KLimov, “Time Sharing Service Systems I”, Theory of Probability
and its Applications, 19, p.532-551, 1974

J. KUROSE AND K. ROSS, Computer Networking, Addison-Wesley,
2000

C. LorTT, ET. AL, “Reverse Traffic Channel Design of cdma2000 1xEV-
DO Revision A System”, VTC June 2005

C. LOTT AND D. TENEKETZIS, “Stochastic Routing in Ad Hoc Wireless
Networks”, University of Michigan Control Group Report CGR 01-01,
Feb. 2001

G. S. MALKIN, “RIP Version 2: Carrying Additional Information”, RFC
1388 Jan, 1993

D. MALTZ, J. BROCH, J. JETCHEVA, D. JOUNSON “The Effects of On-
Demand Behavior in Routing Protocols for Multihop Wireless Ad Hoc
Networks”, IEEE Journal on Selected Areas in Communications 17:8,
p.1439-1453, August 1999

P. MERLIN AND A. SEGALL “A Failsafe Distributed Routing Protocol”,
IEEE Transactions on Communications 279, p.1280-1287, September
1979

J. Moy, “OSPF Version 2”, RFC 1247 July, 1991

V. PARK AND M. CORSON, “A Highly Adaptive Distributed Routing
Algorithm for Mobile Wireless Networks”, Proceedings of INFOCOM
’97, p.1405-1413, April 1997

M. PEARLMAN AND Z. HAAS “Determining the Optimal Configuration
for the Zone Routing Protocol”, IEEE Journal on Selected Areas in
Communications 17:8, p.1395-1414, August 1999

C. PERKINS AND P. BHAGWAT “Highly Dynamic Destination-
Sequenced Distance-Vector Routing (DSDV) for Mobile Computers”,
Proceedings of the SIGCOMM ’94 Conference on Communications
Architectures, Protocols and Applications, p. 234-244, August 1994

C. PERKINS, E. ROYER, S. DAS, “Ad Hoc On-Demand Distance Vector
(AODV) Routing”, IETF MANET Working Group, March 2000.

M. PURSLEY AND H. RUSSELL “Network Protocols for Frequency-
Hop Packet Radios with Decoder Side Information”, IEEE Journal on
Selected Areas in Communications, p.612-621, May 1994

M. PURSLEY, H. RUSSELL, P. STAPLES “Routing for Multimedia
Traffic in Wireless Frequency-Hop Communication Networks”, [EEE
Journal on Selected Areas in Communications 17:5, p.784-792, May
1999

V. RODOPLU AND T. MENG “Minimum Energy Mobile Wireless Net-
works”, IEEE Journal on Selected Areas in Communications 17:8,
p.1333-1344, August 1999

21

[29] S. ROSS, Introduction to Stochastic Dynamic Programming, Academic
Press, 1983

W. RUDIN, Principles of Mathematical Analysis, McGraw-Hill, 1976
P. SAMAR, M. PEARLMAN, Z. HAAS “Independent Zone Routing: An
Adaptive Hybrid Routing Framework for Ad Hoc Wireless Networks”,
IEEE/ACM Transactions on Networking, Aug. 2004

A. VITERBI, CDMA: Principles of Spread Spectrum Communications,
Addison-Wesley 1995

J. WIESELTHIER, G. NGUYEN, A. EPHREMIDES, “Multicasting in
Energy-Limited Ad-Hoc Wireless Networks” Proceedings of the 1998
IEEE Military Communications Conference, v.3, p.723-729, 1998

J. WIESELTHIER, G. NGUYEN, A. EPHREMIDES, “Algorithms for
Bandwidth-Limited Energy-Efficient Wireless Broadcasting and Mul-
ticasting”, Proceedings of the 2000 IEEE Military Communications
Conference, Los Angeles, October 2000

H. WILF, Generatingfunctionology, 2nd ed, Academic Press, 1994

[30]
[31]
[32]

[33]

[34]

[35]
Appendix A - Proof of Lemma 2.6

Proof: Let ¢ € €2, and let 7 be any index policy with the property
that 7 transmits when in state {¢}. We have for 7

ESTD!

