
1

Optimal Server Allocation in Batches
Navid Ehsan, Mingyan Liu

Electrical Engineering and Computer Science Department
University of Michigan, Ann Arbor
{nehsan,mingyan}@eecs.umich.edu

Abstract

In this paper we consider the problem of allocating bandwidth to two transmitters/queues
with arbitrary arrival processes, so as to minimize the total expected (discounted) holding cost of
backlogged packets in the system over a nite (innite) horizon. The bandwidth is in the form
of time slots in a TDMA schedule. Allocation decisions are made based on the queue backlog
information, which is delayed. In addition, the allocation is done in batches, in that a queue
can be assigned any number of slots not exceeding the total number in a batch. In this paper
we show that if the packet holding cost as a function of the packet backlog in the system is
non-decreasing, supermodular and superconvex, then (1) the value function (or the cost to go)
at each time slot will also satisfy these properties; (2) the optimal policy for assigning a single
slot is of the threshold type; and (3) optimally allocating M slots at a time can be achieved by
repeatedly using a policy that assigns each slot optimally given the previous allocations. Thus
the problem of nding the optimal allocation strategy for a batch of slots reduces to that of
optimally allocating a single slot, which is typically much easier to obtain. We provide sufcient
conditions for the same results to hold in the case of discounted cost over an innite horizon
and in the case of average cost criterion. The above results are then applied to a special case
where the holding costs are linear and equal for all queues, in which minimizing holding cost
is equivalent to maximizing the system throughput.

Index Terms

Optimal resource allocation, delayed state observation, stochastic processes, batch allocation

I. INTRODUCTION

In this paper we study the problem of optimally allocating bandwidth (in the form of time
slots in a slotted system, or equivalently servers) to parallel queues when the channel introduces
signicant feedback delay. Special features of this problem include that (1) servers/slots are
assigned in batches, i.e., multiple servers/slots may be allocated to the same queue at a time so
that multiple packets may be served from the queue, and (2) the allocation decision is based on
partially obsolete state observations (queue backlogs) due to the signicant delay in the system.

This optimal bandwidth allocation problem is primarily motivated by wireless communication
systems that either have large propagation delay (e.g., in satellite data communication), or where
resource allocation is done relatively infrequently compared to packet transmission time, due to
cost or design constraint such as energy (e.g., under the IEEE 802.15.4 standard for low-power
indoor wireless networks).

In the case of a satellite network, users/terminals transmitting to the satellite are assumed to
follow a dynamic TDMA schedule, each assigned a certain number of slots within a frame that
consists of a xed number of slots. Users also inform the satellite their current backlog, carried
in packet headers. The assignment is made based on the backlog information and broadcast to the

2

users over a non-interfering channel. An allocation species which slot in the upcoming frame is
reserved for/to be used by which user. In such a scenario, due to the long propagation delay of
the satellite channel (approximately 250 ms from ground/user to satellite and back), the allocation
decision for a particular frame is made based on the backlog information collected during the
previous frame, which is delayed and partially obsolete by the time the allocation is used. This
results in possible over-allocation or under-allocation. Therefore in this case the allocation needs
to take into account unknown random arrivals that occur in between observations/state information
updates. In the case of low-power devices similar resource allocation problems arise where users
share the channel for transmitting to the common server. In these systems time is divided into
active and inactive periods. During the inactive period users turn their transmitters and receivers
off in order to conserve energy and turn them back on at the beginning of each active period.
At the beginning of an active period, the server sends a beacon containing information about the
slot allocation for the current active period (each active period can contain multiple time slots).
The users then transmit according to this allocation. The users also send their current backlog
information to the server. The server will use this information to make decision for the next
active frame. Due to the long inactive period, the backlog information has most likely changed
at the time when the allocation is used. Therefore the server has to consider this uncertainty in
the backlog due to random arrivals during the inactive period. Although dynamics of both of the
above systems are the same and the specic type of the system does not affect our discussion on
the optimal policy, in this paper we consider the satellite scenario to model our system.

Our primary interest is in deriving allocation strategies that allow the system to perform in the
most efcient way. Specically, we assume that backlogged packets incur a cost, and consider
an optimal bandwidth allocation problem with the objective of minimizing the expected total
(discounted) packet holding cost or average cost over a nite (innite) time horizon. While in
general reducing holding cost has the effect of reducing packet delay, different forms of the cost
function lead to different performance criteria. For example, under a linear cost function equal
to all queues (i.e., each packet incurs a constant unit cost) minimizing the cost is equivalent to
maximizing system throughput. Different cost functions also lead to different optimal strategies,
to be further explored in the paper.

Resource allocation problems of similar types have been extensively studied in the literature
under various scenarios. Here we review studies most relevant to the one investigated in this paper.
In [1], [2] the problem of parallel queues with different holding costs and a single server was
considered, and the simple cµ rule was shown to be optimal. [3], [4], [5] considered the server
allocation problem to multiple queues with varying connectivity but of the same service class.
Each of these studies determined policies that maximize throughput over an innite horizon. In
particular, [3] derived the sufcient condition for stability and showed that serving the Longest
Connected Queue (LCQ) policy stabilizes the system if the system is stabilizable. [6] further
considered a similar problem but with differentiated service classes where different queues have
different holding costs. [7], [8] studied the stability of power allocation policies. In all of the
above work the state of the system, i.e., connectivity and the number of packets in each queue, is
precisely known before server allocation is made. This is a major difference between the above
cited work and the problem considered here.

[9] studied the problem of routing to two parallel queues with delayed state observation and
showed that when the information is one step delayed the policy to join the queue with smaller
expected length minimizes the total discounted sum of the number of packets in both queues. [10]
studied the problem of optimally routing to two queues with imperfect and noisy information.

The problem studied in this paper (in the case of an innite horizon) can also be cast as a

3

special case of the restless bandit problem [11], [12], [13], [14], where projects undergo state
transitions even when they are not played or selected. This is because in our case the backlog of
each queue continues to change as packets arrive. [11] and [12] studied the asymptotic behavior
of this class of problems when the number of projects (queues in this case) and servers (slots in
a frame in this case) go to innity with a xed ratio. A general optimal solution is not known for
this class of problems. However, an index policy can be dened based on the Whittle’s heuristic,
which is sub-optimal in the nite (number of servers and projects) case and asymptotically optimal
in the innite case.

In [15], [16] we have studied problems similar to the one presented in this paper, but with
simpler, linear cost assumptions. In [15] we derived the optimal policy when users have the same
unit holding cost and identical arrival processes, while in [16] we investigated optimal policies
for differentiated linear holding costs in the case of a single slot allocation and Bernoulli arrivals.

By contrast, in this paper we consider general cost functions and arrival processes, and the
problem of assigning a batch of slots at a time. We will adopt and explore ideas similar to that used
in [17] and [18], where certain properties of the value function were shown to propagate in time
for specic queueing models. In particular, we identify three conditions that characterize a class
of cost functions, namely monotonicity (non-decreasing), supermodularity, and superconvexity (to
be dened precisely later), and show the following main results by limiting our attention to two
queues/users.

1) When allocating one slot at a time (single server scenario), if the cost function is non-
decreasing, supermodular and superconvex, then the value function (or cost to go) at each
time slot will also satisfy these properties. Furthermore, the optimal policy for assigning a
single slot is of threshold type.

2) If the cost function is non-decreasing, supermodular and superconvex, then the problem
of optimally allocating M slots at a time reduces to sequentially allocating a single slot
optimally. In other words, a policy that assigns each slot optimally given the previous
allocations in the batch, is optimal in assigning the entire batch of M slots.

The rst represents a fundamental result on the nature of this problem, and may also help
us derive the optimal policy. We will provide examples further illustrating the threshold property.
The second is an important result, as it indicates that if the cost function satises those properties,
then we may limit our attention to nding the optimal allocation strategy for a single slot instead
of for the whole batch. The former is typically much easier to obtain. We will also apply the
above results to the special case of linear and equal holding cost and show an example where
the above results also extend to more than two queues.

The rest of the paper is organized as follows. In the next section we describe the general
network model and formulate the corresponding optimization problem. In Sections III and IV
we investigate the optimal policy of allocating a single slot and multiple slots to two queues,
respectively. In Section V we extend our results to the innite horizon case and the average cost
criterion case. In Section VI we use these results to nd the optimal policy for the special case of
linear and equal holding cost. In section VII we present some properties of the threshold policy
through numerical examples. Section VIII concludes the paper.

