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Abstract

This paper investigates the advantages of adaptive waveform ampli-
tude design for estimating parameters of an unknown channel/medium
under average energy constraints. We present a statistical framework
for sequential design (e.g., design of waveforms in adaptive sensing) of
experiments that improves parameter estimation (e.g., unknown chan-
nel parameters) performance in terms of reduction in mean-squared
error (MSE). We treat an N time step design problem for a linear
Gaussian model where the shape of the N input design vectors (one
per time step) remains constant and their amplitudes are chosen as
a function of past measurements to minimize MSE. For N = 2, we
derive the optimal energy allocation at the second step as a function of
the first measurement. Our adaptive two-step strategy yields an MSE
improvement of at least 1.65dB relative to the optimal non-adaptive
strategy, but is not implementable since it requires knowledge of the
noise amplitude. We then present an implementable design for the
two-step strategy which asymptotically achieves optimal performance.
Motivated by the optimal two-step strategy, we propose a suboptimal
adaptive N -step energy allocation strategy that can achieve an MSE
improvement of more than 5dB for N = 50. We demonstrate our gen-
eral approach in the context of MIMO channel estimation and inverse
scattering problems.
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1 Introduction

Adaptive sensing has been an important topic of research for at least a
decade. Many of the classical problems in statistical signal processing such
as channel estimation, radar imaging, target tracking, and detection can be
presented in the context of adaptive sensing. One of the important compo-
nents in these adaptive sensing problems is the need for energy management.
Most applications are limited by peak power or average power. For exam-
ple, in sensor network applications, sensors have limited battery life and
replacing them is expensive. Safety limits the peak transmit power in med-
ical imaging problems. Energy is also a critical resource in communication
systems where reliable communication is necessary at low signal-to-noise
ratios. Hence it is important to consider energy limitations in waveform
design problems. Most of the effort in previous research has focussed on
waveform design under peak power constraints, e.g., sensor management.
There has been little effort in developing adaptive waveform design strate-
gies that allocate different amounts of energy to the waveforms over time.
Our goal in this paper is to perform waveform amplitude design for adap-
tive sensing in order to estimate the set of unknown channel parameters
or scattering coefficients under an average energy constraint. We formulate
this problem as an experimental design problem in the context of sequential
parameter estimation. We explain the methodology of experimental design,
derive optimal designs, and show performance gains over non-adaptive de-
sign techniques. As a final step, we describe in detail how some applications
of adaptive sensing such as channel estimation and radar imaging can be
cast into this experimental design setting thereby leading to attractive per-
formance gains compared to current literature. Next, we present a review of
waveform design and sequential estimation literature to provide a context
for our work.

Note: The term ‘sequential’ is used in different contexts in the literature.
In this paper, ‘sequential’ means that at every time instant, the best signal
to transmit is selected from a library that depends on past observations.

1.1 Related Work - Waveform Design

Early work in waveform design focussed on selecting among a small number
of measurement patterns [1]. Radar signal design using a control theoretic
approach subject to both average and peak power constraints was addressed
in [2] and [3]. The design was non-adaptive and the optimal continuous
waveforms were shown to be on-off measurement patterns alternating be-
tween zero and peak power levels for a tracking example. In our design, the
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energy allocation to the waveforms over time are optimally chosen from a
continuum of values. Parameterized waveform selection for dynamic state
estimation was explored in [4] and [5] where the shape of the waveforms
were allowed to vary under constant transmit power. Closed-form solutions
to the parameter selection problem were found for a very restrictive set of
cases such as one-dimensional target motions. More recently a dynamic
waveform selection algorithm for tracking using a class of generalized chirp
signals was presented in [6]. In contrast to these efforts, we focus our work
in finding optimal waveform amplitudes under an average energy constraint
for static parameter estimation. Sensor scheduling can be thought of as an
adaptive waveform design problem under a peak power constraint [7] where
the goal is to choose the best sensor at each time instant to provide the next
measurement. The optimal sensor schedule can be determined a priori and
independent of measurements for the case of linear Gaussian systems [8,9].
The problem of optimal scheduling for the case of hidden Markov model sys-
tems was addressed in [10]. In table 1, we compare our work with existing
literature via different categories.

1.2 Related Work - Sequential Design for Estimation

The concept of sequential design has been studied by statisticians for many
decades [17–22] and has found applications in statistics, engineering, biomedicine,
and economics. Sequential analysis has been used to solve important prob-
lems in statistics such as change-point detection [23,24], point and interval
estimation [25], multi-armed bandit problems [26], quality control [27], se-
quential testing [28], and stochastic approximation [29]. Robbins pioneered
the statistical theory of sequential allocation in his seminal paper [26]. Early
research on the application of sequential design to problems of estimation
was limited to finding asymptotically risk-efficient point estimates and fixed-
width confidence intervals [11,12,30], i.e., sequential design was used to solve
problems in which a conventional estimate, based on a sample whose size is
determined by a suitably chosen stopping rule, achieves certain properties
such as bounded risk. For the problem of estimating the mean under un-
known variance, it was shown that a sequential two-step method guaranteed
specified precision [23,31,32], which is not possible using a fixed sample. The
statistical sequential design framework assumes a fixed measurement setup
while acquiring the data and does not consider energy constraints. In this
paper, we adaptively design input parameters to alter the measurement pat-
terns under an average energy constraint to obtain performance gains over
non-adaptive strategies.
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Another class of problems in sequential estimation is online estimation,
where fast updating of parameter estimates are made in real time, called
recursive identification in control theory, and adaptive estimation in signal
processing. For example, consider the problem of estimating parameter θ in
the following model

yi = xT
i θ + wi, i = 1, 2, . . . , n,

where {xi} are the sequence of inputs to the system, {wi} are independent
identically distributed (i.i.d) Gaussian random variables with zero mean and
{yi} are the set of received signals. The maximum likelihood estimate of θ is
given by the least squares (LS) solution, θ̂LS =

(∑n
i=1 xixT

i

)−1 (
∑n

i=1 xiyi).
One way of computing the LS estimate is the recursive least squares ap-
proach (RLS) [13] which can be written as

θ̂n = θ̂n−1 + Pnxn(yn − xT
n θ̂n−1)

Pn = Pn−1 − Pn−1xnxT
nPn−1

1 + xT
nPn−1xn

,

where Pn =
(∑n

i=1 xixT
i

)−1. The recursive process avoids the computa-
tional complexity of inverting the matrix.

In the above formulation it was assumed that the input sequence {xi}
remains fixed. The problem of waveform design is relevant when input
xi can be adaptively chosen based on the past measurements y1, . . . , yi−1.
Measurement-adaptive estimation has application to a wide variety of ar-
eas such as communications and control, medical imaging, radar systems,
system identification, and inverse scattering. By measurement-adaptive es-
timation we mean that one has control over the way measurements are
made, e.g., through the selection of waveforms, projections, or transmit-
ted energy. The standard solution for estimating parameters from adaptive
measurements is the maximum likelihood (ML) estimator. For the case of
classic linear Gaussian model, i.e., a Gaussian observation with unknown
mean and known variance, it is well-known [16] that the ML estimator is
unbiased and achieves the unbiased Cramér Rao lower bound (CRB). Many
researchers have looked at improving the estimation of these parameters by
adding a small bias to reduce the MSE. Stein showed that this leads to
better estimators that achieve lower MSE than the ML estimator for es-
timating the mean in a multivariate Gaussian distribution with dimension
greater than two [14, 15]. Other alternatives such as the shrinkage estima-
tor [33], Tikhonov regularization [34] and covariance shaping least squares
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(CSLS) estimator [35] have also been proposed in the literature. While these
pioneering efforts present interesting approaches to improve static parame-
ter estimation performance by introducing bias, none of them incorporate
the notion of sequential design of input parameters. Our adaptive design of
inputs effectively adds bias to achieve reduction in MSE. In this chapter,
we formulate a problem of sequentially selecting waveform amplitudes for
estimating deterministic parameters of a linear Gaussian channel model un-
der an average energy constraint over the waveforms and over the number
of transmissions. In Section 2, the problem of experimental design [36, 37]
for sequential parameter estimation is outlined and the analogy between
this problem and the waveform design problem is explained. In Section
3, closed-form expressions for the optimal design parameters (e.g., energy
allocation to the waveforms in the adaptive sensing context) and the cor-
responding minimum MSE in the single parameter (e.g., scatter coefficients
in imaging, channel coefficients in channel estimation) case are derived for
a two-step procedure (two time steps). In Section 4, we provide a sub-
optimal design for the two-step strategy, which takes into consideration a
peak power constraint and achieves near optimal performance. Since the
optimal solution requires the knowledge of parameters to be estimated, it is
shown in Section 6 that the performance of this omniscient solution can be
achieved with a parameter independent strategy. In Section 7, we describe
an N -step sequential energy allocation procedure, which yields more than
5dB gain over non-adaptive methods. These results are extended to the
vector parameter case in Section 8. Finally in Section 9, we show the appli-
cability of this framework by recasting the problems of channel estimation
and radar imaging to fit the statistical model of the sequential parameter
estimation problem and applying the results from the previous sections to
show the advantages of our approach over current literature for practical
applications.

