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Abstract

This report considers low resolution scalar quantization. Specifically, it considers entropy-

constrained scalar quantization for memoryless Gaussian and Laplacian sources with both

squared and absolute error distortion measures. The slope of the operational rate-distortion

functions of scalar quantization for these sources and distortion measures is found. It is

shown that in three of the four cases this slope equals the slope of the corresponding Shan-

non rate-distortion function, which implies that asymptotic low resolution scalar quantization

with entropy coding is an optimal coding technique for these three cases. For the case of a

Gaussian source and absolute error distortion measure, however, the slope at rate equal zero

of the operational-rate distortion function of scalar quantization is infinite, and hence does not

match the slope of the corresponding Shannon rate-distortion function. Consequently, scalar

quantization is not an optimal coding technique for Gaussian sources and absolute error dis-

tortion measure. The results are obtained via analysis of uniform and binary scalar quantizers,

which shows that in low resolution their operational rate-distortion functions, in all four cases,

are the same as the corresponding operational rate-distortion functions of scalar quantization

in general. Lastly, the slope of the Shannon rate-distortion function (the function itself is not

known) at rate equal zero is found for a Laplacian source and squared error distortion measure.

1 Introduction

In this report we examine the rate-distortion performance of scalar quantization in the low res-

olution regime where rate is small. While there are well known, asymptotically accurate, closed
∗This work was supported by NSF Grant ANI-0112801. It was also supported by the Center for the Mathematics

of Information at California Institute of Technology. Portions of this report have been submitted to the IEEE

Transactions on Information Theory.

1



form formulas for the rate-distortion performance of a variety of quantization schemes in the high

resolution, i.e. high encoding rate, regime, there is a shortage of similar formulas for the low resolu-

tion, i.e. low rate, regime. As a step in this direction, we focus on scalar quantization with entropy

coding. For several memoryless sources, namely, exponential, Laplacian and uniform, the low rate

performance of such codes was found in or derives directly from previous work giving closed form

expressions for the operational rate-distortion function [1, 2].

The main contribution of this report is the derivation of a low rate performance for a memoryless

Gaussian source with squared and absolute error distortion measures, for which no closed form

expressions exist or seem feasible. Furthermore, the method used to derive the Gaussian works also

for the Laplacian source, and so we provide derivations pertaining to this source as well. Notice,

however, that the Laplacian case has been already derived in [1] in a different way.

To determine the low resolution performance, we analyze the operational rate-distortion func-

tion, R(D), of entropy-constrained scalar quantization in the low rate region. R(D) is defined

to be the least output entropy of any scalar quantizer with mean-squared error D or less. As it

determines the optimal rate-distortion performance of this kind of quantization, it is important to

understand how R(D) depends on the source probability density function (pdf) (we consider mem-

oryless, stationary Gaussian and Laplacian sources, which are completely characterized by their

first-order pdfs) and how it compares to the Shannon rate-distortion function. For example, the

performance of conventional transform coding, which consists of an orthogonal transform followed

by a scalar quantizer for each component of the transformed source vector, depends critically on

the allocation of rate to component scalar quantizers, and the optimal rate allocation is determined

by the operational rate-distortion functions of the components [3, p. 227].

While R(D) can be determined numerically with various quantizer optimization algorithms [1],

[4] - [11], closed form formulas for R(D) are known only for the exponential [1] and uniform [2]

sources. A general closed form expression is known only for the high resolution, i.e. high rate,

region [12], namely,

R(D) = h − 1
2

log(12 D) + oD→0 , (1)

where h = − ∫ ∞
−∞ f(x) log2 f(x) dx is the differential entropy of the quantized source, f is its pdf,

and oD→x denotes a quantity that goes to zero as D → x.

In the low resolution region, it is well understood that R(D) approaches zero as D approaches

Dmax, where Dmax is the minimum distortion attainable with zero rate. Accordingly, one obtains

a first-order approximation to R(D) in this region by finding the slope of R(D) at D = Dmax,
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namely,

R(D) = s
(
1 − D

Dmax

) [
1 + oD→Dmax

]
, (2)

where s is a slope determining factor, namely, it is the magnitude of the slope with respect to

normalized distortion, and where the assumption throughout this report is that in oD→Dmax
, D goes

to Dmax from below.

The parametric formula of Sullivan [1] for the exponential source and of Gyorgy and Linder [2]

for the uniform source imply s = 0 and s = ∞, respectively, for both squared and absolute error

distortion measures. Likewise, s = 0 for the Laplacian source with both distortion measures [1].

Whereas these calculations are enabled by the special tractability of exponential and uniform pdfs,

the principal result of this report uses, primarily, tail behavior to find the slope determining factors

for a Gaussian source with both squared and absolute error distortion measures, which are log2 e
2

and ∞, respectively.

As a result, for the aforementioned sources, whose low resolution slope determining factors are

summarized in Table 1, we now have simple, accurate approximations to the performance of optimal

entropy-constrained scalar quantization in both the high and low resolution regions, as illustrated

in Figure 1.

exponential Laplacian uniform Gaussian

squared error 0 0 ∞ log2 e
2

absolute error 1 log2 e ∞ ∞

Table 1: Slope determining factor s of the operational rate-distortion function R(D) at D = Dmax.

It is interesting to compare the low resolution behavior of R(D) for a given source pdf to that

of the Shannon rate-distortion function, denoted R(D), of a stationary memoryless source with the

same pdf. Since R(D) represents the best performance attainable by any quantization technique,

it must be that R(D) ≤ R(D). It follows from this and the fact that, like R(D), R(D) → 0 as

D → Dmax, that the magnitude of the slope of R(D) at D = Dmax is no larger than that of R(D).

We observe from Table 1 that since the slopes of R(D) at D = Dmax equal 0 for exponential

and Laplacian sources with squared error, they must equal the slopes of the corresponding Shannon

rate-distortion functions (because the latter’s magnitudes could be no larger). Furthermore, for a

Gaussian source with squared error, and for Laplacian and exponential sources with absolute error,
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Figure 1: The dotted line is a qualitative representation of the operational rate-distortion function
of scalar quantization for some source. The dashed line indicates the section of the curve that is
well described by (1). The solid line, which shows the tangent of the curve at D = Dmax, indicates
the low resolution performance given by (2).

the Shannon rate-distortion functions are known [13, 14]1, and their slopes match the corresponding

slopes of R(D). Thus, in low resolution, scalar quantization for these sources and distortion mea-

sures is asymptotically optimal, i.e. as good as any quantization technique — vector or otherwise.

For a uniform source with both distortion measures, and for a Gaussian source with absolute error,

the slopes of R(D) at D = Dmax are infinite, whereas the slopes of the corresponding Shannon

rate-distortion functions must be finite (because they are convex). Thus, for these sources and

distortion measures, low resolution scalar quantization is far from optimal.

We conclude this introduction with a few additional comments. To derive the low resolution

slope for a Gaussian and Laplacian sources, we focus on uniform threshold quantizers with infinitely

many cells, optimal reconstruction levels, and increasingly large step sizes Δ. While it is easy to see

that under ordinary conditions, distortion D ≈ Dmax and quantizer output entropy H ≈ 0 when

Δ is large, the slope at which H approaches 0 as D → Dmax is not obvious. Nevertheless, we find
1Reference [14] makes a small error in applying its Theorem 2 to compute the rate-distortion function, with respect

to absolute error, of an exponential source. Specifically, for f(x) = αe−αx, α > 0, a correct application of this theorem

yields R(D) = αD − ln (eαD − 1) − ln 2, rather than the formula given in (24) of [14].
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accurate approximations to D and H from which the low resolution slope can be straightforwardly

determined.

Whereas the high resolution formula (1) is based on the fact that the source density can be

approximated by a constant on most sufficiently small cells, the low resolution formula (2) is based

on the fact that when the cells are large, the tail of the source probability density decays sufficiently

quickly that only a few cells contribute materially to distortion and rate. We will show precisely

which cells dominate the distortion and the entropy.

We also analyze binary quantization and show that it has low resolution performance charac-

terized by the same slope. Thus, it, too, is asymptotically as good in the low resolution region as

any quantization technique for Gaussian and Laplacian sources with both distortion measures.

As Laplacian and Gaussian are the two most commonly cited models for transform components

(usually called coefficients) [15, pp. 215-218], [16, p. 564], the fact that scalar quantization is asymp-

totically as good for them as any type of quantization in the low resolution region has interesting

ramifications for transform coding. In particular, in situations where transform coding is most ef-

fective, a sizable fraction of the coefficients must be coded at low rate. For such coefficients, simple

scalar quantization is essentially as effective as any more sophisticated quantization technique. In

contrast, to encode the coefficients that must be encoded with high resolution, scalar quantization

requires approximately one quarter bit per sample more than optimal vector quantization.

We note that scalar quantization with fixed-rate coding does not attain the rate-distortion

performance described in (2). This is because with fixed-rate coding, the smallest nonzero rate is

at least 1, which implies that for any D < Dmax, the least rate of any fixed-rate scalar quantizer

with mean-squared error D or less is at least 1. Consequently, the discussion throughout this report

is relevant to variable-rate coding, i.e. scalar quantization with entropy coding.

Lastly, we comment that this report includes derivations and results contained in two submis-

sions to the IEEE Transaction on Information Theory [17, 18]. In [17] the slope in the case of a

Gaussian source and squared-error distortion measure is derived, and in [18] the slope in the case

of a Gaussian source and absolute error is found. In addition to these results this report derives

the slope for a Laplacian source with both distortion measures. The slopes for the Laplacian case

were not included in the submitted papers because they were previously derived by Sullivan in

[1]. However, Sullivan found these slopes using methods enabled by the tractability of exponential

densities, whereas we derive them here using, essentially, the method used for the Gaussian and

squared-error case in [17]. We do this in order to demonstrate the generality of the method, which,
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we believe, could be used to derive the slope for other density/distortion measure combinations. In

comparison to [17], which considered only a Gaussian source and squared-error, to generalize the

results to absolute error and Laplacian sources we had to use Lemmas 10, 11 and A1, and Theo-

rem 14, which were not needed in [17]. Finally, [18], which focused on the Gaussian and absolute

error case, finds the slope to be infinite. This enabled a derivation tailored to this specific case,

that is simpler than that given here, which applies to several cases. For example, there is no need

to focus on uniform or binary quantizers. Instead, it directly shows that the low rate slope for

optimal quantizers of any form is infinite.