II. PROBLEM FORMULATION

In this section we describe the network model we adopt as an abstraction of the bandwidth
allocation problem described in the previous section, and formally present the optimization
problem along with a summary of assumptions and notations.

4

A. Network Model and Notation
Consider N queues that transmit packets to a single receiver and in doing so compete for

shares of a common channel that consists of time slots. Packets arrive at queues according to
arbitrary random processes. Packets are assumed to be of equal length and one packet transmission
time occupies one time slot (i.e., transmissions are assumed to be successful). M consecutive slots
constitute a frame. The allocation of the channel is done once for all M slots in a frame (M may
or may not be greater than N). In other words, the channel assignment is done in batches of M
slots. Under a particular allocation, a queue may be assigned any number of slots not exceeding
M . Alternatively, the above model can be viewed as one where N queues are being served by
M servers. Different from most of the prior work, here multiple servers can be assigned to a
single queue. When this happens, multiple packets are served. For the rest of our discussion, we
will adopt the slot allocation model and use the term server to mean the controller that makes
the allocation decisions.

We consider time evolution in discrete time steps indexed by t = 0, 1, · · · T , with each
increment representing a frame length. Frame t refers to the frame dened by the interval [t, t+1).
In subsequent discussions we will use terms frames, steps and stages interchangeably. We will
also use the terms bandwidth and slots interchangeably.

The allocation decision is made based on the backlog information of each queue (number of
packets waiting/existing in the queue) provided by queues at the beginning of a frame. We will
ignore the transmission time of such information. This does not affect our analysis since one can
always increase the frame length with dedicated xed number of slots at the beginning for the
transmission of such information. Based on this information an allocation decision is made by the
server and broadcast to all queues over a non-interfering channel. Due to extensive propagation
delay in the system, this broadcast is received by the queues at the end of that frame, in time
to be used for the next frame. The same procedure then repeats, resulting in a one-step delay in
state observation by the server as shown in Figure 1. Specically, at time t, each user advertises
its buffer size (denoted by bt) to the server. The server allocates slots to be used for transmission
in the next frame [t + 1, t + 2), denoted by wt+1. However, the server does not know the queue
backlog at time t+1 due to random arrivals that occurred during [t, t+1). This procedure begins
from t = 0 and ends at t = T (in the case of nite time horizon). Note that in this scenario
during the rst frame queues do not have allocated slots and only start transmitting in the second
frame (starting t = 1).

0 T!1 T2

Decision? Decision?

1

wb0 b2

M slots

......

w 2 T!1w 1
b1

Fig. 1. The bandwidth allocation dynamics

Below we summarize key notations used in subsequent sections. In general bold face letters
are vectors and normal letters are scalars.

Let bi,t be the backlog of queue/user i at the beginning of frame t (more precisely this is the
backlog of queue i at time instant t−). Denote by bt the vector (b1,t, b2,t, · · · , bN,t). We use the

5

same convention for other quantities as dened below.

wt = (w1,t, · · · , wN,t): Allocation (in number of slots) for each queue to be used for packet
transmission during the t-th frame (in the interval [t, t + 1)).

at = (a1,t, · · · , aN,t): Random arrivals during [t, t + 1) to each queue.

pt(at): The joint probability mass function for having at arrivals between [t, t + 1).

xt = [bt−1 −wt−1]+: This is the part of the queue backlog at time t that is precisely known
to the server at time t−. Given the backlog at t − 1, bt−1, and the past allocation for the period
[t − 1, t), wt−1, this quantity is the amount of packets that are for sure in the queue, excluding
the random arrivals that occurred during [t − 1, t). It’s either zero (when the previous allocation
is sufcient or more) or positive (when the previous allocation is not sufcient). We will also
refer to this quantity as the deterministic part of the queue.

ei: The i-th N-dimensional unit vector, i.e., a vector with all elements being zero except a
one in the i-th position.

For any scalar x dene x+ = [x]+ = x if x ≥ 0 and is equal to zero otherwise. For a vector
x, we dene x+ = [x]+ the same way component-wise. For two vectors x and y, by x ≤ y we
mean that the inequality holds component by component.

For a function f dened on Z2
+, let f̂ , dened on Z2, be f̂(x) = f(x+). In general if the

domain of a function is Z2
+ we use f , g, etc., and if the domain is Z2 we denote the functions

by f̂ , ĝ, etc. The above denition will prove to be helpful since we do not need to be concerned
with boundary conditions for x when using f̂ .

Our objective is to nd an allocation policy π that minimizes the following cost function,

J = Eπ[C|b0,w0], C =
T∑

t=1

c(bt), (1)

where w0 = 0. For now the packet holding cost c(b) is an arbitrary function. Later, we will
restrict c to belong to a certain class of functions.

B. Assumptions
Below we summarize important assumptions adopted by this paper.

1) We will consider a system with only two users, i.e. N = 2. The extension of the results
to more than two users remains an open problem and is out of the scope of this paper.
Limited results exist with stronger assumptions on the cost function, and we will present
an example in Section VI.

2) We assume that each user has an innite buffer size. Without this assumption we need
to introduce penalty for packet dropping/blocking, which makes the problem drastically
different.

3) We assume that the arrivals are independent of the queue size and the allocation policy.
4) We assume that if the number of allocated slots for a user is greater than its buffer

occupancy at the beginning of a frame, the newly-arrived packets during that frame cannot
be transmitted using the extra slots for that frame. This is because the exact arrival times
of the packets in a frame is random. Thus whether an extra slot could be used for a new
arrival or not depends on the position of the allocated slot (e.g., the rst slot or the last slot
of the M slots in the frame) and the arrival time of the packet.

6

5) The server recalls the latest allocation it has made. Note that the expected cost occurred
after time t conditioned on the latest allocation, wt and buffer occupancy bt is independent
of arrivals that occurred before frame t. (bt is a Markov chain with state space {(b1, b2) :
b1, b2 ∈ Z+} where the transition probabilities depend on the control action wt and arrival
statistics).

C. Problem Formulation and Preliminaries
Although the state of the system is not perfectly observed, we can extend the state space

to convert a Markov chain with imperfect state observation into a Markov chain with perfect
state observation [19]. In our problem we could consider (bt−1,wt−1) to be the state at time t.
However, one can see that in our specic problem the states and their transitions only depend on
xt = [bt−1 −wt−1]+, which is the deterministic portion of the queue at time t as dened earlier.
The actual queue size at time t is xt + at−1.

Using xt as the state, this problem can be solved via dynamic programming [20]. Dene

c̄t(x) = Eat−1 [c(x + at−1)], (2)
where Eat [f(at)] =

∑

at

pt(at)f(at) (3)

for some function f . Then the dynamic program of the problem is as follows.

VT (x) = c̄T (x),
Vt(x) = c̄t(x) + minPN

i=1 wi,t=M
{Eat−1 [Vt+1([x + at−1 − wt]+)]}, (4)

where Vt is the value function or the cost to go at time t.
Remark 1: For the rest of the paper, we make the following additional assumption. The

joint probability mass function of the arrival processes does not change with time. Thus we have
pt(at) = p(a), ∀t. This assumption is only for the simplicity in notation and as will be discussed
in Section VIII can be easily relaxed. Note that by this assumption, we have c̄ t(x) = c̄(x) for all
t.

Definition 1: Dene Ŝt(x) : Z2 → R as follows:

Ŝt(x) =
∑

a

p(a)Vt([x + a]+). (5)

Definition 2: For some function f : Z2 → R or f : Z2
+ → R, dene two operators T1 and

TM to be

T1f(x) = min
i∈{1,2}

{f(x − ei)}, (6)

TMf(x) = min
w:w1+w2=M

{f(x− w)} . (7)

If f(x) represents the value function at state x, then T1 represents the minimum between assigning
one slot to user 1 and user 2, whereas TM is the minimum among all possible ways of dividing
M slots between two users. One of the key results to be shown is the conditions under which
TM may be obtained by repeatedly using T1.

The following lemma immediately follows as a result of the denitions above.
Lemma 1: For all values 0 < t < T , Vt(x) is equal to c̄(x) + TM Ŝt+1(x) restricted to

x ∈ Z2
+.

In the next two sections we will rst study the case of M = 1, and then consider M > 1.