2 Problem Statement

We denote vectors in �M by boldface lower case letters and matrices in
�M×N by boldface uppercase letters. The symbol ‖ · ‖ refers to the l2-
norm of a vector, i.e., ‖x‖ =

√
xHx, where (·)H denotes the conjugate

transpose. The terms MSE and SNR are abbreviations to mean-squared
error and signal-to-noise ratio, respectively. Let θ = [θ1, . . . , θM ] be the
M -element vector of unknown parameters. The problem of estimating θ in
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noise can then be written as

yi = f(xi,θ) + ni, i = 1, 2, . . . , N, (1)

where {ni} is an i.i.d. random process corrupting the function of the pa-
rameters of interest f(xi,θ) and i denotes the time index. The T -element
design parameter vectors, {xi}N

i=1 can depend on the past measurements:
xi = xi(y1, . . . ,yi−1), where yi is the ith K-element observation vector.
In the context of adaptive sensing, f(xi,θ) represents the response of the
medium, T and K denote the number of transmit and receive antennas re-
spectively, {xi}N

i=1 are the set of waveforms to be designed, θ are the set of
channel parameters or scattering coefficients to be estimated using the set of
received signals {yi}N

i=1. For the classic estimation problem in a linear Gaus-
sian model, we have f(xi,θ) = H(xi)θ, H(xi) = [h1(xi),h2(xi), . . . ,hM (xi)]
is a known K × M matrix and linear in xi and ni is a circularly symmet-
ric complex Gaussian random variable with zero mean and covariance σ2I
denoted by ni ∼ CN (0, σ2I). When H(x) is linear in x, we can write
hl(x) = Hlx, l = 1, 2, . . . ,M . In this case H(·) is uniquely determined
by the matrices {H1,H2, . . . ,HM}. The linear Gaussian model has been
widely adopted in many studies [38, 39] including channel estimation [40]
and radar imaging [41] problems. The set of observations for parameter θ
can then be written as

yi = H(xi)θ + ni, i = 1, 2, . . . , N. (2)

For the case of a scalar parameter θ1, the observations are

yi = h1(xi)θ1 + ni, i = 1, 2, . . . , N. (3)

An N-step design procedure specifies a sequence of functions {xi(y1,y2, . . . ,yi−1)}N
i=1

corresponding to the N transmitted signal waveforms after receiving the pre-
vious measurements. An optimal N-step procedure selects the design vectors
so that the MSE of the maximum likelihood (ML) estimator, θ̂

(N)
1 (y1,y2, . . . ,yN )

is minimized subject to the average energy constraint, E
[∑N

i=1 ‖xi‖2
]
≤ E0,

where E0 is the total available energy and E [·] denotes the statistical ex-
pectation. The ML estimator of θ1 for the N -step procedure is given by

θ̂
(N)
1 =

∑N
i=1 h1(xi)Hyi∑N
i=1 ‖h1(xi)‖2

(4)
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and the corresponding MSE
({xi}N

i=1

)
� E

[∣∣∣θ̂(N)
1 − θ1

∣∣∣2] is

MSE(N)
({xi}N

i=1

)
= E

⎡⎣∣∣∣∣∣
∑N

i=1 h1(xi)Hni∑N
i=1 ‖h1(xi)‖2

∣∣∣∣∣
2
⎤⎦ . (5)

Denote Ei(y1, . . . ,yi−1) = ‖xi(y1, . . . ,yi−1)‖2, where Ei(y1, . . . ,yi−1) rep-
resents the energy allocated to each time step i. Define E [{xi(y1, . . . ,yi−1)}N

i=1

]
as the average energy in the design parameters for the N -step procedure,

E [{xi(y1, . . . ,yi−1)}N
i=1

]
= E

[
N∑

i=1

‖xi‖2

]
. (6)

The average energy constraint can be written as

E [{xi(y1, . . . ,yi−1)}N
i=1

]
= E

[
N∑

i=1

Ei(y1, . . . ,yi−1)

]
≤ E0. (7)

Our goal is to find the best sequence of the design vectors {xi}N
i=1 to min-

imize the MSE(N)
({xi}N

i=1

)
in (5) under the average energy constraint in

(7).

2.1 Non-adaptive strategy

As a benchmark for comparison, we consider the non-adaptive case where
xi(y1, . . . ,yi−1) is deterministic, independent of y1,y2, . . . ,yi−1, ‖xi‖2 =
Ei, and

∑N
i=1 Ei ≤ E0. Simplifying the expression for MSE in (5), we have

MSE(N) =
E
[∣∣∣∑N

i=1 h1(xi)Hni

∣∣∣2]∣∣∣∑N
i=1 ‖h1(xi)‖2

∣∣∣2
Using the fact that {ni‖N

i=1 are i.i.d CN (0, σ2I), we obtain

MSE(N) =
σ2∑N

i=1 ‖h1(xi)‖2

=
σ2∑N

i=1 Ei
‖h1(xi)‖2

‖xi‖2

≥ σ2

E0λm(H1)
, (8)
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where equality is achieved iff ∀i xi ∝ vm, the normalized eigenvector corre-
sponding to λm(H1), the maximum eigenvalue of the matrix HH

1 H1. Note

λm(H1) = max
x

(xHHH
1 H1x)/(xHx) = max

x
‖h1(x)‖2/‖x‖2. (9)

Furthermore, the performance of the ML estimator does not depend on
the energy allocation. Hence, without loss of generality we can assume all
energy is allocated to the first transmission which implies that any N -step
non-adaptive strategy is no better than the optimal one-step strategy. We
define SNR

({xi}N
i=1

)
as

SNR(N) =
λm(H1)E

[{xi(y1, . . . ,yi−1)}N
i=1

]
σ2

. (10)

Then the average energy constraint in (7) is equivalent to SNR(N) ≤ SNR0,
where SNR0 = λm(H1)E0/σ

2. We show in Appendix 11 that the problem of
minimizing MSE(N) subject to SNR(N) ≤ SNR0 is equivalent to minimizing
MSE(N) × SNR(N). Thus we use the two minimization criteria interchange-
ably in the remainder of this paper. The product of MSE and SNR is

MSE(N)×SNR(N) = E

⎡⎣∣∣∣∣∣
∑N

i=1 h1(xi)Hni∑N
i=1 ‖h1(xi)‖2

∣∣∣∣∣
2
⎤⎦ λm(H1)E

[∑N
i=1 ‖xi‖2

]
σ2

(11)

and the minimum MSE for the one-step (or non-adaptive N -step) strategy
satisfies

MSE(1)
min × SNR0 = 1. (12)

While our goal is to find optimal input design parameters, {xj(y1, . . . ,yj−1)}N
j=1

which achieve minimum MSE, any suboptimal design that guarantees MSE(N)×
SNR0 < 1 is also of interest. We first look at a two-step sequential design
procedure. A word of caution: in Sections 3 and 4 we develop optimal and
suboptimal strategies where the solutions require the knowledge of the un-
known parameter θ1. However, in Section 6 we present a θ1-independent
design which asymptotically achieves the performance of the ‘omniscient’
strategies.

3 Omniscient Optimal Two-step Sequential Strat-
egy

In the two-step sequential procedure, we have N = 2 time steps where in
each time step i = 1, 2, we can control input design parameter xi to obtain
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observation yi. For a two-step process, we have

y1 = h1(x1)θ1 + n1 (13)
y2 = h1(x2(y1))θ1 + n2. (14)

The ML estimator of θ1 for a two-step procedure from (4) is

θ̂
(2)
1 =

h1(x1)Hy1 + h1(x2)Hy2

‖h1(x1)‖2 + ‖h1(x2)‖2
(15)

and its MSE from (5) is given by

MSE(2)(x1,x2) = E
[ |h1(x1)Hn1 + h1(x2)Hn2|2

(‖h1(x1)‖2 + ‖h1(x2)‖2)2

]
. (16)

We assume that the shape of the optimal designs, i.e., {xi/‖xi‖} is the one-
step optimum given by vm defined below (8) and minimize the MSE over
the energy of the design parameters. Denote ‖x1‖ =

√
E0α1 and ‖x2(y1)‖ =√

E0α2(y1). Under the sequential design framework, we select

x1 =
√

E0 α1vm (17)

x2(y1) =
√

E0 α2(y1)vm, (18)

where α1 and α2(·) are real-valued scalars. The average energy constraint
from (7) can then be written as

E
[
α2

1 + α2
2(y1)

] ≤ 1. (19)

We use Lagrangian multipliers to minimize the MSE in (16) with respect to
α1 and α2(·) under the energy constraint in (19). Substituting for x1 and
x2(y1) given by (17) and (18) respectively in (16) and adding the Lagrangian
constraint we obtain the objective function to be minimized as

MSE(2)(x1,x2) + γ(E
[
α2

1 + α2
2(y1)

]
)

= E
[ |h1(x1)Hn1 + h1(x2)Hn2|2

(‖h1(x1)‖2 + ‖h1(x2)‖2)2

]
+ γ

(
α2

1 + E
[
α2

2(y1)
])

Using linearity of h1(·), the objective function can be written as

1
E0

E
[ |α1h1(vm)Hn1 + α2(y1)h1(vm)Hn2|2

(α2
1 + α2

2(y1))2‖h1(vm)‖4
+ γE0

(
α2

1 + α2
2(y1)

)]

10



Taking the expectation over n2, the objective function becomes

1
E0

E
[
α2

1|h1(vm)Hn1|2 + α2
2(y1)‖h1(vm)‖2σ2

(α2
1 + α2

2(y1))2‖h1(vm)‖4
+ γE0

(
α2

1 + α2
2(y1)