The remainder of the report is organized as follows. Section 2 provides some background and

introduces notation. Section 3 derives expressions for the asymptotic entropy of uniform quantizers

for both Laplacian and Gaussian sources. In Section 4 expressions for the asymptotic distortion of

uniform quantizers is provided for both sources and both distortion measures. Section 5 provides

asymptotic operational rate-distortion analysis for uniform quantizers and general quantizers. In

Section 6 binary quantization is considered. Section 7 offers concluding remarks. Finally, the

Appendix contains proofs of certain lemmas.

2 Background and Notation

An infinite-level uniform threshold scalar quantizer (UTQ) with step size Δ and offset 0 ≤ α < 1

is a scalar quantizer with partition having cells Sk = [(k − α)Δ, (k + 1 − α)Δ), k ∈ Z, along with

reconstruction levels rk ∈ Sk, k ∈ Z. Its quantization rule is q(x) = rk, when x ∈ Sk. The offset α

indicates the fraction of cell S0 that lies to the left of the origin. For example, when α = 1/2, cell

S0 is centered at the origin, whereas when α = 0, cell S0 begins at the origin. Let ᾱ
Δ= 1 − α.

We assume throughout that the source to be quantized is stationary, memoryless Gaussian or

Laplacian with mean zero and variance σ2, denoted N (0, σ2) or L(0, σ2), respectively (ordinarily

we do not mention stationarity or memorylessness). We will superscript quantities by G or L, and

subscript quantities by 1 or 2, to reflect the source and distortion measure used. Such superscripts

and subscripts will be omitted when they are clear from context, or when the statement made holds

for both sources or for both distortion measures. The (output) entropy of this quantizer is

H(α, Δ, σ2) = −
∞∑

k=−∞
Pk log Pk ,

where Pk denotes the probability of the kth cell, and all logarithms in this report have base 2. For
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a Gaussian source

Pk = Q
(
(k − α)

Δ
σ

)
− Q

(
(k + 1 − α)

Δ
σ

)
, (3)

where Q(x) =
∫ ∞
x

1√
2π

e−
t2

2 dt. We let G(x) = 1√
2π

e−
x2

2 denote the Gaussian density with zero

mean and unit variance. For a Laplacian source

Pk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L
(
(k−α)Δ

σ

)
−L

(
(k+1−α)Δ

σ

)
√

2
, k > 0

1 − L
(
αΔ

σ

)
+L

(
ᾱΔ

σ

)
√

2
, k = 0

L
(
(k+1−α)Δ

σ

)
−L

(
(k−α)Δ

σ

)
√

2
, k < 0

, (4)

where L(x) = 1√
2
e−

√
2|x| denotes the Laplacian density with mean zero and unit variance.

The mean-squared and absolute error of this quantizer is

ds(α, Δ, σ2) =
∫ ∞

−∞
|x − q(x)|sf(x) dx ,

where s ∈ {1, 2}, and f is the density of the source. In the case of squared error, we take the

reconstruction levels to be the centroids of their respective cells; i.e., rk =
∫
Sk

xf(x)
Pk

dx. When

considering absolute error, we take the reconstruction levels to be the medians of their respective

cells; i.e., rk is such that ∫ rk

(k−α)Δ
f(x) dx =

∫ (k+1−α)Δ

rk

f(x) dx . (5)

As is well known, these choices minimize mean-squared error and absolute error, respectively, for

a given partition.

The operational rate-distortion function of infinite-level uniform threshold quantization is the

function

Rs,U,σ2(D) = inf
0≤α<1,Δ>0:ds(α,Δ,σ2)≤D

H(α, Δ, σ2) , (6)

where s ∈ {1, 2} represents the distortion measure. This function specifies the least entropy of any

such quantizer with distortion D or less. We denote by RG
2,σ2(D),RL

2,σ2(D),RG
1,σ2(D), and RL

1,σ2(D),

the Shannon rate-distortion functions of the appropriate source and distortion measure, where the

sources have variance σ2. Two of these rate-distortion functions are known. Specifically, RG
2,σ2(D) =

1
2 log σ2

D and RL
1,σ2(D) = log

√
2D
σ . We let Dmax denote the minimum distortion attainable when

the rate is zero. Specifically, for a source with variance σ2 we have DG
max,2 = DL

max,2 = σ2,

DG
max,1 =

√
2
πσ, and DL

max,1 = σ√
2
. If the source is normalized, i.e. it has unit variance, then we

will write D∗
max to reflect this.
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We set λ to be the ratio Δ/σ and refer to it throughout as the normalized step size. We

notice that Pk depends only on α and λ, and for emphasis, we will sometimes denote it Pk(α, λ).

Consequently, H(α, Δ, σ2) = H(α, Δ/σ, 1), depends only on α and λ as well. Therefore, we will

frequently use the notation H(α, λ). Similarly, d2(α, Δ, σ2) = σ2d2(α, Δ/σ, 1) = σ2d2(α, λ, 1), and

d1(α, Δ, σ2) = σd1(α, Δ/σ, 1) = σd1(α, λ, 1). It follows from these remarks that R2,U,σ2(D) =

R2,U,1

(
D
σ2

)
and R1,U,σ2(D) = R1,U,1

(
D
σ

)
.

To find the slope of RU,σ2(D) at D = Dmax we need to consider what happens when H(α, λ) → 0

and σ2d2(α, λ, 1) → σ2 or σd1(α, λ, 1) → Dmax,1. We observe that in order for entropy to go to zero

it is necessary and sufficient that αλ → ∞ and ᾱλ → ∞. Moreover, because of this, for sufficiently

large values of D, it suffices to restrict α to be greater than 0 in the definition of Rs,U,σ2(D) in (6).

Before proceeding, we introduce notation and facts to be used later. Let the entropy function

be defined as H(. . . , z−1, z0, z1, . . .) = −∑∞
k=−∞ zk log zk, where 0 < zk ≤ 1 for all k, are a finite

or countably infinite set of numbers that need not sum to one. Let ox denote a quantity that

converges to zero as x → ∞. More generally, let ox→xo,y→yo denote a quantity that converges to

zero as x → xo and y → yo, where it will be clear from context whether x ↗ xo, x ↘ xo or simply

x → xo, and similarly for the variable y. If this quantity depends on parameters other than x

and y, its convergence to zero is uniform in such parameters. To keep notation short, we write ox

instead of ox→∞, when xo = ∞, and we let ox,y denote ox→∞,y→∞.

The following facts provide elementary bounds and approximations to the Q function, and thus

are relevant for Gaussian densities only.

Fact G1: Q(x) ≤ √
π
2 G(x), x ≥ 0.

Fact G2: Q(x) < 1
x G(x), x > 0.

Fact G3: Q(x) > 1
x(1 − 1

x2 ) G(x), x > 0.

Fact G4: Q(x) >

⎧⎪⎨
⎪⎩

1
2x G(x), x ≥ √

2

Q(
√

2), x <
√

2
.

Fact G5: Q(x) = 1
x G(x)

[
1 + ox

]
, x > 0.

Fact G6: Q((x + 1)λ) = Q(xλ) oλ, x ≥ 0; i.e. Q((x+1)λ)
Q(xλ) → 0 as λ → ∞, uniformly for x ≥ 0.

Fact G7: For all sufficiently large λ, Q
(
(x + 1)λ

)
< 1

2Q(xλ) for all x ≥ 0.

Fact G8: For all sufficiently large λ, Q(xλ) − Q((x + 1)λ) >

⎧⎪⎨
⎪⎩

1
4xλ G(xλ), xλ ≥ √

2

Q(
√

2)
2 , 0 ≤ xλ <

√
2

.
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Facts G1, G2 and G3 are demonstrated in [19, pp. 82-83]. Fact G4 truncates the lower bound of

Fact G3. Fact G5 follows from Facts G2 and G3. Fact G6 is derived by upper bounding Q((x+1)λ)
Q(xλ)

using Facts G1 and G4 when xλ <
√

2, and using Facts G2 and G4 when xλ ≥ √
2. Fact G7 follows

from Fact G6, and Fact G8 follows from Facts G4 and G7.

The next fact, which is relevant for Laplacian densities only, derives directly from properties of

exponentials.

Fact L1: L((x + 1)λ) = L(xλ) oλ, x ≥ 0; i.e. L((x+1)λ)
L(xλ) → 0 as λ → ∞, uniformly for x ≥ 0.

Finally, we list facts that are relevant for both Gaussian and Laplacian densities, and where f

denotes either one of these densities, normalized to have zero mean and unit variance.

Fact GL1: C(x) Δ=
∫ ∞
x t f(t) dt ; CG(x) = G(x) ; CL(x) = xL(x)√

2
[1 + ox].

Fact GL2: V (x) Δ=
∫ ∞
x t2 f(t) dt ; V G(x) = x G(x)+Q(x) = x G(x) [1+ox] ; V L(x) = x2L(x)√

2
[1+ox].

Fact GL3: C((x + 1)λ) = C(xλ) oλ, x ≥ 0; i.e. C((x+1)λ)
C(xλ) → 0 as λ → ∞, uniformly for x ≥ 0.

Fact GL4: V ((x + 1)λ) = V (xλ) oλ, x ≥ 0; i.e. V ((x+1)λ)
V (xλ) → 0 as λ → ∞, uniformly for x ≥ 0.

Fact GL1, the first equality of Fact GL2 that considers V G, and the part of Fact GL2 that

considers V L derive from elementary integration. The second equality of Fact GL2 that considers

V G follows from Fact G5. Fact GL3 (for both sources) and Fact GL4 for Laplacian source follow

from Fact GL1 and simple manipulation of exponentials. Finally, Fact GL4 for a Gaussian source

is derived using Facts GL2, G4 and G2. Specifically, for xλ <
√

2, Fact G4 is used to lower bound

V G(xλ), and the fact that xλ <
√

2 is used to upper bound V G((x + 1)λ). When xλ ≥ √
2, Fact

G2 is used to upper bound V G((x + 1)λ).