= —ci+ Y PUSIVAs) + > PU(SI)Vas)
SO{i}:#(S)#£i SD{i}:#(8)=i

(92)

Solving (92) for V;* we obtain

s Gt 253{1'}:%(5);&2' Pi(5|i)VfZ~r(S)

Vit = o 93)

ZSD{i}:?r(S);éiP (Sl4)

Consequently, by (41) and (93), for optimal index policy ™ we have

—ci + ivr sy PHSIHVE
V" = max{ max ZSD{ yA(S)7 . (|) () , Ri
7 2 soipas)i LS|
94)

Because (94) is true for any i € €Q, this proves (42). []

Appendix B - Proof of Lemma 5.4

Proof: By Corollary 5.1, we only need to show existence of an
event n where D equals V;", Vi € €. By Corollary 5.1, once a node
reaches V;", it does not change thereafter. Define G to be the set
of nodes at event n for which (i) D = V;",i € G, and (ii) each
i € G has successfully transmitted its optimal value V;" to all of its
neighbors.

We proceed by induction. At n = 0 the destination nodes of
highest reward have the correct V’s (i.e. Rmaz). Because transmission
occurs infinitely often, there is an event at which these nodes have
transmitted their values to their neighbors, and set G contains the
destination nodes of reward R,.q... This proves the induction basis
step.

Now assume that at event n — 1 set GG includes the g > 0 best
nodes according to 7, but not the (¢ + 1)’th best node. Let ¢ be the
(g + 1)’th best node according to 7. Also assume that ¢ recomputes
its V value at event n. Event n exists because node recomputations
occur infinitely often. By Lemma 5.3 (2.), the monotonicity property,
and the form of the actual optimal value for ¢ given in Lemma 2.6, the
above algorithm computing the right-hand-side of (50) will give V;".
This is because neighbors not better than ¢ according to 7 will have
current V’s (expressed by the corresponding D’s) less than or equal to
their optimal values, which are less than i’s. Hence computation (50)
in Method 1 will produce the optimal value for 7. Once i successfully
transmits its value after event n to all its neighbors, which occurs in
finite time because tranmissions occur infinitely often, node ¢ will
enter G.

By induction all nodes i €) enter G in this way. Let n, < oo
be the event at which the last node enters G. This n, satisfies the
requirement of the lemma. |

Appendix C - Proof of Lemma 5.5

22

Proof: By Lemma 5.3 we have that D; is monotonically non-
increasing and lower bounded by V;", Vi. Hence, for each i there is
a limit point of the sequence, which we label W;. This proves 1.

To prove 2., let € = min,.; {|W; — W;|}. From 1. of Lemma 5.5
it follows that there exists an event m st. D; — W; < €,Yn >
m, Vi €). This means at every node the node ranking (i.e. their
relative priority) is fixed Vn > m. Call 7 the policy that uses this
node ranking. As the nodes compute their values in the order of 7, and
successfully transmit them afterwards, the expected reward value V;"
is computed at each node i. This computation of V;" at each node i €
€ occurs in finite time because computations and communication
occur infinitely often. The value V;" corresponds to the expected
reward at node 7 under 7, a viable, possibly sub-optimal, priority. At
a node i once V;" is computed this value is fixed thereafter, so we
must have V;" = W,;. We thus have

Vit =W > Vi, Vi (95)

The inequality in (95) follows from Lemma 5.3, 2. Since 7 is an
optimal policy, V;" > V™. Hence 7 is also an optimal policy, which
is determined in finite time.]

Appendix D - Proof of Lemma 5.6

Proof: We use induction on ¢ and n. First is induction on n.

. =6 N
Since both systems start at the same values, we have D,;° = W0, Vi.
Now assume for a given n we have

DI < W' Vm < n,Vi (96)

1
We now use induction on i. When W, is computed, all neighbor
1
j# 1 When D"
all neighbor values used are of the form D ,j # 1, where k > vl

(i.e. more computations beyond the (n — 1) st mlght have occured in
the actual (asynchronous) system). Now Lemma 5.3 and (96) imply

thatD <D" 1<W" LVE > vl

values used are of the form W et is computed,

. Hence, the monotonocity

1
property gives that D1 < W1 ™. This is the first induction step on

i.
Assume next that for a given ¢ we have

i’l)l ul .
D" < W' VI <i 97)

When Wu" is computed, all nelghbor values used are one of the two

formsW ,]<zandW" L > WhenD

nelghbor values used are one of the two forms D

1s computed, all
Jj < i, where

k> vi, and D , j > 1, where k > vn , (again more computations
beyond the (n— 1) st or n’th might have occured in the asynchronous
system). We have by Lemma 5.3 and the inductive assumptions (both
(96) and (97))

IA

—vd, g, P
D;" < W™ Vk >0}, j <i
< DU SWI Wkl >
7 = ki = j) - ’Unflaj >
< W;™. This
completes the induction step for 7, so we have that Df" < Wiu" , Vi.