)]
Dividing numerator and denominator by ‖h1(vm)‖2σ2, the minimization
criterion simplifies to

=
1

SNR0
E

[
α2

1 |ñ1(y1; θ1)|2 + α2
2(y1)

(α2
1 + α2

2(y1))2
+ γSNR0

(
α2

1 + α2
2(y1)

)]

=
1

SNR0

1
α2

1

E

⎡⎢⎣ 1(
1 + α2

2(y1)

α2
1

) − 1 − |ñ1(y1; θ1)|2(
1 + α2

2(y1)

α2
1

)2 + γ
′
(

1 +
α2

2(y1)
α2

1

)⎤⎥⎦ ,(20)

where ñ1(y1; θ1) = h1(vm)H

‖h1(vm)‖
(

y1−h1(x1)θ1

σ

)
= h1(vm)H

‖h1(vm)‖
n1
σ is a zero mean unit

variance complex Gaussian random variable and γ
′

= γα4
1SNR0. Since

the optimal solution to α2(y1) depends on y1 only through the function
ñ1(y1; θ1), we denote the solution as α2 (ñ1(y1; θ1)). Let g (ñ1(y1; θ1)) =(
1 + α2

2(ñ1(y1;θ1))

α2
1

)
. Then the objective function can be written as

1
SNR0

1
α2

1

E

[
1

g (ñ1(y1; θ1))
− 1 − |ñ1(y1; θ1)|2

g2 (ñ1(y1; θ1))
+ γ

′
g (ñ1(y1; θ1))

]
.(21)

Differentiating and setting the objective function to zero, we have

g3 − 1
γ′ g + 2

1 − |ñ1|2
γ′ = 0. (22)

The function g that minimizes MSE is the root of the third-order polynomial
in (22), real-valued and greater than or equal to 1. If more than one real-
valued solution greater than 1 to the cubic equation exists, the optimal
solution to g will be the root that achieves minimum MSE. The optimal g

for every ñ1 and γ
′
is denoted by gγ′ (ñ1). Also E

[
gγ′ (ñ1)

]
= 1

α2
1
. Therefore,

finding α1 that minimizes MSE is equivalent to finding γ
′

that minimizes
MSE. We obtain gγ′ (ñ1) for every γ

′
and use a brute force grid search to find

the optimal γ
′
that minimizes the expression in (21). The MSE is minimized

at γ
′∗ ≈ 0.22, or α∗

1 ≈ 0.7421. The optimal α2 is given by the relation

α∗
2 (ñ1(y1; θ1)) = α∗

1

√(
gγ′∗ (ñ1(y1; θ1)) − 1

)
. Since this solution depends

11
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Figure 1: Reduction in MSE for varying values of α1.

on the unknown parameter θ1, we call this minimizer an “omniscient” energy
allocation strategy. For the optimal solution, the product of MSE× SNR is

MSE(2)
min × SNR0 ≈ 0.68. (23)

This corresponds to a 32% improvement in performance or a 1.67dB gain
in terms of SNR for the two-step design when compared to the one-step
procedure for which MSE(1)

min × SNR0 = 1. MSE(2) × SNR0 is plotted for
various values of α1 using both simulations (dotted) and theoretically (solid)
in Fig. 1.

The theoretical performance curve (solid) was generated by evaluating
the MSE(2) in (21) (without the constraint term) for various values of γ

′

(or α1). Since the expectation in (21) depends only on random variable
ñ1, we construct a fine grid of ñ1 and approximate the integral induced by
the expectation as a Riemann sum. For the simulation curve (dotted), we
generate 10000 samples of n1 and n2 distributed as CN (0, σ2I). Using n1

and x1 from (17), we generate 10000 samples of y1 from (13). Using samples
of y1, we generate samples of x2(y1) from (18) and obtain 10000 samples
of y2 from (14) using x2(y1) and n2. We obtain an estimate of MSE(2)

by evaluating the expectation in (16) through numerical averaging over the
realizations.

The optimal energy allocation at the second step, α∗2
2 (ñ1(y1; θ1)) as

shown in Fig. 2 (solid) is a thresholding function, i.e., α∗
2 is zero for |ñ1|2 ≤

12
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Figure 2: Plot of the optimal and suboptimal solution to the normalized
energy transmitted at the second stage as functions of received signal at
first stage.

0.59. This solution implies that when the actual realization of the normal-
ized noise along h1(vm) in the first step is small enough, then the second
measurement becomes unnecessary. On the other hand, when the normal-
ized noise along h1(vm) exceeds a threshold, then there is some merit in
incorporating the information from the second measurement. The solution
also suggests that the higher the noise magnitude at the first step, the more
the energy that needs to be used. However, the probability of allocating
energy greater than a particular value decreases exponentially with that
energy value. Nevertheless in applications with a peak energy constraint,
the transmission of the optimal energy at the second stage may not always
be possible. Hence, in the following section we look at a suboptimal solu-
tion which takes into account this constraint and still achieves near optimal
performance.

4 Omniscient Suboptimal Two-step Strategy

The optimal solution in Section 3 is a thresholding function, where energy
allocated to the second stage is zero if the noise magnitude at the first step is
less than a threshold and increases with increasing noise magnitudes other-
wise. For the suboptimal solution, we use a binary energy allocation strategy
at the second stage based on the noise magnitude at the first step, i.e., we

13



allocate a fixed nonzero energy if the noise magnitude is greater than a
threshold else we allocate zero energy. The suboptimal solution to the de-
sign vectors x1 and x2 is then of the form

x1 = vm

√
E0 α1 (24)

x2 = vm

√
E0 α2I

(∣∣∣∣ h1(vm)H

‖h1(vm)‖
n1

σ

∣∣∣∣2 > ρ

)
= vm

√
E0 α2 I

(
|ñ1|2 > ρ

)
,(25)

where ñ1 is defined below (20), α1, α2 are design parameters independent of
y1 and I (·) is the indicator function, i.e.,

I (A) =
{

1, A is true
0, A is false.

The SNR of the suboptimal two-step procedure is

SNR(2) = SNR0

(
α2

1 + α2
2P
(
|ñ1|2 > ρ

))
. (26)

The MSE of the ML estimator under this suboptimal solution using (16) is

MSE(2) = E
[ |h1(x1)Hn1 + h1(x2)Hn2|2

(‖h1(x1)‖2 + ‖h1(x2)‖2)2

]
=

1
SNR0

E

[
α2

1|ñ1|2 + α2
2(

α2
1 + α2

2

)2 I
(|ñ1|2 ≥ ρ

)]
+

1
SNR0

E
[ |ñ1|2

α2
1

I
(|ñ1|2 < ρ

)]
.

(27)

Denote β = α2
1

α2
1+α2

2
, 0 ≤ β ≤ 1. Substituting for β in the expressions for

MSE(2) and SNR(2) in (27) and (26), we obtain

MSE(2) =
1

SNR0

1(
α2

1 + α2
2

) (E
[
(β|ñ1|2 + (1 − β))I (|ñ1|2 ≥ ρ) +

|ñ1|2
β

I (|ñ1|2 < ρ)
])

,

SNR(2) = SNR0

(
α2

1 + α2
2

) (
β + (1 − β)P (|ñ1|2 ≥ ρ)

)
.

Using the fact that E
[
I (|x|2 ≥ ρ)

]
= e−ρ and E

[|x|2I (|x|2 ≥ ρ)
]

= ρe−ρ

when x ∼ CN (0, 1), the expressions for MSE(2) and SNR(2) simplify to

MSE(2) =
1

SNR0

1(
α2

1 + α2
2

) (βρe−ρ + e−ρ +
1
β

(1 − (1 + ρ)e−ρ)
)

,(28)

SNR(2) = SNR0

(
α2

1 + α2
2

) (
β + (1 − β)e−ρ

)
.
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Thus we have

MSE(2) × SNR(2) =
(

βρe−ρ + e−ρ +
1
β

(1 − (1 + ρ)e−ρ)
)(

β + (1 − β)e−ρ
)
.