7

III. OPTIMAL POLICY FOR A SINGLE SLOT ALLOCATION

We rst study the case when each frame consists of only a single slot (M = 1), i.e., single
slot allocation. In this case we have for x ∈ Z2

+,

VT (x) = c̄(x),
Vt(x) = c̄(x) + T1Ŝt+1(x), 1 ≤ t ≤ T − 1, (8)

where Ŝt(x) is dened in the previous section.
Definition 3: A function f : Z2

+ → R belongs to the set F if f(x) satises the following
conditions:

C.1 f(x) ≤ f(x + ei), i ∈ {1, 2};
C.2 f(x + e1) + f(x + e2) ≤ f(x) + f(x + e1 + e2);
C.3.a f(x + e1) + f(x + e1 + e2) ≤ f(x + e2) + f(x + 2e1);
C.3.b f(x + e2) + f(x + e1 + e2) ≤ f(x + e1) + f(x + 2e2).
C.1 is the monotonicity condition and requires the function f(x) to be non-decreasing in

both its elements, C.2 is the supermodularity condition, and C.3 is the superconvexity condition
following the terminology used in [17]. Note that these are rather benign conditions, and they
specify a very large class of cost functions of practical interest.

Remark 2: Note that conditions C.2 and C.3.a result in the convexity of f in x1. Similarly,
C.2 and C.3.b imply the convexity of f in x2.

Definition 4: Dene F̂ to be the set of all functions f̂ : Z2 → R that satisfy conditions C.1
- C.3.

It should be immediately clear that f ∈ F ⇒ f̂ ∈ F̂ .
The main result of this section is the following theorem.
Theorem 1: Suppose there are two users and one slot in each frame to be allocated. If the

cost function c(·) ∈ F , then
(a) for all time t we have Vt(x) ∈ F ; and
(b) the optimal policy in assigning one slot is of the threshold type.

In the remainder of this section we show that if Vt+1(x) ∈ F , then T1Ŝt+1(x) restricted to
x ∈ Z2

+ is in F . This is then used to prove Theorem 1. We proceed with a number of lemmas.

Lemma 2: If f ∈ F , then the function ĝ : Z2 → R dened as ĝ(x) = f([x + a]+) is in F̂
for all a ∈ Z2

+.

Proof: We need to show that ĝ(x) = f([x + a]+) satises conditions C.1 - C.3.

(i) Monotonicity: ĝ(x) obviously satises monotonicity since for i = 1, 2,

ĝ(x + ei) =
{

f([x + a]+), (x + a)i < 0
f([x + a]+ + ei), else

≥ f([x + a]+) = ĝ(x) ,

where the inequality is a result of the monotonicity of f .

(ii) Supermodularity: To prove this we need to show

ĝ(x + e1) + ĝ(x + e2) ≤ ĝ(x) + ĝ(x + e1 + e2) . (9)

Letting y = (y1, y2) = x + a, we consider the following four cases.

8

1) If y1, y2 ≥ 0, then (9) becomes

f([x + a]+ + e1) + f([x + a]+ + e2)
≤ f([x + a]+) + f([x + a]+ + e1 + e2),

which is true since f satises C.2, by replacing x with [x + a]+ in C.2.
2) If y1 ≥ 0, y2 < 0, then (9) becomes

f([x + a]+ + e1) + f([x + a]+) ≤ f([x + a]+) + f([x + a]+ + e1),

which is trivially true.
3) If y2 ≥ 0, y1 < 0, the proof is the same as in case 2).
4) If y1, y2 < 0, then (9) becomes

f([x + a]+) + f([x + a]+) ≤ f([x + a]+) + f([x + a]+),

which is trivially true.

(iii) Superconvexity: To prove C.3.a we need to show

ĝ(x + e1) + ĝ(x + e1 + e2) ≤ ĝ(x + e2) + ĝ(x + 2e1). (10)

Again let y = x + a consider the same four cases:
1) If y1, y2 ≥ 0, then (10) becomes

f([x + a]+ + e1) + f([x + a]+ + e1 + e2)
≤ f([x + a]+ + e2) + f([x + a]+ + 2e1),

which is true since f satises C.3, by replacing x with [x + a]+ in C.3.
2) If y1 < 0, y2 ≥ 0, then (10) becomes

f([x + a]+) + f([x + a]+ + e2)
≤ f([x + a]+ + e2) + f([x + a + 2e1]+),

which is true by the monotonicity of f .
3) If y2 < 0, y1 ≥ 0, then (10) becomes

f([x + a]+ + e1) + f([x + a]+ + e1)
≤ f([x + a]+) + f([x + a]+ + 2e1),

which is true by the convexity of f (combining C.2 and C.3.a).
4) If y1, y2 < 0, then (10) becomes

f([x + a]+) + f([x + a]+) ≤ f([x + a]+) + f([x + a + 2e1]+),

which is true by the monotonicity of f .
C.3.b can be proven in the same way and is thus omitted for brevity.

Therefore we conclude ĝ(x) ∈ F̂ .

Lemma 3: If f1, f2, · · · are a sequence of functions that belong to F , then g(x) =
∑

l plfl(x)
also belongs to F , where pl’s are non-negative constants.

Proof: We need to show that g(x) satises C.1-C.3.
(i) Monotonicity: By the monotonicity of fl, we have

g(x) =
∑

l

plfl(x) ≤
∑

l

plfl(x + e1) = g(x + e1),

9

proving g’s monotonicity.
(ii) Supermodularity: This holds because

g(x + e1) + g(x + e2)

=
∑

l

pl · (fl(x + e1) + fl(x + e2))

≤
∑

l

pl · (fl(x) + fl(x + e1 + e2))

= g(x) + g(x + e1 + e2) , (11)

where the inequality is due to the supermodularity of fl.
(iii) Superconvexity: This holds because

g(x + e1) + g(x + e1 + e2)

=
∑

l

pl · (fl(x + e1) + fl(x + e1 + e2))

≤
∑

l

pl · (fl(x + e2) + fl(x + 2e1))

= g(x + e2) + g(x + 2e1) , (12)

where the inequality is due to the superconvexity of f l.
C.3.b can be shown in the same way and is thus omitted for brevity.
Lemma 4: If f̂1, f̂2, · · · are a sequence of functions that belong to F̂ , then ĝ(x) =

∑
l plf̂l(x)

also belongs to F̂ , where pl’s are non-negative constants.
The proof of this lemma is the same as that of Lemma 3 and is thus not presented for brevity.
Lemma 5: If f̂ ∈ F̂ , then T1f̂ ∈ F̂ .
Proof: Let

ĝ(x) = T1f̂(x) = min{f̂(x− e1), f̂(x− e2)}. (13)

(i) Monotonicity: ĝ(x) ≤ ĝ(x+e1) holds, since the monotonicity of f results in an increment
in both elements.

(ii) Supermodularity: We need to show that

ĝ(x + e1) + ĝ(x + e2) ≤ ĝ(x) + ĝ(x + e1 + e2). (14)

We will consider different cases depending on the minimizers of ĝ(x) and ĝ(x+ e1 + e2) on
the right hand side of (13), denoted by m1 and m2, respectively. For example, m1 = i,m2 = j,
i, j = 1, 2 means
ĝ(x) = f̂(x − ei), and
ĝ(x + e1 + e2) = f̂(x + e1 + e2 − ej).

1) m1 = m2 = 1: In this case the supermodularity condition we need to show becomes

ĝ(x + e1) + ĝ(x + e2) ≤ f̂(x − e1) + f̂(x + e2). (15)

To show this, consider

ĝ(x + e1) = min{f̂(x), f̂ (x + e1 − e2)} ≤ f̂(x),
ĝ(x + e2) = min{f̂(x + e2 − e1), f̂(x)}

≤ f̂(x + e2 − e1),

10

which yields ĝ(x + e1) + ĝ(x + e2) ≤ f̂(x) + f̂(x + e2 − e1).
Letting y = x− e1, the above becomes

ĝ(x + e1) + ĝ(x + e2)
≤ f̂(y + e1) + f̂(y + e2) ≤ f̂(y) + f̂(y + e1 + e2)
= f̂(x − e1) + f̂(x + e2),

where the second inequality is true by the supermodularity of f̂ , thus proving (15).
2) m1 = 1,m2 = 2: In this case the supermodularity condition we need to show is

ĝ(x + e1) + ĝ(x + e2) ≤ f̂(x − e1) + f̂(x + e1) . (16)

To show this, consider

ĝ(x + e1) = min{f̂(x), f̂ (x + e1 − e2)} ≤ f̂(x),
ĝ(x + e2) = min{f̂(x + e2 − e1), f̂(x)} ≤ f̂(x),

⇒ ĝ(x + e1) + ĝ(x + e2) ≤ 2f̂(x)
≤ f̂(x − e1) + f̂(x + e1), (17)

where the last inequality is due to the convexity of f̂ , thus proving (16).
The two remaining cases where m1 = m2 = 2 or m1 = 2,m2 = 1 can be shown similarly,

and are not repeated here.