3 Asymptotic Entropy

We note that the output entropy of the UTQ does not depend on the distortion measure. Thus,

the expressions provided in this section hold for both distortion measures.

We begin with several lemmas (most of which are proven in the Appendix) that lead to the main

result of this section, a low resolution approximation for entropy for both Gaussian and Laplacian

sources.
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Figure 2: The entropy function, −p log p.

Lemma 1 When a UTQ with offset α, 0 < α < 1, and sufficiently large αλ and ᾱλ is applied to

a N (0, σ2) or a L(0, σ2) source,

A. Pk+1(α, λ) < Pk(α, λ)P1(α, λ) for all k ≥ 1 ,

B. Pk−1(α, λ) < Pk(α, λ)P−1(α, λ) for all k ≤ −1 .

Lemma 2

lim
p→0

H(1 − p + p op→0)
H(p)

= 0 .

We comment that this lemma is due to the fact that the entropy function H(p) = −p log p

has infinite slope at p = 0 and finite slope at p = 1, as illustrated in Figure 2. A formal proof is

provided in the appendix.

The next lemma shows that in low resolution, quantizer entropy is dominated by the cells

adjacent to the center cell.

Lemma 3 For a UTQ with offset α, 0 < α < 1, and normalized step size λ applied to a N (0, σ2)

or a L(0, σ2) source,

H(. . . , P−1(α, λ), P0(α, λ), P1(α, λ), . . .) = H(
P−1(α, λ), P1(α, λ)

) [
1 + oαλ,ᾱλ

]
,

Proof: For brevity, we omit the parameters α and λ from Pk(α, λ). The proof is composed of two

main steps. In Step 1, we show that H(. . . , P−1, P0, P1, . . .) can be asymptotically approximated

by the three middle terms; that is, H(. . . , P−1, P0, P1, . . .) = H(
P−1, P0, P1

)[
1+ oαλ,ᾱλ

]
. In Step 2,
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it is shown that these three terms can be asymptotically approximated by only two terms; that is,

H(
P−1, P0, P1

)
= H(

P−1, P1

)[
1 + oαλ,ᾱλ

]
, where we note that P0 → 1 as αλ → ∞ and ᾱλ → ∞.

Step 1: We first show that for all sufficiently large αλ and ᾱλ,

1 <
H(. . . , P−1, P0, P1, . . .)

H(P−1, P0, P1)
< 1 + 6P1 + 6P−1 . (7)

The left inequality is trivial. We upper bound the middle term in the following way:∑∞
k=−∞−Pk log Pk∑1
k=−1 −Pk log Pk

= 1 +
∑−2

k=−∞−Pk log Pk +
∑∞

k=2 −Pk log Pk∑1
k=−1 −Pk log Pk(s)

< 1 +
∑−2

k=−∞−Pk log Pk

−P−1 log P−1
+

∑∞
k=2 −Pk log Pk

−P1 log P1
. (8)

Consider the terms in the last summation. When αλ and ᾱλ are sufficiently large, −Pk log Pk <

−P k
1 log P k

1 for all k ≥ 2. To see this we observe that when αλ and ᾱλ are sufficiently large, Lemma 1

implies Pk < Pk−1P1 for all k ≥ 2, which in turn implies Pk < P k
1 < P1, for all k ≥ 2. Next, for

a Gaussian source (3) and Fact G1 imply that P1 = Q(ᾱλ) − Q((1 + ᾱ)λ) < Q(ᾱλ) = oᾱλ, and

for a Laplacian source (4) and Fact L1 imply P1 = L(ᾱλ) [1+oλ]√
2

= oᾱλ. Therefore, for both sources,

P1 < 1
e when ᾱλ is sufficiently large. Since −p log p increases for p < 1

e , −Pk log Pk < −P k
1 log P k

1

for all k ≥ 2, when αλ and ᾱλ are sufficiently large. Substituting this into the last summation of

(8), we have that when αλ and ᾱλ are sufficiently large,∑∞
k=2 −Pk log Pk

−P1 log P1
<

∑∞
k=2 −P k

1 log P k
1

−P1 log P1
=

∞∑
k=2

kP k−1
1 =

2P1

(1 − P1)2
− P 2

1

(1 − P1)2
<

2P1

(1 − P1)2
< 6P1 ,

where the last inequality derives from the fact that P1 < 1
e . In much the same way it follows that

P−1 = oαλ, and that when αλ and ᾱλ are sufficiently large,
�−2

k=−∞ −Pk log Pk

−P−1 log P−1
< 6P−1. This shows

(7). Substituting P−1 = oαλ and P1 = oᾱλ into (7), we obtain

H(. . . , P−1, P0, P1, . . .) = H(
P−1, P0, P1

) [
1 + o

αλ,ᾱλ

]
,

which completes Step 1.

Step 2: We will show that H(P0) = H(P−1, P1)oαλ,ᾱλ from which it will follow that

H(
P−1, P0, P1

)
= H(

P−1, P1

) [
1 + oαλ,ᾱλ

]
.

Define P̃ =
∑−2

k=−∞ Pk +
∑∞

k=2 Pk. Using the fact that for all sufficiently large αλ and ᾱλ,

Pk < Pk−1P1 for all k ≥ 2, we upper bound the second sum as

∞∑
k=2

Pk <
∞∑

k=2

P k
1 =

P 2
1

1 − P1
< 2P 2

1 ,
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where the last inequality is due to P1 < 1
2 for all sufficiently large ᾱλ. The first sum in the definition

of P̃ can be upper bounded in much the same way. Thus when αλ and ᾱλ are both sufficiently

large, P̃ < 2(P 2−1 +P 2
1 ). Therefore, P0 > 1−P−1−P1−2(P 2−1 +P 2

1 ) > 1−P−1−P1−2(P−1 +P1)2.

Since P−1 + P1 = oαλ + oᾱλ, it follows that when αλ and ᾱλ are sufficiently large, P0 > 1 −
P−1 − P1 − 2(P−1 + P1)2 > 1

e , which since H(p) decreases monotonically for p > 1
e , implies that

H(P0) < H(
1 − P−1 − P1 − 2(P−1 + P1)2

)
. Consequently,

H(P0)
H(

P−1, P1)
<

H(1 − P−1 − P1 − 2(P−1 + P1)2
)

H(P−1, P1)
<

H(
1 − P−1 − P1 − 2(P−1 + P1)2

)
H(P−1 + P1)

=
H(1 − p − 2p2)

H(p)
,

where p
Δ= P−1 + P1, and where the second inequality follows from the easy to prove fact that

for any a, b ∈ R
+, H(a + b) < H(a, b). We observe that as αλ and ᾱλ tend to infinity, p goes

to zero. Therefore, by Lemma 2 it follows that H(1−p−2p2)
H(p) → 0 as p → 0. This shows that

H(P0) = H(P−1, P1) oαλ,ᾱλ, which completes Step 2 and the proof of the lemma. �

Lemma 4 Let a(s) and b(s) be positive functions on R such that a(s) = b(s)[1 + os], and for some

ε > 0, |b(s) − 1| > ε for all s. Then

H(a(s)) = H(b(s))
[
1 + os

]
.

Lemma 5

H(
Q(x)

)
=

log e

2
x G(x)

[
1 + ox

]
.

Lemma 6

H
(L(x)√

2

)
= xL(x)(log e)

[
1 + ox

]
.

The following theorem gives the low resolution approximation to the entropy of uniform quan-

tization for a Gaussian or Laplacian source.

Theorem 7 For a UTQ with offset α, 0 < α < 1, and normalized step size λ applied to a N (0, σ2)

H(α, λ) =
log e

2

(
αλ G(αλ) + ᾱλ G(ᾱλ)

) [
1 + oαλ,ᾱλ

]
, (9)

and applied to a L(0, σ2)

H(α, λ) = (log e)
(
αλ L(αλ) + ᾱλ L(ᾱλ)

) [
1 + oαλ,ᾱλ

]
, (10)

where H(α, λ) = H(. . . , P−1(α, λ), P0(α, λ), P1(α, λ), . . .) is the quantizer entropy.
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If one fixes α, this theorem shows the rate at which entropy converges to 0 as λ → ∞. However,

the convergence is not uniform in α, and this theorem shows how entropy depends on α as well as

λ. In particular, it gives an accurate approximation to quantizer entropy when both αλ and ᾱλ

are large. Notice that α = 0 is not allowed since H(0, λ) = 1+ oλ, namely, the output entropy does

not go to zero as λ → ∞.

Proof: For brevity, we omit the parameters α and λ from Pk(α, λ). Lemma 3 shows that

H(α, λ) = H(. . . , P−1, P0, P1, . . .) = H(
P−1, P1

) [
1 + oαλ,ᾱλ

]
. (11)

For a Gaussian source (3) and Fact G6 imply that P−1 = Q(αλ)−Q
(
(1+α)λ

)
= Q(αλ)[1+oλ],

and thus in particular P−1 = Q(αλ)[1 + oαλ], since 0 < α < 1. Since |Q(αλ) − 1| ≥ 1
2 for all αλ,

it follows from Lemma 4 that H(P−1) = H(Q(αλ))
[
1 + oαλ

]
. Next, applying Lemma 5, we obtain

H(Q(αλ)) =
(

1
2 log e

)
αλ G(αλ)

[
1+oαλ

]
. Combining these yields H(P−1) =

(
1
2 log e

)
αλ G(αλ)

[
1+

oαλ

]
. In a similar way H(P1) =

(
1
2 log e

)
ᾱλ G(ᾱλ)

[
1+oᾱλ

]
. Combining the expressions for H(P−1)

and H(P1) together with (11) complete the proof of the Gaussian case.

Next, consider the Laplacian case. From (4) and Fact L1 we have that P−1 = L(αλ)−L((1+α)λ)√
2

=
L(αλ) [1+oλ]√

2
, and thus in particular P−1 = L(αλ)√

2
[1+oαλ], since 0 < α < 1. Since

∣∣L(αλ)√
2

−1
∣∣ ≥ 1

2 for all

αλ, it follows from Lemma 4 that H(P−1) = H(L(αλ)√
2
)
[
1+oαλ

]
. Next, applying Lemma 6, we obtain

H(L(αλ)√
2

) = (log e) αλL(αλ)
[
1+oαλ

]
. Combining these yields H(P−1) = (log e) αλ L(αλ)

[
1+oαλ

]
.

