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Abstract

In this paper we consider the problem of searching for a node or an object (i.e., piece of data, le, etc.) in a large network.
Applications of this problem include searching for a destination node in a mobile ad hoc network, querying for a piece of desired
data in a wireless sensor network, and searching for a shared le in an unstructured peer-to-peer network. We consider the class
of controlled ooding search strategies where query/search packets are broadcast and propagated in the network until a preset TTL
(time-to-live) value carried in the packet expires. Every unsuccessful search attempt, signied by a timeout at the origin of the search,
results in an increased TTL value (i.e., larger search area) and the same process is repeated until the object is found. The primary
goal of this study is to nd search strategies (i.e., sequences of TTL values) that will minimize the cost of such searches associated
with packet transmissions. Assuming that the probability distribution of the object location is not known a priori, we derive search
strategies that minimize the search cost in the worst-case, via a performance measure in the form of the competitive ratio between
the average search cost of a strategy and that of an omniscient observer. This ratio is shown in prior work to be asymptotically (as
the network size grows to innity) lower bounded by 4 among all deterministic search strategies. In this paper we show that by
using randomized strategies (i.e., successive TTL values are chosen from certain probability distributions rather than deterministic
values), this ratio is asymptotically lower bounded by e. We derive an optimal strategy that achieves this lower bound, and discuss
its performance under other criteria. We also show that in the nite case, for a given deterministic TTL sequence there exists a
randomized version that attains a lower worst-case search cost. We further introduce a class of simple (sub-optimal but potentially
more useful in practice) randomized strategies and derive the optimal strategy within this class.

Index Terms

Query and search, TTL, controlled ooding search, wireless networks, randomized strategy, best worst-case performance, com-
petitive ratio

I. INTRODUCTION
In this paper we consider the problem of searching for a node or an object (e.g., piece of data, le, etc.) in a large network.

The ability to conduct cost effective and fast searches has become an increasingly critical component required by many emerging
networks and applications. A prime example is data query in a large wireless sensor network, where different data is distributed
among a large number of sensor nodes based on different sensor readings. A query may be initiated by any node in search of
certain data of interest (e.g., the position coordinates where temperature has exceeded a certain level) [1]. As it is not known
a priori where the data might be located, or which node has the data, the query has to be somehow advertised to nodes in the
network. As the query propagates, a node that has data matching the interest will respond to the querying node with the desired
data [2]. There may be more than one node in the network (or sometimes none) that has the queried data. Depending on the
underlying application, we may need to locate one, some, or all of these nodes. Search has also been extensively used in mobile
ad hoc networks. This includes searching for a destination node by a source node in the route establishment procedure of an ad
hoc routing protocol (e.g., [3]), searching for a multicast group by a node looking to join the group (e.g., [4]), and locating one or
multiple servers by a node requesting distributed services (e.g., [5]). Search is also widely used in peer-to-peer (P2P) networks,
marked by the need to locate desired objects/les that are shared among nodes in the network.
There are a variety of mechanisms one may use to search/locate a node or object in a large network. The rst is to maintain

a centralized directory service, where nodes issue queries to the central directory to obtain the location of the search target. The
central directory needs to be constantly updated as the network topology and data content change. Such systems tend to have
very short response time, if the directory information is kept afresh. On the other hand, centralized systems often scale poorly as
the network increases in size, and as location information changes more frequently (either due to topology change as a result of
mobility or due to the information content change in the network). The latter necessitates a large amount of information update
which can cause signicant energy consumption overhead, especially when the queries occur less frequently compared to changes
in the network.
A second class of methods, which is decentralized, is the randomwalk based search, where the querier sends out a query packet

which is forwarded in a random walk fashion, until it hits the search target. These can be pure random walks or controlled walks
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such that the propagation of the packet is maintained in an approximately consistent direction. In particular, [2] proposed random
walks initiated by both the querier and the node that has data of potential interest (called advertisement). There have been many
results on estimating the search cost and response time using such approaches, see for example [6].
In this paper we focus on a widely used search mechanism known as the TTL-based controlled ooding of query packets. This

is also a decentralized approach. Under this scheme the query/search packet is broadcast and propagated in the network. A preset
TTL (time-to-live) value is carried in the packet and every time the packet is relayed the TTL value is decremented. This continues
until TTL reaches zero and the propagation stops. Therefore the extent/area of the search is controlled by the TTL value. If the
target is located within this area, the corresponding node will reply with the queried information. Otherwise, the origin of the
search will eventually time out and initiate another round of search covering a bigger area using a larger TTL value. This continues
until either the object is found or the querier gives up. Consequently the performance of a search strategy is determined by the
sequence of TTL values used.
Our primary goal is to derive controlled ooding search strategies, i.e., sequences of TTL values, that minimize the cost

of such searches (e.g., in terms of energy consumption in a wireless network associated with the amount of packet transmis-
sions/receptions). These strategies may be applied to wired and wireless networks alike, although decentralized and unstructured
searches are more relevant in a wireless scenario, particularly in a wireless sensor network. We will not explicitly consider the
response time of a search strategy. One reason is that within the class of controlled ooding search, the fastest search is to ood
the entire network. In addition, if the search cost is a function of the number of packet transmissions and receptions, then the goal
of minimizing cost is loosely aligned with the objective of locating the object quickly. We will limit our analysis to the case of
searching for a single target, which is assumed to exist in the network. For the rest of our discussion we will use the term object
to indicate the target of a search, be it a node, a piece of data or a le. We measure the position of an object by its distance to the
source originating the searching. We will use the term location of an object to indicate both the actual position of the search target
and the minimum TTL value needed to locate this object.
When the probability distribution of the location of the object is known a priori, search strategies that minimize the expected

search cost can be obtained via a dynamic programming formulation [7]. The necessary and sufcient conditions were also
derived in [7] for two very commonly used search strategies to be optimal. When the distribution of the object location is not
known a priori, one may evaluate the effectiveness of a strategy by its worst case performance. In [8] such a criterion, in the form
of the competitive ratio (or worst-case cost ratio) between the expected cost of a given strategy and that of an omniscient observer,
was used and it was shown under a linear cost model (to be precisely dened in the next section) that the best worst-case search
strategy among all fixed strategies is the California Split search algorithm, which achieves a competitive ratio of 4 (also the lower
bound on all xed strategies). In this paper we show that randomized strategies perform better for the same criterion. We show
that for a much more general class of cost models, the best worst-case strategy among all xed and random strategies achieves
a competitive ratio of e. We derive an optimal randomized strategy that attains this ratio and discuss how it can be adjusted to
account for alternative performance criteria.
The main results of this paper are summarized as follows.
1) We show that given a deterministic TTL sequence, there exists a randomized version that has a lower worst-case expected
search cost. The construction of the randomization is presented.

2) We derive an asymptotically (as the network size increases) optimal strategy and show that its worst-case cost ratio is e.
3) We establish an equivalence between TTL sequences under different cost functions. This allows us to use results for
sequences derived under specic cost functions in order to derive strategies for other cost functions.

4) We introduce a class of uniformly randomized strategies and showed that within this class the best strategy achieves a
competitive ratio of 2.9142. Though sub-optimal, these strategies are simple to implement and of practical value.

The rest of the paper is organized as follows. In Section II we present the network model, assumptions, and the search cost
function as an abstraction of lower layer networking mechanisms. In Section III we introduce the performance objectives under
consideration as well as some preliminary results. In Section IV we show how a randomized strategy may be constructed given
a nite non-random strategy to result in better worst-case performance. In Section V we derive the optimal strategy among all
random and non-random strategies with respect to the performance criterion given in the next section. This is done for continuous
and discrete strategies, respectively. We also examine a few alternative performance measures in Section VI. In Sections VII
and VIII we investigate a number of sub-optimal search strategies in the interest that these may be more practical and easier to
implement in many cases. In particular we establish an equivalence relationship between a linear cost function and more general
cost functions in Section VII. Using this result in Section VIII we introduce a class of strategies called uniformly randomized
strategies and derive the optimal strategy within this class. Finally Section IX concludes the paper.
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Fig. 1. Example network in which TTL-based controlled ooding search is employed. In the gure, the center black node originates the search by passing a TTL
value and search query to its one-hop neighbors. The process is repeated until either TTL value reaches 0 or object is found. Note that using a TTL value of k will
approximately reach all neighbors within a circle of radius of k · r, where r is the single-transmission radius. In this diagram, object is located in the left black
node and hence using a TTL value of 3 or larger will complete the search.

II. NETWORK MODEL

A. Network Model
Within the context of TTL-based controlled ooding search, the distance between two nodes is measured in number of hops,

assuming that the network is connected. Two nodes being one hop away means they can reach each other in one transmission.
In particular, in a wireless scenario each transmission covers a specic region given the limitation on the transmission power,
channel fading, etc. All nodes within that region will be considered one-hop neighbors of the transmitting node.
The node originating the search begins by determining an initial positive integer TTL value, and passes this number along with

its search query to its neighboring nodes. If the underlying network is wired, this query will be transmitted once along each
outgoing link of the originating node. For a wireless network, the originating node can reach all its neighbors in a single broadcast
transmission. If the object is found at a neighboring node, then the corresponding node will reply to the originating node. If a
neighboring node does not have the desired object, it will decrement the TTL value by one and pass the query to its neighbors in
the same fashion. In this way the query packets are duplicated and propagated in the network. The above process repeats until
either the object has been located or the TTL value reaches 0, at which point the query packet is dropped. This process is depicted
in Figure 1 for a two-dimensional network, in which the middle black source node uses a TTL value of 3 in order to locate the
desired object. The originating node starts a timer when the rst query packet is sent. If it does not get a response back before the
timer expires, it will begin a new round of search by selecting a TTL of an increasing value, and the above procedure is repeated.
The TTL value is increased in subsequent rounds until the object is located.
In a practical system, a variety of techniques may be used to reduce the number of query packets owing in the network and

to alleviate the broadcast storm problem [9]. For example, a node should suppress multiple copies of the same query it receives.
In our analysis we will ignore these technical details, and simply assume that a search with a TTL value of k will reach all
neighbors that are k hops away from the originating node, and that the cost associated with this search is a function of k, denoted
by C(k). This cost may include the total number of transmissions, receptions, etc. Thus C(k) is the abstraction of the nature of
the underlying network and the specic broadcast schemes used. For the rest of our discussion we will no longer regard network
as wired or wireless, but only discuss in terms of the search cost C(k), since in essence it abstracts the relevant features of lower
layers.
We summarize the assumptions underlying our network model as follows.
1) We assume that a single target object exists in the network. Therefore ooding the entire network will for sure locate the
object.

2) We assume that a TTL value of k will reach all nodes within k hops of the originating node when the timer expires.
3) A search with TTL value of k incurs a cost C(k). The functional form of this cost depends on the properties of the network
as well as the underlying broadcast techniques mentioned earlier.

Assumption (2) is a simplication. In particular, in a wireless network this assumption implies that the redundancy inherent
in the query broadcast process ensures that a node receives correctly at least one copy of the same query in spite of possible
packet collisions and channel interference. It also implies that there is no excessive delay in the network, thus a timeout event is
equivalent to not nding the object in the k-hop neighborhood. This simplication nevertheless allows us to reveal fundamental
features of the problem and obtain insights.
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B. Search Strategies
We denote by L the minimum TTL value required to search every node within the network, and will also refer to L as the

dimension or size of the network. Since we have assumed that the object exists, using a TTL value of L will locate the object with
probability 1. We dene the following classes of search strategies.
Definition 1: A deterministic integer-valued search strategy u is a sequence u = [u 1, u2, · · · , uN ] for some N , where ui is a

positive integer and is the TTL value used during the i-th round of search. In addition, u i < ui+1 for all 1 ≤ i ≤ N − 1.
The requirement for the sequence to be increasing is a natural one. Note that in a specic search experiment we may not need to
use the entire sequence. We will also refer to deterministic strategies as fixed or non-random.
Definition 2: A randomized discrete search strategy u is a TTL sequence that consists of random variables that take on integer

values, i.e., u = [u1, u2, · · · , uN ], where ui is a discrete random variable that takes integer values, 1 ≤ i ≤ L. The distribution
of ui can be independently or jointly dened. This is a straightforward generalization of the previous denition.
For analyzing TTL-based controlled ooding search, it is natural to only consider integer-valued policies. However, as will

become evident later, considering real-valued sequences can reveal fundamental properties that will be helpful in deriving optimal
integer-valued strategies. We dene continuous/real-valued xed and randomized strateties in a similar way, respectively.
Definition 3: A deterministic continuous/real-valued search strategy v is a sequence v = [v 1, v2, · · · , vN ] for someN , where

≤ vi takes any real value on [1,∞) and is the TTL value used during the i-th round. In addition, v i < vi+1 for all 1 ≤ i ≤ N − 1.
Definition 4: A randomized continuous/real-valued search strategy v is a TTL sequence that consists of continuous random

variables, i.e., v = [v1, v2, · · · , vN ], where vi is a continuous random variable that takes any real value on [1,∞), 1 ≤ i ≤ L.
The distribution of vi can be independently or jointly dened.
Lower bounding the TTL values by 1 in the above denitions allows us to derive a positive integer-valued sequence from any

real-valued sequence by simply taking the oor of the latter.
Definition 5: A search strategy is admissible if by using the strategy an object of nite location is located with probability

1. Specically, given a network of nite dimension L, a deterministic strategy u of length N is admissible if u N = L, and
a randomized (discrete or continuous) strategy u of length N is admissible if Pr(u n = L) = 1 for some 1 ≤ n ≤ N . In
the asymptotic case where L ⇒ ∞ and innite TTL sequences are employed, a strategy u = [u 1, u2, · · · ] is admissible if for
∀ x ≥ 1, ∃ n ∈ Z+ s.t. P r (un ≥ x) = 1.
For the rest of this paper we will let V denote the set of all real-valued admissible strategies (random or xed). Any strategy

v ∈ V will be referred to as a continuous or real-valued strategy. V d denotes the set of all admissible real-valued deterministic
strategies. U denotes the set of all integer-valued admissible strategies (random or xed). Any strategy u ∈ U will be referred to
as a discrete or integer-valued strategy. Finally, U d denotes the set of all admissible integer-valued deterministic strategies. Note
that Ud ⊂ U ⊂ V and U d ⊂ V d ⊂ V .