(iii) Superconvexity: First we show that ĝ satises C.3.a, i.e.

ĝ(x + e1) + ĝ(x + e1 + e2) ≤ ĝ(x + 2e1) + ĝ(x + e2) . (18)

We consider different cases depending on the minimizers for the two terms on the right hand
side of the inequality, respectively denoted by m1 and m2, as in the case of supermodularity.

1) m1 = m2 = 1: In this case (18) becomes

ĝ(x + e1) + ĝ(x + e1 + e2) ≤ f̂(x + e1) + f̂(x + e2 − e1)

To show this we have

ĝ(x + e1) = min{f̂(x), f̂ (x + e1 − e2)} ≤ f̂(x),
ĝ(x + e1 + e2) = min{f̂(x + e2), f̂(x + e1)}

≤ f̂(x + e2) .

Therefore by letting y = x− e1 we have

ĝ(x + e1) + ĝ(x + e1 + e2)
≤ f̂(x) + f̂(x + e2) = f̂(y + e1) + f̂(y + e1 + e2)
≤ f̂(y + 2e1) + f̂(y + e2)
= f̂(x + e1) + f̂(x + e2 − e1) ,

where the second inequality is due to the superconvexity of f̂ , thus proving (18).
2) m1 = 1,m2 = 2: In this case (18) becomes

ĝ(x + e1) + ĝ(x + e1 + e2) ≤ f̂(x + e1) + f̂(x) . (19)

11

In order to show this consider

ĝ(x + e1) = min{f̂(x), f̂ (x + e1 − e2)} ≤ f̂(x),
ĝ(x + e1 + e2) = min{f̂(x + e2), f̂(x + e1)}

≤ f̂(x + e1),
⇒ ĝ(x + e1) + ĝ(x + e1 + e2) ≤ f̂(x) + f̂(x + e1),

proving (19).
3) m1 = 2,m2 = 1: By superconvexity of f we have

f̂(x) − f̂(x + e2 − e1) ≤ f̂(x − e2) − f̂(x − e1),
f̂(x− e2) − f̂(x − e1) ≤ f̂(x + e1 − e2) − f̂(x),

f̂(x + e1 − e2) − f̂(x) ≤ f̂(x + 2e1 − e2) − f̂(x + e1),

where the rst inequality results from C.3.b and the other two inequalities are a consequence of
C.3.a. Combining (adding) these inequalities we get

f̂(x) − f̂(x + e2 − e1) ≤ f̂(x + 2e1 − e2) − f̂(x + e1).

However, note that whenever m1 = 2, the right hand side of the above equation is non-positive,
thus the left hand side is also non-positive. This implies that m2 = 2 (i.e., m1 = 2,m2 =
1 ⇒ m1 = 2,m2 = 2, meaning ĝ(x + e2) = f̂(x + e2 − e1) = f̂(x)). Therefore the case of
m1 = 2,m2 = 1 is a special case of (included in the case of) m1 = 2,m2 = 2, which is dealt
with next.

4) m1 = 2,m2 = 2: In this case (18) becomes

ĝ(x + e1) + ĝ(x + e1 + e2) ≤ f̂(x + 2e1 − e2) + f̂(x).

To show this consider

ĝ(x + e1) = min{f̂(x), f̂ (x + e1 − e2)}
≤ f̂(x + e1 − e2) ,

ĝ(x + e1 + e2) = min{f̂(x + e2), f̂ (x + e1)}
≤ f̂(x + e1) .

Letting y = x− e2 we have

ĝ(x + e1) + ĝ(x + e1 + e2)
≤ f̂(x + e1 − e2) + f̂(x + e1)
= f̂(y + e1) + f̂(y + e1 + e2)
≤ f̂(y + 2e1) + f̂(y + e2)
= f̂(x + 2e1 − e2) + f̂(x) ,

thus proving (18). That ĝ also satises C.3.b can be shown in a similar way and is thus not
repeated here.

Therefore we conclude that if f̂ ∈ F̂ then ĝ = T1f̂ ∈ F̂ , proving the lemma.

The following lemma is also stated in [21].
Lemma 6: If f̂(x) ∈ F̂ , then the restriction of f̂(x) to non-negative values is in F .

We are now ready to prove Theorem 1, assuming two users and single-slot frames.

12

Proof of Theorem 1:
(a) We prove the result by induction. First note that if c(·) ∈ F , then c̄(x) ∈ F by Lemma

3, therefore VT (x) = c̄(x) is in F . This completes the induction basis.

Next we show that if Vt+1(x) ∈ F , then Vt(x) ∈ F .
By Lemmas 2 and 4 we have that if Vt+1(x) ∈ F , then Ŝt+1(x) ∈ F̂ . Therefore by Lemma

5, T1Ŝt+1(x) ∈ F̂ . Using Lemma 6 we have that T1Ŝt+1(x) restricted to non-negative values is
in F . Since c̄(x) ∈ F , c̄(x) + T1Ŝt+1(x) restricted to non-negative values is in F by Lemma 3,
and by Lemma 1 this value is equal to Vt(x). Thus Vt(x) ∈ F , completing the induction step.

(b) By part (a) of this theorem, Vt+1 ∈ F for all t. Therefore Ŝt+1 ∈ F . Thus by property
C.3.a we have

Ŝt+1(x + e1) + Ŝt+1(x + e1 + e2)
≤ Ŝt+1(x + 2e1) + Ŝt+1(x + e2) .

By replacing x with x− e1 − e2 we have

Ŝt+1(x− e2) + Ŝt+1(x) ≤ Ŝt+1(x + e1 − e2) + Ŝt+1(x− e1) .

Rearranging, we get

Ŝt+1(x− e2) − Ŝt+1(x− e1) ≤ Ŝt+1(x + e1 − e2) − Ŝt+1(x) .

The last inequality suggests, that if the left hand side is non-negative, then the right hand side is
also non-negative. Therefore if the optimal decision is to allocate to the rst queue when the state
is x for some x, then it is optimal to allocate the slot to the rst queue when the state is x+ e1.
Similarly using C.3.b we can show that if the optimal decision is to allocate to the second queue
when the state is x, then it is optimal to allocate the slot to the second queue when the state is
x + e2. We can dene the threshold as following.

ht(x1) = min{x2|Ŝt+1(x − e2) ≤ Ŝt+1(x − e1)}.

ht(x1) = ∞ when the above set is empty. If we have x2,t ≥ ht(x1,t) then the optimal policy is
to assign the slot at time t to queue 2, otherwise the optimal decision rule is to assign the slot to
queue 1 (if the set is empty then the threshold is innity), proving the optimality of a threshold
policy.

IV. MULTIPLE SLOT BATCH ALLOCATION

In this part we consider the problem of allocating M > 1 slots for each time frame. The
following example shows that in general a sequential allocation of slots does not necessarily lead
to the optimal policy for allocating M slots.

Example 1: Suppose T = 2 and let p1(0) = p2(0) = 1, i.e. there are no arrivals. Let b1,0 = 3,
b2,0 = 2, and c(bt) = b2

1,t ·b2,t. All cost quantities are in some unspecied unit. Finally let M = 2.
Since T = 2, the queues only get to transmit during the second frame. The queue occupancy thus
remains the same for t = 0 and t = 1 no matter what strategy is used. Therefore to minimize the
total cost, we need only focus on t = T = 2 and minimize the cost at time t = 2.

It can be easily veried that the optimal allocation at t = 1 is x∗
1,1 = 0, x∗

2,1 = 2, resulting in
a cost of zero at t = 2.

Now consider the sequential allocation, which proceeds as follows. Suppose we only have
one slot in the frame to allocate and it needs to be allocated in such a way to minimize the cost
at t = 2. If the slot is allocated to queue 1, the cost at t = 2 will be 8 and if the slot is allocated

13

to queue 2, the cost at t = 2 will be 9. Thus the optimal allocation of the rst slot is to queue
1. The updated state at t = 1 given the rst allocation (to queue 1) is d1,t = d2,t = 2. For the
allocation of the second slot, again suppose we only have one slot in the frame to allocate to
minimize the cost at t = 2. It can be seen that the second slot should also be allocated to the
rst queue. These two sequential steps result in both slots being allocated to queue 1 and none
to queue 2, with a cost of 3 at t = 2. Obviously this policy is not optimal.

In this section we show that under certain conditions on the cost function the optimal policy
can be achieved by sequentially allocating the slots according to the optimal policy for a single
slot allocation. It turns out that the required conditions for this property are the same conditions
as we dened for the functions to belong to F .