In a similar way H(P1) = (log e) ᾱλ L(ᾱλ)
[
1 + oᾱλ

]
. Combining the expressions for H(P−1) and

H(P1) together with (11) shows the Laplacian case and completes the proof of the theorem. �

We now comment on the cell or cells that dominate entropy when it is small. The entropy

H(α, λ) will be small if and only if P0 ≈ 1 and Pk ≈ 0, k �= 0, which makes −Pk log Pk ≈ 0

for all k, and which happens if and only if αλ and ᾱλ are both large. Lemma 3 shows that

H(α, λ) is dominated by the cells, S−1 and S1, immediately adjacent to the center cell. This is not

coincidental; rather, as mentioned earlier, it follows from the fact, illustrated in Figure 2, that the

entropy function, H(p) = −p log p, has infinite slope at p = 0 and finite slope at p = 1. Thus, when

entropy is nearly zero, it is dominated by the largest of the nearly zero probabilities, which are

P−1 and/or P1. Indeed the two terms within the large parentheses in (9) and (10) correspond to

H(P−1) and H(P1), respectively. If αλ << ᾱλ, e.g. if α < 1
2 and λ is very large, then P−1 >> P1,

and it is cell S−1 and the first term within the parentheses that dominate the entropy. Conversely,

if ᾱλ << αλ, then P1 >> P−1, and it is cell S1 and the second term within the parentheses that

13



dominate. Finally, if αλ ≈ ᾱλ, then the two dominating cells contribute roughly the same to the

entropy.

4 Asymptotic Distortion

The main idea in deriving an asymptotic expression for distortion of a UTQ is the same for both

sources and distortion measures. Specifically, Our goal in all cases is to find an asymptotic expres-

sion, as d(α, Δ, σ2) → Dmax, for the difference between Dmax and d(α, Δ, σ2) normalized by Dmax,

i.e., an asymptotic expression for Dmax−d(α,Δ,σ2)
Dmax

. For brevity we omit the arguments of d(α, Δ, σ2).

To this end, we define the following: dk,s =
∫
Sk

|x − rk|sf(x) dx is the contribution to distortion of

the kth cell, and σk,s =
∫
Sk

|x|sf(x) dx is the contribution to the variance or to Dmax,1 of the kth

cell, where f is the pdf of the source and s ∈ {1, 2}. We observe that Dmax,s =
∑

k σk,s and that

d =
∑

k dk,s. Next, we write

Dmax − d = Dmax − d0 − d−1 − d1 −
∑
|k|≥2

dk (12)

and evaluate the terms above.

Since there are differences in the derivations of the two distortion measures, we divide this

section into two subsections, each of which considers one distortion measure and both sources. We

begin with the squared error distortion measure, which is the simpler of the two.

4.1 Squared Error Distortion Measure

Theorem 8 For a UTQ with offset α, 0 < α < 1, normalized step size λ, centroid reconstruction

levels, and a N (0, σ2) source

σ2 − d(α, Δ, σ2)
σ2

=
(
αλ G(αλ) + ᾱλ G(ᾱλ)

) [
1 + oαλ,ᾱλ

]
,

and for a L(0, σ2) source

σ2 − d(α, Δ, σ2)
σ2

=
1√
2

(
(αλ)2 L(αλ) + (ᾱλ)2 L(ᾱλ)

) [
1 + oαλ,ᾱλ

]
.

Proof: We will deviate slightly in this proof from the previously stated notation convention and let

σ2
k denote σk,2. We begin by noticing that σ2

k = σ2
(
V ((k − α)λ) − V ((k + 1 − α)λ)

)
, where V (x)

is defined in Fact GL2, and that dk = σ2
k − r2

kPk, where we recall that rk =
∫
Sk

xf(x)
Pk

dx. We now

14



evaluate the terms in (12) in reverse order. First, since Dk ≤ σ2
k,

∑
|k|≥2

dk ≤
∑
|k|≥2

σ2
k =

∫ −(α+1)Δ

−∞
x2f(x) dx +

∫ ∞

(2−α)Δ
x2f(x) dx

= σ2V ((α + 1)λ) + σ2V ((2 − α)λ)

(a)
= σ2V (αλ) oλ + σ2V (ᾱλ) oλ ,

(b)
=

⎧⎪⎨
⎪⎩

σ2αλ G(αλ) oαλ + σ2ᾱλ G(ᾱλ) oᾱλ, for N (0, σ2)

σ2(αλ)2 L(αλ) oαλ + σ2(ᾱλ)2 L(ᾱλ) oᾱλ, for L(0, σ2)
, (13)

where (a) follows from Fact GL4, and (b) is obtained using Fact GL2.

Next, in order to evaluate D1, we will need an expression for P1. Specifically, we have

A. PG
1 = Q((1 − α)λ) − Q((2 − α)λ)

(a)
= Q((1 − α)λ)

[
1 + oλ

] (b)
=

1
ᾱλ

G(ᾱλ)
[
1 + oᾱλ

]
,

B. PL
1 =

L((1 − α)λ) − L((2 − α)λ)√
2

(c)
=

1√
2
L(ᾱλ)

[
1 + oλ

]
, (14)

where (a) follows from Fact G6, (b) follows from Fact G5, and (c) follows from Fact L1. We now

have

d1 = σ2
1 − r2

1P1
(a)
= σ2(V ((1 − α)λ) − V ((2 − α)λ)) −

(
σC((1 − α)λ) − σC((2 − α)λ)

P1

)2

P1

(b)
= σ2V ((1 − α)λ)

[
1 + oλ

] − σ2
(
C((1 − α)λ)

[
1 + oλ

])2

P1

(c)
=

⎧⎪⎪⎨
⎪⎪⎩

σ2ᾱλ G(ᾱλ) [1 + oᾱλ] − σ2G2(ᾱλ)
[
1+oλ

]
1

ᾱλ
G(ᾱλ)

[
1+oᾱλ

] , for N (0, σ2)

σ2 1√
2
(ᾱλ)2 L(ᾱλ) [1 + oᾱλ] − σ2 1

2
(ᾱλ)2L2(ᾱλ)

[
1+oᾱλ

]
1√
2
L(ᾱλ)

[
1+oλ

] , for L(0, σ2)
,

where (a) is due to the definition of C(x) given in Fact GL1, (b) follows from Facts GL3 and GL4,

and (c) derives from (14) and Facts GL1 and GL2. We now obtain that

d1 =

⎧⎪⎨
⎪⎩

σ2ᾱλ G(ᾱλ) oᾱλ, for N (0, σ2)

σ2(ᾱλ)2 L(ᾱλ) oᾱλ, for L(0, σ2)
. (15)

By symmetry it follows that

d−1 =

⎧⎪⎨
⎪⎩

σ2αλ G(αλ) oαλ, for N (0, σ2)

σ2(αλ)2 L(αλ) oαλ, for L(0, σ2)
. (16)
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Finally,

σ2 − d0 = (σ2 − σ2
0) + (σ2

0 − d0) , (17)

where as in (13) above

σ2 − σ2
0 =

∑
k �=0

σ2
k = σ2V (αλ) + σ2V ((1 − α)λ

)

=

⎧⎪⎨
⎪⎩

σ2αλ G(αλ)
[
1 + oαλ

]
+ σ2ᾱλ G(ᾱλ)

[
1 + oᾱλ

]
, for N (0, σ2)

σ2√
2
(αλ)2 L(αλ)

[
1 + oαλ

]
+ σ2√

2
(ᾱλ)2 L(ᾱλ)

[
1 + oᾱλ

]
, forL(0, σ2)

, (18)

where the last equality uses Fact GL2. To evaluate σ2
0 − D0 we first note that PG

0 = 1 − Q(αλ) −
Q(ᾱλ) = 1 + oαλ + oᾱλ, and similarly, PL

0 = 1 − L(αλ)√
2

− L(ᾱλ)√
2

= 1 + oαλ + oᾱλ. Proceeding as in

(15)

σ2
0 − D0 = r2

0P0 =
(

σC(αλ) − σC((1 − α)λ)
P0

)2

P0 =
σ2

(
C(αλ) − C(ᾱλ)

)2

1 + oαλ + oᾱλ

=
σ2

(
C(αλ)

(
C(αλ) − C(ᾱλ)

)
+ C(ᾱλ)

(
G(ᾱλ) − C(αλ)

))
1 + oαλ + oᾱλ

(a)
=

σ2
(
αλC(αλ)oαλ,ᾱλ + ᾱλC(ᾱλ)oαλ,ᾱλ

)
1 + oαλ + oᾱλ

(b)
=

⎧⎪⎨
⎪⎩

σ2
(
αλ G(αλ) + ᾱλ G(ᾱλ)

)
oαλ,ᾱλ, for N (0, σ2)

σ2
(
(αλ)2 L(αλ) + (ᾱλ)2 L(ᾱλ)

)
oαλ,ᾱλ, for L(0, σ2)

, (19)

where (a) follows from having C(αλ)−C(ᾱλ) = αλC(αλ)−C(ᾱλ)
αλ = αλoαλ,ᾱλ and similarly C(ᾱλ)−

C(αλ) = ᾱλoαλ,ᾱλ, and (b) follows from Fact GL1. Substituting (18) and (19) into (17) yields

σ2 − d0 =

⎧⎪⎨
⎪⎩

σ2
(
αλ G(αλ) + ᾱλ G(ᾱλ)

) [
1 + oαλ,ᾱλ

]
, for N (0, σ2)

σ2√
2

(
(αλ)2 L(αλ) + (ᾱλ)2 L(ᾱλ)

) [
1 + oαλ,ᾱλ

]
, for L(0, σ2)

. (20)

Substituting (13), (15), (16) and (20) into (12) yields

σ2 − d =

⎧⎪⎨
⎪⎩

σ2
(
αλ G(αλ) + ᾱλ G(ᾱλ)

) [
1 + oαλ,ᾱλ

]
, for N (0, σ2)

σ2√
2

(
(αλ)2 L(αλ) + (ᾱλ)2 L(ᾱλ)

) [
1 + oαλ,ᾱλ

]
, for L(0, σ2)

.