And this completes the induction step for n, which completes the
proof of the lemma. []

Appendix E - Proof of Lemma 5.7

So again the monotonicity property gives D;"

Proof: Let j be any neighbor of i. Fix all the components of
WH4~ except for that of j, where for ease of notation we assume
J < i. The following arguments with the obvious notation change
prove the result for j > ¢ as well. Because the W; values are fixed
in this proof for | # 14, j, for notational convenience we write W; for
WkHwhen I < i, and W; for Wlwhen [> i. Define

W9~ = (WiWa, ... Wi Wi, ..., Wit Wiga, ..., W)

Since the components of W**~ are assumed fixed except for j,
we can think of f; as being parameterized by W, with only
one argument W; as a free variable. We then write this function

as V77 (W;). Note then that we can write (63) as
WU W) = Awi- + Bwi- - W 98)
where Avyi— and By are defined as
—ci + e Z-VP)Z‘SZ'I/VWS
Awie = ng\/(). (S)#i,j (|) (S) (99)

Yo scnyn(s)=; P (SI)

Bopr 1= 225 wr (100)
W o sca(iym(s)zi PH(S1E)

Note that implicit in the definitions of Avyi— and Byyi— is the local
policy 7, which is also a function of W**~ (which includes W;). But
over any range of values of W; for which 7 doesn’t change, szf

and Byyi— are constant. Thus, over such a range fV =~ (W;) is a
linear function of W;. Further, from (100) and the fact that

(S CNG) s (S) =4} C {S CN(@):m(S) £},

we have that

(101)

0< Byi- <1 (102)

As W; varies at values for which W; < fV"7 (W;), node j is
given lower priority than 4 by , and hence the value of W; has
no effect on fV'" (W;). As W; varies at values for which W; >

w v (W), policy 7 can change at only two types of points.

H Wy = VT (W),
2) WJ Wk, for some k # i, j, and not type 1

A type 1 point is where node j flips priority with node . Type 2
points are where node j flips priority with node k, but not with node .

We first examine type 1. Let W* = W] (—o0). W* is the
value when 7 ranks j lower than i. We then have VW; < W™ that

"(Sl)W.
*(S]4)

—Ci + Y sCN (i) (S)2ing F n(S)

VW) =wr =

2 scartiym(s)ig F
(103)
and so the function is constant (i.e. the slope is 0).

Consider a point W; in a linear region, as in (98) above with a
fixed . We then have fV°'~ (W;) = Ayyi— + Bywi- - Wj. Let
U* be any point on this curve such that fV"~ (U*) = U*, if such
a point exists. We thus have Aywi— + Bwi— - U* = U™, which
simplifies to
. ; —Ci + X scn(iym(s)2ig P S| Wa(s) .
: 25N (ym(s)zi TSN

(104)

where the final equality follows from (103). That is, a point of type 1
occurs when W; = W*, the value function for ¢ when j is of lower
priority than ¢ in 7. From (103) and (104) we conclude that such
a U™ exists and is the unique point where a line of the form (98)
intersects the line of slope 0 at W*. Hence, continuity and piecewise
linearity with non-decreasing slope is maintained in this case.

Now we examine a point of type 2. We only need to consider nodes
k of priority higher than ¢ under the current 7 (i.e. k>%) since j
is assumed to be at a higher priority than 4. Let A,WF and B,
be the intercept and slope of (98) for the case where W; = W is
shghtI,y less than Wk, and let = be the policy in this case. Slmllarly,
let Awi, and Bwl, be these values for the case where W; = Wj
is slightly greater than Wy, and let 7 be th1s pohcy We need to
show that the two lines, described by (98), A wi—» Bwi-»and (98),

17

Aw}-,, sz , intersect at the point where W; = Wj,.
Since j, k>ri, we have

> PUS)) =
So{i}in’ (S)#i So{i}:n’ ()i

PY(Sli):=G (105)

Relation (105) is valid because 7 and 7w differ only in that they
switch the respective priorities of j and k. Hence, the set of states
above ¢ in priority remain identical.