Definition 5: Dene recursively the operator T k
1 as:

T k
1 f(x) = T1(T k−1

1 f(x)) .

Theorem 2: If f̂(x) ∈ F̂ , then we have TM f̂(x) = TM
1 f̂(x) .

Proof: We use induction on M , the number of slots. Note that the induction basis for M = 1
is trivially true. Suppose that the theorem holds for M = m, i.e., Tmf̂(x) = Tm

1 f̂(x), we want
to show that it holds for M = m + 1.

Denote by w1

w1 = argminw:w1+w2=m{f̂(x − w)} . (20)

Suppose we have m + 1 slots to assign. By denition we have

Tm+1f̂(x) = min
w:w1+w2=m+1

{f̂(x − w)} . (21)

Below we show that the allocation w1 + ei, i ∈ {1, 2}, is at least “as good as” all allocations of
the form w1 + (k + 1)ei − kej , for all 1 ≤ k ≤ w1

j , in minimizing the right hand side of (21),
i.e. we want to show the following for i)= j:

f̂(x − (w1
i + k + 1)ei − (w1

j − k)ej)

≥ f̂(x − (w1
i + 1)ei − w1

jej) . (22)

Since w1 + (k + 1)ei − kej , 1 ≤ k ≤ w1
j , denotes all possible allocations between the

two users other than the allocation denoted by w1 + ei, if we can show (22) then we will have
established that w1 + ei minimizes the right hand side of (21).

It is thus sufcient to show that if w1 + (k + 1)ei − kej minimizes the right hand side
of (21), then w1 + ei will also minimize the right hand side of (21). Therefore, assume that
w1 + (k + 1)ei − kej minimizes the right hand side of (21) and let w2 = w1 + ei.

We proceed by rst showing that the following holds for all values 1 ≤ k ≤ w1
j :

f̂(x − (w1
i + k)ei − (w1

j − k)ej)

− f̂(x − w1
i ei − w1

jej)

≤ f̂(x − (w1
i + k + 1)ei − (w1

j − k)ej)

− f̂(x − (w1
i + 1)ei − w1

jej) . (23)

14

We show this by using induction on k. First consider k = 1, i.e., we need to show

f̂(x− (w1
i + 1)ei − (w1

j − 1)ej)

− f̂(x− w1
i ei − w1

jej)

≤ f̂(x− (w1
i + 2)ei − (wj − 1)ej)

− f̂(x− (w1
i + 1)ei − w1

jej) . (24)

(24) can be obtained by replacing x with x − (w1
i + 2)ei − w1

jej in property C.3 (use C.3.a if
i = 1 and use C.3.b if i = 2). Thus the induction basis is established.

Now assume (23) is true for k = l, 1 ≤ l < w1
j , we want to show that is also true for

k = l + 1. In property C.3 (use C.3.a if i = 1 and use C.3.b if i = 2), substituting x for
x− (w1

i + l + 2)ei − (w1
j − l)ej gives

f̂(x − (w1
i + l + 1)ei − (w1

j − l − 1)ej)

− f̂(x − (w1
i + l)ei − (w1

j − l)ej)

≤ f̂(x − (w1
i + l + 2)ei − (wj − l − 1)ej)

− f̂(x − (w1
i + l + 1)ei − (w1

j − l)ej) . (25)

Combining the induction hypothesis and (25) gives the result for case of k = l + 1 and the
induction is complete.

Next note that the following inequality holds due to the optimality of w1 when there are m
slots to allocate, for 1 ≤ k ≤ w1

j .

f̂(x − (w1
i + k)ei − (w1

j − k)ej) ≥ f̂(x − w1
i ei − w1

jej) .

Therefore the left hand side of (23) is always greater than or equal to zero. Thus the right hand
side will also be greater than or equal to zero, i.e.,

f̂(x − (w1
i + k + 1)ei − (wj − k)ej)

≥ f̂(x − (w1
i + 1)ei − w1

jej) .

This means that w2 minimizes the right hand side of equation (21).
The above result shows that the minimizer on the right hand side of (21) can be found by

taking the minimum between w1 + e1 and w1 + e2.

Following this result, for the (m + 1)-th allocation slots, we have

Tm+1f̂(x) = min
i∈{1,2}

{f̂(x − w1 − ei)} ,

where w1 is the minimizer for m slots, i.e.,

f̂(x − w1) = Tmf̂(x) .

Thus we have Tm+1f̂(x) = T1Tmf̂(x), Using the induction hypothesis. Thus we have Tm+1f̂(x) =
Tm+1

1 f̂(x), which completes the proof.

Consider two users and M allocation slots in each time frame. Also assume that the optimal
policy is known for the single slot allocation. We next use Theorem 2 to show that the same
policy for a single slot allocation can be repeatedly/sequentially used M times, and it results in
the optimal policy for allocating the batch of M slots.

15

Theorem 3: Consider two users and M slots to allocate. If c(·) ∈ F , then Vt(x) ∈ F for all
t ≤ T . Furthermore, the policy that sequentially assigns each slot optimally given the state and
the previous allocations, is optimal.

Proof: We use backward induction on t. Since c(·) ∈ F , we have VT (x) ∈ F , which
establishes the induction basis.

Next suppose that Vt(x) ∈ F . We want to show that Vt−1 ∈ F . Since Vt(x) ∈ F , Ŝt(x) ∈ F̂ ,
using Theorem 2 we have for x ∈ Z2

+

Vt−1(x) = c̄(x) + TM Ŝt(x)
= c̄(x) + TM

1 (Ŝt(x)) . (26)

By Lemma 5 we have T M
1 (Ŝt(x)) ∈ F̂ , therefore its restriction to Z2

+ is in F by Lemma 6.
Also we have c̄(x) ∈ F since c(b) ∈ F . Therefore the right hand side of the above equation is
in F by Lemma 3, thus Vt−1(x) ∈ F , completing the induction.

Next we show that this allocation problem reduces to optimally allocating a single slot. It
should be evident from (26) that nding the allocation vector w : w1 + w2 = M by solving
TM Ŝt(x) is equivalent to solving T M

1 (Ŝt(x), which implies allocating one slot at a time. More
specically, consider allocating M slots within frame t. Having already allocated m slots (m <
M) within the frame with allocation w : w1 + w2 = m, the optimal allocation of the next slot,
by denition of T1Tm, is

arg mini=1,2{EaVt−1([x + a − w − ei]+)} ,

which simply shows that it is optimal to allocate the (m + 1)-th slot given the system state x
and prior allocation in the same frame w. That is, the problem can be solved as follows: allocate
slots sequentially by assigning the (m + 1)-th slot optimally given the state of the system and
previous allocation in the same frame.

The above result shows that the M slot allocation problem reduces to the single slot allocation
problem.

V. INFINITE HORIZON DISCOUNTED COST AND AVERAGE COST

In this section we study the properties of the optimal policy when T → ∞. Note that the cost
dened in (1) is innite as T → ∞, except for certain special cases. In this section we consider
two alternatives for dening the cost over an innite horizon, the discounted cost and the average
cost.

A. Discounted Cost
Consider the discount factor β (0 < β < 1), and dene the t step minimum cost function

Wt(x) = min
π

Eπ{
t∑

u=1

βu−1c̄(xu)|x1 = x} . (27)

Note here t denotes the number of frames to go (or the horizon), rather than the actual time as
in previous sections. It can be shown that Wt(x) satises the following recursion:

W0(x) = 0; (28)
Wt(x) = c̄(x) + β min

w:w1+w2=M
Ea[Wt−1([x + a −w]+)] .

16

Definition 6: Dene R̂(x) : Z2 → R ∪ {∞} as follows:

R̂t(x) =
∑

a

p(a)Wt([x + a]+). (29)

The following lemma then follows directly.
Lemma 7: For all values 0 < t < T , Wt(x) is equal to c̄(x) + βTM R̂t−1(x) restricted to

x ∈ Z2
+.

Lemma 8: Consider two users and M slots to allocate. If c(·) ∈ F , then Wt(x) ∈ F for all
t ≥ 0.

The proof of this theorem is similar to that of the same result for Vt in the previous section,
except that instead of backward induction we need to use forward induction for W t, noting that
W0(x) = 0 and thus W0(x) ∈ F . The complete proof is not presented for brevity.

Dene the innite horizon cost as follows:

W∞(x) = min
π

Eπ{ lim
t→∞

t∑

u=1

βu−1c̄(xu)|x1 = x} . (30)

Note that c(x) is not necessarily bounded. However, if we have c(x) ≥ 0 for all x ≥ 0, then
W∞(x) satises the following (for more details and proof see [22], Chapter 5.4).