C. Object Location and Search Costs
A search cost C(v) is incurred by a round of search with TTL value v. It is important to note that in general, a node receiving

the search query will be unaware whether the object is found at another node in the same round (except perhaps when the object
is found at one of its neighbors). Thus this node will continue decrementing the TTL value and passing on the search query. We
can therefore regard the search cost as being paid in advance, i.e., the search cost for each round is determined by the TTL value
and not by whether the object is located in that round.
For real-valued sequences, we require that the cost function C(v) be dened for all v ∈ [1,∞), while for integer-valued

sequences we only require that the cost function is dened for positive integers v. We will use the same function C(v) in both
situations, as it will be clear from the context whether C needs to be dened for all integers or real x.
We will adopt the natural assumption that C(v1) > C(v2) if v1 > v2, i.e., the cost strictly increases as the search covers a

bigger region. We dene the following class of cost functions for real-valued sequences.
Definition 6: The function C : [1,∞) → [C(1),∞) belongs to the class C if 0 < C(1) < ∞, C(v) is increasing and

differentiable (hence continuous), and limv→∞ C(v) = ∞. Note that for every y ∈ [C(1),∞), there exists exactly one v ∈ [1,∞)
such that C(v) = y.
In our discussion and numerical examples we will also use two special cost functions, a linear cost and a quadratic cost, dened

as C(v) = αv and C(v) = αv2, respectively, for some constant α > 0. The rst is a good model in a network where the number
of transmissions incurred by the search query is proportional to the TTL value used, e.g., in a linear network with constant node
density. The latter is a more reasonable model for a two-dimensional network, as the number of nodes reached (as well as the
number of transmissions) in v hops is on the order of v 2. Note that both the linear and quadratic costs are within the class C when
dened over [1,∞).
We will use X to denote the minimum TTL value required to locate the object. We will refer to X as the object “location”.

When considering discrete strategies u ∈ U , we will also assume that X is an integer-valued random variable taking values
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between 1 and L such that Pr(X ∈ {1, 2, · · · , L − 1, L}) = 1. When considering continuous strategies v ∈ V , we allow the
location to take any real value in the interval [1, L]. In both cases, we denote the cumulative distribution of X by F (x), where
F (x) = Pr(X ≤ x). The tail distribution of X is denoted by F̄ (x) = 1 − F (x) = Pr(X > x). Note that F (L) = 1 and
F̄ (L) = 0 for anyX .

III. PROBLEM FORMULATION AND PRELIMINARIES
In this section, we present the performance objective, problem formulation, as well as some preliminaries on key properties of

strategies under consideration.
We adopt the following performance measure that reects the search cost in the worst case scenario (a generalization of the one

used in [8]):
ρu = sup

{pX(x)}

Ju
X

E[C(X)]
, (1)

where Ju
X denotes the expected search cost of using strategy u for object location X ; E[C(X)] is the expected search cost of

an ideal omniscient observer who knows precisely the location (i.e., realization of X). The ratio between these two terms for a
givenX will be referred to as the (expected) cost ratio. {pX(x)} denotes the set of all probability mass functions ofX such that
E[C(X)] < ∞. We will only consider the case where the random vector u and X are mutually independent, as the distribution
ofX is not known a priori. Ju

X can be calculated as follows:

Ju
X = Eu [EX [ju

X ]]

= Eu

[
∑

ui∈u

C(ui)Pr(X > ui−1)

]
, (2)

where u0 = 0 is assumed for all u and ju
X is the random variable denoting the search cost of using strategy u when object location

is X . Note that if u is deterministic then Ju
X is a single expectation with respect to X , whereas if u is random then J u

X is the
average over bothX and u. Note that we will only consider the case where the random vector u andX are mutually independent
since the distribution ofX is not known a priori.
The worst-case cost ratio ρu can also be viewed as the competitive ratio with respect to an oblivious adversary [10] who knows

the search strategy u. We will use these two terms interchangeably. It should be mentioned that the quantity ρ u has slightly
different meanings for deterministic and randomized strategies. When u is a xed sequence J u

X is a single expectation with
respect to X as noted before. In this case, the search cost of using u is always within a factor ρ u of the omniscient observer cost
for any given location. On the other hand, when u is random, ρ u only provides an upper bound on the average search cost but does
not necessarily upper bound any particular realization of this cost, as J u

X is a double expectation with respect to both the strategy
and the location. In this case, it is the expected search cost of u that is always within ρu of the cost of an omniscient observer. In
Section VI, we will present other performance measures in order to account for these differences.
The corresponding objective is to nd search strategies that minimize this ratio, denoted by u ∗:

ρ∗ = inf
u∈U

ρu = inf
u∈U

sup
{pX (x)}

Ju
X

E[C(X)]
. (3)

Note that the quantity Ju
X

E[C(X)] is lower bounded by 1 for all distributionsX , hence ρ∗ ≥ 1, since ju
X ≥ C(X) with probability 1

for all X , i.e, any strategy u cannot outperform an omniscient observer who knows the object location in advance.
For any continuous strategy, v ∈ V , the worst-case cost ratio is similarly dened as in (1):

ρv = sup
{fX (x)}

Jv
X

E[C(X)]
, (4)

where {fX(x)} denotes the set of all probability density functions for X such that E[C(X)] < ∞. The best worst-case strategy
is similarly dened as in (3) with {fX(x)} replacing {pX(x)}.
The following lemmas are critical in our subsequent analysis.
Lemma 1: For any search strategy v ∈ V ,

sup
{fY (y)}

Jv
Y

E[C(Y )]
= sup

y∈[1,∞)

Jv
y

C(y)
, (5)
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where Jv
Y is the expected search cost using TTL sequence v when object location Y has probability density f Y (y), and Jv

y is the
expected search cost using TTL sequence v when object location density is f Y (y′) = δ(y′ − y), i.e., a single xed point.

Proof: We begin by noting that for every y ∈ [1,∞), there corresponds a singleton probability density f Y (y′) = δ(y′ − y),
such that E[C(Y )] = C(y) and Jv

Y = Jv
y . We thus have the following inequality

sup
{fY (y)}

Jv
Y

E[C(Y )]
≥ sup

y∈[1,∞)

Jv
y

C(y)
, (6)

since the left-hand side is a supremum over a larger set.
On the other hand, setting A = supy∈[1,∞)

Jv
y

C(y) we have
Jv

y

C(y) ≤ A for all y ∈ [1,∞). Thus Jv
y ≤ AC(y). Then for any

random variable Y denoting object location, we can use this inequality along with the independence between v and Y to obtain:

Jv
Y

E[C(Y )]
=

∫
[1,∞) Jv

y fY (y) dy
∫
[1,∞) C(y)fY (y) dy

≤
∫
[1,∞) AC(y)fY (y) dy
∫
[1,∞) C(y)fY (y) dy

= A . (7)

Equation (7) implies that Jv
Y

E[C(Y )] ≤ A = supy∈[1,∞)
Jv

y

C(y) . Since this inequality holds for all possible random variables Y , we
have:

sup
{fY (y)}

Jv
Y

E[C(Y )]
≤ sup

y∈[1,∞)

Jv
y

C(y)
. (8)

Inequalities (6) and (8) collectively imply the equality in equation (5), and we have proven Lemma 1.
Lemma 2: For any search strategy u ∈ U ,

ρu = sup
{pX(x)}

Ju
X

E[C(X)]
= sup

x∈Z+

Ju
x

C(x)
, (9)

where Ju
x denotes the expected search cost using TTL sequence u when Pr(X = x) = 1, and Z+ denotes the set of natural

numbers and represents all possible singleton object locations.
The proof of this lemma is essentially the same as that of Lemma 1 and is not repeated.
In words, these two lemmas imply that for any TTL sequence, the worst case scenario is when the object location is a constant,

i.e., with a singleton probability distribution. We will also subsequently refer to such a single-valued location as a point. Note
that this constant (i.e., worst case) may not be unique. This result allows us to limit our attention to singleton-valued X and
equivalently redene the minimum worst-case cost ratio ρ∗ in equation (3) as

ρ∗ = inf
u∈U

ρu = inf
u∈U

sup
x∈Z+

Ju
x

C(x)
, (10)

and similarly for the continuous strategies.
It has been shown in [8] that under a linear cost function C(u) = α · u for some constant α, and as the network size increases

asymptotically, the minimumworst-case cost ratio over all deterministic integer-valued sequences is 4, achieved by the California
Split search ū =

{
2i−1 : i ∈ Z+

}
= [1, 2, 4, 8, ...].

In the next section we show that it is in fact always possible to nd a random TTL sequence for a given nite nonrandom
sequence that performs better in the worst case. Therefore, under this criterion the best search strategies are randomized strategies.
In Section V we further derive the optimal randomized strategies that are optimal among all admissible strategies, which achieve
a much smaller worst-case cost ratio (e as opposed to 4) for any cost function C(·) ∈ C.

IV. CONSTRUCTING A RANDOMIZED STRATEGY
In this section we show how a randomized strategy may be constructed given a nite length, xed strategy so that a lower

worst-case cost ratio is obtained under a large class of cost functions. In the process of doing this we also reveal how randomized
strategies perform better for this criterion. We will limit our discussion to discrete strategies u ∈ U , and hence assume that the
object location is integer-valued. The cost function C(x) thus only needs to be dened at integers values of x. Subsequently, for
the remainder of this section whenever we write 1 ≤ x ≤ L it is implied that x only takes integer values between 1 and L.
Definition 7: An increasing cost function C(x) belongs to the class C∗ if for all integers 3 ≤ x ≤ L,

C(x) < C(x − 1) +
C(x − 1)2
∑x−2

i=1 C(i)
. (11)
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Note that both the linear and quadratic cost functions given earlier satisfy (11). This constraint essentially limits the amount of
increase C(x) − C(x − 1) in the cost function.
This denition is introduced for technical reasons for proving Theorem 1 below on a specic construction of a randomized

strategy, as this constraint simplies the identication of worst-case locations. It should be noted that it is possible to apply
similar methods under more general cost functions by considering a different set of possible worst-case locations.
Consider any nonrandomTTL sequence given by the nite length vector u = [u 1, u2, · · · , uN ], where uN = L and u1 < u2 <

... < uN−1 < uN . Also dene u0 = 0. We have the following result.
Lemma 3: Let an integer x∗, 1 ≤ x∗ ≤ L, be such that

ρu =
Ju

x∗

C(x∗)
= max

1≤x≤L

Ju
x

C(x)
. (12)

If the cost C(x) ∈ C∗, then either x∗ = un + 1 < un+1 for some 0 ≤ n ≤ N − 1 or x∗ = uN = L.
What this lemma says is that if C(·) ∈ C∗, then the worst-case location is either immediately following one of the TTL values

in the sequence u, or at the boundaryL for any given deterministic TTL sequence u = [u 1, u2, · · · , uN ]. This result is intuitively
clear in that the worst location is the closest point that is outside some searched area un. For such a TTL sequence, dene a set S
as follows:

S =
{

1 ≤ x∗ ≤ L, x∗ ∈ Z+ :
Ju

x∗

C(x∗)
= max

1≤x≤L

Ju
x

C(x)

}
, (13)

which is essentially the set of all the worst-case location values. Let |S| denote the number of such points at which the maximum
is achieved. It follows from Lemma 3 that 1 ≤ |S| ≤ N .
We now construct a randomized strategy û from the xed sequenceu = [u 1, u2, · · · , uN ] as follows, referred to as Construction

(T).
(T.1) For all um such that um+1 +∈ S and 1 ≤ m ≤ N − 1, set ũm = um. For any um such that um+1 ∈ S and 1 ≤ m ≤ N − 1,

set ũm = um + 1. In addition, set ũN = uN = L regardless of whether it belongs to set S.
(T.2) If uN +∈ S and 1 +∈ S, then dene ũ = [ũ1, ũ2, ...ũN ].
(T.3) If uN +∈ S and 1 ∈ S, dene ũ = [1, ũ1, ũ2, ...ũN ], noting that it follows from Lemma 3 that ũ1 ≥ u1 > 1. Also note that

ũ dened in this case differs from that in (T.2) in the insertion of a “1” before ũ 1.
(T.4) If uN ∈ S and 1 ∈ S, dene ũ = [1, ũ1, ũ2, ...ũN−2, ũN ]. Note that ũ dened in this case differs from that in (T.3) in the

removal of ũN−1.
(T.5) Finally, if uN ∈ S and 1 +∈ S, then dene ũ = [ũ1, ũ2, ...ũN−2, ũN ]. Note that ũ dened in this case differs from that in

(T.4) in the removal of the “1”.
(T.6) Now construct the randomTTL sequence û = [û 1, û2, ..., ûM ] by randomly selecting one of two sequences: with probability

1 − p we employ the original TTL sequence g, and with probability p we employ the modied TTL sequence ũ dened in
(T.2)-(T.5) for each of the four possible cases, respectively, where p is given by

0 < p < min
{

1, min
x (∈S

{(
ρu − Ju

x

C(x)

)
C(x)
ML

}}
, (14)

and

Mj =
∑

i∈S,i≤j

(C(i) − C(i − 1)) , 1 ≤ j ≤ L ,

where C(0) = 0.
Theorem 1: Consider any nonrandom TTL sequence given by the integer-valued nite length vector u = [u 1, u2, ...uN ],

where uN = L and u1 < u2 < ... < uN−1 < uN . Generate a new random TTL sequence û using Construction (T). If the cost
function belongs to the class C∗, then:

ρû = max
1≤x≤L

J û
x

C(x)
< max

1≤x≤L

Ju
x

C(x)
= ρu . (15)

Therefore there exists at least one random TTL sequence given by û that achieves a lower worst-case cost than that using the
nonrandom sequence u.
The proof of this theorem is given in the Appendix. The key observation here is that under this construction, for any x +∈ S

we have J û
x

C(x) −
Ju

x
C(x) > 0, and J û

x
C(x) < ρu. What this means is that randomizing some of the TTL values of u increases the cost
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ratio at points x +∈ S but not sufcient to exceed the worst-case cost ratio ρu. On the other hand, we also have that for x ∈ S,
J û

x
C(x) < Ju

x
C(x) , which means that the cost ratio is decreased at all x for which the worst-case cost is achieved under u. Combining

these observations, the overall effect of this particular randomization construction is to decrease the value of ρ u by lowering
the cost ratio at x ∈ S at the expense of increasing the cost ratio at x +∈ S. This is formally shown in the proof. In essence,
this randomization attempts to “spread” the cost at the worst-cast points to their neighboring points in order to bring down the
worst-case cost. This is also the fundamental intuition behind why randomization performs better for the worst-case critetion.
The construction here is for the classC∗ cost functions. It is however conceivable that similar randomizations can be constructed

for more general cost functions, by considering the corresponding worst-case points resulting from the cost functions.