We can then write (98) as

ij— ’ 1
W =glat D0 PUSIW,. s,
SCN(i)in’ (8) 1,5,k
+ > P(Slyw; + > PU(S|i))Wk) (106)
SCN(i):n’ (8)=j SCN(i):n’ (S)=k
and similarly for W
From the definitions of 7 and 7 , we have
> P (Si) = > P(S[i) (107)
SCN (i):n’ (S)#i,5,k SCN (i):m" (S)#i,5,k
Hence,
W W) — Z PU(S|i)W; +Z PY(S|)W,
SC/\/’(z) "(S)=j SCN(i):' (S)=k
- 2L PSwy — 3PS (108)
SCN ()" (S)=3 SCN (i):w" (S)=k

‘When WJI = W;’ = Wk, (108) becomes
g Wi i . i .
W) =73 P(Sl+ Y. Psl)
SCN(i):n’ (8)=j SCN(i):n’'(S)=k
- > PYSI)

> PU(Sl)) =
SCN(i):n" (S)=j SCN(i):m"' (S)=k

VW -
(109)

where the terms in parenthesis sum to O because 7 and 7 are
identical except for the switching of the adjacent priorities of j and
k, so that the sum over all states where elther of the@e two nodes are
the highest priority is the same for both 7 and 7 .

Because the llnear functions descnbed by (98) sz s BWz , and
(93), A;;Vi,, Wwi—» intersect at W W Wk, w Yo (W;) is
piecewise linear over the region of W; where 7 and 7r” are used.
Furthermore, B;,Ivi, > B// i_ because the denominators art,a the
same in both cases, and Bwi* has a larger numerator than Bwi,,
because j> nk and j<_-k. Hence the slope is monotonically non-
decreasing in this region. []

Appendix F - Proof of Lemma 5.9

Proof: By Corollary 5.1, V™ is a fixed point of 7.
Now assume there exists W # V™ s.t. W = T(W). Let

i € argmax, ;AW Wi £V} (110)

This ¢ may not be unique (there may be a tie), but if so, the following
still holds for any one of the maxima. By Lemma 5.3 and Lemma 5.4
we have W; > V;". This fact and (110) give

Wi > V" 111

Let S := {j € Q: W; > W;}. Note that S cannot be empty, because
S empty means W; = R; < V", contradicting (111). So S is not
empty, and by (110) we have

W; =V, Vjes (112)

This fact, the definition of 7°(-), and (63) imply that T(W) uses only
VJ" values in the computation of W; = T'(W)|;. Let 7" be the local
pohcy for ¢ determined by Method 1, and note that 7* ranks only the
nodes of .S above i. Then we have by Lemma 2.6 that

Wi = T(W)|; = V™ <V (113)

23

The final inequality of (113) follows because of (112) and the fact
that 7 has an optimal local ordering.

Relation (113) contradicts (111). Hence, no such ¢ can exist, and
this completes the proof of the lemma. []

Appendix G - Proof of Lemma 7.1

Proof: There is no requirement that the node rankings of 7 and
7 reflect the actual current ranking of neighbor values {V; ;}.
The update computation of (84) at node ¢ for local policy 7 is

5 _ =Gt Ysenmasz P (SI)Viaes)
VA = Rl (114)
2 scnyas)z PHSN)

where to ensure (114) is well defined we assume that

> P'(Sli) # 0 (115)
{i}CSCN (3):7(S) £
A similar computation holds for local policy 7.
+ G+ Yscnyacsyz P SIDVia
Vit = (116)
ESQN‘(i):fr(S’);ﬁi “(S[4)

Equation (116) is well defined because (115) also ensures its denom-
inator is non-zero.
Write (116) as

PY(S]i)Vias)
discnya(s)ea PH(SID) + ZSCN’('L #(S)eB
S senyas)en P (S Viacs)
Ysca(iya(syea PP (S\ 1) + D sc
Using the definition of Y; and (117) we have
VA< 6t Yscna(sica P(SliViaes) '
b T Y sen@asyea PHSID) + X scniyacsyen PHSIE)
ZSQN’(i):ﬁ(S)EB Pi(smyl
Pi(Sli) + X scaiyacs)es PHSIE)

Note that since both 7 and & make A the highest priority nodes
with the same ranking, we have

{SCN@G) :#(S) € A} = {SCN():#(S) € A} (118)
#(S)= #(S), 8 CN() : #(S) € A(119)

Vﬁ—_ CZ+ZSCN (2):7(S)
=

Pi(S)