(29)
Minimizing MSE(2) × SNR(2) with respect to β and ρ through a grid search
for β ∈ [0, 1] and ρ ∈ [0,∞) yields β∗ ≈ 0.37, ρ∗ ≈ 0.675. It follows
that α∗

1 ≈ 0.7319, α∗
2 ≈ 0.9550, and substituting for the optimal values of

α∗
1, α

∗
2, β

∗, ρ∗ in (28) and multiplying by SNR0, yields

MSE(2)
min × SNR0 ≈ 0.7143. (30)

This translates to a 28.47% improvement in MSE performance or a 1.5dB
savings in terms of SNR. Figure 3 plots the reduction in MSE for varying
values of ρ at optimal α∗

1 and the reduction in MSE for varying values of α1

at optimal ρ∗ using simulation (dotted) and theoretically (solid) is shown in
Fig. 4. The theoretical curves in both the figures are obtained by evaluating
the expression for MSE(2) in (28) for various values of α1 and ρ, where α2 is
chosen to satisfy the SNR constraint with equality i.e., SNR(2) = SNR0. For
the simulation curves, we generate 10000 samples of y1 in (13) using samples
of x1 obtained from (24) and n1, where 10000 samples of n1 and n2 are
generated from CN (0, σ2I). Using samples of y1, we generate 10000 samples
of x2 from (25) and then obtain 10000 samples of y2 in (14) using samples of
x2 and n2. We then obtain an estimate of MSE(2) by computing the expected
value in (16) through numerical averaging over the 10000 realizations. The
suboptimal solution to the energy design is shown in Fig. 2 by a dashed
dotted line indicated as Suboptimal-I. Thus, while the suboptimal strategy
limits the peak transmit power to max

(
α∗2

1 , α∗2
2

)
E0, it is able to achieve

near optimal performance.
In the previous two sections, we addressed the problem of minimizing

MSE subject to an average energy constraint, E
[‖x1‖2 + ‖x2‖2

] ≤ E0. An
average energy constraint implies that the total allocated energy averaged
over repeated trials of the two-step experiment is constrained to be less
than or equal to E0. This is less restrictive than the strict energy constraint
‖x1‖2 + ‖x2‖2 ≤ E0, as any solution satisfying this constraint satisfies the
average energy constraint but not vice versa. The problem of minimizing the
MSE in (16) under this strict energy constraint is presented in the follow-
ing section. This problem was originally addressed in the context of radar
imaging in our original paper [42].
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5 Strict Energy Constraint Solution

The strict energy constraint for a two-step procedure is ‖x1‖2 +‖x2‖2 ≤ E0.
The MSE for the two-step process given by (16) can be rewritten as

MSE(2) = σ2

{
1

(‖h1(x1)‖2 + ‖h1(x2)‖2)
− ‖h1(x1)‖2(1 − |ñ1|2)

(‖h1(x1)‖2 + ‖h1(x2)‖2)2

}
= σ2(

1
f
− c

f2
), (31)

where f = (‖h1(x1)‖2+‖h1(x2)‖2), c = ‖h1(x1)‖2(1−|ñ1|2), and ñ1 defined
below (20) is complex Gaussian with zero mean and unit variance. Let
‖x1‖2 = E1 and ‖x2‖2 = E2 such that E1 + E2 ≤ E0.

Minimizing the MSE with respect to x2(y1) is equivalent to minimizing
with respect to f . f is a function of x1 and x2(y1). Since the squared
norm of x1 and x2 is limited to E1 and E2 respectively, the support of f
is restricted to [fmin, fmax] obtained by minimizing and maximizing with
respect to x2 respectively:

fmin = E
′
1λm at x2 = vm⊥

√
E2

fmax = E
′
λm at x2 = vm

√
E2,

where E
′
1 = ‖h1(x1)‖2

λm
, E

′
= E

′
1 + E2, and vm⊥ is an unit norm vector in

the perpendicular space of HH
1 H1, i.e., h1(vm⊥) = 0. When HH

1 H1 is full
rank, then there exists no vector in the orthogonal space, in which case an
alternate solution, E2 = 0 can be used to achieve fmin. Since E2 = 0 satisfies
the energy constraint with inequality and consumes minimal energy, we take
E2 = 0 as the optimal solution to achieving fmin.

Note that from Fig. 5, the MSE(2)(f) is either, monotonically increasing
from f = 0 to 2c and decreasing from f = 2c to ∞ for c > 0, or strictly
decreasing for c ≤ 0. Since no local minimum exists, the minimum MSE will
always occur at the end points of the support of f . Therefore, to minimize
the MSE, we simply need to compare the MSE(2) values at fmin and fmax.
The optimal x2 is

x2(y1) = arg max
x2

(f) I
(
MSE(2)(fmax) ≤ MSE(2)(fmin)

)
+ arg min

x2

(f) I
(
MSE(2)(fmin) < MSE(2)(fmax)

)
Since x2 = vm

√
E2 maximizes f , x2 = vm⊥

√
E2 or E2 = 0 minimizes f ,

and MSE(2)(fmax) ≤ MSE(2)(fmin) is equivalent to |ñ1|2 ≥ ρ, we conclude
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Figure 5: Typical plots of the MSE as a function of f .

that the optimal x2(y1) is

x2(y1) = vm

√
E2I

(
|ñ1|2 ≥ ρ

)
+ vm⊥

√
E2I

(
|ñ1|2 < ρ

)
, (32)

or equivalently,
x2(y1) = vm

√
E2I

(
|ñ1|2 ≥ ρ

)
, (33)

where ρ = E
′
1

2E
′
1+E2

and I(·) is the indicator function. This solution implies

that when the actual realization of the noise along h1 in the first transmission
is small enough there is no advantage in using the measurement from the
second step. Therefore, we transmit x2 ∝ vm⊥, which makes the overall
estimator only a function of the first measurement, or not transmit at the
second step by having E2 = 0. When the actual realization of the noise
along h1 in the first transmission is not small enough, there is some merit in
incorporating the information from the second measurement and therefore
we select x2 ∝ vm.

Substituting for x2(y1) from (33) into (31), we obtain

MSE(2) =
σ2

E′λm

{
I
(|ñ1|2 ≥ ρ

)(E2

E′ +
E

′
1|ñ1|2
E′

)
+ I
(|ñ1|2 < ρ

)(E
′ |ñ1|2
E

′
1

)}

where ñ1 ∼ CN (0, 1). Taking the expectation over ñ1, the MSE(2) simplifies
to

MSE(2) =
σ2

E′λm

{
e−ρ 1 − 2ρ

1 − ρ
+

ρ(1 + ρ)
1 − ρ

e−ρ +
1 − ρ

ρ
(1 − e−ρ(1 + ρ))

}
.

(34)
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Figure 6: MSE(2) × SNR(2) vs. ρ.

We know that E
′
= ‖h1(x1)‖2

λm
+E2. MSE(2) is minimized when E

′
is max-

imized which happens when x1 = vm

√
E1. The value of ρ that minimizes

the MSE(2) is given by ρ∗ ≈ 0.2831. This implies that the optimal amount
of energy allocated at the first stage is E∗

1 ≈ 0.395E0 and the remaining
energy, E∗

2 ≈ 0.605E0 is used at the second stage. The minimum MSE will
be given by,

MSE(2) ≈ 1
SNR(2)

(0.9283). (35)

We plot the numerical MSE(2) and the bias as a function of ρ and the
exact MSE(ρ) in Fig. 6 and 7 respectively. It is in fact easy to show that
the bias of optimal estimator is zero. The simulation curve was generated
by using the design of x2 given in by generating random 100000 samples of
y1 and y2. The MSE(2) was then evaluated by numerically evaluating the
expected value in (16). The theoretical curve was generated by evaluating
the expression for MSE(2) in (34). We observe that the simulation results
for the MSE(2) and the bias agree with their analytical equivalents.

The optimal solution satisfies the the strict energy constraint with in-
equality but the average energy used is only E0(α∗2

1 + α∗2
2 e−ρ∗) ≈ 0.8550E0.

The solution to the two-step strategy under this strict energy constraint can
also be derived by imposing an additional constraint, α2

1 + α2
2 ≤ 1 to the

suboptimal design problem described earlier in Section 4. In the following
section, we design a θ1-independent design strategy that achieves the opti-

19



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1

−0.5

0

0.5

1
x 10

−6

re
al

(b
ia

s)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−10

−5

0

5
x 10

−7

ρ

im
ag

(b
ia

s)

Figure 7: Re(Bias) vs. ρ.

mal performance asymptotically and allows for any peak power constraint
in the design.

6 Parameter Independent Two-step Design Strat-

egy

6.1 Problem Statement

Consider the optimal design for the two-step procedure

x1 =
√

E0 α∗
1vm

x2 =
√

E0 α∗
2(ñ1(y1; θ1))vm =

√
E0 α∗

2

(∣∣∣∣ h1(vm)H

‖h1(vm)‖
(y1 −

√
E0α1h1(vm)θ1)

σ

∣∣∣∣)vm.

(36)

We showed that by designing α1 and α2 optimally we can gain up to 32%
improvement in estimator performance. But the “omniscient” solution (36)
depends on the parameter to be estimated. Here, we prove that we can ap-
proach the optimal two-step gain by implementing a θ1-independent energy
allocation strategy when θ1 is bounded, i.e., θ1 ∈ [θmin, θmax], θmin, θmax ∈ �.
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6.2 Solution

We describe the intuition behind the proposed solution in this subsection.
The details of the proof are given in Appendix 12. Since we do not know
the value of the actual parameter, we replace θ1 by a ‘guess’ of θ1, say θg,
in the optimal solution to the design at the second step given in (36). The
resulting suboptimal design is

x1 =
√

E0 α∗
1vm (37)

x2 =
√

E0 α∗
2

(∣∣∣∣ h1(vm)H

‖h1(vm)‖
(y1 −

√
E0α

∗
1h1(vm)θg)

σ

∣∣∣∣)vm =
√

E0 α∗
2 (|ñ1 + z|) vm,

(38)

where

z =
α∗

1

√
E0‖h1(vm)‖

σ
(θ1 − θg) = α∗

1

√
SNR0(θ1 − θg) (39)

and ñ1, which is defined below (20) is CN (0, 1). Substituting the above
suboptimal solution in the expression for MSE(N) × SNR(N) in (11) and
simplifying, we obtain

MSE(2)(z)×SNR(2)(z) = η(z) = E
[
α∗2

1 |ñ1|2 + α∗2
2 (|ñ1 + z|)

(α∗2
1 + α∗2

2 (|ñ1 + z|))2
]

E
[
α∗2

1 + α∗2
2 (|ñ1 + z|)] .
(40)

The optimal solution to MSE(2)(z) × SNR(2)(z) is achieved when z = 0.
There are two ways that drive z → 0. If θ1 = θg, then z = 0 and we have
η(0) = η∗ = MSE(2)

min × SNR0 ≈ 0.68, the optimal two-step performance.
Since θg is arbitrary, |θ1 − θg| > 0; the two-step design is not optimal and
therefore MSE(2) × SNR0 = η(z) > η∗. The other way to achieve the
optimal solution is to make SNR0 as small as possible. Note that if SNR0

is sufficiently small MSE(2) × SNR(2) approaches its minimal value. Since
SNR(2) ≤ SNR0, driving the SNR0 to zero, drives the MSE(2) to infinity.
To overcome this problem, we propose an N × 2-step procedure to allow the
SNR0 to be fixed while driving z → 0. The N × 2-step algorithm is outlined
in Fig. 9 and is shown through an illustration in Fig. 10. Any peak power
constraint can also be satisfied using the N × 2-step strategy by choosing a
sufficiently large N .