V. OPTIMAL WORST-CASE STRATEGIES
In this section, we derive asymptotically optimal continuous and discrete strategies in the limit as the network dimension L

approaches ∞. Consequently we will consider an innitely large network and TTL sequences of innite length that satisfy
Denition 5. The asymptotic case is studied as we are particularly interested in the performance of ooding search in a large
network. In addition, it is difcult if at all possible to obtain a general strategy that is optimal for all nite-dimension networks
because the optimal TTL sequence often depends on the specic value of L. In this sense, an asymptotically optimal strategy
may provide much more insight into the intrinsic structure of the problem. It will become evident that asymptotically optimal
TTL sequences can also perform very well in a network of arbitrary nite dimension. In particular, as will be shown, under the
derived innite-length strategies the worst-case cost ratio is reached asymptotically from below as the object location reaches∞,
and hence the cost ratio at any nite object location is less than the worst-case cost ratio.
In what follows we will rst derive a tight lower bound on the worst-case cost ratio for both continuous and discrete strategies.

We then introduce a particular randomized continuous strategy and show that this strategy has a worst-case cost ratio matching the
lower bound, therefore proving that this strategy is optimal in the worst-case. We then derive a discrete strategy from the optimal
continous strategy and show that it also achieves the lower bound.

A. A Lower Bound on the Worst-Case Cost Ratio
In deriving a tight lower bound on the worst-case cost ratio, we rst use Yao’s minimax principle [10] and Lemma 2 to obtain

the following inequality:
Lemma 4:

sup
{pX(x)}

inf
u∈Ud

Ju
X

E[C(X)]
≤ inf

u∈U
sup

x∈Z+

Ju
x

C(x)
. (16)

Proof: First note that for any given object probability distribution, there exists an optimal strategy that is deterministic.
Hence the following holds:

sup
{pX (x)}

inf
u∈Ud

Ju
X

E[C(X)]
= sup

{pX (x)}
inf
u∈U

Ju
X

E[C(X)]
.

We also have the following in interchanging the supremum and inmum, see for example [11]:

sup
{pX (x)}

inf
u∈U

Ju
X

E[C(X)]
≤ inf

u∈U
sup

{pX (x)}

Ju
X

E[C(X)]
.

Finally, applying Lemma 2 to the above equality and inequality establishes (16).
The corresponding continuous version of Lemma 4 is straightforward.
Lemma 5:

sup
{fX(x)}

inf
v∈V d

Jv
X

E[C(X)]
≤ inf

v∈V
sup

x∈[1,∞)

Jv
x

C(x)
. (17)

The proof of this lemma is similar to the discrete case and is not repeated.
We now use the above results to rst derive a lower bound on the minimum worst-case cost ratio under continuous strategies.

Using (17), we note that any lower bound can be found by rst selecting a location distribution f X(x) and deriving the optimal
deterministic strategy that minimizes the cost ratio under this distribution. We will assume that the cost functionC(x) ∈ C.
Consider an object location distribution given by F̄ (x) = Pr(X > x) =

(
C(x)
C(1)

)−α
for all x ≥ 1 and some constant α > 11.

For any deterministic TTL sequence v = [v1, v2, ...], the corresponding expected search cost is given by the following expression,
1A special case of this distribution where cost C(·) is linear, also known as the Zipf distribution, was studied in [8] for which the optimal deterministic strategy

was computed. Here we essentially follow the same method (generalized to any cost function in C) to derive the class of optimal strategies.
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where v0 = 1 is assumed for simplicity of notation:

Jv
X =

∞∑

j=1

C(vj)F̄ (vj−1) =
∞∑

j=1

C(vj)
(

C(vj−1)
C(1)

)−α

. (18)

Therefore the optimal strategy must satisfy the following partial differential equation:
∂Jv

X

∂vj
= [C(vj−1)−α − αC(vj+1)C(vj)−α−1]

∂C(vj)
∂vj

(C(1))α = 0 , (19)

for all j ≥ 1. Since both the derivative of the cost function and C(1) are strictly positive, the term enclosed in brackets in (19)
must be 0. Hence for a given xed v1, the optimal strategy is to recursively choose vj that satises the following equation for all
j ≥ 1:

C(vj+1) =
C(vj)

α

(
C(vj)

C(vj−1)

)α

. (20)

Note that this optimal sequence satises the following:

F̄ (vj)C(vj+1) =
C(vj+1)C(1)α

C(vj)
α =

(
C(vj)

C(vj−1)

)α C(vj)C(1)α

αC(vj)
α =

C(1)α

C(vj−1)
α

C(vj)
α

= F̄ (vj−1)
C(vj)

α
. (21)

Summing both sides of (21) from j = 1 to j = ∞ and multiplying by α gives:

α
∞∑

j=1

F̄ (vj)C(vj+1) =
∞∑

j=1

F̄ (vj−1)C(vj) =⇒ α

( ∞∑

i=0

F̄ (vj)C(vj+1) − C(v1)

)
=

∞∑

j=1

F̄ (vj−1)C(vj) . (22)

Substituting this in the denition of J v
X gives:

αJv
X − αC(v1) = Jv

X =⇒ Jv
X

α− 1
α

= C(v1) . (23)

On the other hand, the mean of the object location can be calculated as follows, noting thatX takes values on [1,∞):

E [C(X)] =
∫ ∞

0
Pr (C (X) > x) dx = C(1) +

∫ ∞

C(1)
F̄ (C−1(x)) dx

= C(1) +
∫ ∞

C(1)

[
C(C−1(x))

C(1)

]−α

dx = C(1) +
1

C(1)−α

∫ ∞

C(1)
x−α dx =

α

α− 1
C(1) . (24)

(23) and (24) imply that for a sequence dened by a given v 1 and using the recursion given by (20), the cost ratio is
Jv

X

E [C (X)]
= Jv

X
(α− 1)
αC(1)

=
C(v1)
C(1)

. (25)

This result implies that for a given α, the sequence that generates the smallest cost ratio will follow the recursion (20) and use the
smallest possible value of v1. However, not all values of v1 lead to an increasing sequence v, which is obviously a requirement
for an optimal strategy. In fact, we have the following result:
Lemma 6: Consider any innite length sequence v = [v1, v2, ..], where v1 is some positive constant and vk for k ≥ 2 is

generated by the recursion given by (20). Then v is an increasing sequence if and only if the following condition holds:
C(v1)
C(1)

≥ α(
P∞

k=1 α
−k) = α

1
α−1 . (26)

The proof of this lemma can be found in the Appendix.
Therefore we can achieve a minimum cost ratio value of α

1
α−1 by using a TTL sequence dened by recursion (20) and v 1 such

that C(v1)
C(1) is α

1
α−1 . When α > 1, α

1
α−1 is a decreasing function of α, with its maximum achieved as α approaches 1 from above.

In addition we have limα→1+ α
1

α−1 = e, which follows from the denition of the exponential constant. Therefore using (17) we
have obtained a lower bound on the worst-case cost ratio, given by the next lemma.
Lemma 7: For any C(x) ∈ C, the worst-case cost ratio of any continuous strategy is lower-bounded by e, i.e.:

inf
v∈V

sup
x∈[1,∞)

Jv
x

C(x)
≥ e . (27)

This result implies that if we can obtain a TTL sequence whose worst-case ratio is e, then this must be an optimal worst-case
strategy. We derive such a strategy in the next two subsections.
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B. A Class of Jointly Defined Randomized Strategies
Definition 8: Assume that the cost function C(x) ∈ C. Let v[r, Fv1 (x)] denote a jointly dened sequence v = [v1, v2, ...]

with a congurable parameter r, generated as follows:
(J.1) The rst TTL value v1 is a continuous random variable taking values in the interval

[
1, C−1(r · C(1))

)
, with its cdf

given by some nondecreasing, right-continuous function F v1(x) = Pr(v1 ≤ x). Note that this means Fv1 (1) = 0 and
Fv1

(
C−1(r · C(1))

)
= 1.

(J.2) The k-th TTL value vk is dened by vk = C−1
(
rk−1C(v1)

)
for all positive integers k.

From (J.1) and (J.2), it can be seen that r and Fv1(x) uniquely dene the TTL strategy.
Lemma 8: Consider any strategy v[r, Fv1 (x)] constructed using steps (J.1) and (J.2) above. Assume C(x) ∈ C. Let F̄v1(y) =

1 − Fv1(y). Then the worst-case cost ratio is given by:

sup
x∈[1,∞)

Jv
x

C(x)
= sup

1≤z<r

{
r

r − 1
h(r) + (r − 1)h(z)

zC(1)
− r

h′(z)
C(1)

}
, (28)

where h′(z) denotes the derivative of h with respect to z, and h(z) is dened as follows for 1 ≤ z < r:

h(z) = C(1) +
∫ z·C(1)

C(1)
F̄v1(C

−1(y)) dy . (29)

The proof is given in the appendix. This lemma reduces the space over which the supremum is taken in order to calculate the
worst-case cost ratio.

C. An Optimal Continuous Strategy
For 1 ≤ z ≤ r and a given strategy v[r, Fv1 (x)], dene Φ(z) as follows:

Φ(z) =
r

r − 1
h(r) + (r − 1)h(z)

zC(1)
− r

h′(z)
C(1)

. (30)

From Lemma 8, the worst-case cost ratio of v is the supremum of Φ(z) over the range 1 ≤ z < r. Note that the following four
boundary conditions are true for any function h(z) as dened by (29):

h(1) = C(1) , h(r) = E[C(v1)] , h′(1) = C(1) , h′(r) = 0 . (31)

Therefore we have:

Φ(1) =
r

r − 1
[h(r) + (r − 1)h(1)]

C(1)
− r

h′(1)
C(1)

=
r

r − 1
h(r)
C(1)

, (32)

Φ(r) =
r

r − 1
h(r) + (r − 1)h(r)

rC(1)
− r

h′(r)
C(1)

=
r

r − 1
h(r)
C(1)

. (33)

Theorem 2: Assume C(x) ∈ C. We have
inf
v∈V

sup
x∈[1,∞)

Jv
x

C(x)
= e . (34)

Moreover, this worst-case cost ratio is obtained by strategy v∗[e, ln C(x)
C(1) ]. In other words, the optimal strategy is dened as

follows: v∗
1 has the cdf Fv∗

1
(x) = ln C(x)

C(1) for 1 ≤ x < C−1(eC(1)), and v∗
k = C−1

(
ek−1C (v∗1)

)
for all positive integers k.

Proof: Consider strategy v∗ described above. Note that because Fv1(x) = ln C(x)
C(1) and r = e, we have:

h(z) = C(1) +
∫ zC(1)

C(1)
F̄v1

(
C−1(y)

)
dy = C(1) +

∫ z·C(1)

C(1)

(
1 − ln

y

C(1)

)
dy

= C(1) [z − z(ln z − 1) − 1] = C(1) [2z − z ln z − 1] . (35)

Note that h(e) = C(1) (e − 1) and h′(z) = C(1) [1 − ln z]. Therefore we can calculate Φ(z) for 1 ≤ z < r as follows:

Φ(z) =
e

e − 1
C(1)(e − 1) + (e − 1)C(1) [2z − zln z − 1]

zC(1)
− eC(1)(1 − ln z)

C(1)
= e . (36)
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Hence it is clear from Lemma 8 that the worst-case cost ratio of this sequence is e. Combine this with Lemma 7 which showed
the worst-case cost ratio of any continuous strategy is lower bounded by e, we complete the proof.
In what follows we illustrate the idea behind the derivation of this optimal strategy. As mentioned in Section IV, one way to

randomize or improve a strategy is to decrease the cost ratio at the worst location points by spreading the cost to neighboring
points. This leads one to conjecture that under an optimal strategy, the cost ratio as a function of object location x does not have
any local maxima or minima, producing a smooth curve. Led by this conjecture, we set out to nd the type of cdf F̄v1(y) and
the corresponding h(z) that will produce a at cost ratio curve, i.e. Φ(z) = Φ(1) = Φ(r) = r

r−1
h(r)
C(1) for all 1 ≤ z < r, using

Lemma 8.
This at cost ratio curve can be achieved if and only if h(z) satises the following differential equation:

r

r − 1
h(r) + (r − 1)h(z)

zC(1)
− r

h′(z)
C(1)

=
r

r − 1
h(r)
C(1)

=⇒ − z · h′(z) − z − 1
r − 1

h(r) + h(z) = 0 , (37)

for all 1 ≤ z < r. The equation on the righthand-side of (37) is a rst-order linear differential equation and it can be shown that
the general solution satises the following for all 1 ≤ z < r:

h(z) = z · c +
z

r − 1

(
−h(r)

z
− h(r) · ln(z)

)
= z · c − h(r)

r − 1
− h(r)

r − 1
z · ln(z) , (38)

where the values of the constant c and h(r) can be determined by the boundary conditions in (31) as follows. We have:

h′(z) = c − h(r)
r − 1

ln(z)− h(r)
r − 1

. (39)

Therefore

C(1) = h′(1) = c − h(r)
r − 1

ln(1) − h(r)
r − 1

= c − h(r)
r − 1

=⇒ c = C(1) +
h(r)
r − 1

(40)