Pi(ST)

i):w(S)eB

—+

(117)
D SCN(i):#(S)EA

For simplicity define

bi = SooPiSl)y= > PU(Sl) (120)
SCN(i):#(S)€EA SCN(i):7(S)EA
by = > PS8l (121)

SCN(i):#(S)eB

where the equality in (120) follows from (118). Because of (115),
b1 > 0; furthermore

0<bi+bx<1 and b2 >0 (122)
Because of (119) and (120), (117) gives
v <~ t Lsenmmsea PY(S|i)Via(s) +b2Vi (123)
Lo b1 + b2
Write (123) as
Ve (by)*Cz‘ + Y 5N () R(S)eA PLSIDV; 2(s) +(by) v
T b+ b by btby)
= (bl >_Ci tYscnGras)ea PPSIDV; 7 (s) +(:) Y (124)
b1 + b2 by b1 + by
B by = bo
7(1)1“2)% +(b1+bz>yl (2

Equation (124) follows from (119), and (125) follows from (114).

24

Define
bo

- b1 + b2

Since b1 > 0 and b2 > 0, we have 0 < a < 1. Inequality (125) is
then

(126)

Vi< (l—a) Vi +a¥y (127)
A similar argument using Ya gives

Vi > (1—a) V" +aYs (128)
|

Appendix H - Proof of Lemma 7.2

Proof: We have
n —Ci + D sCa()(8) Pl(SIZ) 5 (S)
- (129)
ZSQN(i):ir(S)#i “(Sl4)
o TGt Dsenaas)z (Sl Vmee (130)
- Yo scayacs)zi DS i
Cq

= Viaz — —— (131)

2o scn sz LS
< Vimaz — ¢ (132)

where (132) follows because 3° g v (iy.7 (s Pi(S}i) < 1and ¢; >
0. Inequality (132) completes the the proof of the lemma.

Appendix I - Proof of Lemma 7.3

Proof: Because m; is optimal, when

Vi = Vi, Yk € N() (133)
by Lemma 2.6 (42) we have that
—_— =6 + Lsenymys)2i P (810)Vims(s)
g = max Pi(S R
2 scnym sy £ (1) 30

Hence, under (133) the update (84) using m; computes the value
function V;". By [30] Section 4.11, every rational function f : RY —
R is continuous. Because: 1) Update (84) is a composition of a
rational function of the values V; ;. k € N(j), with the function
max{-, -}; 2) the function max{-, -} is continuous in its arguments,
3) the composition of continuous functions results in a continuous
function, and 4) only node values V} .,k € B affect the (84) update
using ;, we conclude that update (84) using 7; is a continuous
function mapping R! — R, where [:= |B|. Since (84) is monotonic
in V; 1, the result (89) follows.
To obtain (90), we note that under (133) for any local policy 7;
we have B
|28 7 (135)
By the same argument given above, for fixed 7; the update (84) using
; is a continuous function mapping R! — R, where [: |B |, and
where only node values V} ;,, k € B affect the update. Because (84)
is monotonic in Vj ;, the result (90) follows. |

Appendix J - Proof of Lemma 7.4

Proof: We proceed by induction on the number of nodes.
Assume we have a set of nodes D C Q, D # () with the following
properties:

lim Vi" =V,

n—oo
Vi > Vi,

VieD (136)

VieD,jeD (137)

where D := Q — D.
Furthermore, because of (136) there exists an event m; and 6 > 0
such that

Vi<V +6, Yn>m,Vie D (138)

For the induction basis we let D = {i € Q : R; = Rmaz},
and argue as follows. Equation (136) is satisfed because V;" =
Riaz,Vn,i € D; inequality (137) is true because ¢; > 0,Vj € €
and hence V;" < Rmaz,j € D.

We proceed with the induction step. Define

E = argmaz;.pV;" (139)
Note that E is a non-empty set of nodes. Let node i € E.
Claim 1:
limsup V;" < V" (140)
Proof of Claim 1: See Apgalslci)x K. «
Claim 2:
liminf V;" > V;" (141
Proof of Claim 2: See Appendix L. <
From Claim 1 and Claim 2 it follows that
lim V" = V" (142)
n—oo

The arguments leading to (142) can be made for any element ¢ € E.
Hence we have shown that

lim V' =V, VicE (143)
We now complete the induction step. Let D’ := DUE and D’ :=

Q — D'. We show that (136) and (137) are satisfied for D’ and D’.
Relation (143) and the induction assumption together mean that