Dividing the above by σ2 gives the desired result. �

16



4.2 Absolute Error Distortion Measure

Theorem 9 For a UTQ with offset α, 0 < α < 1, normalized step size λ, median reconstruction

levels, and a N (0, σ2) source

Dmax − d(α, Δ, σ2)
Dmax

=
√

π

2

(
G(αλ) + G(ᾱλ)

) [
1 + oαλ,ᾱλ

]
,

and for a L(0, σ2) source

Dmax − d(α, Δ, σ2)
Dmax

=
(
αλ L(αλ) + ᾱλ L(ᾱλ)

) [
1 + oαλ,ᾱλ

]
.

Proof: We denote σk,1 by σk for short. It is not hard to see that

σk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ
[
C((k − α)λ) − C((k + 1 − α)λ)

]
, k > 0

σ
[

Dmax
σ − C(αλ) − C(ᾱλ)

]
, k = 0

σ
[
C((k + 1 − α)λ) − C((k − α)λ)

]
, k < 0

. (21)

Furthermore, we have

dk =
∫ (k+1−α)Δ

(k−α)Δ
|x − rk|f(x) dx =

∫ rk

(k−α)Δ
(x − rk)f(x) dx +

∫ (k+1−α)Δ

rk

(rk − x)f(x) dx

= rk

[ ∫ rk

(k−α)Δ
f(x) dx +

∫ (k+1−α)Δ

rk

f(x) dx
]
−

∫ rk

(k−α)Δ
xf(x) dx +

∫ (k+1−α)Δ

rk

xf(x) dx

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σk − 2σ
[
C((k − α)λ) − C( rk

σ )
]
, k > 0

σk − 2σ
[
C(0) − C( r0

σ )
]
, k = 0

σk − 2σ
[
C((k + 1 − α)λ) − C( rk

σ )
]
, k < 0

, (22)

where f is the density of the source, and where the last equality follows from the fact that rk is the

median of its cell. We now evaluate the terms in (12) in reverse order. First, from (22) we have

that dk ≤ σk, thus using (21) we obtain

∑
|k|≥2

dk ≤
∑
|k|≥2

σk = σC((α + 1)λ) + σC((2 − α)λ)= σC(αλ) oλ + σC(ᾱλ) oλ , (23)

where the last equality follows from Fact GL3. Next, we consider d1. From (21) and (22) we have

d1 = σC(ᾱλ) − σC((1 + ᾱ)λ) − 2σ
[
c(ᾱλ) − C(

r1

σ
)
] (a)

= 2σC(
r1

σ
) − σC(ᾱλ)[1 + oλ]

(b)
= σC(ᾱλ)oᾱλ , (24)

where (a) uses Fact GL3, and (b) follows from Lemma 10 below, which evaluates C( r1
σ ) and whose

proof is left to the appendix.
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Lemma 10 For a UTQ with offset α, 0 < α < 1, normalized step size λ, median reconstruction

levels, and a N (0, σ2) or L(0, σ2) source,

C(
r1

σ
) =

1
2
C(ᾱλ)[1 + oᾱλ] .

By symmetry it follows that

d−1 = σC(αλ)oαλ . (25)

Finally,

Dmax − d0 = (Dmax − σ0) + (σ0 − d0) , (26)

where as in (23) above

Dmax − σ0 =
∑
k �=0

σk = σ
(
C(αλ) + C(ᾱλ)

)
, (27)

and using (22)

σ0 − d0 = 2σ
[
C(0)−C(

r0

σ
)
]

= 2σ

∫ r0
σ

0
xf(x) dx ≤ 2σf(0)

(r0

σ

)2 = σ
(
C(αλ) + C(ᾱλ)

)
oαλ,ᾱλ,

(28)

where f(x) = G(x) or f(x) = L(x), depending on the source, and where the last equality follows

from Lemma 11 below, which evaluates
(

r0
σ

)2 and whose proof is left to the appendix.

Lemma 11 For a UTQ with offset α, 0 < α < 1, normalized step size λ, median reconstruction

levels, and a N (0, σ2) or L(0, σ2) source,

(r0

σ

)2 =
(
C(αλ) + C(ᾱλ)

)
oαλ,ᾱλ .

Substituting (27) and (28) into (26) yields

Dmax − d0 = σ
(
C(αλ) + σC(ᾱλ)

)
[1 + oαλ,ᾱλ] . (29)

Substituting (23), (24), (25) and (29) into (12) and using Fact GL1 yields

Dmax − d =

⎧⎪⎨
⎪⎩

σ
(
G(αλ) + G(ᾱλ)

) [
1 + oαλ,ᾱλ

]
, for N (0, σ2)

σ√
2

(
(αλ) L(αλ) + (ᾱλ) L(ᾱλ)

) [
1 + oαλ,ᾱλ

]
, for L(0, σ2)

.

Dividing the above by Dmax and recalling that DG
max =

√
2
πσ and DL

max = σ√
2
, gives the desired

result. �
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Remark 1: Like Theorem 7, Theorems 8 and 9 give accurate approximations when both αλ and

ᾱλ are large.

Remark 2: The rate at which distortion converges to Dmax is dominated by the center cell for

both distortion measures. Specifically, when d ≈ Dmax, both αλ and ᾱλ are large. From (20) and

(29), we see that d0 ≈ Dmax, and from (13), (15), (16) and (23), (24), (25) we see that dk ≈ 0 for

k �= 0. We are interested, however, in finding the cells that dominate the rate at which distortion

converges to Dmax. Since d0 → Dmax and dk → 0, k �= 0, it makes most sense to compare Dmax−d0

and the sum of the dk’s, k �= 0. Comparing (20) to (13), (15), and (16), and (29) to (23), (24),

and (25), reveals that
∑

k �=0 dk is asymptotically negligible relative to Dmax−d0. We conclude that

when d ≈ Dmax, Dmax − d0 is the dominant component of Dmax − d.

5 Asymptotic Rate-Distortion

Directly applying Theorems 7, 8 and 9 yields the following lemma, which is used in showing

Theorem 13 below.

Lemma 12 For a UTQ with offset α, 0 < α < 1, normalized step size λ, optimal reconstruction

levels, and a N (0, σ2) or L(0, σ2) source,

lim
αλ,ᾱλ→∞

H(α, λ)
Dmax − d(α, Δ, σ2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log e
2σ2 , for N (0, σ2) and squared error

0, for L(0, σ2) source squared error

∞, for N (0, σ2) and absolute error

log e
Dmax,1

, for L(0, σ2) and absolute error

.

The following is one of the principal results in this report.

Theorem 13 The operational rate-distortion functions of infinite-level uniform threshold scalar

quantization for Gaussian and Laplacian sources with variance σ2 satisfy

lim
D→Dmax

RU,σ2(D)
Dmax − D

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log e
2σ2 , for N (0, σ2) and squared error

0, for L(0, σ2) source squared error

∞, for N (0, σ2) and absolute error
√

2 log e
σ , for L(0, σ2) and absolute error

.
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Proof: Since RU,σ2(D) = RU,1

(
D

Dmax

)
it suffices to show

lim
D→D∗

max

RU,1(D)
D∗

max − D
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log e
2 , for N (0, 1) and squared error

0, for L(0, 1) and squared error

∞, for N (0, 1) and absolute error
√

2 log e, for L(0, 1) and absolute error

. (30)

As shorthand we let Γ denote the quantity on the right hand side of (30), which, of course, depends

on the source and distortion measure.

Next, we rewrite the operational rate-distortion function as

RU,1(D) = inf
0<α<1

RU,1,α(D) ,

where RU,1,α(D) Δ= infΔ>0:d(α,Δ,1)≤D H(α, Δ) is the operational rate-distortion function of UTQ

with fixed offset α, and as mentioned before, α = 0 can be omitted from the constraint since D is

sufficiently large. As a preliminary to showing (30) we will show RU,1,α(D) satisfies (30) for any

fixed α ∈ (0, 1). For both sources and distortion measures we have

lim sup
D→D∗

max

RU,1,α(D)
D∗

max − D

(a)
= lim sup

λ→∞

RU,1,α

(
d(α, λ, 1)

)
D∗

max − d(α, λ, 1)

(b)

≤ lim sup
λ→∞

H(α, λ)
D∗

max − d(α, λ, 1)
, (31)

where (a) derives from the fact that d(α, λ, 1) goes continuously to D∗
max as λ → ∞, and (b) follows

from the definition of RU,1,α

(
d(α, λ, 1)

)
. Next,

lim inf
D→D∗

max

RU,1,α(D)
D∗

max − D
≥ lim inf

λ→∞
H(α, λ)

D∗
max − d(α, λ, 1)

, (32)

where the inequality is shown as follows. By the definition of RU,1,α(D), for any D ∈ (0, D∗
max),

there exists λ(D) such that

H(α, λ(D)) ≤ RU,1,α(D) + ε(D) and d(α, λ(D), 1) ≤ D , (33)

where ε(D) > 0 and limD→D∗
max

ε(D)
D∗

max−D = 0. (The choices of ε(D) and λ(D) are not unique,

but any fixed choices will do.) As shown below, RU,1,α(D) → 0 as D → D∗
max. Thus, by (33)

H(α, λ(D)) → 0 as D → D∗
max, which implies that λ(D) → ∞ as D → D∗

max, since H(α, λ) → 0 if

and only if λ → ∞. This and (33) yield

lim inf
D→D∗

max

RU,1,α(D)
D∗

max − D
≥ lim inf

D→D∗
max

H(α, λ(D)) − ε(D)
D∗

max − d(α, λ(D), 1)
≥ lim inf

λ→∞
H(α, λ)

D∗
max − d(α, λ, 1)

.
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It remains to show that indeed RU,1,α(D) → 0 as D → D∗
max. Since d(α, λ, 1) goes continuously

from 0 to D∗
max as λ goes from 0 to ∞, the mean value theorem implies that for any D ∈ (0, D∗

max),

there exists λ̃(D) such that d(α, λ̃(D), 1) = D (the choice of λ̃(D) may or may not be unique, but

any fixed choice will do). Since d(α, λ, 1) → D∗
max if and only if λ → ∞, it follows that λ̃(D) → ∞

as D → D∗
max. Therefore,

lim sup
D→D∗

max

RU,1,α(D) ≤ lim sup
D→D∗

max

inf
λ:d(α,λ,1)≤D

H(α, λ) ≤ lim sup
D→D∗

max

H(α, λ̃(D)) ≤ lim sup
λ→∞

H(α, λ) = 0 .