W∞(x) = c̄(x) + β min
w:w1+w2=M

Ea[W∞([x + a − w]+)]

W∞(x) = lim
t→∞

Wt(x) . (31)

Theorem 4: Consider two users and M slots to allocate. If c(·) ∈ F and is non-negative,
then W∞(x) ∈ F and the optimal policy for a single slot allocation is of the threshold type.
Furthermore, the policy that assigns each slot optimally given the state and the previous allocation
in the same frame, is optimal.

Proof: Note that Wt(x) ∈ F for all t and that the set F is closed under point-wise limit
of functions, i.e. if f1, f2, · · · is a sequence of functions and fi ∈ F , ∀i, and if f = limn→∞ fn,
then f ∈ F . Therefore by using Lemma 8 and Equation (31) we have W∞(x) ∈ F . The rest of
the theorem follows from the same arguments used in the proofs of Theorems 1 and 3.

B. Average Cost
One may also choose to minimize the average cost over time, rather than discounted cost.

Consider the following cost function:

J̄π = Eπ[C̄|b0,w0], C̄ = lim
T→∞

1
T

T∑

t=1

c(bt), (32)

Recall the innite horizon discounted cost dened before:

Wβ(x) = min
π

Eπ{ lim
t→∞

t∑

u=1

βu−1c̄(xu)|x1 = x} . (33)

Here we have used Wβ(x) to denote this cost rather than W∞(x) as used before. This is because
in this section we will focus on this cost as a function of the value β, while always taking the
horizon to be innite.

Recall we have shown that the following holds in (31).

Wβ(x) = c̄(x) + β min
w:w1+w2=M

Ea[Wβ([x + a − w]+)] . (34)

17

Consider the following assumption:
Assumption 1: For any state x > 0 there exists a policy πx such that starting from state x,

it takes the queue-size back to state 0 with nite expected number of steps and nite expected
cost. Let the expected (non-discounted) cost for this transition be denoted by U(x).

Dene hβ(x) as follows:
hβ(x) = Wβ(x) − Wβ(0).

If βn → 1−, then it is shown in Lemma A-3 that under Assumption 1 one can nd a subsequence
αn such that limn→∞ hαn(x) exists. We call this limit function h(x). We then have the following
theorem.

Theorem 5: Suppose c(x) ≥ 0 for all x ≥ 0 and that Assumption 1 holds. Then,
(a) There exists a nite constant J ∗ that satises the following inequality:

J∗ + h(x) ≥ c̄(x) + min
w:w1+w2=M

Ea[h(x + a)] . (35)

(b) Let π∗ be a policy that minimizes the right hand side of (35). Then π∗ is the optimal
average cost policy.

(c) J∗ is the optimum average cost.
The proof of this theorem follows closely the argument used in [23] (Chapter 7). However

for self-sufciency we have included the proof in the appendix.
Theorem 6: Consider two users and M slots to allocate. If c(·) ∈ F and is non-negative,

then h(x) ∈ F and the optimal average cost policy for a single slot allocation is of the threshold
type. Furthermore, the policy that assigns each slot optimally given the state and the previous
allocation in the same frame, is optimal.

Proof: Note that h(x) = limβ→1− Wβ(x)−Wβ(0). Since we have Wβ(x) ∈ F by Theorem
4, we conclude that h(x) ∈ F . The rest of the proof is very similar to the proofs of Theorems 1
and 3, and is not repeated for brevity.

VI. LINEAR, EQUAL HOLDING COST

In this section we consider the special case when the cost function is linear and equal for
both queues. Let c be the cost of having a packet in queue, and the cost of queue i at time
t would be cbi(t). We also assume that the arrivals to different queues are independent, i.e.
p(a) = p1(a1)p2(a2) where pi(a) is the probability of having a arrivals in queue i during a
time frame. It can be shown (see for example [15]) that a slot should always be allocated to a
queue with non-zero deterministic packets. However, when both queues have zero deterministic
parts, the allocation depends on the arrival processes. In this section we will use results from the
previous sections to characterize the optimal allocation in this case. From Section IV, it sufces
to concentrate on allocating a single slot.

Lemma 9: Suppose for two queues we have c1 = c2. Then for all x ∈ Z2
+ we have

Wt(x + e1) = Wt(x + e2).
This lemma essentially says that because the two queues are symmetric, the future cost to

go remains the same as long as the total number of packets in the system is the same, regardless
of which queue they are in. This in turn suggests that when both queues are non-empty (the
deterministic part), it is equally optimal to allocate the slot to either queue.

Proof: We use induction on t to prove the lemma. The statement is obviously true for t = 0.
Now, suppose the statement is true for t − 1, i.e Wt−1(x + e1) = Wt−1(x + e2), ∀x ∈ Z2

+. We
want to show Wt(x + e1) = Wt(x + e2).

18

We rst show that when the state is x + e1, then it is optimal to allocate the slot to the rst
queue (similarly, if the state is x+e2, then it is optimal to allocate the slot to the second queue).

Suppose the state is x + e1 for some x ≥ 0. The dynamic equation for the problem is given
in (28). The slot is allocated to the rst queue if

∞∑

a1,a2=0

p1(a1)p2(a2)Wt−1(x + a1e1 + a2e2) ≤

∞∑

a1,a2=0

p1(a1)p2(a2)Wt−1([x + (a1 + 1)e1 + (a2 − 1)e2]+) . (36)

Using the non-decreasing property of Wt−1(.) and the induction hypothesis, we have that for
any value of a1, a2 ≥ 0,

Wt−1(x + a1e1 + a2e2)
≤ Wt−1([x + a1e1 + (a2 − 1)e2]+ + e2)
= Wt−1([x + (a1 + 1)e1 + (a2 − 1)e2]+). (37)

Thus (36) holds and it is optimal to allocate the slot to the rst queue. Similar arguments can be
used to show the same for the second queue if the state is x + e2.

Now we can write

Wt(x + e1) = c̄(x + e1)

+ β
∞∑

a1=0

∞∑

a2=0

p1(a1)p2(a2)Wt−1(x + a1e1 + a2e2)

Wt(x + e2) = c̄(x + e2)

+ β
∞∑

a1=0

∞∑

a2=0

p1(a1)p2(a2)Wt−1(x + a1e1 + a2e2)

Since c̄(x+e1) = c̄(x+e2) due to the equal cost assumption, we have W t(x+e1) = Wt(x+e2),
completing the induction.

It is also easy to see in this case that if one of the queues is empty and the other is non-empty,
then it is optimal to allocate the slot to the non-empty queue. Due to space limit the formal proof
is not provided here but may be found in [15]. Next we examine the optimal allocation when
both queues are empty. Note that Lemma 9 holds true for t → ∞.

Definition 7: Let p1, p2 denote two probability measures on Z+ (We denote by P the set of
all probability measures on Z+). We say p1 is stochastically greater than p2 (in symbols p1 + p2)
if for all elements in Z+,

qp1(x) ≥ qp2(x),

where
qpi(x) =

∑

y≥x

pi(y) .

In the next theorem we show that whenever both queues have zero deterministic part, it is
optimal to allocate the next slot to the user whose arrival process is stochastically dominant.

Theorem 7: Consider time horizon t (t can be ∞) and suppose the initial state is x1 = 0.
Let pi(a) denote the probability that there will be a arrivals in queue i, i = 1, 2, during a time
frame. If pi + pj , then it is optimal to allocate the slot to user i.

19

Proof: Suppose p1 + p2. We show that it is optimal to allocate the packet to queue 1. Note
that it is optimal to allocate the slot at time t = 1 to the rst queue if

∞∑

a1=0

∞∑

a2=0

p1(a1)p2(a2)[Wt−1(a1e1 + [a2 − 1]+e2)

− Wt−1([a1 − 1]+e1 + a2e2)] ≥ 0.

By separating the sums conditioning on a1, a2 and using Lemma 9 we get:
∞∑

a1=0

∞∑

a2=0

p1(a1)p2(a2)[Wt−1(a1e1 + [a2 − 1]+e2) − Wt−1([a1 − 1]+e1 + a2e2)]

= p2(0)
∞∑

a1=1

p1(a1)[Wt−1(a1e1) − Wt−1([a1 − 1]+e1)] − p1(0)
∞∑

a2=1

p2(a2)[Wt−1(a2e2) − Wt−1([a2 − 1]+e2)]

=
∞∑

a=1

(p2(0)p1(a) − p1(0)p2(a)) · [Wt−1(ae1) − Wt−1((a − 1)e1), (38)

where the rst equality is due to Lemma 9 and the second equality uses the relation W t−1(ae1) =
Wt−1(ae2), which can be shown using Lemma 9 and a simple induction.