(136) is true for all nodes of D’. The definition of E in (139) with

the induction assumption directly implies that (137) is true for D’.
This completes the induction argument, and the lemma is proved.

|
Appendix K - Proof of Claim 1
Proof: To prove (140) it suffices to show that
limsup Z, < V" (144)
where
Zn = max {maXV , max V}} } (145)
jeD j,keD

To prove (144) we show that for any € > O there is an event m
such that

Zn <V +€ Yn>m (146)
Consider a node update at event n for any j € D. Define
A} ={keNGND: V' >V, jeD (147

A7 is the set of neighbor nodes in D which are ranked at higher
priority than j in the update at n. A7 may or may not be empty.
Define

F, = {jeD:A} +#0} (148)
F. = {jeD:A} =0} (149)
We first establish the following fact (recall that m; is defined in
(138)).
Fact 1: When Z,—1 < V" +€,0 < €1 < 1, then at event
n>mi,
Zn < Znp—1 if event n is a node transmission (150)
Vi* < Znoa if event n is an update at node j, j € F,, (151)
Vi* < V;" + € if event n is an update at node j, j € F,, (152)

J
Proof of Fact 1: If event n is a node transmission, then (150) follows
from the definition of Z,,. _
If event n is an update at node j, j € F},, we consider three cases:
1) If the update gives

Vi'=R; (153)

then
Vi =R <V < Za (154)
2) If the update is a reset for j € F,, then
Vil 2 VI VEEN()) (155)

Upon resetting, by the specification of Algorithm 3 node j is
ranked lower than at least one neighbor, say k € N(j). Then
by Lemma 7.2 we obtain

VISV = SV ¢y < Zna—¢; < Zna (156)

3) If the update is a rank update, then from the definitions of F},,
Zn, and Lemma 7.2 it follows that

vt <

¢ Vit —¢ (157)

max
keDNN(5)
< Zna1—¢; < Zn
From (154), (156) and (158) it follows that (151) is true.

If event n is an update at node j, j € Fy, then A} # (} and the
update is not a node reset. Let 7} be the index ranking local to j
which ranks the nodes of A7 in the order of their value functions
Vi, k € A7, and ranks j next. Since A} C D because of (138), we

get

(158)

Vie < Vi +6, Vn>my,Vk e A7,6>0 (159)
Hence by Lemma 7.3 (inequality (90)) we get
V<V +a <V ta (160)

We use (160) together with Lemma 7.1 to prove (152). We let
A=A}, # ==}, BCN(j)ND in Lemma 7.1. Then Lemma 7.1
and (160) give

Vo< (1—a)V? +avs (161)
< (1-a)V7 +aZus (162)
< (MI-a)(Vi"+€)+aZn (163)
< Virtea (164)
where)
Y: = rkneaé(Vik (165)

and a is defined by relations similar to (120), (121), and (126).
The inequality in (161) follows from Lemma 7.1. The inequality
in (162) follows from the definitions of Y7 and Z,,_i. The inequality
in (163) follows from (160). The inequality in (164) follows from
the assumption Z,_1 < V" + €1 made in Fact 1.
Inequalities (161)-(164) prove (152). The proof of Fact 1 is now
complete. <

‘We proceed with the proof of Claim 1 by establishing the following
fact.

Fact 2: When Zn,_1 > V" + €1, 0 < e1 < ¢, then at event
n>mi,

In < Zn1 if event n is a node transmission (166)
Vi< max{Zn — ¢ Ry}

if event n is an update at node j, j € F,, (167)
VP < max{(L — tma) (V" + 1) + amasZa-1, Ry}

if event n is an update at node j, j € F,, (168)
Proof of Fact 2: If event n is a node transmission, then (166) follows
from the definition of Z,,
If event n is an update at node j, j € F,, we consider three cases:
1) The update gives

V=R, (169)

25

2) The update is a reset for j € F,,. Then by the same arguments
as those leading to (156) we obtain

Vi< Zpt — ¢4 (170)

3) The update is a rank update for node j; € F,. Then by
arguments that are the same as those leading to (158) we obtain

Vi"< Zn1—¢j (171)
From (169)-(171) it follows that
‘/jn S max{Zn,l —Cj,Rj} (172)

which is precisely (167).
If event n is an update at node j, j € F),, then if the optimal action
is not to retire, by arguments that are the same as those leading to