(34)

It now follows from (31), (32), and Lemma 12 that for any α ∈ (0, 1)

lim
D→D∗

max

RU,1,α(D)
D∗

max − D
= Γ(G, L) . (35)

Finally, to obtain the result of the theorem we proceed as follows:

lim sup
D→D∗

max

RU,1(D)
D∗

max − D

(a)
= lim sup

D→D∗
max

infα RU,1,α(D)
D∗

max − D

(b)

≤ inf
α

lim sup
D→D∗

max

RU,1,α(D)
D∗

max − D

(c)
= Γ(G, L) . (36)

where (a) follows from the definition of RU,1(D), (b) is elementary, and (c) is obtained from (35).

Next, we follow similar steps to those used in showing (32). Specifically, for any D ∈ (0, D∗
max)

there exists α(D) and λ(D) such that

H(α(D), λ(D)) ≤ RU,1(D) + ε(D) and d(α(D), λ(D), 1) ≤ D , (37)

where ε(D) > 0 and limD→D∗
max

ε(D)
D∗

max−D = 0, and as before, ε(D), α(D) and λ(D) are not unique,

but any fixed choices will do. From (34) we have that RU,1,α(D) → 0 as D → Dmax, which implies

RU,1(D) → 0 as D → Dmax. Furthermore, we have that ε(D) → 0 as D → D∗
max. Therefore,

H(α(D), λ(D)) → 0 as D → D∗
max, which implies that α(D)λ(D) → ∞ and (1 − α(D))λ(D) → ∞

as D → D∗
max. Combining this with (37) we obtain

lim inf
D→D∗

max

RU,1(D)
D∗

max − D
≥ lim inf

D→D∗
max

H(α(D), λ(D)) − ε(D)
D∗

max − d(α(D), λ(D), 1)
≥ lim inf

αλ,ᾱλ→∞
H(α, λ)

D∗
max − d(α, λ, 1)

= Γ(G, L) ,

(38)

where the last equality follows from Lemma 12. Equations (36) and (38) show (30) and the theorem.

We make two notes. First (32) and (38) could have been shown for the cases of a Gaussian

source and squared error distortion measure, and a Laplacian source and absolute error distortion

measure using Shannon’s rate-distortion function as a lower bound. However, the approach taken

above demonstrates that limD→Dmax

RU,1,α(D)
Dmax−D = limλ→∞

H(α,λ)
Dmax−d(α,λ,1) without using either the

source density or Shannon’s rate-distortion function. It requires only that the latter limit exist.
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Furthermore, it works also for the other two cases for which the Shannon rate-distortion function

is not known.

Secondly, one could have, in fact, skipped (32) altogether and show (38) directly, however, (32) is

needed in showing (35), which provides the operational rate-distortion function of uniform threshold

quantization with offset α �= 0. Additionally, from (35) and the relation between RU,σ2,α(D) and

RU,1,α(D), one concludes that in low resolution, for any α �= 0, the operational rate-distortion

function RU,σ2,α(D) of uniform threshold quantization with offset α is the same as the operational

rate-distortion function of uniform quantization in general, for both sources and distortion measures

considered. �

We comment that from the dominance results presented previously, the slope of the operational

rate distortion functions of uniform threshold quantization is approximately equal to H(P−1)+H(P1)
Dmax−D0

,

i.e. the distortion term is dominated by the center cell and the entropy is dominated by the two

adjacent cells. This holds for all four cases.

We now consider how the operational rate-distortion function of uniform scalar quantization

compares to that of arbitrary unconstrained scalar quantization.

Theorem 14 At D = Dmax, the slope of the operational rate distortion function of uniform scalar

quantization equals that of arbitrary unconstrained scalar quantization, for Gaussian and Laplacian

sources with both squared and absolute error distortion measure.

Proof: For three of the four possible cases we show that the slope at D = Dmax of the opera-

tional rate-distortion function of uniform scalar quantizers matches the slope of the correspond-

ing Shannon rate-distortion function, which implies the theorem for these cases. Specifically,

for a Gaussian source with squared error distortion measure, and a Laplacian source with ab-

solute error distortion measure, we have RG
2,σ2(D) = 1

2 log σ2

D = log e
2

[
1 − D

σ2

] [
1 + o

D→σ2

]
and

RL
1,σ2(D) = log

√
2D
σ = (log e)

[
1 − D

DL
max,1

] [
1 + o

D→DL
max,1

]
, respectively. Thus, for these sources

and distortion measures the slopes at D = Dmax of the operational rate-distortion functions of

uniform scalar quantizers, as shown in Theorem 13, equal the slopes of the corresponding Shannon

rate-distortion functions. For the case of a Laplacian source and squared error distortion measure,

the slope of RL
2,U,σ2(D) at D = Dmax equals 0, as shown in Theorem 13, and thus must equal the

slope of the corresponding Shannon rate-distortion function (because the magnitudes of the latter

could be no larger).
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It remains to show the theorem for the case of a Gaussian source and absolute error distortion

measure. It suffices to show that scalar quantizers with contiguous cells can do no better than

uniform scalar quantizers, as follows from [20]. By definition of Rσ2(D), for any D ∈ (0, Dmax)

there exists a quantizer qD such that

H(qD) ≤ Rσ2(D) + ε(D) and d(qD) ≤ D , (39)

where ε(D) > 0 and limD→Dmax

ε(D)
Dmax−D = 0. (As before, the choices of qD and ε(D) are not

unique, but any fixed choices will do.) Let So,D = (−AD, BD), denote the cell of qD containing the

origin (it is immaterial if the cell is open or closed on either side). As D → Dmax, AD, BD → ∞.

Note that either AD or BD (but not both simultaneously) might be infinite. Let Do,D be the

contribution to distortion of cell So,D, where the reconstruction level of So,D lies at the median of

the cell. Repeating similar steps to those in (26) – (28), we obtain

Dmax − Do,D = σ
(
G(

AD

σ
) + G(

BD

σ
)
)

[1 + oAD,BD
] . (40)

Next, applying Lemma 5 we obtain

H(
Q(

AD

σ
)
)

+ H(
Q(

BD

σ
)
)

=
log e

2

(AD

σ
G(

AD

σ
) +

BD

σ
G(

BD

σ
)
)

[1 + oAD,BD
] . (41)

Finally, we have that

lim inf
D→Dmax

Rσ2(D)
Dmax − D

(a)

≥ lim inf
D→Dmax

H(qD) − ε(D)
Dmax − d(qD)

(b)

≥ lim inf
D→Dmax

H(
Q(AD

σ )
)

+ H(
Q(BD

σ )
)

Dmax − Do,D

(c)
= ∞ ,

where (a) follows from (39), (b) is due to an elementary property of entropy and from having Do,D ≤
d(qD), and (c) derives from (40) and (41). Thus, limD→Dmax

Rσ2 (D)

Dmax−D = lim infD→Dmax

Rσ2 (D)

Dmax−D = ∞,

as needed to show. �

We now make a few observations. First, the expressions for the Shannon rate-distortion func-

tions provided in the proof of Theorem 14 together with the theorem statement, imply that in the

low resolution region, for three of the four cases considered (i.e. all cases except for a Gaussian

source and absolute error distortion measure), scalar quantization is asymptotically as good as any

quantization technique — scalar, block, or otherwise. Since Theorem 14 shows that uniform quan-

tization is as good as any kind of scalar quantization for Gaussian and Laplacian sources and both

distortion measures, in particular it is asymptotically as good as any quantization technique for the

stated three out of the four cases. Secondly, for the case of a Gaussian source and absolute error

distortion measure, the slope of RG
1,σ2(D) at D = DG

max,1 is infinite, whereas the slope of RG
1 (D)
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is finite (because it is convex). Therefore, in low rate for this case, scalar quantization is nowhere

near as good as the best high-dimensional vector quantizers. Furthermore, in this case it can be

shown directly (with no use of uniform quantizers) that the operational rate-distortion function of

arbitrary unconstrained scalar quantization has infinite slope at D = Dmax [18], and so of course it

is infinite for uniform and binary quantizers as well. Finally, Theorem 14 implies that the slope of

the Shannon rate-distortion function for a Laplacian source and squared error distortion measure

(the function itself is not known) is zero at rate equal zero (this was also shown in [1]).

6 Binary Quantizers

A binary (two-level) scalar quantizer is characterized by three numbers: a threshold t and two

reconstruction levels r0 < t and r1 ≥ t. Let S0(t) = (−∞, t) and S1(t) = [t,∞) be the two

quantization cells, and let the quantization rule be q(x) = rk when x ∈ Sk, k = 0, 1. As in the

case of uniform quantizers, the reconstruction levels r0 and r1 are taken to be the cell centroids

or cell medians, depending on whether squared or absolute error distortion measure is considered,

respectively. We let Pk or Pk(t, σ2) denote the probability of the source value lying in Sk, k = 0, 1.

Let H(t, σ2) = H(P0(t, σ2), P1(t, σ2)) denote the entropy of the quantizer output with threshold

t for either the Gaussian or Laplacian source. Let the mean-squared or absolute error of this

quantizer be ds(t, σ2) Δ=
∫ ∞
−∞ |x−q(x)|sf(x) dx, where s ∈ {1, 2}, and f is the density of the source.

The operational rate-distortion function of binary quantization is RB,σ2(D) = inft:d(t,σ2)≤D H(t, σ2),

which specifies the least entropy of any such quantizer with distortion D or less.

It is easy to see that Pk(t, σ2) = Pk( t
σ , 1), which implies that H(t, σ2) = H( t

σ , 1). Thus,

it is convenient to parameterize H by λ = t
σ , i.e. H(λ). In this section when we refer to the

normalized step size λ, we will be referring to t
σ . Furthermore, we have d2(t, σ2) = σ2d2( t

σ , 1),

d1(t, σ2) = σd1( t
σ , 1), R2,B,σ2(D) = R2,B,1( D

σ2 ) and R1,B,σ2(D) = R1,B,1(D
σ ). Due to the symmetry

of the sources, it suffices to restrict attention to t > 0.