By the monotonicity and convexity of Wt−1 the expression in (38) is greater than zero if for
any a′ > 0 we have:

∞∑

a=a′

(p2(0)p1(a) − p1(0)p2(a)) ≥ 0 ⇐⇒ p2(0)
∞∑

a=a′

p1(a) ≥ p1(0)
∞∑

a=a′

p2(a),

which is satised whenever p1 + p2.
Let p1(a), p2(a) denote the arrival processes for queue 1 and 2, respectively. Using the

result from Section IV it can be seen that for the case of multiple slot allocation (when the
deterministic part of both queues is zero), the following algorithm nds the optimal policy if the
sufcient condition of Theorem 7 is satised in each step.

————————————————————-
m = 0
(*) If pi ≺ pj allocate the (m + 1)-th slot to queue j
wj = wj + 1
For i = 1, 2, let pi(a) → pi(a + wi)
m = m + 1
If m < M go to (∗)
Stop
————————————————————-
Putting the above results together, we see that an optimal policy for this linear equal cost

scenario allocates every slot to an non-empty queue if it exists, and otherwise allocates it to a
queue with stochastically dominant arrival process (updated as shown above). This policy further
reduces to, in the case of identical arrival processes, one that allocates slots in a max-min fair
fashion among queues when they are all empty [15]. Interestingly, it was also shown in [15] that
in this special case (equal cost, identical arrival) the optimality of of this policy holds for any
number of queues (N ≥ 2). Thus this special case is an example where the main results derived
in this paper extend to more than two queues.

20

VII. SOME NUMERICAL EXAMPLES

In this section we illustrate some features of the threshold property of the optimal policy in
allocating a single slot using numerical examples. Here “time” refers to the actual step or time
in the optimization and not “time to go”. We will also denote by π∗ the greedy policy dened as
follows. Policy π∗ allocates the next slot to the queue that minimizes the cost only for the next
step ahead. This policy is optimal for step T − 1, but it is not necessarily optimal in general.

We rst show the effect of time on the threshold via the following example. Consider T =
30, p1(0) = 0.1, p1(1) = 0.1, p1(2) = 0.8, p2(0) = 0.8, p2(1) = 0.1 and p2(2) = 0.1. We want
to compare the optimal policy at different time instants. As we proved earlier, at each time instant
the optimum policy is of the threshold type. The threshold however may vary over time. Figure
2 illustrates the difference between policies in different time instants when c(x) = x2

1 + x2
2. For

example, the threshold line for t = 20 indicates that at time 20, for all queue sizes on or below
this line it is optimal to allocate to the rst queue and for all points above this line it is optimal
to allocate to the second queue. Note that we do not discount the cost in this case. As t increases
(with fewer steps to go), the optimal threshold converges to the greedy policy π ∗ (i.e., t=29).

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

number of packets in queue 1

nu
m

be
r o

f p
ac

ke
ts

 in
 q

ue
ue

 2

t = 10
t = 20
t = 29

Fig. 2. The effect of time on the optimal threshold level

Consider now the same parameters and cost function as before, but this time with cost
discounted by β. Figure 3 shows the thresholds at t = 10. It can be seen that as β decreases
(heavier and heavier discount, i.e., future becomes less and less important), the optimal policy
converges to the greedy policy that optimizes only the next step.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

number of packets in queue 1

nu
m

be
r o

f p
ac

ke
ts

 in
 q

ue
ue

 2

beta = 1
beta = 0.9
beta = 0.8
beta = 0.6
greedy policy

Fig. 3. The effect of the discount factor on the optimal threshold level

21

Finally, Figure 4 shows the effect of cost function on the optimal threshold. Same parameters
are used with β = 1, and c(x) = xn

1 + xn
2 where n is a variable. Figure 4 compares the optimal

threshold at t = 10 for n = 2, 3 and 5. As can be seen, as n increases, the threshold moves in
favor of the user with more aggressive packet arrivals.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

number of packets in queue 1

nu
m

be
r o

f p
ac

ke
ts

 in
 q

ue
ue

 2

n = 2
n = 3
n = 5
greedy policy

Fig. 4. The effect of the cost function on the optimal threshold level

VIII. CONCLUSION

In this paper we studied the problem of optimal bandwidth allocation to two users with
delayed information about the queue occupancy and proved that when the cost function satises
certain conditions the optimal single slot assignment is of the threshold type, and that optimal
multiple slot assignment can be obtained by repeatedly using optimal single slot assignment. We
also provided sufcient conditions under which the same properties hold over an innite horizon,
for both the discounted cost and the average cost. We then applied the results to the case of
linear and equal holding cost and proved that when both queues have zero deterministic parts, it
is optimal to serve the queue with stochastically dominating arrival process.

Note that the assumption that the arrival process does not change with time did not appear in
any of the proofs in Sections III and IV. We essentially used induction at each step and showed that
the properties of F propagate under any arrival process for the previous time interval. Therefore,
the results of Sections III and IV can be generalized to the case where the arrival process changes
with time. One key generalization of this work is to the case of more than two queues. This
extension is not straightforward and is part of our ongoing research.

APPENDIX

In this appendix we present the proof for Theorem 5. A few lemmas are needed to prove the
Theorem.

Lemma A-1: Wβ(x) is non-decreasing in x. Moreover, under Assumption 1 we have
Wβ(x) − Wβ(0) ≤ U(x) . (A-1)

Proof: In order to show Wβ(x) is non-decreasing we need to show Wβ(0) ≤ Wβ(x). Fix
β. We use induction on t to show that Wt(x) (as dened in (28) is non-decreasing for all t. First
note that this is true for t = 1, since c(x) is non-decreasing. Assuming it holds for t, we want to
show that it holds for t + 1. Note that we have

Wt+1(x) = c̄(x) + β min
w:w1+w2=M

Ea[Wt([x + a − w]+)],

Wt+1(x + ei) = c̄(x + ei) + β min
w:w1+w2=M

Ea[Wt([x + ei + a − w]+)] .

22

The result for t+1 follows from the non-decreasing property of c(·) and Wt(·), using the induction
hypothesis:

Wt(x) ≤ Wt(x + ei) . (A-2)

Taking the limit on both sides of (A-2) and using (31) we get Wβ(x) ≤ Wβ(x+ei), thus Wβ(x)
is non-decreasing in x.

To show that (A-1) holds, consider the policy π∗ that follows policy πx until the rst time
state 0 is reached and then follows the optimal policy. Therefore we have

Wβ(x) ≤ W π∗

β (x) = U(x) + Wβ(0),

thus proving the lemma.
Lemma A-2: Suppose c(x) ≥ 0 for all x ≥ 0. Then under Assumption 1 the quantity

(1 − β)Wβ(0) is bounded for β ∈ (0, 1).
Proof: Note that when c(x) ≥ 0, Assumption 1 implies that Eπ0 [c(xt)|x1 = 0] ≤ U(0).

This can be argued as follows. Under policy π0, state 0 is a recurrent state and thus any state at
time t lies in between two consecutive occurrences of state 0. Since the expected sum of all costs
in between those two occurrences is less than or equal to U(0) and all costs are non-negative,
the cost at each time step has to be less than or equal to U(0). Thus we have

(1 − β)Wβ(0) ≤ (1 − β)W π0

β (0) = (1 − β)Eπ0 [lim
t→∞

t∑

u=1

βu−1c(xu)|x1 = 0]

= (1 − β) lim
t→∞

t∑

u=1

βu−1Eπ0 [c(xu)|x1 = 0]

≤ (1 − β) lim
t→∞

t∑

u=1

βu−1 · U(0) = U(0) ,

where the rst inequality is due to the fact that π0 is not necessarily the optimal policy. The
exchange of the limit and expectation is a result of the assumption that c(x) ≥ 0 (and consequently
the fact that the sum inside the expectation is non-decreasing) and the last inequality holds by
Assumption 1.

Lemma A-3: Let βn be a sequence of real numbers such that βn → 1− as n → ∞. If
Assumption 1 holds, then there exists a subsequence αn such that

lim
n→∞

(Wαn(x) − Wαn(0)) = h(x) ,

where 0 ≤ h(x) ≤ U(x) for all x > 0.
Proof: Note that hβn

= Wβn
(x)−Wβn

(0) ≤ U(x) by Lemma A-1. The sequence hβn
can

be considered as a point in the product topology
∏∞

n=1[0, U(x)] which is a compact space by
Tychnoff theorem [24]. Therefore there exists a subsequence αn for which hαn(x) converges. Let
h(x) be the limit point of hαn(x). Since 0 ≤ hαn(x) ≤ U(x) for all n we have 0 ≤ h(x) ≤ U(x).