(163) we obtain
Vi< —=a)(Vi" +ea)+aZna (173)

where a is again defined by relations similar to (120), (121), and

(126).
Furthermore,
= LT >
Umaz Zergaécw a(i, 7, 7) > a (174)
and
Zn1>Vi+ea (175)
by assumption.
Because of (174) and (175), (173) gives
V< (=) +e) +aZa
< (1 — amar)(‘/iﬂ- + 61) + AmazZn—1 (176)
If the optimal action is to retire, then
Vi'=R; 77
Combining (176) and (177), we obtain
‘/jn S rnax{(l—amaz)(Vf +€1)+amaxZn717Rj} (178)

which is precisely (168).
This completes the proof of Fact 2. 4

We use Fact 1 and Fact 2 to complete the proof of Claim 1. We
consider two cases.
Case 1 There is an event [> mj where Z; < V;" + €;.

Under Case 1, relations (150), (151), and (152) together imply that

Zn <V +e VYn>1 (179)

Because inequality (146) follows from (179), we have shown that
Claim 1 is true under Case 1.
Case2 Z,>V"+e Vn>m

We claim that under Case 2 the following inequality (180) is true
for any event, update or transmission, of any node j € D at any
n > mj.

Vi< Zno1, n>m (180)

We prove (180) as follows.
1) Suppose there is an update at j € F},. Then
a) If max{Z,_1 — ¢;, R;} = Rj, then from (167) we have
Vi* < R;. Since V;* > R; by its definition, it follows
that
Vit = R,

And since R; < Zp_1, (180) follows.

(181)

26

b) If max{Z,_1
we have

— ¢, Rj} = Zn_1 — ¢, then from (167)

V' < Zn1—¢; < Zna (182)

2) Suppose there is an update at j € F3,. Then
a) If maX{(amaz)(vﬁ+61)+amazzn I,Rg} =
Rj, then from (168) we have V" < R;. Since V" > R,
by its definition, it follows that

Vi' = R,

And since Rj < Z,_1, (180) follows.

b) If max{(1 — tmaz)(Vi" +€1) + @mazZn—1,Rj} =
(1 = @maz)(Vi" + €1) + @mazZn—1, then from (168)
we have

(183)

V" < (1 = tmae)(Vi" + €1) + tmaz Zn—1 <

(1 - amaz)anl + @GmazZn-1 = Zn—1 (184)

The strict inequality in (184) follows because Z, >
V:;r —+ el,Vn > msa.
3) Suppose there is a transmission from j € D. Then (180)
follows from (166). This completes the proof of (180).
From (180) it follows that

In < Zn_1, n>mi (185)
From (185) we also have
Znt < Zmyy n>ma (186)

We complete the proof of Claim 1 under Case 2 by establishing
the following two facts. B
Fact 3: For all n > m; and j € D we have

‘/}n S max {(]— - amaz)(‘/iﬂ- + 61) + amazZmla Zm1 - Cj}
(187)
Proof of Fact 3: Using (186) in (168), we have for an update at
J € Fy that

ijn < max{(l - amaz)(‘/iw + 61) + amaerlij}, n > ma

Because Zp,, > V" + €1 > R;,Vj € D, we can write (188()123)
V" < (1 = tmaz)(Vi" + €1) + @Gmac Zm,, 1 >m1 (189)

Using (186) in (167), we obtain for n > m;
V" <max{Zm, —¢;, R;} (190)

Using (189), (190) and the fact that R; < V* < (1 — amaz)(Vi" +
€1) + GmazZm,, we have for j € D and n > m that

‘/jn < max {(1 - amam)(‘/i + E1) + amazZ'mla mq C]}
(191)

Fact 4: There is an event mo > m1 where

ng S (1 - amaz)(‘/iﬂ- + El) + amazZml (192)
Proof of Fact 4: We prove (192) by contradiction. Assume (192) is
not true, which means that

Zn > (1 = @maz)(Vi" + €1) + amaz Zm, , (193)

By the definition of Z,, (187), (193) and the fact that node
transmissions and updates occur infinitely often (so that for all
j,k € D, V" satisfying (187) becomes Vk"; at some n’ > n) there
exists [> m such that

n > m1

Z) < Zpm, —mincj (194)

jeD
By repeating the argument leading to (194), we conclude that for
large enough n, Z, can become arbitrarily small, and this contradicts
(193). «

Repeating the argument leading to (192), and noting that amaez <
1, we conclude that there is an event m, such that

Zn <V +e1+ €, Vn>m, (195)

Relation (195) proves (146) and hence Claim 1 under Case 2.
We have proved Claim 1 under both Case 1 and Case 2, and this
completes the proof of Claim 1. []

Appendix L - Proof of Claim 2

Proof: To prove (141) we show that for any € > O there is an
event m such that

V" >V" —¢ VYn>m (i€E) (196)

If V;™ = R;, then (196) holds. Henceforth, assume V;" > R;.