As in the case of uniform quantizers, we find asymptotic low resolution approximations to en-

tropy and distortion, and then combine these to determine the asymptotic low resolution expression

for RB,σ2(D). We also determine which cells dominate entropy and distortion Since the derivations

in the binary case are similar in spirit to those in the uniform case, we will only state the results

and provide no proofs, so as to spare the reader repetitive details.
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Theorem 15 For a binary scalar quantizer with normalized step size λ applied to a N (0, σ2) source

H(λ) =
log e

2
λ G(λ)

[
1 + oλ

]
,

and applied to a L(0, σ2) source

H(λ) = (log e)
(
λ L(λ)

) [
1 + oλ

]
.

Theorem 16 For a binary scalar quantizer with normalized step size λ and centroid reconstruction

levels applied to a N (0, σ2) source

σ2 − d(t, σ2)
σ2

= λ G(λ)
[
1 + oλ

]
,

and applied to a L(0, σ2) source

σ2 − d(t, σ2)
σ2

=
λ2 L(λ)√

2

[
1 + oαλ,ᾱλ

]
.

Theorem 17 For a binary scalar quantizer with normalized step size λ and median reconstruction

levels applied to a N (0, σ2) source

Dmax − d(t, σ2)
Dmax

=
π√
2
G(λ)

[
1 + oλ

]
,

and applied to a L(0, σ2) source

Dmax − d(t, σ2)
Dmax

=
λ L(λ)√

2

[
1 + oαλ,ᾱλ

]
.

Theorem 18 The operational rate-distortion functions of binary scalar quantization for Gaussian

and Laplacian sources with variance σ2 satisfy

lim
D→Dmax

RB,σ2(D)
Dmax − D

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log e
2σ2 , for N (0, σ2) and squared error

0, for L(0, σ2) source squared error

∞, for N (0, σ2) and absolute error
√

2 log e
σ , for L(0, σ2) and absolute error

.

Notice that the expressions given in this theorem for binary quantization are precisely the

same as those given in Theorem 13 for infinite-level uniform threshold quantization, three of which

match the Shannon rate-distortion function in the low resolution region. We conclude that binary

quantization is another type of quantization that is asymptotically optimal in the low resolution
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region for Gaussian sources and squared error distortion measure, and for Laplacian sources and

squared and absolute error distortion measures.

We now comment on the cells that dominate the entropy and distortion. As before, when

entropy is small, it is dominated by the cell that has largest probability not close to one, which is

S2. And just as with uniform quantizers, when distortion is close to Dmax, Dmax − d is dominated

by the cell whose probability is nearly one, namely, S1. That is, Dmax−d1
Dmax−d ≈ 1.

7 Conclusions

This report considered the asymptotic performance of scalar quantizers in the low resolution do-

main, which is determined by the slope of the operational rate-distortion function of such quantizers

at rate equal zero. For the cases of exponential, Laplacian and uniform sources and difference dis-

tortion measures, this slope has been provided in or can be determined from [1, 2]. The focus of

this report has been on Gaussian and Laplacian sources with squared and absolute error distortion

measures. Although the case of a Laplacian source has been provided in [1], the method employed

here proved useful in a wider context, as it works for both Gaussian and Laplacian sources.

We considered infinite-level uniform threshold and binary scalar quantizers with asymptotic low

rate, namely as cell sizes tend to infinity (for the uniform case) and as quantizer threshold tends

to infinity (for the binary case). We derived simple formulas for the rate of convergence of entropy

to zero and of distortion to Dmax.

The convergence of entropy and distortion as λ → ∞ for uniform quantization is not uniform

in the offset α. The derived formulas show how entropy and distortion depend on α as well as λ.

Specifically, they provide accurate approximations when both αλ and ᾱλ are large.

Using these convergence formulas, the slopes with which the operational rate-distortion func-

tions of infinite-level uniform threshold and binary scalar quantization, for both sources and dis-

tortion measures, approach zero as D → Dmax have been determined. Furthermore, it has been

shown that the operational rate-distortion functions of scalar quantization in general have the same

slopes. Thus, in low resolution, optimal uniform and binary quantizers have the same performance

as optimal scalar quantizers of any form. Additionally, these slopes are the same as the slopes of the

Shannon rate-distortion functions in the cases of a Gaussian source with squared error distortion

measure and a Laplacian source with both distortion measures. Therefore, in low resolution, scalar

quantization is an asymptotically optimal coding technique for these cases. However, for a Gaussian
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source with absolute error distortion measure, scalar quantization is nowhere near optimal.

Finally, we determined that the slope of the Shannon rate-distortion function for a Laplacian

source and squared error distortion measure (the function itself is not known) is zero at rate equal

zero (this was also shown in [1]).

APPENDIX

Proof of Lemma 1:

We will show Part A; Part B follows by symmetry. To simplify notation, we omit the parameters

α and λ from Pk(α, λ). We first consider the result for a Laplacian source, for which for k ≥ 1,

Pk+1

Pk
=

L
(
(k + 1 − α)λ

) − L
(
(k + 2 − α)λ

)
L

(
(k − α)λ

) − L
(
(k + 1 − α)λ

) = e−
√

2λ .

Next, for all sufficiently large λ

P1 =
L

(
(1 − α)λ

) − L
(
(2 − α)λ

)
√

2
=

1
2
e−

√
2(1−α)λ [1 − e−

√
2λ] >

1
4
e−

√
2(1−α)λ ,

where the inequality follows from having 1 − e−
√

2λ > 1
2 for all sufficiently large λ.

Finally, to show that Pk+1
Pk

< P1 for all sufficiently large αλ for all k ≥ 1, it suffices to show that

e−
√

2λ < 1
4e−

√
2(1−α)λ, or equivalently, that e

√
2αλ > 4 for all sufficiently large αλ, which clearly is

the case. This shows part A of the lemma for a Laplacian source.

Next, we show part A for a Gaussian source. Consider k ≥ 1. First, Fact G8, with (k − α)

playing the role of x, shows that for all sufficiently large λ, the following lower bound to Pk holds

for all k ≥ 1:

Pk = Q
(
(k − α)λ

) − Q
(
(k + 1 − α)λ

)
>

⎧⎪⎨
⎪⎩

1
4

1
(k−α)λ G((k − α)λ), (k − α)λ ≥ √

2 (a)

Q(
√

2)
2 , (k − α)λ <

√
2 (b)

. (A1)

Next, we upper bound Pk+1 using Fact G2:

Pk+1 = Q
(
(k + 1 − α)λ

) − Q
(
(k + 2 − α)λ

)
<

1
(k + 1 − α)λ

G((k + 1 − α)λ) .

Combining the lower bound to Pk with the upper bound to Pk+1, we obtain

Pk+1

Pk
<

⎧⎪⎨
⎪⎩

4e−
(2(k−α)+1)λ2

2 , (k − α)λ ≥ √
2 (a)

2 G((k+1−α)λ)

Q(
√

2)(k+1−α)λ
, (k − α)λ <

√
2 (b)

. (A2)
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It now suffices to show that for all sufficiently large λ, the above upper bound to Pk+1

Pk
is smaller

than the lower bound to P1 obtained from (A1). We do so by considering two cases.

Case 1: (k − α)λ <
√

2 — In this case, (1 − α)λ <
√

2. Thus, by (A1b), P1 > Q(
√

2)
2 . Next,

by (A2b), Pk+1

Pk
< 2 G((k+1−α)λ)

Q(
√

2)(k+1−α)λ
< 2 G(λ)

Q(
√

2)λ
, where the last inequality uses k + 1 − α > 1. Since

P1 > Q(
√

2)
2 and Pk+1

Pk
< 2 G(λ)

Q(
√

2)λ
→ 0 as λ → ∞, we conclude that for all sufficiently large λ,

Pk+1

Pk
< P1, for all k, α such that (k − α)λ <

√
2.

Case 2: (k − α)λ ≥ √
2 — We consider two subcases. First, suppose (1 − α)λ <

√
2. Then

by (A1b), P1 > Q(
√

2)
2 . Next, by (A2a), Pk+1

Pk
< 4e−

(2(k−α)+1)λ2

2 < 4e−
λ2

2 . We conclude that for all

sufficiently large λ, Pk+1

Pk
< P1, for all all k, α such that (k − α)λ ≥ √

2 and (1 − α)λ <
√

2. Next,

suppose (1−α)λ ≥ √
2. Then by (A1a), P1 > 1

4
1

(1−α)λ G((1−α)λ) > 1
4

1
λ G(λ), using 1−α < 1. By

(A2a), Pk+1

Pk
< 4e−

(2(k−α)+1)λ2

2 < 4e−
λ2

2 e−
√

2λ, using (k − α)λ ≥ √
2. Since e−

√
2λ → 0 faster than

1
λ → 0, we have that for all sufficiently large λ, Pk+1

Pk
< P1, for all k, α such that (k−α)λ ≥ √

2 and

(1 − α)λ ≥ √
2. This completes the proof of Part A for a Gaussian source and of the lemma. �

Proof of Lemma 2:

We need to show that limp→0
−(1−p+p op→0) ln (1−p+p op→0)

−p ln p = 0. The fact that limx→0
ln(1−x)

−x = 1,

or equivalently, that ln(1−x)
−x = 1 + ox→0, implies

−(1 − p + p op→0) ln (1 − p + p op→0)
−p ln p

=
[−(1 − p + p op→0) ln (1 − p + p op→0)

(1 − p + p op→0)(p + p op→0)

]
·
[
(1 − p + p op→0)(p + p op→0)

−p ln p

]

=
[
1 + op→0

] · [(
1 − p + p op→0

)1 + op→0

− ln p

]
−→ 0 as p → 0 ,

which proves the lemma. �

Proof of Lemma 4:

It is sufficient to show lims→so

H(a(s))
H(b(s)) = 1. We have the following string of equalities.