0 = h′(r) = c − h(r)
r − 1

ln(r) − h(r)
r − 1

(41)

Substituting (40) into (41), we obtain:

0 = C(1) − h(r)
r − 1

ln(r) =⇒ h(r) = C(1)
r − 1
ln(r)

, (42)

which means that c = C(1)
[
1 + 1

ln(r)

]
. Hence (38) becomes:

h(z) = C(1)
[
z

(
1 +

1
ln(r)

)
− 1

ln(r)
− z · ln(z)

ln(r)

]
= C(1)

z [ln(r) + 1 − ln(z)]− 1
ln(r)

. (43)

Differentiating this result gives us the tail distribution and corresponding cdf, for 1 ≤ z < r, and 1 ≤ y < C −1 (rC(1)):

F̄v1

(
C−1 (zC(1))

)
C(1) = h′(z) = C(1)

[
1 − ln(z)

ln(r)

]

=⇒ Fv1

(
C−1(zC(1))

)
=

ln(z)
ln(r)

=⇒ Fv1 (y) =
1

ln r
ln

C(y)
C(1)

. (44)

Equation (44) gives the family of cdf functions that result in a at cost ratio curve for a give r. Finally, the corresponding
worst-case cost ratio is given by substituting (42) into (32):

sup
x∈[1,∞)

Ju
x

C(x)
=

r

r − 1
h(r)
C(1)

=
r

ln(r)
. (45)

By differentiating and noting convexity, we nd that using r = e obtains a worst-case cost ratio of e. Hence, this must be an
optimal worst-case strategy following the same argument given in the proof of Theorem 2.
As an example, when the cost is linear, i.e. C(x) = x for all x, the optimal strategy v ∗ = [v∗1 , v∗2 , ...] is dened as follows. The

rst TTL value is a random variable v∗
1 with cdfFv∗

1
(z) = ln z for 1 ≤ z < e. Successive TTL values are dened as v∗

k = ek−1v∗1 .
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D. An Optimal Discrete Strategy
For the discrete case, the minimum worst-case cost appears to have a stronger dependence on the specic cost function C(·).

We therefore in this section limit our attention to a subclass of C and derive optimal strategies for this subclass, given by the
following denition:
Definition 9: A functionC(·) ∈ C belongs to the class Cq for some q ≥ 1 if: (1) limx→∞

C(x+1)
C(x) = q and (2) C(x+1)

C(x) ≥ q for
all x ∈ [1,∞).
Note that since C(·) is strictly increasing, for q = 1 condition (2) is automatically satised. The case of q = 1 also contains

all polynomial cost functions. The case of q > 1 includes for example exponential cost functions of the form q x. Therefore even
though this is a subclass of C, it remains very general.
We rst derive a lower-bound on the best worst-case cost ratio, by utilizing the next lemma.
Let Xα denote the random variable with tail distribution Pr(Xα > x) =

(
C(x)
C(1)

)−α
for all x ≥ 1 and some constant α > 1.

We have the following result:
Lemma 9: If C(·) ∈ Cq, then:

lim
α→1+

E[C(Xα + 1)]
E[C(Xα)]

= q . (46)

The proof of this lemma can be found in the appendix.
The lower-bound on the best worst-case cost ratio is given by the following lemma.
Lemma 10: Suppose C(·) ∈ Cq . We have:

inf
u∈U

sup
x∈Z+

Ju
x

C(x)
≥ e

q
. (47)

Proof: Consider any u ∈ U . For any integer x ≥ 2:

Ju
x

C(x)
= lim

ε→0

Ju
x−1+ε

C(x + ε)
= sup

y∈[x−1,x)

Ju
y

C(y + 1)
, (48)

since Ju
x−1+ε = Ju

x for all 0 < ε ≤ 1, and C(·) is strictly increasing. Hence we have:

sup
x∈Z+

Ju
x

C(x)
= sup

{
Ju

1

C(1)
, sup
x∈Z+, x≥2

sup
y∈[x−1,x)

Ju
y

C(y + 1)

}
= sup

{
Ju

1

C(1)
, sup
x∈[1,∞)

Ju
x

C(x + 1)

}
(49)

In order to nd a lower-bound to the above worst-case ratio, we rst examine all strategies v ∈ V . It can be shown, similarly to
Lemma 1:

sup
{fX (X)}

Jv
X

E[C(X + 1)]
= sup

x∈[1,∞)

Jv
x

C(x + 1)
, (50)

Thus similarly to Lemma 5, we have:

sup
{fX(x)}

inf
v∈V d

Jv
X

E[C(X + 1)]
≤ inf

v∈V
sup

x∈[1,∞)

Jv
x

C(x + 1)
. (51)

Again, any lower bound can be found by rst selecting a location distribution f X(x) and deriving the optimal deterministic
strategy.
Consider the tail distribution given by Pr(Xα > x) =

(
C(x)
C(1)

)−α
for all x ≥ 1 and some constant α > 1. It was shown earlier

in Section V-A that for object locationXα, the optimal cost ratio is α
1

α−1 . This approaches e as α → 1+. Hence using Lemma 9
we have:

lim
α→1+

inf
v∈V d

Jv
Xα

E[C(Xα + 1)]
= lim

α→1+

E[C(Xα)]
E[C(Xα + 1)]

· lim
α→1+

inf
v∈V d

Jv
Xα

E[C(Xα)]
=

e

q
.

Using this result in (51) and U ⊂ V gives us:

e

q
≤ inf

v∈V
sup

x∈[1,∞)

Jv
x

C(x + 1)
≤ inf

u∈U
sup

x∈[1,∞)

Ju
x

C(x + 1)
≤ inf

u∈U
sup

x∈Z+

Ju
x

C(x)
,

where the last inequality follows from (49).
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This result says that if we can nd a discrete strategy whose worst-case cost ratio is e/q for some C(·) ∈ C q, then this strategy
must be optimal among all admissible discrete strategies. Unfortunately it appears difcult to nd strategies matching this lower
bound for all C(·) ∈ Cq . It is, however, possible to do so for the special case of q = 1, which includes all polynomials as
mentioned earlier.
We start by upper bounding the best worst-case cost ratio of discrete strategies for any C(·) ∈ C. For any continuous strategy

v∗ = [v∗1 , v∗2 , · · · ], we use u∗ = ,v∗- to denote the discrete strategy u∗ = [u∗
1, u

∗
2, ...] obtained by setting u∗

k = ,v∗k- for all k.
Lemma 11: Suppose C(·) ∈ C. We have

inf
u∈U

sup
x∈Z+

Ju
x

C(x)
≤ e . (52)

Proof: Let v∗ denote the strategy v∗[e, ln C(x)
C(1) ] and u∗ = ,v∗-. For any positive integer k, u∗

k takes integer values between⌊
C−1

(
ek−1C(1)

)⌋
and

⌊
C−1

(
ekC(1)

)⌋
. In addition,

⌊
C−1

(
ekC(1)

)⌋
is a nondecreasing sequence with respect to integer

values of k, and approaches∞ as k approaches∞. Fix the object location as a positive integer x, and choose the smallest integer
k such that x ≤

⌊
C−1

(
ekC(1)

)⌋
. Note that E [C(u∗

k)] = E [C (,v∗k-)] ≤ E [C (v∗k)] for all integers k. Since x is a positive
integer, we have Pr (u∗

k < x) = Pr (,v∗k- < x) = Pr (v∗k < x). Hence we have the following for this x:

Ju∗

x =
k∑

j=1

E[C
(
u∗

j

)
] + Pr(u∗

k < x)E[C
(
u∗

k+1

)
|u∗

k < x ] ≤
k∑

j=1

E
[
C
(
v∗j
)]

+ Pr (,v∗k- < x) E
[
C
(
v∗k+1

)
|,v∗k- < x

]

= Jv∗

x ≤ eC(x) ,

where the last inequality holds because the worst-case cost ratio for v ∗ is e as proven in Theorem 2. Since this result holds for all
integers x, we have supx∈Z+

Ju∗
x

C(x) ≤ e.
Note that when q = 1, the lower and upper bounds in Lemmas 10 and 11 match. Therefore:
Theorem 3: Suppose C(·) ∈ C1. We have

inf
u∈U

sup
x∈Z+

Ju
x

C(x)
= e . (53)

Moreover, this worst-case cost ratio is obtainable by strategy u∗ = ,v∗-, where v∗ denotes the strategy v∗[e, ln C(x)
C(1) ].

Since C1 includes all increasing polynomial functions, the optimal strategy given in Theorem 3 can be used when cost is given
by or can be approximated by a polynomial function, which is not a very restrictive assumption.

VI. PERFORMANCE COMPARISON AND DISCUSSION
In this section we rst compare the performance of the optimal randomized strategy with that of a non-random strategy and

illustrate the fundamental reason behind why randomized strategies result in lower worst-case cost ratio. We then consider other
performance measures for evaluating randomized search strategies.

A. A Comparison between Randomized and Deterministic Strategies
In Figure 2 we compare the cost ratio of the optimal discrete strategy given by Theorem 3 to that of a non-random TTL

sequence given by the California Split search uk = 2k−1 for all k under the linear cost function C(k) = k. uk =
⌊
ek−1

⌋
for all

k, We see that the cost ratio oscillates for the xed TTL sequence while randomization essentially has the averaging effect that
“smooths out” the cost ratio across neighboring locations/points. In fact the curve of the optimal continuous strategy does not
have local minima or maxima. One may view this as the built-in robustness of a randomized policy for the underlying criterion
of worst-case performance. The construction (T) we used in Section IV, and the way in which we derived the optimal continuous
strategy in Section V-C are essentially both attempting to achieve this effect. Also note that the worst-case cost ratio e is reached
asymptotically from below as L → ∞, and hence the cost ratio at any nite object location is less than the worst-case cost ratio.

B. Other Performance Measures
Next we discuss alternative performance measures for analyzing randomized search strategies. We will again assume that

C(x) ∈ C, and begin with continuous strategies.
The performance measure we have been using is the worst-case cost ratio with respect to an oblivious adversary, who knows

the strategy but not the realization of the strategy. As pointed out in Section III, the lower bound e on the worst-case cost ratio
does not necessarily bound the cost ratio for all realizations of X and strategy v, as the same randomized strategy can result in
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Fig. 2. Cost ratio as a function of object location for the optimal discrete sequence u∗ described in Theorem 3, and California Split search dened by uk = 2k−1

for all k. Cost is assumed to be linear.

different realizations. This leads us to consider the competitive ratio with respect to an adaptive offline adversary [10] who knows
the realization of the real-valued strategy v for every search. Let the worst-realization cost ratio Γ v

X denote the maximum (over
all realizations of strategy v) cost ratio for strategy v when the object location is a random variableX . Specically,

Γv
X = sup

ṽ∈Υv

J ṽ
X

E [C(X)]
, (54)

where Υv denotes the set of all possible realizations of strategy v. Let the worst-case worst realization cost ratio Γv denote the
maximum of Γv

X over all possible object locations. Then the performance of a search strategy against an adaptive ofine adversary
can be measured by the following competitive ratio (worst-case, worst-realization):

Γv = sup
{fX (x)}

Γv
X = sup

x∈[1,∞)
Γv

x , (55)

where the second equality can be shown in a manner similar to the proof of Lemma 1. To distinguish, we will refer to ρ v as the
worst-case average cost ratio.
As discussed in [10], the minimum obtainable competitive ratio with respect to an adaptive ofine adversary is the same as the

minimum worst-case average cost ratio of all deterministic strategies. On the other hand, the minimum worst-case average cost
ratio of all deterministic real-valued strategies under C(x) ∈ C can be shown to be 4 2. Therefore, we have the following:

inf
v∈V

Γv = inf
v∈V d

sup
{fX(x)}

Jv
X

E[C(X)]
= 4 . (56)

Similarly, let γv
X and γv

x denote the best-realization cost ratio for strategy v when object location is a random variable X or
a single point x ∈ [1,∞), respectively. These denitions for best and worst realizations are easily extendable to integer-valued
strategies u ∈ U by replacing the possible set of locations [1,∞) with Z+.
Finally, let Λv

x denote the variance of the search cost when using strategy v and xed object location x ∈ [1,∞). Therefore,
Λv

x/C(x)2 is the variance of the ratio jv/C(x) when object location is x.
We now examine these quantities for the class of jointly dened continuous strategies v[r, F v1 (x)] as given by Denition 8. We

begin with the following theorem:
Theorem 4: Consider a real-valued randomized strategy v[r, Fv1 (x)] that is constructed as given by Denition 8, and a real-

valued deterministic strategy v̂ = [v̂1, v̂2, ...] dened by v̂k = C−1
(
rk−1C(1)

)
for all integers k ≥ 1. Then we have:

Γv ≤ ρv̂ =
r2

r − 1
. (57)

2This can be shown in a similar manner to that used in [8] for discrete strategies under linear cost. In particular, in Section VII we establish an equivalency
between linear and general cost functions, which can used to show that 4 is minimum worst-case cost ratio among deterministic strategies.
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In other words, the worst-case worst-realization cost ratio for the random strategy v is upper bounded by the worst-case average
cost ratio for the deterministic sequence v̂.