Figure 8 shows η(z) in (40) as a function of the percentage error in
the guess of θ1, 100

(
θ1−θg

θ1

)
for varying SNR0. The plot indicates that

when θg = θ1, the optimal performance of the adaptive two-step strategy
is achieved for all SNR. At high SNR, for certain values of |θ1 − θg|, the
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Figure 8: Plot of reduction in MSE versus percentage error in guess of
parameter of θ1 for various SNR.

two-step strategy defined by equations (37) and (38) performs worse than
a single step strategy with signal-to-noise ratio SNR0. This is because the
solution presented in (37) and (38) in terms of scalar α∗

1 and thresholding
function α∗

2(·) were optimized for ñ1 +z ∼ CN (0, 1), i.e., when z = 0. When
θg = θ1, the following happens: z = 0, ñ1 + z ∼ CN (z, 1), and the design
parameters α∗

1 and α∗
2(·), which were found optimally for ñ1 + z ∼ CN (0, 1)

(z = 0) are no longer optimal. When |θ1 − θg| is large, z in (39) is a
large constant and hence ñ1 is a negligible term compared to z with high
probability. In other words, α∗

2(ñ1+z) can be made arbitrarily close to α∗
2(z)

with high probability as z tends to infinity. This implies that the strategy
becomes equivalent to a two-step non-adaptive strategy with a specific non-
adaptive energy distribution between the two steps whose performance is
given by MSE(2) × SNR0 = 1 from Section 2.1. Thus we observe that the
performance of the two-step strategy tends to 1 for large |θ1−θg|. The most
important information in the plot, however, is the performance of the two-
step strategy under low SNR since each 2-step procedure in the N × 2-step
strategy works at (1/N)th of the total SNR. Hence as N becomes large,
SNR in each experiment is very small and the lack of knowledge of θ1 plays
a negligible effect on the performance as z is made close to zero through the
SNR factor.
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• Step 1: Perform N independent two-step suboptimal experiments with in-
puts 1√

N
x1 and 1√

N
x2 where x1 and x2 are given in (37) and (38) respec-

tively, i.e., use energy E0/N in each of the N experiments.

– The SNR of the 2N -step procedure is SNR(2N)(z) = NSNR(2),1(z) =
SNR(2)(z/

√
N) where SNR(2),k is the SNR of the kth two-step experiment.

The first equality follows from the fact that {SNR(2),k}N
k=1 are identical

as the N experiments are independent while the second equality follows
from the fact that each two-step experiment uses only (1/N)th of the
total energy.

• Step 2: Obtain ML estimate from each step as θ̂
(2),k
1 and average the N es-

timates to obtain the ML estimator of the N × 2-step strategy as θ̂
(2N)
1 =

1
N

∑N
k=1 θ̂

(2),k
1 .

– The MSE of θ̂
(2N)
1 is given by MSE(2N)(z) = 1

N MSE(2),1(z) =
MSE(2)(z/

√
N), where MSE(2),k is the MSE of each two-step estima-

tor θ̂
(2),k
1 . The first equality follows from the fact that {MSE(2),k}N

k=1 are
identical as the N experiments are independent while the second equality
follows from the fact that each two-step experiment uses only (1/N)th of
the total energy.

• From Steps 1 and 2, we have MSE(2N)(z) × SNR(2N)(z) =
MSE(2)(z/

√
N)SNR(2)(z/

√
N). As N → ∞, z/

√
N → 0 and

MSE(2N)(z) × SNR(2N)(z) → η∗, i.e., minimal MSE is achieved. The
details of the proof can be found in Appendix 12.

Figure 9: Description of the N× two-step procedure.
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Figure 10: Illustration of the N× two-step procedure: the omniscient opti-
mal two-step procedure, where energy E1 is allocated to the first step and E2

is chosen optimally at the second step based on the past measurements, is
shown in Fig. (a). Figure (b) illustrates the N × 2-step procedure, where N
independent two-step experiments are performed with the energy design as
the optimal two-step energy allocation strategy scaled through 1/N but with
θg replacing θ1. By averaging the estimates of the N two-step estimators,
we asymptotically achieve optimal performance as N → ∞.
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7 Design of N-step procedure

In Sections 3 and 6, we derived the omniscient optimal two-step design to
minimize the MSE and proved that the optimal performance can be achieved
asymptotically using an N × 2-step strategy. But the N × 2-step strategy
is a specific case of a 2N -step design. In this section, we generalize the
suboptimal solution from the 2-step case to the N -step case as follows: we
assume that the shape of the design vector is fixed and look at the energy
allocation among the various steps. The set of observations are as defined
in (3). Let the shape of the design vector xi be vm and the energy at step
i, Ei = α2

i (y1, . . . ,yi−1), i.e., xi = vmαi(y1, . . . ,yi−1), 1 ≤ i ≤ N . Then

α1 = A1 (41)

αi = AiI

(
|∑i−1

j=1 h1(xj)Hnj |2∑i−1
j=1 ‖h1(xj)‖2σ2

≥ ρi

)
, i ≥ 2, (42)

where {Ai, ρi} are design parameters. This approximate solution is moti-
vated from the suboptimal thresholding solution to the two-step case derived
in Section 4. Note that the definition of the amplitudes at each stage is re-
cursive, i.e., the amplitude design αi depends on past inputs x1, . . . ,xi−1

which in turn depends on α1, . . . , αi−1. To simplify our analysis, we make
the assumption ρ1 ≤ ρ2 ≤ . . . ≤ ρN . Then,

α2 = A2I

(∣∣∣∣ h1(x1)H

‖h1(x1)‖
n1

σ

∣∣∣∣2 ≥ ρ2

)
= A2I

(∣∣∣∣ h1(vm)H

‖h1(vm)‖
n1

σ

∣∣∣∣2 ≥ ρ2

)
= A2I

(|ñ1|2 ≥ ρ2

)
,

(43)
where ñi = h1(vm)H

‖h1(vm)‖
ni
σ are i.i.d complex Gaussian random variables with

zero mean and unit variance. The amplitude at the third stage simplifies to

α3 = A3

( |h1(x1)Hn1 + h1(x2)Hn2|2
σ2 (‖h1(x1)‖2 + ‖h1(x2)‖2)

≥ ρ3

)
= A3I

( |A1ñ1 + A2ñ2|2
|A1|2 + |A2|2 ≥ ρ3

)
I
(|ñ1|2 ≥ ρ2

)
+ A3I

(|ñ1|2 ≥ ρ2

)
I
(|ñ1|2 < ρ2

)
= A3I

( |A1ñ1 + A2ñ2|2
|A1|2 + |A2|2 ≥ ρ3

)
I
(|ñ1|2 ≥ ρ2

)
. (44)

Following the same procedure, we simplify α4 as

α4 = A4I
( |A1ñ1 + A2ñ2 + A3ñ3|2

|A1|2 + |A2|2 + |A3|2 ≥ ρ4

)
I
( |A1ñ1 + A2ñ2|2

|A1|2 + |A2|2 ≥ ρ3

)
I
(|ñ1|2 ≥ ρ2

)
.

(45)
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Thus, a general expression for αi can be written as

αi = Ai

i−1∏
s=1

I
(
|ws|2 ≥ ρs+1

)
, (46)

where ws is defined in (134). This form states that the stopping criteria
at time step s is when the magnitude of the average noise, ws drops below
the threshold ρs+1. The goal is to minimize GN = MSE(N) × SNR(N) which
from Appendix 13 is given by

MSE(N) × SNR(N)(A,ρ) =

(
N−1∑
i=1

Ti

Qi
+

T̃N

QN

)(
N−1∑
i=1

QiPi + QN P̃N

)
, (47)

where A = [A1, . . . , AN ],ρ = [ρ1, . . . , ρN ], Qi, Ti, Pi are defined in (136),
(137) and (139) respectively.

There is no closed-form solution to this 2N dimensional optimization. In-
stead we evaluate the performance of suboptimal solutions to the design vec-
tors A and ρ. For our simulations, we choose ρi = (i−1)/(N −1) ρmax, 1 ≤
i ≤ N . Furthermore, we choose A as {Ai = d α∗

1, odd i; Ai = d α∗
2, even i},

where α∗
1, α

∗
2 are optimal values from the suboptimal solution presented in

Section 4 and d is chosen to satisfy the average energy constraint. We evalu-
ate the performance of the N -step procedure with these parameters through
theory and verify the theory using simulations.