Define A; := N (i) N D. A; is not empty, reasoned as follows.
Because V;" > R;, a rank update with correct neighbor values and
optimal local policy gives V;". Lemma 7.2 and the fact that ¢; > 0
ensure that V" < V* for some j € N (i). Because of (137) and
(139), j € D. Hence, j € A;.

Let 7; be the index policy local to ¢ which ranks the nodes of A; in
the order of their value functions V;", j € A;, and then ranks ¢ next.
Note that due to (139), m; is the optimal local policy for node 7. We
write V|, to indicate the update value computed at node ¢ under
local policy ;.

Let € > 0, and choose any €; and €3 such that €1 > 0,e2 > 0 and
€ = €1 + €.

We establish the following fact.

Fact 5: There is an event ma > m1 such that for n > ma we
have

Vi > (1= an)(

Vit —e) +a VP! 197

where 0 < an < amaz, 7 > mao, mq is defined in (138), and amaz
is given by (91).

Proof of Fact 5: By Lemma 7.3 (89) there is a 6 > 0 such that when
VI > VT —6,Vj € Ay, we have

Vitle, 2 Vi" — (198)
Let m’ > m1 be an event such that
Vi >V =6, vn>m' keD (199)

Event m’ exists because of (136) and because transmissions occur
infinitely often. Hence (198) holds for n. > m/.
By Claim 1, (136) and (137), there is an event m' > m' such
that V5 € D we have
‘/jn < ‘/kn’

Yn>m" Vk € D (200)

Because of (200) and the fact that transmissions occur infinitely often,
there is an event mz > m’’ such that Vj € D we have

V' < V%, Yn>me,Vk € D (201)

Consider a node update at event n > mg at node ¢. To apply
Lemma 7.1, we note that due to (201) an update at ¢ will rank the
nodes of A; highest, then possibly rank other neighbors above i. We
identify A = A, and let B={j€D:V/"" >V""} Define
Y5 := minjeB Vm . By Lemma 7.1, at each update n > mo there
exists 0 < an, < Gmaz such that

Vit > (1= an)Vi s, + anYa (202)
> (1= an)Vi'ln, +an Vit (203)
> (1—a) (Vi —e)+aVi" ! (204)

Relation (203) follows from and the definitions of B and Y>. Relation
(204) follows from (198). <

We use Fact 5 to prove Claim 2 by considering two cases.
Case 1 There is an event [> my where Vi > V;™ — 1.

When at some update event n > mz we have Vi"_1 > V" —e,
from (204) we obtain
VP>V —a (205)

Relation (205) implies that if the Case 1 condition is met at [> ma,
it follows by (204) that

Vi >V —e, Yn>1 (206)
Relation (206) proves (196). Hence Claim 2 is proved for Case 1.
Case2 V<V —e1, Vn>m
Under Case 2, we use the facts that V*™' < V™ — €1,Vn >
ma+1, 0<an < amaz, V1 > ma and (204) to obtain
V' > (1 = Gmaz) (V" — €1) + amaz V""", V0> ma+1 (207)
Let 7 be defined as follows.
gt =yt (208)
27 = (1 = maz) (Vi — €1) + Gmaz? ™", Y0 > ma + 1(209)

Using (207), (208), and (209), and the fact that ame, > 0 with an
inductive argument, we have that

V" >z, Yn>ma+1 (210)
From (209) and the fact that 0 < a;mq, < 1, we have that
lim 7 = V" — e (211)

n—oo

From (210) and (211), we conclude that
lim V;" > V" — ¢ (212)

n— oo

Relation (212) implies that there exists an event ms > ma + 1 such
that
Vir> V" —e1 —e2, VYn>mg (213)

Relation (213) proves (196). Hence Claim 2 is proved for Case 2. W

Christopher Lott Qualcomm, Inc. Formerly Uni-
versity of Michigan, Department of EECS

PLACE

PHOTO

HERE
Demosthenis Teneketzis Professor, University of
Michigan, Department of EECS

PLACE

PHOTO

HERE

27