Proof: We rst show that ρv̂ = r2

r−1 . Fix any nite x ≥ 1. There must exist a k such that C−1
(
rk−1C(1)

)
≤ x <

C−1
(
rkC(1)

)
. Let xk = C−1

(
rkC(1)

)
for all integers k. Then the search cost can be calculated as follows:

J v̂
x =

k+1∑

j=1

C (v̂j) =
k+1∑

j=1

rj−1C(1) = C(1)
rk+1 − 1

r − 1
. (58)

Since this holds for all x between xk−1 and xk we have:

sup
xk−1<x≤xk

J v̂
x

C(x)
= lim

x→x+
k−1

(rk+1 − 1)C(1)
(r − 1)C(x)

=
r2 − r−k+1

r − 1
. (59)

Hence we have:

ρv̂ = sup
x∈[1∞)

J v̂
x

C(x)
= sup

k∈Z+

{
sup

xk−1<x≤xk

J v̂
x

C(x)

}
= sup

k∈Z+

r2 − r−k+1

r − 1
= lim

k→∞

r2 − r−k+1

r − 1
=

r2

r − 1
. (60)

We next show that Γv ≤ r2

r−1 . Fix the object location x. Again, there must exist exactly one k such that xk−1 ≤ x < xk. Note
that the particular realization of the sequence v is uniquely dened by the realization of the rst TTL random variable v 1. Let
ṽ = [ṽ1, ṽ2, ...] denote a realization of v.
It can be shown that the worst-realization cost ratio is when ṽ1 approaches C−1

(
C(x)
rk−1

)
from below. This is true because at

these values, the k-th TTL value is slightly less than x and hence the (k + 1)-th TTL value will be needed to complete the search.
This is true because at these values, the k-th TTL value is slightly less than x and hence the (k+1)-th TTL value will be needed

to complete the search. The worst-realization cost ratio is thus upper bounded by:

Γv
x ≤ lim

ṽ1→(C−1( C(x)
rk−1 ))−





1

C(x)

k+1∑

j=1

rj−1C (ṽ1)




 =
rk+1 − 1

(r − 1)rk−1
=

r2 − r−k+1

r − 1
. (61)

It easily follows that:

Γv ≤ lim
x→∞

Γv
x ≤ lim

k→∞

r2 − r−k+1

r − 1
=

r2

r − 1
, (62)

thus completing the proof.
The inequality in this theorem becomes equality when the probability density function for v 1 is strictly positive in the interval[
C−1

(
C(x)
rk−1

)
− ε, C−1

(
C(x)
rk−1

))
, for some ε > 0. This is true because if the density function for v 1 is positive in this interval,

then there is a nonzero probability that v1 is arbitrarily close to C−1
(

C(x)
rk−1

)
. Then all of the inequalities in (61) and (62) become

equalities. This is true when Fv1(x) = (ln C(x)
C(1) )/ ln r, and hence strategies with this family of cdf have worst-case worst-

realization cost ratio value of r2/(r − 1). Therefore the worst-realization can be adjusted by selecting the appropriate value of
r.
Similarly, the best-realization cost ratio of these types of strategies can be calculated for object location x, where we have

C−1
(
rk−1C(1)

)
≤ x < C−1

(
rkC(1)

)
for some positive integer k. It can be easily shown that the best-case realization occurs

when ṽ1 is such that C(ṽ1) = C(x)/rk−1 . In this case, the cost ratio becomes:

γv
x =

∑k
j=1 rj−1 C(x)

rk−1

C(x)
=

r − r−k+1

r − 1
. (63)

Clearly, the asymptotic (i.e. as x approaches∞) best realization is r
r−1 .

The variance of this strategy is calculated in Appendix G. The key result from these calculations is that the asymptotic limit of
the variance (with respect to object location) is given by:

lim
x→∞

Λv
x

C(x)2
=

r4 − r2

2(ln r)(r − 1)2
− r2

(ln r)2
. (64)
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Fig. 3. (LEFT): Performance of optimal continuous strategy (presented in Theorem 2) as a function of object location cost. Worst and best realization cost
ratio (top and bottom dashed lines), average cost ratio (solid), and average cost ratio +/− one standard deviation (dotted) are shown. (RIGHT): Performance of
continuous strategies given by Denition 8 and using the cdf given by (44), as a function of r. Worst-case average cost ratio (solid), asymptotic worst and best
realization cost ratio (dashed), and worst-case average cost +/− standard deviation (dotted) are shown.

The cost ratio under the linear cost function for the optimal continuous strategy is depicted in Figure 3 (LEFT) as a function of
object location. Note that under these metrics, this strategy’s performance does not change much with respect to object location.
For strategies of the type v[r, Fv1 (x)] where Fv1(x) = 1

lnr ln C(x)
C(1) , the asymptotic best and worst realizations, worst-case

average cost ratio, and the worst-case average cost ratio +/− a standard deviation are plotted in Figure 3 (RIGHT) as a function
of r. As can be seen, we can appropriately select the value of r depending on whether the goal is to minimize worst-case average
cost ratio or worst-case worst-realization cost ratio. In particular, we note that by using r = 2, we can obtain a worst-case worst-
realization cost ratio of 4, while a worst-case average cost ratio of approximately 2.8854. Therefore this particular strategy strictly
outperforms the deterministic California Split search.
Similar analysis can be carried out for discrete strategies, although in this case the calculations are much more complicated and

do not provide any more insight. The performance of this strategy is very similar to its continuous version with respect to the
performance measures discussed in this section and is therefore not shown separately.

C. Comparison with Optimal Average Cost Strategies
The worst-case cost ratio we have been using so far is in general a conservative/pessimistic performancemeasure. As mentioned

earlier, if the probability distribution of the location of the object is known a priori, then we can derive the optimal strategy that
achieves the lowest average cost for the given object distribution, using a dynamic programming formulation [7]. On the other
hand, the optimal average-cost strategy can potentially be highly sensitive to small disturbances to our knowledge about the object
location distribution, while worst-case strategies may be more robust.
We compare the two under the following example scenarios. Consider a network of nite dimension L and the linear cost

function C(k) = k. We examine what happens when there are errors in our estimate of the location distribution. Consider
when the object location has probability mass function P (X = x) = βxα for all 1 ≤ x ≤ L, where the constant α denes the
distribution and β is a normalizing constant. Note that α = 0 corresponds to uniform location distribution. We let DP(α ′) denote
the optimal (deterministic) average-cost strategy derived using dynamic programming when assuming α = α ′ in the distribution
ofX . We then compute the expected search cost of DP(0) and DP(−2.5) when the location distribution is in fact dened by some
other α, for −10 ≤ α ≤ 10. Similarly, we calculate the average search cost under these distributions when using the optimal
worst-case (randomized) strategy, RAND.
These results are shown in Figure 4. In Figure 4 (LEFT), the average cost of DP(0) and RAND strategies are shown as functions

of L for α = −1, 0, and 1. In Figure 4 (RIGHT) the performance of these two strategies and DP(−2.5) are plotted for L = 100
as functions of α. As can be seen, DP(0) is more robust (less sensitive in the change in α) than RAND, while for DP(−2.5) the
opposite is true. For small (negative)α, RAND outperformsDP(0) and in some cases the average-cost of DP(0) is 38 times larger.
On the other hand, for large (positive) α, DP(0) is better, but the average-cost of RAND is greater only by a factor of 1.3. Thus
we see that the dynamic programming strategy should only be used if we are fairly certain about the object location distribution.
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Fig. 4. (LEFT): Comparison between DP(0) and RAND for varying L and α. (RIGHT): Performance of DP(0), DP(-2.5) and RAND as functions of α when
L = 100.

This quantitative relationship obviously varies with the underlying assumptions on the location distribution and the errors
introduced. This specic example nonetheless illustrates the general trade-off between search cost and robustness.

D. Potential Limitation
The optimal continuous and discrete randomized strategies derived in the previous section relies on the knowledge of the

functional form of the search cost C(·). Specically, construction of the optimal strategy depends on the ability to dene and
invert a cost function that is dened for all x ∈ [1,∞). While conceptually and fundamentally appealing, this construction
may pose a problem in a practical setting. Note that the physical meaning of search costs only exists over integer values, while
continuous cost functions are introduced as a mathematical tool. If the search cost is only known for integer TTL values, then in
order to obtain the optimal discrete search strategy given in Theorem 3, we would need to interpolate and create an increasing,
differentiable, and continuous cost function dened over the positive real line. Such a process is not always easy to carry through.
In this case certain approximation may be used. Alternatively we could also try to develop simpler randomized strategies that
are sub-optimal with respect to our performance measure but still outperform deterministic strategies and that are much easier to
derive and implement than those introduced in Section V.
Motivated by this, in Section VIII we will introduce a class of such discrete randomized strategies and a number of its variations.

Before we do that, we would like to rst establish in the next section an equivalence relationship between the linear cost function
and a general cost function. With this result our later discussion can be limited to the linear cost case and our presentation greatly
simplied.

VII. RANDOMIZATION UNDER LINEAR AND GENERAL COST FUNCTIONS: AN EQUIVALENCE RESULT
In this section, we present a mapping that establishes the equivalency between real-valued TTL sequences under different cost

functions.
Lemma 12: Let Jw,l

x denote the search cost of using strategy w = [w1, w2, ...] when the cost function is linear and object
location is x for some x ∈ [1,∞). Consider any cost function C(x) ∈ C. Let v denote the strategy that is constructed as
v = C−1 (w · C(1)), ie. vk = C−1 (wk · C(1)) for all positive integers k. Let J v,g

x denote the search cost of using strategy
v = [v1, v2, ...] when the object location is x for some x ∈ [1,∞) and the cost function is C(x). Then we have the following:

sup
x∈[1,∞)

Jw,l
x

x
= sup

y∈[1,∞)

Jv,g
y

C(y)
(65)

Proof: Dene the following quantities for j ≥ 1:

mv
j = max

1≤k≤j
{vk} = max

1≤k≤j

{
C−1(wkC(1))

}
(66)

mw
j = max

1≤k≤j
{wk} = max

1≤k≤j
{C(vk)/C(1)} , (67)
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wheremv
0 = 0 andmw

0 = 0. Note that C(mv
j ) = C(1)mw

j for all j.
Fix y ∈ [1,∞). Note that there exists an x ∈ [1,∞) such that x = C(y)/C(1). For nite object location y, there must exist

some integer k such that the object will be located with probability 1 by the rst k TTL values, ie. Pr(m k ≥ y) = 1. This
statement is true, as explained earlier, because the strategy v must be able to locate the object with probability 1. Hence we have
the following:

Jv,g
y =

k∑

j=1

E
[
C (vj)

∣∣mv
j−1 < y

]
Pr
(
mv

j−1 < y
)

=
k∑

j=1

E
[
wj · C(1)

∣∣mv
j−1 < y

]
Pr
(
mv

j−1 < y
)

= C(1)
k∑

j=1

E
[
wj

∣∣C
(
mv

j−1

)
< C (y)

]
Pr
(
C
(
mv

j−1

)
< C (y)

)
(68)

= C(1)
k∑

j=1

E
[
wj

∣∣mw
j−1 < x

]
Pr
(
mw

j−1 < x
)

= C(1)Jw,l
x (69)

Hence, we have the following for all y ∈ [1,∞):

Jv,g
y

C(y)
=

C(1)Jw,l
x

C(y)
=

Jw,l
x

x
, (70)

where x = C(y)/C(1). Since the result holds for all y ∈ [1,∞) while the cost function is increasing and continuous, then (65)
follows.
Lemma 12 implies that for any strategyw under linear cost there corresponds a strategy v that has the same performance under

any cost function in C, and vice versa. Therefore we have the following:
Theorem 5: For any two cost functions C1(x), C2(x) in C, the best worst-case cost ratio is the same, i.e.,

inf
v∈V

sup
x∈[1,∞)

Jv,1
x

C1(x)
= inf

v∈V
sup

x∈[1,∞)

Jv,2
x

C2(x)
, (71)

where Jv,1
x and Jv,2

x are the expected search costs under C1(x) and C2(x), respectively.
As an application of this mapping, consider a continuous strategy w (under linear cost) in which the TTL random variables

are continuous and the k-th TTL value has probability density function f wk (x) dened for all x ∈ [1,∞). From Lemma 12, the
strategy v = C−1 (w·C(1)) has the same worst-case cost ratio under cost function C(x) ∈ C. The k-th TTL random variable v k

therefore has probability density function fvk dened as follows for all y ∈ [1,∞):

fvk(y) = fwk

(
C(y)
C(1)

)
· dC(y)

dy

1
C(1)

. (72)

When vk’s are mutually independent, (72) for all k uniquely denes the strategy v.

VIII. UNIFORM RANDOMIZATION
In this subsection we introduce a class of uniformly randomized strategies and a number of its variations. Although sub-optimal,

they are simple and easy to derive, and at the same time maintain the robustness of a randomized strategy. For most of this section
we will limit our attention to linear cost functions, since the results can be generalized to general cost functions as discussed in
the previous section. We will illustrate in Section VIII-C how our results apply to more general cost functions.
Definition 10: For any innite, increasing sequence b = [b1, b2, ...] in which the elements bk are positive integers and bj > bk

for all j > k, a uniformly randomized TTL sequence u = [u1, u2, ...] is created by assigning the following probability distribution
to each TTL random variable uk:

Pr(uk = l) =
{ 1

bk+1−bk
if bk ≤ l ≤ bk+1 − 1

0 otherwise
(73)

where l is any positive integer.
Essentially the elements in the nonrandom sequence b = [b1, b2, ...] serve as the boundaries of a sequence of non-overlapping
ranges over which each random variable ĝk is uniformly distributed. These ranges collectively cover all positive integers. Follow-
ing this denition, for each nonrandom TTL sequence, there exists a corresponding uniformly randomized version.
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As the constant α in the linear cost C(k) = αk gets cancelled out in the computation of the cost ratio, we will simply assume
that the cost is C(k) = k which does not affect our discussion. Then the worst-case performance measure given by (1) reduces to
for any α > 0:

ρu = sup
x∈Z+

Ju
x

x
. (74)

A. Properties of Uniform Randomization
Lemma 13: Under a uniformly randomized search strategy u with boundaries dened by the xed sequence g, the worst-case

cost ratio is given by:

ρu = sup
x∈Z+

Ju
x

x
= sup

m∈Z+

Ju
bm

bm
= sup

m∈Z+

∑m
k=1 bk + bm+1−b1

2 − m
2

bm
. (75)

Proof: Consider any uniformly randomized TTL sequence u. In order to prove Lemma 13, we will rst determine the
possible values of x such that Ju

x
x = ρu. From (73), each expected TTL value can be calculated as:

E [uk] =
bk + bk+1 − 1

2
. (76)

Now we can calculate ρu. Because g is an increasing sequence of positive integers that increases to∞, any positive integer xmust
lie between two consecutive elements of g such that bn ≤ x ≤ bn+1. Let’s rewrite x as x = bn + ∆, where 0 ≤ ∆ ≤ bn+1 − bn.
Then the expected cost Ju

x of using a TTL sequence u when the object location is x is given by:

Ju
x =

n∑

k=1

E [uk] + P (un < x)E [un+1] =
n∑

k=1

E [uk] +
∆

bn+1 − bn
E [un+1] .