Performance gains, GN (in dB) are presented in Fig. 12. The theoretical
performance curve was generated by evaluating the expressions for Ti and Pi

in (137) and (139) using numerical integration and substituting them in (47)
while the simulations are generated by sampling the distributions of {yi}N

i=1

by first generating samples of {αi}N
i=1 followed by an empirical estimate of

the MSE. By designing this N -step procedure, we are essentially altering
the Gaussian statistics of the measurement noise to obtain improvements in
performance. In Fig. 11, we illustrate how the distribution of the estimation
residuals changes with the number of the steps. We would like to point
out that the simulation curve appears smoother than the theory curve in
Fig. 12 as evaluating (137) and (139) involved high order integration. We see
that in 50 steps, we are able to achieve gains of more than 5dB. In Section
6, we showed that the two-step gain can be achieved using an N × 2-step
strategy, i.e., in 2N steps. The basic motivating factor was to reduce the
SNR in each experiment and achieve the diversity gain by increasing the
number of steps. For the general N -step strategy, progressive reduction in
SNR of each experiment implies that as the number of steps increases, the
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Figure 11: Distribution of noise versus number of steps.

error of guessing θ1 has a reduced effect on the overall performance. We
demonstrate the achievability of performance for any N -step design in the
following subsection.

7.0.1 Achievability of performance of any omniscient N-step de-
sign

For an N -step procedure, we need to design a sequence of input vectors
{xi}N

i=1 optimally under an average energy constraint to minimize the MSE
in (5).

Theorem 7.1. Let S = {xi (y1, . . . ,yi−1; θ1)}N
i=1 be any design of the input

parameters satisfying the following conditions:

• Average energy constraint - E
[∑N

i=1 ‖xi (y1, . . . ,yi−1; θ1) ‖2
]
≤ E0.

• Continuity - The design vector xi (y1, . . . ,yi−1; θ1) is a continuous
function of {yj}i−1

j=1 or can assume the form of a thresholding func-
tion in (42).

Then there exists a θ1-independent strategy whose performance can come
arbitrarily close to MSE(N)(S) which assumes the knowledge of parameter
θ1.
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Proof. The proof is similar to the N × 2-step strategy presented in Section
6, where the actual value of θ1 in the optimal solution is replaced with a
guess of θ1. Refer to Appendix 16 for details.

8 Sequential Design for Vector Parameters

A general N -step procedure for the case of M unknown parameters can be
written as

yi = H(xi(y1, . . . ,yi−1))θ + ni, i = 1, 2, . . . , N, (48)

where θ is an M -element vector, ni ∼ CN (0,Rn), and H(x) is a K × M
matrix. For the multiple parameter case, MSE is no longer a scalar. Various
criteria such as trace, minmax, determinant of the MSE matrix can be
considered as measures of performance under the multiple unknown setting.

8.1 Worst Case Error - Min Max Approach

The component wise MSE for estimating specific parameters is given by
the diagonal elements of the matrix MSE = E

[
(θ − θ̂)(θ − θ̂)H

]
. We

seek to find the optimal energy allocation between the two design vectors,
xi({yj}i−1

j=1) = um

√
E0αi({yj}i−1

j=1), i = 1, 2, that minimizes the worst case

28



mean-squared error (WC-MSE) of the unknown parameters, where um is
any unit norm vector independent of past measurements, e.g., um is chosen
to minimize the one-step MSE. The ML estimate for a one-step process
with energy E0 is given by

θ̂
(1)

=
1√
E0

WumH(um)HR−1
n y1 (49)

and its corresponding MSE is

MSE(1) =
1
E0

Wum , (50)

where Wum = (H(um)HR−1
n H(um))−1. Define Φ(u,MSE) = uHMSEu.

WC-MSE = max
i

eH
i MSEei = max

i
Φ(ei,MSE), (51)

where ei is an M -element vector with all zeros except for 1 in the ith position.
Then for a one-step process

WC-MSE(1) = max
i

Φ(ei,MSE(1)) = Φ(ei∗ ,MSE(1)), (52)

where i∗ indicates the arg maxi Φ(ei,MSE(1)) and

Φ(u,MSE(1)) =
1

E0
uHWumu. (53)

The set of observations for the two-step process are

y1 =
√

E0α1H(um)θ + n1 (54)

y2 =
√

E0α2(y1)H(um)θ + n2. (55)

For a two-step procedure, we need to design α1 and α2(y1) to minimize
WC-MSE(2). From (141) in Appendix 14, we have

Φ(u,MSE(2)) = Φ(u,MSE(1)) E

[
α2

1 |ñ1(y1;θ)|2 + α2
2(ñ1(y1;θ))

(α2
1 + α2

2(ñ1(y1;θ))2

]
,(56)

where ñ1(y1;θ) = uHWumH(um)HR−1
n (y1−H(x1)θ)√

uHWumu
is a complex normal random

variable with zero mean and unit variance. The error in (56) when minimized
under the constraint α2

1 + E
[
α2

2(ñ1)
] ≤ 1 is exactly the same minimization

derived for the single parameter case in Section 3. It follows that the optimal
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and suboptimal solutions to α1 and α2(·) will hold for the multiple parameter
case. In other words Φ(u,MSE(2)) ≈ 0.6821 Φ(u,MSE(1)). It follows that

WC-MSE(2) = Φ(ei∗ ,MSE(2)) ≈ 0.6821 Φ(ei∗ ,MSE(1)) = 0.6821 WC-MSE(1)

(57)
and this performance can be achieved using a θ-independent strategy along
similar lines to the derivation for the scalar parameter case in Section 6 [43].
The reduction in MSE in (57) holds for any M , the number of unknown
parameters, as i∗, the index of the worst case error, can always be computed
from (52) and (53) for any M ∈ N. A similar result can be derived for the
N -step procedure.

8.2 Trace Criteria

For the multiple parameter case, the MSE is a matrix and we consider the
trace as a measure of performance i.e., min{xi}N

i=1
tr(MSE(N)(θ)), where tr(·)

denotes the trace. So far, we considered the problem of optimal and sub-
optimal strategies for energy allocation in an N -time step procedure. We
assumed in our analysis that the waveform transmitted is the one-step op-
timal derived in Section 2.1. For the purposes of the trace criterion in the
vector parameter case, we consider two possible strategies: first, performing
N -step energy allocation under the constraint that the waveform transmit at
every time instant is the one-step optimal for estimating the vector param-
eters. The second strategy is to provide a waveform and energy allocation
simultaneously. We present the energy allocation procedure in the following
section.

8.2.1 Energy design under fixed waveforms

The trace of the MSE matrix can be written in the following form,

tr(MSE) =
M∑
i=1

eH
i MSEei =

M∑
i=1

Φ(ei,MSE), (58)

In this analysis, we will assume that all the elements of the matrix H defined
in (48) can be controlled by the design vector xi at every time instant. In
other words, we assume the following statistical model

yi = αi

√
E0X̃iθ + ni, i = 1, 2, . . . , N, (59)
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where X̃i is the K × M input design matrix and ni ∼ CN (0,Rn). The
one-step estimator for θ in this model is given by

θ̂
(1)

=
1√
E0

(X̃H
1 R−1

n X̃1)−1X̃H
1 R−1

n y1 (60)

and the corresponding MSE can be derived using a similar derivation to (50)
as

MSE(1) =
1

E0
(X̃H

1 R−1
n X̃1)−1. (61)

The trace of the MSE(1) matrix can then be written as

tr(MSE(1)) =
1
E0

tr
{

(X̃H
1 R−1

n X̃1)−1
}

=
1

E0

M∑
i=1

eH
i (X̃H

1 R−1
n X̃1)−1ei.(62)

For a two-step process, the set of observations can be written as

y1 = α1

√
E0X̃1θ + n1 (63)

y2 = α2(y1)
√

E0X̃1θ + n2, (64)

where X̃1 will be chosen as the optimal one-step design and α1 and α2(y1)
are optimal energy allocation design parameters. The two-step ML estimator
is given by

θ̂
(2)

=
1√
E0

(X̃H
1 R−1

n X̃1)−1X̃H
1 R−1

n

(
α1y1 + α2(y1)y2

α2
1 + α2

2(y1)

)
(65)

and the corresponding MSE is

MSE(2) =
1
E0

En1

[
(X̃H

1 R−1
n X̃1)−1X̃H

1 R−1
n

(
α2

1n1nH
1 + α2

2(y1)Rn(
α2

1 + α2
2(y1)

)2
)

R−1
n X̃1(X̃H

1 R−1
n X̃1)−1

]
.