H(a(s))
H(b(s))

=
−a(s) log a(s)
−b(s) log b(s)

=
a(s)
b(s)

log
[

a(s)
b(s) b(s)

]
log b(s)

=
a(s)
b(s)

⎡
⎣1 +

log a(s)
b(s)

log b(s)

⎤
⎦ =

a(s)
b(s)

+
a(s)
b(s) log a(s)

b(s)

log b(s)
.

Since |b(s) − 1| > ε for all s, it follows that either log b(s) > log(1 + ε) or log b(s) < log(1 − ε) for

all s. Therefore, log b(s) is bounded away from zero. Combining this with the fact that a(s)
b(s) → 1

as s → ∞, and that a(s)
b(s) log a(s)

b(s) → 0 as s → ∞, the result follows. �

Proof of Lemma 5:
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The lemma is obtained by using Fact G5 in the first equality below

H(
Q(x)

)
= H(1

x
G(x)

[
1 + ox

])
= − 1

x
G(x)

[
1 + ox

]
log

(1
x

G(x)
[
1 + ox

])
=

1
x

G(x)
[
1 + ox

] [
log

√
2πx +

x2

2
log e − log

[
1 + ox

]]
=

log e

2
x G(x)

[
1 + ox

]
.

�

Proof of Lemma 6:

The lemma statement is relevant when x → ∞, thus we may assume x > 0, and obtain.

H
(L(x)√

2

)
= H

(1
2
e−

√
2x

)
= − 1

2
e−

√
2x

[
log

1
2

+ log e−
√

2x
]

=
1
2
e−

√
2x

[√
2x(log e) + 1

]
= xL(x)(log e)

[
1 + ox

]
�

Lemma A1 If Q(b) = Q(a)[1+oa]
2 , then b = a[1 + oa].

Proof: What needs to be shown is that lima→∞ b
a = 1, where one thinks of b as being a function of

a, i.e. b = b(a). We show this by contradiction. Specifically, suppose the limit is not 1 (in particular

it may not exist). Then there exists ε > 0 such that lim infa→∞ b
a ≥ 1 + ε or lim supa→∞

b
a ≤ 1− ε.

Before considering both cases, note that

Q(a)[1 + oa]
2Q(b)

=
1
a

1√
2π

e−
a2

2 [1 + oa]

2
b

1√
2π

e−
b2

2 [1 + ob]
=

b

2a
e

a2( b2

a2 −1)

2 [1 + oa] −→ 1 as a −→ ∞ , (A3)

where the first equality derives from Fact G5, and the second equality uses the easily seen fact that

a → ∞ if and only b → ∞. Using the above equation we now have that either

lim inf
a→∞

Q(a)[1 + oa]
2Q(b)

≥ (1 + ε)
2

lim inf
a→∞ e

a2ε(ε+2)
2 = ∞ ,

or

lim sup
a→∞

Q(a)[1 + oa]
2Q(b)

≤ (1 − ε)
2

lim sup
a→∞

e−
a2ε(2−ε)

2 = 0 ,

where the last equality is due to having 0 < ε ≤ 1, where ε ≤ 1 derives from the fact that as a → ∞
also b → ∞, from which it follows that 0 ≤ lim supa→∞

b
a . Combining this with the given fact that

lim supa→∞
b
a ≤ 1 − ε implies that ε ≤ 1. The last two equations contradict (A3). Therefore, the

initial assumption that lima→∞ b
a �= 1 or that the limit does not exist is incorrect, as needed to be

shown. �
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Proof of Lemma 10:

We need to show that C( r1
σ ) = 1

2C(ᾱλ)[1 + oᾱλ] for both Gaussian and Laplacian sources. We

begin with the Laplacian case. Using simple algebraic steps one can easily obtain from (5) an

expression for r1. Specifically,

r1 = − σ√
2

ln
[e−

√
2ᾱλ(1 + e−

√
2λ)

2
]

= σᾱλ+
σ ln 2√

2
− σ ln (1 + e−

√
2λ)√

2
= σᾱλ

[
1+

ln 2√
2

1
ᾱλ

+
oλ

ᾱλ

]
Using this we now obtain

C(
r1

σ
)

(a)
=

r1√
2σ

L(
r1

σ
)[1 + o r1

σ
]

(b)
=

ᾱλ√
2
[1 + oᾱλ]L

(
ᾱλ

[
1 +

ln 2√
2

1
ᾱλ

+
oλ

ᾱλ

])
[1 + oᾱλ]

=
ᾱλ√

2
1√
2
e−

√
2ᾱλe− ln 2e−

√
2oλ [1 + oᾱλ] =

ᾱλ√
2
L(ᾱλ)

1
2
[1 + oλ][1 + oᾱλ]

=
1
2
C(ᾱλ)[1 + oᾱλ] ,

where (a) follows from Fact GL1, and (b) derives from the fact that r1
σ → ∞ as ᾱλ → ∞. This

shows the Laplacian case.

Next, we consider the Gaussian case. From (5) and Fact G6 one can easily obtain that

Q(
r1

σ
) =

Q(ᾱλ) − Q((1 + ᾱ)λ)
2

=
Q(ᾱλ)[1 + oλ]

2
.

Using this we get

C(
r1

σ
)

(a)
= G(

r1

σ
)

(b)
=

r1

σ
Q(

r1

σ
)[1 + o r1

σ
]

(c)
=

r1

σ

Q(ᾱλ)
2

[1 + oλ][1 + oᾱλ]

(d)
=

r1/σ

ᾱλ

1
2
G(ᾱλ)[1 + oᾱλ]

(e)
=

1
2
C(ᾱλ)[1 + oᾱλ] ,

where (a) follows from Fact GL1, (b) and (d) follow from Fact G5, (c) derives from the equation

above and the fact that r1
σ → ∞ as ᾱλ → ∞, and (e) uses Fact GL1 and Lemma A1, which implies

that r1
σ = ᾱλ[1 + oᾱλ] . This shows the Gaussian case, and concludes the proof of the lemma. �

Proof of Lemma 11:

We need to show that
(

r0
σ

)2 =
(
C(αλ) + C(ᾱλ)

)
oαλ,ᾱλ. We begin with the Laplacian case.

Using simple algebraic steps one can easily obtain from (5) that

r0 =

⎧⎪⎨
⎪⎩
− σ√

2
ln

[
1 + e−

√
2ᾱλ−e−

√
2αλ

2

]
, 0 < α ≤ 1

2

σ√
2

ln
[
1 + e−

√
2αλ−e−

√
2ᾱλ

2

]
, 1

2 < α < 1
.

We recall the expansion ln(1+x) = x− x2

2 + x3

3 − . . . = x(1− x
2 + x2

3 − . . .) = x(1+of(x),g(x)), where

f(x) and g(x) are arbitrary functions such that when they both tend to infinity x → 0. Using this
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expansion and the expression above for r0, we obtain for 0 < α ≤ 1
2

r0 = − σ√
2

(e−
√

2ᾱλ − e−
√

2αλ

2

)
[1 + oαλ,ᾱλ] =

σ√
2

(αλL(αλ)√
2

1
αλ

− ᾱλL(ᾱλ)√
2

1
ᾱλ

)
[1 + oαλ,ᾱλ]

(a)
=

σ√
2
C(αλ)[1 + oαλ] oαλ,ᾱλ − C(ᾱλ)[1 + oᾱλ] oαλ,ᾱλ = σ

(
C(αλ) + C(ᾱλ)

)
oαλ,ᾱλ , (A4)

where (a) follows from Fact GL1. Similarly, it can be shown that the same expression for r0 holds

for 1
2 < α < 1. It now follows that

(r0

σ

)2 =
(
C(αλ) + C(ᾱλ)

)2
oαλ,ᾱλ =

(
C(αλ) + C(ᾱλ)

)
oαλ,ᾱλ ,

where the second equality is due the fact that C(αλ) + C(ᾱλ) → 0 as both αλ and ᾱλ tend to

infinity. This shows the Laplacian case.

We now consider the Gaussian case. From (5) we obtain that

Q(
r0

σ
) =

Q(−αλ) + Q(ᾱλ)
2

=
1 − Q(αλ) + Q(ᾱλ)

2
. (A5)

Next, let a ∈ R be arbitrary. If a ≥ 0, then

Q(a) =
∫ ∞

a
G(x) dx =

1
2
−

∫ a

0
G(x) dx ≤ 1

2
− aG(a) ,

from which it follows that 0 ≤ a ≤
1
2
−Q(a)

G(a) . Similarly, if a < 0, then

Q(a) = 1 − Q(|a|) = 1 −
(1

2
−

∫ |a|

0
G(x) dx

)
=

1
2

+
∫ |a|

0
G(x) dx ≥ 1

2
+ aG(a) =

1
2
− aG(a) ,

from which it follows that
1
2
−Q(a)

G(a) ≤ a < 0. The last two equations show that a2 ≤
( 1

2
−Q(a)

G(a)

)2
.

This is now used as follows:

(r0

σ

)2 ≤
( 1

2 − Q( r0
σ )

G( r0
σ )

)2 (a)
=

( 1
2 − 1

2 + Q(αλ)
2 − Q(ᾱλ)

2

G( r0
σ )

)2 (b)
=

(Q(αλ) − Q(ᾱλ)
4√
2π

[1 + oαλ,ᾱλ]

)2

(c)
=

(
Q(αλ) − Q(ᾱλ)

)
oαλ,ᾱλ

(d)
=

(G(αλ)
αλ

[1 + oαλ] − G(ᾱλ)
ᾱλ

[1 + oᾱλ]
)

oαλ,ᾱλ

(e)
=

(
C(αλ)[1 + oαλ] oαλ − C(ᾱλ)[1 + oᾱλ] oᾱλ

)
oαλ,ᾱλ =

(
C(αλ) + C(ᾱλ)

)
oαλ,ᾱλ , (A6)

where (a) follows from (A5), (b) is obtained from the fact that r0
σ → 0 as both αλ and ᾱλ tend to

infinity, (c) follows from having Q(αλ)−Q(ᾱλ) → 0 as both αλ and ᾱλ tend to infinity, (d) derives

from Fact G5, and (e) follows from Fact GL1. This shows the Gaussian case, and completes the

proof of the lemma. �
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