We will show that the ratio Ju
x
x is either nonincreasing or nondecreasing for all values of x within b n ≤ x ≤ bn+1, and therefore

the maximum value of this cost ratio within this range occurs at either x = bn or x = bn+1.
We have for all bn ≤ x ≤ bn+1 − 1:

(x + 1)Ju
x − xJu

x+1 = (bn + ∆ + 1)

(
n∑

k=1

E [uk] +
∆E [un+1]
bn+1 − bn

)
− (bn + ∆)

(
n∑

k=1

E [uk] +
(∆ + 1)E [un+1]

bn+1 − bn

)

=
n∑

k=1

E [uk] +
∆− (bn + ∆)

bn+1 − bn
E [un+1] =

n∑

k=1

E [uk] − bn

bn+1 − bn
E [un+1] . (77)

Therefore, the sign of the difference Ju
x
x − Ju

x+1
x+1 = (x+1)Ju

x−xJu
x+1

x(x+1) does not change for x in bn ≤ x ≤ bn+1 − 1 because the
numerator of this difference is constant (does not depend on∆) as given by equation (77) and the denominator is always positive.
Therefore, the cost ratio is either nonincreasing or nondecreasing for x in b n ≤ x ≤ bn+1, so the maximum cost ratio in this
region occurs at either x = bn or x = bn+1. Therefore, the maximum value of the ratio Ju

x
x must be obtained at x = bm for some

positive integerm. In other words,

ρu = sup
x∈Z+

Ju
x

x
= sup

m∈Z+

Ju
bm

bm
= sup

m∈Z+

∑m
k=1 E [uk]

bm
= sup

m∈Z+

∑m
k=1 bk + bm+1−b1

2 − m
2

bm

Therefore, we have proven Lemma 13 for any uniformly randomized strategy.
Lemma 13 implies that the worst-case object location for a uniformly randomized strategy must be on a boundary b m for some

m (this is the lower boundary of one of the uniform distributions), rather than an arbitrary positive integer. This greatly simplies
the process of nding the worst-case cost ratio. It also gives the expression of this cost ratio in terms of the boundary sequence.

B. Optimal Uniform Randomization
Consider the following sequence b = {bk}, bk = ,rk−1- for some positive real number r, k = 1, 2, · · · . Dene as in (73) a

uniformly randomized search strategyu using the boundary sequenceb. Note that each b k = rk−1−δk−1 for some 0 ≤ δk−1 < 1.
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Fig. 5. Cost ratio as a function of object location for a nonrandom TTL sequence (dotted line) with bk = "rk−1#, r =
√

2+1 and the cost ratio for its uniformly
randomized version (solid line). Cost is assumed to be linear.

Taking this boundary value into (75), we obtain the cost ratio for the randomized sequence:

Ju
bm

bm
=
∑m

k=1(r
k−1 − δk−1) + rm−δm−r0+δ0

2 − m
2

rm−1 − δm−1

=
rm−1

rm−1 − δm−1

(
r

r − 1
+

r

2
− 1

2rm−1

)
− rm−1

rm−1 − δm−1

(∑m
k=1 δk−1 + δm+δ0

2 + m
2

rm−1

)

It can be seen from this result that form large enough, Ju
bm
bm

is an increasing function ofm, and that we can obtain the supremum
by taking the asymptotic limit:

ρu = sup
m∈Z+

Ju
bm

bm
= lim

m→∞

Ju
bm

bm
=

r

r − 1
+

r

2
(78)

Differentiating (78) and noting convexity, we nd that the value of r that minimizes ρ u is r =
√

2 + 1 ≈ 2.4142, which achieves
a worst-case cost ratio of 3

2 +
√

2 ≈ 2.9142. This ratio represents a 27% improvement over the worst-case cost ratio of 4 for the
nonrandom California Split algorithm. The resulting uniformly randomized TTL sequence is dened by the boundary sequence
[1, 2, 5, 14, 33, · · · ] by taking the optimal value r into the power series.
The next theorem establishes the optimality of this uniformly randomized search strategy.
Theorem 6: Let U ′ denote the set of all nonrandom and uniformly randomized TTL sequences. Then:

inf
u∈U ′

ρu = inf
u∈U ′

sup
x∈Z+

Ju
x

x
=

3
2

+
√

2 ≈ 2.9142 . (79)

That is, the uniformly randomized sequence given by the boundary sequence b k = ,rk−1- with r =
√

2 + 1 is asymptotically
optimal within the set U ′.
The proof can be found in the appendix. Figure 5 depicts the cost ratio of using this random TTL sequence, along with the

cost ratio of using its nonrandom boundary sequence b k as TTL values. Here we observe the same qualitative difference as
discussed before. Using the nonrandom TTL sequence results in oscillation of the cost ratio, while the uniformly randomized
search sequence results in a smooth cost ratio curve and approaches the maximum 2.9142 asymptotically from below as the
network dimension grows to innity.
Finally, it should be noted that the above results for discrete sequences have analagous results when extending the set of

admissible strategies to V . The class of strategies becomes the following:
Definition 11: Consider any innite, increasing xed sequence b = [b 1, b2, ...] in which the elements bk are positive real

numbers (greater than or equal to 1), b j > bk for all j > k, and limk→∞ bk = ∞. A uniformly randomized continuous-valued
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TTL sequence v = [v1, v2, ...] is created by assigning the following probability density f vk to each TTL random variable vk:

fvk(j) =
{ 1

bk+1−bk
if bk ≤ j < bk+1

0 otherwise
(80)

Note that Denition 11 is the continuous version of Denition 10. It can be shown that for such uniformly randomized continuous-
valued TTL sequences, we have the following result which is similar to Theorem 6:
Theorem 7: Let U ′ denote the set of all nonrandom and uniformly randomized continuous-valued TTL sequences. Then:

inf
v∈V ′

sup
x∈[1,∞)

Jv
x

x
=

3
2

+
√

2 ≈ 2.9142 . (81)

That is, the uniformly randomized sequence given by the boundary sequence b k = rk−1 with r =
√

2 + 1 is asymptotically
optimal within the set V ′ .
The proof of Theorem 7 is very similar to that of Theorem 6 and is therefore omitted.

C. Uniform Randomization for General Cost Functions
Using Lemma 12 we can obtain a discrete TTL sequence u which performs similarly (under any increasing cost function) as

the optimal uniformly randomized sequence performed under the linear cost function (described in Section VIII-A). We rst show
an example when the cost is quadratic, ie C(x) = αx2. To begin, consider the optimal continuous uniformly randomized TTL
strategy w with boundary values given by bw

k = rk−1 with r =
√

2 + 1, and construct a uniformly randomized strategy ŵ with
boundary values bŵ

k = ,r k−1
2 -2. To create the corresponding strategy v under the quadratic cost function, we use Equation (72)

to determine the probability distribution of each TTL random variable. In particular, we have the following:

fvk(y) =

{
2y

b2k+1−b2k
if bk ≤ y < bk+1

0 otherwise
, (82)

where bk =
√

bŵk = ,r k−1
2 - with r =

√
2 + 1. Note that these are integer boundary values, which is the reason why we

considered the modied strategy ŵ rather than the original strategy w. From this continuous-valued sequence, we can construct
the integer-valued discretized version u = [u1, u2, ...] by assigning the following probability distribution to each TTL value u k:

Pr(uk = l) =
{ ∫ l+1

l fvk(x) dx if bk ≤ l ≤ bk+1 − 1
0 otherwise

. (83)

Note that this discretization essentially concentrates the probability density onto integer points, i.e. u k = ,vk- for all k. Using
it with our strategy v in (82) gives the following:

Pr(uk = l) =
{ 2l+1

bk+1
2−bk

2 if bk ≤ l ≤ bk+1 − 1
0 otherwise

, (84)

where again bk = ,(
√

2 + 1)
k−1
2 -.

The cost ratio for u under the quadratic cost function is depicted in Figure 6. Note that this plot is numerically very similar
to Figure 5, which depicted the optimal uniformly randomized sequence under a linear cost assumption. In both curves, the
randomized sequences obtain an asymptotic maximumworst-case cost of approximately 2.9142. On the other hand, if the uniform
randomization of Denition 10 is applied directly to this boundary sequence under the quadratic cost function, then we obtain the
dotted curve in Figure 6 which exhibits oscillations, and obtains a maximum cost ratio of roughly 3.06.
Similar methods can be used to obtain strategies for other cost functions. In particular, ifC(x) ∈ C, one can create a continuous

uniformly randomized strategy ŵ with the k-th boundary value equal to C
(⌊

C−1
(
rk−1C(1)

)⌋)
/C(1). The performance of this

strategy under linear cost function should be similar to the optimal uniformly randomized strategy (depending on the function
C(x) which affects the boundary values). Then, the mapping of (72) can be used to create a strategy v under cost C(x). Finally,
apply the discretization described in (83) to this continuous strategy to obtain the discrete strategy u, where the k-th TTL random
variable will have the following distribution:

Pr(uk = l) =

{
C(l+1)−C(l)

C(bk+1)−C(bk) if bk ≤ l ≤ bk+1 − 1
0 otherwise

, (85)



22

500 1000 1500 2000 2500 3000 3500 4000

2

2.5

3

3.5

4

Object Location

Co
st

 R
at

io

Fig. 6. Under a quadratic cost function, the cost ratio as a function of object location for a nonrandom TTL sequence (dashed line) with bk = "r
k−1
2 #,

r =
√

2 + 1, its uniformly randomized version (dotted line) corresponding to distribution given in (73), and its randomized version (solid line) corresponding to
the distribution given in (84). Note the distribution given by (84) produces cost ratio curve that is similar to Figure 5.

where bk =
⌊
C−1

(
rk−1C(1)

)⌋
. Note that while the intermediate step (mapping from ŵ to v) requires C(x) ∈ C, the nal

distribution in (85) does not. Therefore this method can be applied when the search cost is only dened for integer values (when
C−1

(
rk−1C(1)

)
is also not dened, bk can take approximate values). As a result, this method may be more practical than the

optimal strategy presented in Section V. The extent of the similarity between this derived strategy under costC(x) and the optimal
uniformly randomized strategy under linear cost will depend onC(x), due to the fact that we adjusted our boundary values earlier
when creating ŵ.

D. Discussion
In this subsection, we will examine the performance of uniformly randomized strategies under the measures that were described

in Section VI. In the following subsection, we will describe how jointly dened TTL sequences can be used to improve perfor-
mance with respect to these new criteria. We will assume in this analysis the cost is linear, but noting that due to the mapping
discussed in Section VII, our results are easily extendable to general cost functions.
In general, consider any uniformly randomized strategy u dened by the boundary values b = [b 1, b2, ...]. Fix a positive integer

object location x; there must exist a positive integer k such that bk−1 ≤ x < bk. Then the worst-realization cost ratio is:

Γu
x =

1
x

[
k−1∑

l=2

(bl − 1) + x − 1 + bk+1 − 1

]
. (86)

In other words, the rst k − 2 TTL values are the highest possible, the (k − 1)th TTL value is slightly less than x, and the kth
TTL value is also its highest possible. By the opposite reasoning, the best-realization cost ratio for x is when the rst k − 2 TTL
values are their lowest possible, and the (k − 1)th TTL value is equal to x. In other words,

γu
x =

∑k−2
l=1 bl + x

x
(87)

These numbers can be easily computed for arbitrary boundary sequences b.
As discussed earlier, another factor to consider when analyzing any uniformly randomized strategy u is the cost ratio variance.

Consider the same uniformly randomized strategy u. We will use the same notation as in Section VI, as well as write V ar(Y ) to
denote the variance of any random variable Y . Fix any object location x. Then we have using independence between TTL values:

Λu
x = V ar

(
m∑

k=1

uk + I(um < x)um+1

)
=

m−1∑

k=1

V ar (uk) + V ar(um + I(um < x)um+1) (88)
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Fig. 7. Performance of uniformly randomized California Split Rule under a linear cost function. Worst and best realization cost ratio, (dotted lines), average cost
ratio (solid), average cost ratio +/− one standard deviation (two dashed lines).