(66)
The trace of the MSE(2) can be evaluated as

tr(MSE(2)) =
1
E0

(
E
[

α2
1

(α2
1 + α2

2(y1))2
nH

1 R−1
n X̃1(X̃H

1 R−1
n X̃1)−2X̃H

1 R−1
n n1

+
α2

2

(α2
1 + α2

2(y1))2
tr
{
(X̃H

1 R−1
n X̃1)−1

}])
(67)

=
1
E0

(
E
[

α2
1

(α2
1 + α2

2(y1))2
ñH

1 (y1;θ)Mñ1(y1;θ)

+
α2

2

(α2
1 + α2

2(y1))2
tr
{
(X̃H

1 R−1
n X̃1)−1

}])
, (68)
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where
M = R−1/2

n X̃1(X̃H
1 R−1

n X̃1)−2X̃H
1 R−1/2

n (69)

and
ñ1(y1;θ) = R−1/2

n n1 = R−1/2
n (y1 − α1

√
E0X̃1θ). (70)

Since rotation or translation of the Gaussian random vector is still a Gaus-
sian random vector, it follows that ñ1 is i.i.d CN (0, I). Using circular in-
variance of trace of a matrix, i.e., tr(ABC) = tr(CAB), we have

tr(M) = tr
{
R−1/2

n X̃(X̃HR−1
n X̃)−2X̃HR−1/2

n

}
= tr

{
(X̃HR−1

n X̃)−1
}

(71)

Define w1(y1;θ) as

w1(y1;θ) =
ñH

1 (y1;θ)Mñ1(y1;θ)
tr(M)

. (72)

Substituting (72) and (71) in (68), we obtain

tr(MSE(2)) = tr(MSE(1))
(

E
[

α2
1

(α2
1 + α2

2(w1(y1;θ)))2
w1(y1;θ) +

α2
2(w1)

(α2
1 + α2

2(w1(y1;θ)))2

])
,

(73)
where α2(y1) is replaced with α2(w1(y1;θ)) as the dependence of α2 on y1

occurs through w1(y1;θ). We will denote w1(y1;θ) and ñH
1 (y1;θ) as w1

and ñ1 respectively in the remainder of this discussion for convenience.
Let M = QDQH denote the eigenvalue decomposition of the matrix M,

where D = [d1, . . . , dN ] denotes the eigenvalues. Then

w1 =
ñH

1 Mñ1

tr(M)
=

n̂H
1 Dn̂1

tr(D)
=
∑N

i=1 di|n̂1,i|2∑N
i=1 di

=
N∑

i=1

(
di∑N
i=1 di

)
|n̂1,i|2,(74)

where n̂1 = QHñ1 is again CN (0, I) since Q is unitary and n̂1,i denotes
the ith element of the vector n̂1. {|n̂1,i|2}N

i=1 are independent central χ2
2

random variables, i.e., chi-square random variables with 2 degrees of freedom
(exponentially distributed). Hence w1 is central chi-square mixture with N
degrees of freedom with

E [w1] = 1 (75)

var(w1) = 2
N∑

i=1

(
di∑N
i=1 di

)2

(76)
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To find the optimal solution to the energy at the second stage, i.e., α2(w1)
we need to minimize with respect to α2(w1) the function(

E
[

α2
1

(α2
1 + α2

2(w1))2
w1 +

α2
2(w1)

(α2
1 + α2

2(w1))2

])
(77)

subject to the constraint on the average energy E
[
α2

1 + α2
2(w1)

] ≤ 1. The
Lagrangian, the minimization condition plus the constraint, can be written
as

min
α1,α2(w1)

Ew1

[
α2

1w1 + α2
2(w1)

(α2
1 + α2

2(w1))2

]
+ λ

(
α2

1 + Ew1

[
α2

2(w1)
])

(78)

= min
α1,α2(w1)

1
α2

1

En1

[
w1 + α2

2(w1)/α2
1

(1 + α2
2(w1)/α2

1)2

]
+ λα2

1

(
1 + Ew1

[
α2

2(w1)/α2
1

])
(79)

= min
α1,g(w1)

1
α2

1

Ew1

[
w1 + g(w1) − 1

g2(w1)

]
+ λα2

1Ew1 [g(w1)] (80)

= min
α1,g(w1)

1
α2

1

Ew1

[
1

g(w1)
− 1 − w1

g2(w1)
+ λ

′
g(w1)

]
, (81)

where g(w1) = 1 + α2
2(w1)/α2

1 and λ
′
= λα2

1. Differentiating and setting the
derivative with respect to g to zero,

g3 − 1
λ′ g + 2

1 − w1

λ′ = 0 (82)

The structure of the optimal design for the multiple parameter case is the
same as that of the optimal design for the single parameter case. The
only difference between the solutions is that the optimal solution α2(w1)
is a function of w1, a χ2-mixture with N degrees of freedom which reduces
to being a exponentially distributed random variable when the number of
parameters to be determined is reduced to 1. Furthermore to compute the
exact reduction in the MSE, we need to know the general distribution of the
χ2-mixture. Various series expansions have been proposed in the literature
for the distribution of a sum of χ2-random variables: power series [44],
χ2 series [45], improved power series and Laguerre series expansions [46],
Laguerre series for non central chi-square sum [47].

Before we proceed to find the optimal sequential design of energy for an
N -step process, we solve for the optimal X̃1 for an one-step process which
yields the eigenvalues d1, d2, . . . , dN . To find the optimal one-step design
vector, we need the following results.

Lemma 8.1. N ≥ M
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Proof. Consider the M ×M matrix (X̃HR−1
n X̃) in the solution to the max-

imum likelihood estimator of θ in (49).

(X̃HR−1
n X̃) =

{
(X̃HR−1/2

n )(X̃HR−1/2
n )H

}
Since for any matrix A, Rank(AAH) = Rank(A), it follows that

Rank(X̃HR−1
n X̃) = Rank(X̃HR−1/2

n ) = Rank(X̃) = min(N,M).(83)

Since we want the M × M matrix (X̃HR−1
n X̃) to be invertible, we need

Rank(X̃HR−1
n X̃) = M . It follows that N ≥ M for any M .

For the rest of the derivation, we consider the following assumptions:

• Without loss of generality we assume N = M and furthermore X̃ is
full rank.

• The receiver noises are independent and identically distributed.i.e.,
Rn = σ2I.

Lemma 8.2. For any positive m × m definite matrix A, the following in-
equality holds,

tr(A−1) ≥
M∑
i=1

(ai,i)−1, (84)

where ai,i is the ith diagonal element of A and equality iff A is diagonal.

Proof. The details of the proof can be found in [48].

Theorem 8.3. di = σ2N , i = 1, 2, . . . , N minimizes MSE(1).

Proof. The single-stage MSE given in (62) has the form

tr(MSE(1)) =
1
E0

(X̃H
1 R−1

n X̃1)−1 =
σ2

E0
tr
{
(X̃H

1 X̃1)−1
}

, (85)

when Rn = σ2I. To obtain the minimum error we need to find X̃1 optimally.
Since the energy component was already extracted as a multiplying term of
the form

√
E0αj(y1, . . . ,yj−1), X̃1 should satisfy ‖X̃1‖F = 1 (‖ · ‖F denotes

the Frobenius norm). Using Lemma 8.2, it follows that the optimal X̃1

satisfies
X̃H

1 X̃1 = diag(‖z1‖2, . . . , ‖zN‖2), (86)
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where X̃1 = [z1, . . . , zN ]. We use Lagrange multipliers to solve the following
optimization problem. The Lagrangian is given by

L(X̃1, λ) = min
X̃1

tr
{(

X̃H
1 X̃1

)−1
}

+ λ(tr(X̃H
1 X̃1) − 1) (87)

=
N∑

i=1

(‖zi‖2
)−1 + λ

(
N∑

i=1

‖zi‖2 − 1

)
. (88)

Setting ∂L(X̃1,λ)
∂zj

= 0 for j = 1, . . . , N , we obtain(‖zj‖2
)−2 zj − λzj = 0 (89)(

1 − λ|zj‖4
)
zj = 0. (90)

It follows that the solution to {‖zi‖2}N
i=1 is

‖zi‖2 =
√

1
λ0

, i = 1, . . . , N (91)

The optimal λ, λ∗ = N2 and

‖zi‖2 =
1
N

, i = 1, . . . , N (92)

Hence X̃H
1 X̃1 = 1

N I and

M = R−1/2
n X̃1(X̃H

1 R−1
n X̃1)−2X̃H

1 R−1/2
n = σ2 N2X̃1X̃H

1(
M − σ2NI

)
X̃1 = 0
M = σ2NI (93)

It follows that all eigenvalues d1, . . . , dN of the matrix M are equal to σ2 N .

Since all eigenvalues are equal, the expression for w1 in (74) can be
simplified to

w1 =
N∑

i=1

(
di∑N
i=1 di

)
|n̂1,i|2 =

1
N

N∑
i=1

|n̂1,i|2. (94)

From Appendix 15, we see that w1 is a Gamma distribution whose proba-
bility density function and cumulative distribution function as

fw1(y) =
NN

(N − 1)!
yn−1e−Ny, y ≥ 0 (95)

Fw1(y) = 1 − e−Ny
N∑

j=0

(Ny)j

j!
, (96)
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M α∗
1 λ

′∗ M α∗
1 λ

′∗ M α∗
1 λ

′∗

1.0000 0.7427 0.2077 11.0000 0.8781 0.5652 21.0000 0.9002 0.6373
2.0000 0.7910 0.3163 12.0000 0.8817 0.5766 22.0000 0.9003 0.6373
3.0000 0.8152 0.3787 13.0000 0.8817 0.5766 23.0000 0.9041 0.6502
4.0000 0.8295 0.4186 14.0000 0.8853 0.5883 24.0000 0.9041 0.6502
5.0000 0.8417 0.4535 15.0000 0.8890 0.6002 25.0000 0.9042 0.6502
6.0000 0.8512 0.4816 16.0000 0.8926 0.6123 26.0000 0.9080 0.6634
7.0000 0.8577 0.5012 17.0000 0.8927 0.6123 27.0000 0.9080 0.6634
8.0000 0.8643 0.5217 18.0000 0.8964 0.6247 28.0000 0.9080 0.6634
9.0000 0.8677 0.5323 19.0000 0.8965 0.6247 29.0000 0.9119 0.6768
10.0000 0.8746 0.5540 20.0000 0.9002 0.6373 30.0000 0.9119 0.6768

Table 2: Optimal values of α1 and λ for various M , number of unknown
parameters

Using the above distribution and the optimal solution in (82) we solve for
the optimal solution to α2(w1) at the second stage. We already know that
the minimum occurs at α1 ≈ 0.7421 for M = 1. We solve for the optimal
solution and find the gain in MSE for various values of M . The optimal
values of α1 and λ′ for varying values of M is shown in Table 2. In particular,
the performance of the two-step sequential design are plotted versus varying
values of α1 theoretically (solid) and via simulations (dashed dotted) for
M = 2 and M = 3 case in Fig. 13 and 14, respectively. Figure 15 plots
the optimal reduction for the two-step design for increasing values of M
theoretically (solid) and via simulations (dashed dotted). It is interesting
to note that the reduction in MSE decreases as the number of parameters
increases. In fact, as the number of unknown parameters M goes to infinity,
the ratio tends to 1. We will prove this fact in the following sections.