Proof of Theorem 5: Take Equation (34), subtract βWβ(0) from both sides, and add and
subtract Wβ(0) from the left hand side. We get

(1 − β)Wβ(0) + (Wβ(x) − Wβ(0))
= c̄(x) + β min

w:w1+w2=M
Ea[Wβ([x + a − w]+) − Wβ(0)] . (A-3)

23

Let βn be a sequence of real numbers such that βn → 1− as n → ∞ and let αn be a
subsequence as dened in Lemma A-3. We have αn → 1−. Since the quantity (1 − αn)Wαn(0)
is bounded by Lemma A-2, there exists a subsequence γn such that limn→∞ Wγn(0) exists and
is nite. Let this value be J ∗.

Replace β with γn in Equation (A-3) and take the limit inmum on both sides. Using Fatou’s
Lemma [23] we obtain:

J∗ + h(x) ≥ c̄(x) + min
w:w1+w2=M

Ea[h([x + a − w]+)]. (A-4)

Now assume that policy π∗ minimizes the right hand side of (35). First we show that J̄π∗ ≤ J∗.
Let x1,x2, · · · ,xt+1 be the (random) states that are visited at times 1, 2, · · · , t + 1, then using
(A-4) we have (note that Ea[[xt + a − w]+] is nothing but E[xt+1|xt]),

J∗ + h(x1) ≥ c̄(x1) + E[h(x2)|x1],
J∗ + h(x2) ≥ c̄(x2) + E[h(x3)|x2],

· · ·
J∗ + h(xt) ≥ c̄(xt) + E[h(xt+1)|xt] .

Taking the expected value on both sides, adding the equations and dividing by t we get

1
t

t∑

u=1

E[c(xu)] ≤ J∗ +
E[(h(x1) − h(xt+1))]

t
≤ J∗ +

E[h(x1)]
t

, (A-5)

where the second inequality is due to the fact that E[h(xt+1)] ≥ 0. Taking the limit on both sides
of (A-5) as t → ∞ and using the fact that h(x) ≤ U(x) we have J̄π∗ ≤ J∗.

Now consider any other policy π ′. We have (see [25]),

J̄π∗ ≤ J∗ ≤ lim sup
β→1−

(1 − β)Wβ(x) ≤ lim sup
β→1−

(1 − β)W π′

β (x) ≤ J̄π′
. (A-6)

Therefore π is the optimal average cost policy. On the other hand if we let π ′ = π∗, then we can
see that J∗ is the optimal average cost, thus proving Theorem 5.

Note 1: The major step in extending the results from the discounted innite horizon case
to the average cost problem is Theorem 5. This step has been justied in the literature in many
scenarios. For example for the case of nite state space ([26]) or bounded cost functions [20].
For countably innite state space and unbounded cost functions, [21] has approached the average
cost problem for linear cost functions through a limit of nite horizon problems. Other methods
can be found in [27], [28] that have approached the problem via the limit of discounted cost
problems. The method used here is essentially the same as the one used in [23]. The assumptions
used in [23] are different than Assumption 1 here. However we use the lemmas to show that if
Assumption 1 holds, then the three assumptions in [23] will hold and then use the same argument
used there to prove Theorem 5.

REFERENCES

[1] C. Buyukkoc, P. Varaiya, and J. Warland, “The cµ-rule revisited,” Advances in Applied Probability, vol. 17, pp.
237–238, 1985.

[2] J. S. Baras, A. J. Dorsey, and A. M. Makowski, “Two competing queues with linear costs and geometric service
requirements: The µc rule is often optimal,” Adv. Appl. Prob., vol. 17, pp. 186–209, 1985.

[3] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel queues with randomly varying
connectivity,” IEEE Transactions on Information Theory, vol. 39, no. 2, pp. 466–478, March 1993.

24

[4] L. Tassiulas, “Scheduling and performance limits of networks with constantly changing topology,” IEEE
Transactions on Information Theory, vol. 43, no. 3, pp. 1067–73, May 1997.

[5] N. Bambos and G. Michailidis, “On the stationary dynamics of parallel queues with random server connectivities,”
Proc. 43th Conference on Decision and Control (CDC), pp. 3638–43, 1995, New Orleans, LA.

[6] C. Lott and D. Teneketzis, “On the optimality of an index rule in multi-channel allocation for single-hop mobile
networks with multiple service classes,” Probability in the Engineering and Informational Sciences, vol. 14, no.
3, pp. 259–297, July 2000.

[7] M. J. Neely, E. Modiano, and C. E. Rohrs, “Power allocation and routing in multibeam satellites with time-varying
channels,” IEEE/ACM Transactions on Networking, Vol. 11, N0. 1, pp. 138–152, 2003.

[8] M. J. Neely, E. Modiano, and C. E. Rohrs, “Power and server allocation in a multibeam satellite with time-varying
channels,” in Proc. IEEE INFOCOM, vol. 3, pp. 1451–1460, 2002.

[9] J. Kuri and A. Kumar, “Optimal control of arrivals to queues with delayed queue length information,” IEEE
Transactions on Automatic Control, vol. 40, no. 8, pp. 1444–1450, August 1995.

[10] F. J. Beutler and D. Teneketzis, “Routing in queueing networks under imperfect information: Stochastic dominance
and thresholds,” Stochastics and Stochastic Reports, Vol. 26, pp. 81–100, 1989.

[11] P. Whittle, “Restless bandits: Activity allocation in a changing world,” A Celebration of Applied Probability, ed.
J. Gani, Journal of applied probability, vol. 25A, pp. 287–298, 1988.

[12] R. Weber and G. Weiss, “On an index policy for restless bandits,” Journal of Applied Probability, vol. 27, pp.
637–648, 1990.

[13] J. Nino-Mora, “Restless bandits, patial conservation laws, and indexability,” Advances in Applied Probability,
Vol. 33, no. 1, pp. 76–98, 2001.

[14] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of optimal queueing network control,” Mathematics
of Operations Research, Vol. 24, No. 2, pp. 293–305, May 1999.

[15] N. Ehsan and M. Liu, “Optimal bandwidth allocation with delayed state observation and batch assignment,”
EECS Technical Report CGR 03-11, University of Michigan, Ann Arbor, 2003.

[16] N. Ehsan and M. Liu, “On the optimality of an index policy for bandwidth allocation with delayed state observation
and differentiated services,” in Proc. IEEE INFOCOM, Hong Kong, March 2004.

[17] G. M. Koole, “Structural results for the control of queueing systems using event-based dynamic programming,”
Queueing Systems,Vol. 30, pp. 323–339, 1998.

[18] E. Altman and G. M. Koole, “On submodular value functions of dynamic programming,” Technical Report 2658,
INRIA Sophia Antipolis, 1995.

[19] E. Altman and P. Nain, “Closed-loop control with delayed information,” Performance Evaluation Review, vol.
20, no. 1, pp. 193–204, 1992.

[20] P. R. Kumar and P. Varaiya, Stochastic Systems, Estimation, Identification and Adaptive Control, Prentice Hall,
1986.

[21] B. Hajek, “Optimal control of two interacting service stations,” IEEE Trans. Auto. Control. AC-29, pp. 491–499,
1984.

[22] D. P. Bertsekas, Dynamic Programming, Deterministic And Stochastic Models, Prentice Hall, 1987.
[23] L. I. Sennott, Stochastic Dynamic Programming and the Control of Queueing Systems, Wiley Series in Probability

and Statistics, 1999.
[24] J. R. Munkres, Topology, Prentice Hall, second edition, 2000.
[25] L. Sennott, “A new condition for the existence of optimum stationary policies in average cost morkov decision

processes-unbounded cost case,” Proc. 25th Conf. Decision and Control, Athens, Greece, pp. 1719–1721, 1986.
[26] S. Ross, Applied Probability Models with Optimization Applications, Holden-Day, San Francisco, 1970.
[27] F. Lu and R. F. Serfozo, “M/m/1 queueing decision processes with monotone hysteritic optimal policies,” Operat.

Res., vol. 32, pp. 1116–1132, 1984.
[28] R. R. Weber and S. Stidham, “Optimal control of service rates in networks of queues,” Adv. Appl. Prob., pp.

202–218, 1987.