The righthand term in (88) can be calculated as follows:

V ar (um + I(um < x)um+1) = E
[
u2

m

]
+ 2E [um+1] E[umI(um < x)] + P (um < x) · E

[
u2

m+1

]

− E [um]2 − 2E [um+1] · P (um < x)E [um] − P (um < x)2E [um+1]2

= V ar(um) + 2E [um+1]
(x − bm)(x − bm+1)

2(bm+1 − bm)
+ P (um < x)

{
V ar(um+1) + P (um ≥ x)E [um+1]

2
}

(89)

Using this result in (88) gives us:

Λu
x =

m∑

k=1

V ar (uk) + (bm+1 + bm+2 − 1) · (x − bm)(x − bm+1)
(bm+1 − bm)

(90)

+
x − bm

bm+1 − bm

{
V ar(um+1) +

bm+1 − x

bm+1 − bm

(
bm+1 + bm+2 − 1

2

)2
}

Finally, since uk is uniformly distributed between bk and bk+1 − 1, then V ar(uk) = (bk+1−bk)2−1
12 . The cost ratio variance for

xed location x is simply Λu
x/x2 when the cost is linear. Using these quantities, one can calculate the standard deviation of the

cost ratio.
Figure 7 depicts the performance of the uniformly randomized California Split algorithm, as a function of object location, with

respect to these metrics. It can be seen from the gure that the worst-case worst-realization cost ratio is 7, much higher than the
lower bound of 4 previously discussed. The reason can be explained as follows. Since the k-th TTL value is uniformly distributed
among all integers between 2k−1 and 2k − 1, independent of the selection of the previous TTL values, such a randomization can
lead to some inefcient realizations. For example, if the 5-th TTL value has realization 2 5 − 1 = 31, then it would be inefcient
to allow the 6-th TTL value to have realization of 26−1 = 32. On the other hand, if successive TTL values are non-independent,
then such inefcient realizations can be removed. Figure 8 (LEFT) depicts one example of how the probability distribution of
the TTL values can be jointly dened to decrease the worst-case worst-realization cost ratio while not increasing the worst-case
expected cost ratio. Under the randomization proposed by this gure, if the k-th TTL value takes realization 2 k−1 + δ for some
0 ≤ δ ≤ 2k−1 − 1, then the (k + 1)th TTL value will be either 2k + 2δ with probability pk,δ+1, or it will be 2k + 2δ + 1 with
probability 1 − pk,δ+1.
Figure 8 (RIGHT) depicts the cost ratio for this non-independent randomization by setting p i,j = 1

2 for all i and j. Note that
this randomization does not decrease the worst-case cost ratio; however, it does reduce the cost ratio at any non-boundary point
(i.e. when x += 2k for all integers k). We see that the worst-case worst-realization cost ratio of this strategy is 4, compared to 7
for the uniformly randomized version. In addition, by comparing Figures 8 (RIGHT) and 7, it can be seen that the cost ratio for
the tree construction has less deviation from its mean value.
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Fig. 8. (LEFT): Example of how a binary tree can be used to construct a TTL sequence. In particular, the gure indicates that our rst TTL value is 1. With
probability p1,1, the second TTL value will be 2 and with probability 1−p1,1, the second TTL value will be 3. If the second TTL value is 2, then with probability
p2,1 the third TTL value will be 4, and with probability 1 − p2,1 it will be equal to 5. Likewise, if the second TTL value is 3, then with probability p2,2 the third
TTL value will be 6, and with probability 1 − p2,2 it will be equal to 7. This process can be extended to construct an innite-length TTL sequence. (RIGHT):
Performance of randomization proposed by (LEFT) gure if pi,j = 1

2 for all i and j, under a linear cost function. Best and worst realization cost ratio (dotted),
average cost ratio (solid) line, and average cost ratio +/− one standard deviation (dashed).

Note that the California Split algorithm was chosen for the tree algorithm only for demonstrative purposes. In fact, for any
uniformly randomized strategy, it is possible to use a modied version of the tree construction given by Figure 8 (LEFT) in order
to obtain the same value of worst-case cost ratio but with lower worst-case worst-realization cost ratio. The tree construction
is modied by adjusting the number of nodes in each level of the tree, and modifying the transition probabilities from nodes in
successive levels.

IX. CONCLUSION AND FUTURE WORK

In this paper we studied the class of TTL-based controlled ooding search methods used to locate an object/node in a large
network. When the object location distribution is not known and adopting a worst-case performance measure, we showed that
randomized search strategies outperform xed strategies. We provided a randomization construction for decreasing the worst-case
cost ratio of a given xed strategy. We also derived an asymptotically optimal strategy whose search cost is always within a factor
of e of the cost of an omniscient observer. We provided a mapping between TTL sequences under different cost functions, and
then derived the optimal strategy within the class of uniformly randomized strategies for linear search cost. These results are
directly applicable in designing practical algorithms.
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APPENDIX
A. Proof of Lemma 3
We prove this Lemma by contradiction. Suppose for some x ∗ satisfying equation (12) that the claim is not true, which means

that either x∗ = un or x∗ = un + a < un+1 for some a ≥ 2 and for some 0 ≤ n ≤ N − 1. We will prove the contradiction for
both cases.
Case 1: Suppose x∗ = un for 1 ≤ n ≤ N − 1. Then the corresponding search cost J u

x∗ =
∑n

l=1 C(ul). This can be rearranged
as:

Jg
un

C(un)
=
∑n

l=1 C(ul)
C(un)

=
C(un+1)

C(un)

(∑n−1
l=1 C(ul) + C(un)

)

C(un + 1)
, (91)

where the value of the summation on the righthand side of (91) is equal to zero if n = 1. However, using m = u n + 1 in the
constraint of equation (11), along with the fact that

∑n−1
l=1 C(ul) ≤

∑n−1
i=1 C(i), and then rearranging gives us:

C(un + 1)
C(un)

n−1∑

l=1

C(ul) < C(un) +
n−1∑

l=1

C(ul) =
n∑

l=1

C(ul) (92)

In addition, because un + 1 ≤ un+1, then it follows that Ju
un+1 =

∑n+1
l=1 C(ul) ≥

∑n
l=1 C(ul) + C(un + 1). Combining

equations (91) and (92) and using this inequality gives us:

Ju
un

C(un)
<

∑n+1
l=1 C(ul)

C(un + 1)
≤

Ju
un+1

C(un + 1)
(93)

However, this contradicts the assumption that x∗ = un satises
Ju

x∗
C(x∗) = max1≤x≤L

Ju
x

C(x) . Therefore it cannot be true that
x∗ = un for some 1 ≤ n ≤ N − 1.
Case 2: Now we can consider the second case of x∗ = un + a < un+1 for 1 ≤ n ≤ N − 1 and some a ≥ 2. Then

Ju
x∗ =

∑n+1
l=1 C(ul). However, we also have Ju

un+1 =
∑n+1

l=1 C(ul). This gives us:

Ju
x∗

C(x∗)
=
∑n+1

l=1 C(ul)
C(un + a)

<

∑n+1
l=1 C(ul)

C(un + 1)
=

Ju
un+1

C(un + 1)
(94)

Again, this contradicts the assumption that x∗ satises Ju
x∗

C(x∗) = max1≤x≤L
Ju

x
C(x) . Therefore, it cannot be true that x

∗ = un +a <

un+1 for 0 ≤ n ≤ N − 1 and a ≥ 2

B. Proof of Theorem 1
To begin, we will use the notation that m is in the set R if um + 1 ∈ S, for any 0 ≤ m ≤ N − 1. Hence R has at most N

members, and each member is less than N . Next, note that for any 1 ≤ x ≤ L, there must exist a corresponding positive integer
m such that um−1 < x ≤ um (because the TTL sequence is strictly increasing and uN = L). Then for x +∈ S, the corresponding
cost of the randomized sequence is given by J û

x = Ju
x + pMum+1, where we dene ML+1 = ML for notational reasons. This

statement is true because for any such x:

J û
x = p




∑

k∈R, 0≤k≤m

C(uk + 1) +
∑

k (∈R, 1≤k≤m

C(uk)



+ (1 − p)
m∑

k=1

C(uk) =
m∑

k=1

C(uk) + pMum+1 = Ju
x + pMum+1

Now we will prove Theorem 1 for two separate cases.
Case 1: uN +∈ S.

This case corresponds to the sequence generated by either (C.4) or (C.5). We will prove that J û
x
x < ρg for all x. First, let’s consider

all x +∈ S. As stated earlier, J û
x = Ju

x + pMum+1. We then have from inequality (14) dening our chosen p:

J û
x

C(x)
=

Ju
x + pMum+1

C(x)
≤ Ju

x

C(x)
+

pML

C(x)
<

Ju
x

C(x)
− Ju

x

C(x)
+ ρu = ρu

Therefore, J û
x

C(x) < ρu for all x +∈ S.
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If 1 ∈ S, then it must be true from Lemma 3 that u1 > 1. In addition, J û
1 = pC(1) + (1 − p)C(u1) < C(u1) = Ju

1 , where
the strict inequality holds because the cost function is strictly increasing and u 1 > 1. Therefore the cost ratio has decreased at
location 1.
Next consider the case x = um + 1 ∈ S for some positive integerm. This means that the expected search cost is given by:

J û
x = p




∑

k∈R, 0≤k≤m

C(uk + 1) +
∑

k (∈R, 1≤k≤m

C(uk)



+ (1 − p)
m+1∑

k=1

C(uk)

=
m+1∑

k=1

C(uk) + pMum − pC(um+1) <
m+1∑

k=1

C(uk) = Ju
x (95)

where the last inequality in (95) follows from the fact thatMum ≤ C(um) < C(um+1), which follows from the denition ofMj .
Equation (95) implies that J û

x
C(x) < Jg

x
C(x) = ρu because x ∈ S and achieves the maximum cost ratio for u.

Combining the above, we have that J ĝ
x

C(x) < ρg for all integers 1 ≤ x ≤ L when uN +∈ S.
Case 2: uN ∈ S.

This case corresponds to (C.6) and (C.7). We rst consider 1 ≤ x < uN−1 = uN − 1. For these values of x, we have that
J û

x
C(x) < ρu by following the same steps used in the rst part (case 1) of this proof. As discussed earlier, if u N ∈ S then this means
that uN−1 = uN − 1. In addition, from Lemma 3 we know that uN−1 +∈ S. Therefore, when x = uN−1, we have:

J û
x = (1 − p)

N−1∑

k=1

C(uk) + p




∑

k∈R, 0≤k≤N−2

C(uk + 1) +
∑

k (∈R, 1≤k≤N

C(uk)



 = Ju
x + pML

which gives:
Ju

x + pML

C(x)
<

Ju
x

C(x)
− Ju

x

C(x)
+ ρu = ρu , (96)

where the last inequality follows from inequality (14) dening our chosen p. Since u N = uN−1 + 1 is the only value of x such
that x > uN−1, it only remains to prove that

J û
uN

C(uN ) < ρu. When x = uN , we have the following expected search cost:

J û
L =

N−2∑

k=1

C(uk) + pML−2 + (1 − p)C(uN−1) + C(uN ) =
N∑

k=1

C(uk) + p(ML−2 − C(uN − 1)) <
N∑

k=1

C(uk) = Ju
L ,

where the last inequality follows from the fact that C(uN−1) > ML−2 using the denition ofMj and fact that uN−1 = L − 1.
Combining these two cases, we have that J û

x
C(x) < ρu for all 1 ≤ x ≤ L and have proven this theorem.

C. Proof of Theorem 6
It has been shown in [8] that the maximum cost ratio for any nonrandom TTL strategy is bounded below by 4, and therefore

to calculate the inmum given in (79), we need to only consider uniformly randomized strategies. We will prove Theorem 6 by
showing that 3

2 +
√

2 is both a lower bound and an upper bound on inf u∈U ′ ρu.
We begin by showing that infu∈U ′ ρu ≥ 3

2 +
√

2. We will proceed using proof by contradiction via a similar method to the
one presented in [8] to establish the lower bound on the maximum cost ratio for any nonrandom TTL strategy. Assume that the
maximum cost ratio for a uniformly randomized sequence u, dened by the boundary values b = [b 1, b2, ...], is some constant
ϑ < 3

2 +
√

2. We have already shown that the worst-case ratio for u takes the form given in (78). Therefore, by this equation and
the assumption that the maximum ratio is ϑ, then the following must be true for allm ∈ Z +:

m∑

k=1

bk +
bm+1 − b1

2
− m

2
≤ ϑbm =⇒

m∑

k=1

bk +
bm+1

2
≤ ϑbm + Bm

where Bm = b1
2 + m

2 . Now dene ỹn =
∑n

k=1 bk, so the above equation becomes:

ỹm +
1
2
(ỹm+1 − ỹm) ≤ ϑ(ỹm − ỹm−1) + Bm =⇒ ỹm+1 + (1 − 2ϑ)ỹm + 2ϑỹm−1 ≤ 2Bm (97)
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Now, because b is an increasing sequence of positive integers, ỹm is increasing faster than Bm. This fact means that for some
N ≥ 0, we have: ỹN+1 > BN+1 + ϑ

2 − 1
4 . Let yk = ỹN+k − BN+k − ϑ

2 + 1
4 , so that the yk are increasing and positive on Z+.

Our above equation then becomes under this new variable withm = N + k:

yk+1 + BN+k+1 +
ϑ

2
− 1

4
+ (1 − 2ϑ)

(
yk + BN+k +

ϑ

2
− 1

4

)
+ 2ϑ

(
yk−1 + BN+k−1 +

ϑ

2
− 1

4

)
≤ 2BN+k

Rearranging, we obtain:

yk+1 + (1 − 2ϑ)yk + 2ϑyk−1 ≤ (2ϑ + 1)BN+k − (1 − 2ϑ)BN+k+1 − ϑ +
1
2

Using the denition of Bm = b1
2 + m

2 , we obtain:

yk+1 + (1 − 2ϑ)yk + 2ϑyk−1 ≤ N + k

2
(2ϑ + 1) − N + k + 1

2
− N + k − 1

2
2ϑ− ϑ +

1
2

Cancelling out terms, we obtain:
yk+1 + (1 − 2ϑ)yk + 2ϑyk−1 ≤ 0 (98)

Now, we will prove that (98) cannot hold for all k if ϑ < 3
2 +

√
2. Form a sequence ...ξ−1, ξ0 = 0, ξ1 = 1, ξ2, .... which satises

the equation ξl−1 + (1 − 2ϑ)ξl + 2ϑξl+1 = 0. Note that this sequence is uniquely dened by its values ξ0 = 0 and ξ1 = 1. Then
the corresponding characteristic equation for this sequence is:

1 + (1 − 2ϑ)λ + 2ϑλ2 = 0 (99)

The nature of the roots of this characteristic equation can be determined by calculating (1−2ϑ) 2−4(2ϑ) = 4ϑ2−12ϑ+1. Notice
that for ϑ = 3

2 +
√

2, we have 4ϑ2−12ϑ+1 = 0 and that for 1 ≤ ϑ < 3
2 +

√
2, it is always true that 4ϑ2−12ϑ+1 < 0. In the latter

case, the characteristic equation has complex conjugate roots which means that the solution to ξ l−1 + (1 − 2ϑ)ξl + 2ϑξl+1 = 0
has a sinusoidal form. Therefore, there exists some M ≥ 1 such that ξ i > 0 for 0 < i < M + 1 and that ξM+1 ≤ 0. Also we
know that ξ−1 < 0 from the recursive equation dening our sequence. So from equation (98), we have:

M∑

i=1

(yi+2 + (1 − 2ϑ)yi+1 + 2ϑyi) ξi ≤ 0 (100)

This equation can be arranged into the following:

M+1∑

i=1

yi (ξi−2 + (1 − 2ϑ)ξi−1 + 2ϑξi) + [−2ϑym+1ξm+1 − (1 − 2ϑ)y1] + [ym+2ξm − y2ξ0 − y1ξ−1] ≤ 0 (101)

However, the rst term above is zero by the recursive equation for our ξ i, and the second and third terms (to the left of the
inequality) are both positive due to the fact that ξ−1 < 0, ξ0 = 0, ξ1 = 1, ξm > 0, ξm+1 < 0 and yi > 0 for all i. Therefore, we
have arrived at a contradiction and it cannot be possible that ϑ < 3

2 +
√

2. Hence, infu∈U ′ ρu ≥ 3
2 +

√
2.

However, we have already shown that for the uniformly randomized sequence u dened by the boundary values b k = ,rk−1-
where r =

√
2 + 1, the worst-case cost ratio ρu is 3

2 +
√

2. It thus follows that infu∈U ′ ρu ≤ 3
2 +

√
2.

Combining these two results, we see that infu∈U ′ ρu = 3
2 +

√
2.

D. Proof of Lemma 6
First note that because C(·) ∈ C, vj+1 > vj if and only if C(vj+1) > C(vj). From (20), the ratio between cost of successive

TTL values can be expressed in terms of C(v1) as follows for any integer j ≥ 1:

C(vj+1)
C(vj)

=
(
α−

Pj−1
k=0 α

k
)(C(v1)

C(1)

)αj

(102)

Consider any positive nite j. If (26) holds then we have by using (102):

C(vj+1)
C(vj)

≥
(
α−

Pj−1
k=0 α

k
)(

α(
P∞

k=1 α
−k)
)αj

>
(
α−

Pj−1
k=0 α

k
)(

α(
Pj

k=1 α
−k)
)αj

= 1 ,
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which holds for all integers j. Hence, (26) is a sufcient condition for v to be increasing.
Now suppose v is increasing. Then for any positive integer j we have by rearranging (102) and using C(v j+1) > C(vj):

C(v1)
C(1)

=
[
C(vj+1)
C(vj)

(
α

Pj−1
k=0 α

k
)]α−j

> αα−j Pj−1
k=0 α

k

= α
Pj

k=1 α
−k

Taking the limit of this inequality as j approaches∞ gives: C(v1)
C(1) ≥ α(P∞

k=1 α
−k) = α

1
α−1 , thereby proving that (26) is also a

necessary condition for an increasing sequence.

E. Proof of Lemma 8
First note that from (J.2), we have that C(vk) = rk−1C(v1) for all k ≥ 1. Let Sk = C(v1) + C(v2) + ....C(vk) for k ≥ 1.

Note that the expected value of Sk can be calculated as follows:

E [Sk] = E




k∑

j=1

C(vj)



 = E




k∑

j=1

rj−1C(v1)



 =
k−1∑

j=0

rjE [C(v1)] = E [C(v1)]
k−1∑

j=0

rj = E [C(v1)]
rk − 1
r − 1

(103)

In addition, note that the conditional expectation of v 1 can be calculated as follows, for 1 ≤ l < C−1(r · C(1)):

E [C(v1)|v1 ≤ l] =
∫ ∞

0
Pr (C(v1) > y|v1 ≤ l) dy = C(1) +

∫ ∞

C(1)

Pr
(
C−1(y) < v1 ≤ l

)

Pr(v1 ≤ l)
dy

= C(1) +
1

Fv1(l)

[∫ C(l)

C(1)

[
F̄v1(C

−1(y)) − F̄v1(l)
]

dy

]

=
1

Fv1(l)

[
C(1) +

∫ C(l)

C(1)
F̄v1(C

−1(y)) dy − C(l) · F̄v1(l)

]
(104)

We will use the following notation. J v
x |vn>x denotes the conditional expected search cost of using strategy v when the object

location is x, given that vn > x. Similarly, Jv
x |vn≤x is the conditional expected search cost given that vn ≤ x.

Now consider any real number x ≥ 1; there must exist a positive integer n such that r n−1C(1) ≤ C(x) < rnC(1), or in other
words C−1

(
rn−1C(1)

)
≤ x < C−1 (rnC(1)). Then the expected search cost J v

x can be calculated as follows by using (103):

Jv
x = Jv

x |vn>xPr (vn > x) + Jv
x |vn≤xPr (vn ≤ x) = E [Sn|vn > x] Pr (vn > x) + E [Sn+1|vn ≤ x] Pr (vn ≤ x)

= E [Sn|vn > x] Pr (vn > x) + E [Sn|vn ≤ x] Pr (vn ≤ x) + E[C(vn+1)|vn ≤ x]Pr(vn ≤ x)
= E[Sn] + E[C(vn+1)|vn ≤ x]Pr(vn ≤ x)

=
rn − 1
r − 1

E [C(v1)] + rnE

[
C(v1)

∣∣∣∣v1 ≤ C−1

(
C(x)
rn−1

)]
Fv1

(
C−1

(
C(x)
rn−1

))

Using (104), we obtain the following:

Jv
x =

rn − 1
r − 1

E [C(v1)] + rn ·
[
C(1) +

∫ C(x)
rn−1

C(1)
F̄v1(C

−1(y)) dy − C(x)
rn−1

F̄v1

(
C−1

(
C(x)
rn−1

))]

=
rn

r − 1

[
E [C(v1)] + (r − 1)

{
C(1) +

∫ C(x)
rn−1

C(1)
F̄v1

(
C−1(y)

)
dy

}]
− rC(x)F̄v1

(
C−1

(
C(x)
rn−1

))
− E [C(v1)]

r − 1
(105)

Letting z = C(x)
rn−1C(1) , we obtain the following expression for the cost ratio by plugging into (105):

Jv
x

C(x)
=

r

(r − 1)

E [C(v1)] + (r − 1)
{
C(1) +

∫ z·C(1)
C(1) F̄v1(C−1(y)) dy

}

zC(1)
− r

F̄v1 (C−1(z))
C(1)

− E [C(v1)]
(r − 1)zrn−1

=
r

r − 1
h(r) + (r − 1)h(z)

zC(1)
− r

h′(z)
C(1)

− h(r)
(r − 1)zrn−1C(1)

(106)



29

where we have used the fact that h(r) = E [C(v1)] (by the relationship between expectation and tail distribution), and h ′(z) =
F̄v1

(
C−1(z · C(1))

)
· C(1) by the fundamental theorem of calculus. For notation, dene the following:

Φn (z) =
r

r − 1
h(r) + (r − 1)h(z)

zC(1)
− r

h′(z)
C(1)

− h(r)
(r − 1)zrn−1C(1)

, (107)

so that from equation (106), Φn(z) is simply the cost ratio at object location x = C−1 (zrnC(1)). Note that the following is true
for any x and y = C−1(rC(x)): Jv

x
C(x) <

Jv
y

C(y) . This statement holds because the rst two terms in the expression for the cost ratio
in (106) are the same for x and y, and the third term increases with increasing x. In addition, when x ranges fromC −1(rn−1C(1))
to C−1(rnC(1)), then z takes values between 1 and r. Hence, we have Φn(z) < Φn+1(z) for all n and z. Finally, note that the
limit as n approaches∞ of Φn(z) is simply Φ(z), where Φ(z) is the function dened earlier in (30). Hence, the following is true,
where xn = C−1(rnC(1)) for notation:

sup
x∈[1,∞)

Jv
x

C(x)
= sup

n∈Z+

{
sup

xn−1≤x<xn

Jv
x

C(x)

}
= sup

n∈Z+

{
sup

1≤z<r
Φn (z)

}

= sup
1≤z<r

{
sup

n∈Z+
Φn (z)

}
= sup

1≤z<r

{
lim

n→∞
Φn (z)

}

= sup
1≤z<r

{Φ(z)} = sup
1≤z<r

{
r

r − 1
h(r) + (r − 1)h(z)

zC(1)
− r

h′(z)
C(1)

}
, (108)

which completes the proof of the lemma.

F. Proof of Lemma 9
Because C(x+1)

C(x) ≥ q for all x, we have that C(X)α+1
C(Xα) ≥ q, w.p.1. Hence, E[C(Xα+1)]

E[C(Xα)] ≥ q for all α. Therefore to complete
the proof, we need to show that limα→1+

E[C(Xα+1)]
E[C(Xα)] ≤ q. This is equivalent to showing that for any ε > 0, there exists ᾱ such

that E[C(Xα+1)]
E[C(Xα)] < q + ε for all 1 < α < ᾱ.

Fix ε > 0. Since limx→∞
C(x+1)

C(x) = q, there exists a x∗ such that C(x+1)
C(x) < q + ε

2 for all x > x∗. Let 1(·) denote the indicator
function; so 1(A) = 1 if A is true, otherwise it equals 0. Thus we have:

E[C(Xα + 1)1(Xα > x∗)] <
(
q +

ε

2

)
E[C(Xα)1(Xα > x∗)] ≤

(
q +

ε

2

)
E[C(Xα)] (109)

At the same time, we have:

lim
α→1+

E[C(Xα + 1)1(Xα ≤ x∗)]
E[C(Xα)]

≤ lim
α→1+

C(x∗ + 1)
E[C(Xα)]

= 0 ,

because C(x∗ + 1) < ∞ and E[C(Xα)] = α
α−1 , which approaches∞ as α goes to 1. Hence, there exists an ᾱ such that for

all1 < α < ᾱ:
E[C(Xα + 1)1(Xα ≤ x∗)]

E[C(Xα)]
<

ε

2
(110)

Therefore, combining (109) and (110) gives for all 1 < α < ᾱ

E[C(Xα + 1)]
E[C(Xα)]

=
E[C(Xα + 1)1(Xα > x∗)]

E[C(Xα)]
+

E[C(Xα + 1)1(Xα ≤ x∗)]
E[C(Xα)]

< q +
ε

2
+

ε

2
= q + ε ,

which completes the proof.

G. Variance of Optimal Continuous Strategy
Nowwe examine the variance of the strategy v[r, Fv1(x)] whereFv1(x) = (ln C(x)/C(1))/ln r. To begin, let fv1 (x |v1 < y )

denote the pdf of v1 given that v1 is less than y. Note the following for 1 ≤ y < C−1 (rC(1))

fv1 (x |v1 < y ) =
dFv1 (x |v1 < y )

dx
=

{
1

C(x) ln [C(y)/C(1)]
dC(x)

dx if 1 ≤ x < y

0 otherwise
(111)
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Then we have:
E
[
C (v1)

2
∣∣∣ v1 < y

]
=
∫ y

1

C(x)2

C(x)ln C(y)/C(1)
dC(x)

dx
dx =

C(y)2 − C(1)2

2 · ln C(y)/C(1)
(112)

It can easily shown that:

E
[
C (v1)

2
]

=
C(1)2

ln r

[
r2 − 1

2

]
(113)

Finally, using the above two results gives us the following:

E
[
C (v1)

2
∣∣∣ v1 ≥ y

]
=

E
[
C(v1)2

]
− E

[
C (v1)

2
∣∣∣ v1 < y

]
Pr (v1 < y)

Pr(v1 ≥ y)
=

C(1)2r2 − C(y)2

2 (ln r − ln C(y)/C(1))
(114)

Fix any x; there must exist a positive integer k such that C−1
(
rk−1C(1)

)
< x ≤ C−1

(
rkC(1)

)
. As dened earlier, we let jv

x

be a random variable denoting the cost of using strategy v when object location is x. Note that J v
x = E [jv

x ]. The second moment
of this search cost can be calculated as follows by using (112), (113), and (114):

E
[
(jv

x )2
]

= E
[
(jv

x )2
∣∣∣ vk < x

]
Pr (vk < x) + E

[
(jv

x )2
∣∣∣ vk ≥ x

]
Pr (vk ≥ x)

= E




(

k+1∑

l=1

rl−1C(v1)

)2
∣∣∣∣∣∣
vk < x



Pr (vk < x) + E




(

k∑

l=1

rl−1C(v1)

)2
∣∣∣∣∣∣
vk ≥ x



Pr (vk ≥ x)

=
(

rk+1 − 1
r − 1

)2

E

[
C(v1)2

∣∣∣∣v1 < C−1

(
C(x)
rk−1

)]
Pr

(
v1 < C−1

(
C(x)
rk−1

))

+
(

rk − 1
r − 1

)2

E

[
C(v1)2

∣∣∣∣v1 ≥ C−1

(
C(x)
rk−1

)]
Pr

(
v1 ≥ C−1

(
C(x)
rk−1

))

=
(rk+1 − 1)2

[(
C(x)
rk−1

)2
− C(1)2

]
+ (rk − 1)2

[
C(1)2r2 −

(
C(x)
rk−1

)2
]

2(ln r)(r − 1)2
(115)

In addition, it can be easily shown that:

Jv
x =

rC(x) − C(1)
ln r

(116)

Note that the variance of the cost ratio at location x is simply the difference between (115) and the square of (116), divided by
C(x)2. Hence we have:

Λv
x

C(x)2
=

(rk+1 − 1)2
[(

C(x)
rk−1

)2
− C(1)2

]
+ (rk − 1)2

[
C(1)2r2 −

(
C(x)
rk−1

)2
]

2(ln r)(r − 1)2C(x)2
−
(

rC(x) − C(1)
ln r

)2 1
C(x)2

=
(rk+1 − 1)2

[
r−2k+2 − C(1)2

C(x)2

]
+ (rk − 1)2

[
C(1)2

C(x)2 r2 − r−2k+2
]

2(ln r)(r − 1)2
−




r − C(1)

C(x)

ln r




2

(117)

Note that as x approaches∞ (so that C(x) also approaches innity) then the variance of the cost ratio becomes:

lim
x→∞

Λv
x

C(x)2
= lim

k→∞

(rk+1 − 1)2
[
r−2k+2

]
− (rk − 1)2r−2k+2

2(ln r)(r − 1)2
−
( r

ln r

)2
=

r4 − r2

2(ln r)(r − 1)2
− r2

(ln r)2
(118)