8.2.2 Suboptimal Solution

As in the case of the single parameter case, we explore the performance gain
for a suboptimal solution of the form,

α2(w1) = α2I (w1 ≥ ρ), (97)

where α2, ρ are chosen to satisfy the average energy constraint which can be
written as

α2
1 + α2

2 (1 − Fχ(w1)) ≤ 1. (98)
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Figure 13: Plot of gain in two-step sequential design versus α1 for M = 2
through theory and simulations
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Figure 14: Plot of gain in two-step sequential design versus α1 for M = 3
through theory and simulations
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This solution is motivated from the suboptimal solution presented in Section
4 for the scalar parameter case. Simplifying the energy constraint, we have

α2
2 =

1 − α2
1

1 − Fχ(w1)
, (99)

where Fχ(w1) = P(w1 ≤ ρ) is the cumulative distribution function of the
chi-square mixture. Substituting (97) in (73) yields,

tr(MSE(2)) = tr(MSE(1))Ew1

[
α2

1

(α2
1 + α2

2)2
w1I (w1 ≥ ρ)

+
α2

2

(α2
1 + α2

2)2
I (w1 ≥ ρ) +

1
α2

1

w1I (w1 < ρ)
]

(100)

= tr(MSE(1))
(

1
α2

1

+
{

α2
1

(α2
1 + α2

2)2
− 1

α2
1

}
Ew1 [w1I (w1 ≥ ρ)]

+
α2

2

(α2
1 + α2

2)2
(1 − Fχ(w1))

)
, (101)

where α2 satisfies (99). We minimize the expression in (101) over 0 ≤ α1 ≤ 1
and ρ ∈ R+. Figure 16 plots the gain in MSE as a function of the number of
unknown parameters for the suboptimal solution through simulations along
with the optimal gain. As is the case for a single parameter case, the best
possible suboptimal design gives us an improvement of approximately 0.71.
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Figure 16: Plot of gains obtained in a suboptimal design versus number of
unknown parameters to be estimated through simulations

Also, it is worthwhile to note that the suboptimal solution provides near
optimal performance. This is essentially due to the fact that the suboptimal
solution is in accordance with the structure of optimal solution.

Note: The general two-step design procedure is given in terms of w1 or
in terms of {n̂1,i}N

i=1 as in (74). Since

n̂1 = QHRnn1 = QHRn

(
y1 −

√
E0α1X̃θ

)
, (102)

it follows that the unknown θ can be replaced by a guess θg and a K×2-step
procedure will yield the desired performance as in the single parameter case.

8.2.3 Asymptotic Behaviour of Optimal Design

Asymptotic distribution of w1: When d1 = . . . = dN , w1 is a gamma distri-
bution and it follows that the random variable w1 asymptotically behaves
as [49]

w1 ∼ 1
N

χN → N (1,
2
N

) as N → ∞ (103)

Theorem 8.4. tr(MSE2) → tr(MSE1) as M → ∞, i.e., There is no gain in
a sequential design procedure when the number of unknown parameters M
goes to infinity.
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Proof. Since N ≥ M , as M → ∞, we have w1 → N (1, 2/N). It follows that
asymptotically, the optimal design at the second step should concentrate all
the energy at w1 = 1, i.e., α2(w1) = α2δ(w1 − 1) and the corresponding
energy constraint is α2

1 + α2
2 ≤ 1. Hence the minimum MSE at the second

step asymptotically is given by

tr(MSE2) = tr(MSE1)Ew1

[
α2

1

(α2
1 + α2

2(w1))2
w1 +

α2
2(w1)

(α2
1 + α2

2(w1))2

]
= lim

M→∞
tr(MSE1)Ew1

[
α2

1

(α2
1 + α2

2δ(w1 − 1))2
w1 +

α2
2δ(w1 − 1)

(α2
1 + α2

2δ(w1 − 1))2

]
= lim

M→∞
tr(MSE1)

1
α2

1 + α2
2

= tr(MSE1)

8.2.4 Waveform and energy design for trace criterion

The problem of multiple parameter estimation is more complicated than
estimation of a single parameter for the following reason. We showed in
Section 2.1 that independent of the shape of xi, any non-adaptive energy
allocation strategy is to assign all energy to the first step, i.e., a one-step
strategy with energy E0. But this is not true for the multiple parameter
setting. Let us consider a simple example of estimating two parameters
θ = [θ1 θ2]T in the model y = H(x)θ + n, where

H(x) =
[

x1 x2

0 x2

]
, (104)

x = [x1 x2]T , y = [y1 y2]T , n = [n1 n2]T ∼ CN (0,Rn), and Rn =
σ2I. Then for a one-step process, we have MSE(1)(θ1) = 2σ2/x2

1 and
MSE(1)(θ2) = σ2/x2

2. Minimizing tr(MSE(1)(θ)) = MSE(1)(θ1)+MSE(1)(θ2)
over the energy constraint ‖x‖2 ≤ E0 = 1, we obtain x1 = x2 = 1/

√
2

and tr(MSE(1)
min) = 6σ2. Now consider the following two-step non-adaptive

strategy,

Step 1. x = [x1 0]T , y1 = x1θ1 + n1,

Step 2. x = [0 x2]T , [1 1]y2 = 2x2θ2 + [1 1]n2.

Minimizing the tr(MSE(2)(θ)) = MSE(2)(θ1)+MSE(2)(θ2) = σ2/x2
1+σ2/2x2

2

over the energy constraint, we obtain x1 = x2 = 1/
√

2 and tr(MSE(2)
min) =
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3σ2. This translates to a 3dB gain in SNR for the two-step non-adaptive
strategy over the one-step approach. We control the shape of the input x =
[x1 x2]T such that we have different energy allocation for each column of the
matrix H. By specifically designing the two-step non-adaptive strategy given
in steps 1 and 2, we have reduced the estimation of the vector parameter
θ = [θ1, θ2] to two independent problems of estimating scalar parameters θ1

and θ2 respectively. For each of these scalar estimators, we design two N -step
sequential procedures (2N steps in total) as in Section 7 for scalar controls x1

and x2 to obtain an improvement in performance of estimating θ. Applying
the N -step design to both x1 and x2, we have MSE(N)(θ1) = GNMSE(2)

min(θ1)
for the first N steps and MSE(N)(θ2) = GNMSE(2)

min(θ2) for the next N steps.
Hence tr(MSE(2N)) = GN tr(MSE(2)

min), where GN is defined in (47). In other
words, the MSE gains of the N -step procedure carry over to the vector
parameter case as well.

9 Applications of sequential estimation

9.1 MIMO Channel Estimation

It has been shown that multiple-input and multiple-output systems (MIMO)
greatly increase the capacity of wireless systems [50–52] and hence MIMO
has become an active area of research over the last decade [53, 54]. One
important component in a MIMO system is the need to accurately estimate
the channel state information (CSI) at the transmitter and receiver. This
estimate has shown to play a crucial role in MIMO communications [55].
A recent and popular approach to channel estimation has been through
the use of training sequences, i.e., known pilot signals are transmitted and
channel is estimated using the received data and the pilot signals. A number
of techniques for performing training based channel estimation have been
proposed: maximum likelihood training method [56], least squares training
[57], minimum mean squared estimation [58]. Recently, [40] proposed four
different training methods for the flat block-fading MIMO system including
the least squares and best linear unbiased estimator (BLUE) approach for
the case of multiple LS channel estimates.

9.1.1 Problem Formulation

In order to estimate the r × t channel matrix Θ for a MIMO system with
t transmit and r receive antennas, N ≥ t training vectors X = [x1, . . . ,xN ]
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are transmitted. The corresponding set of received signals can be expressed
as [40,59]

R = ΘX + M, (105)

where R = [r1, . . . , rN ] is a r × N matrix, M = [m1, . . . ,mN ] is the r × N
matrix of sensor noise, xi is the t× 1 complex vector of transmitted signals,
and mi is the r × 1 complex zero mean white noise vector. Let P0 be
the transmitted training power constraint, i.e., ‖X‖2

F = P0, ‖ · ‖F indicates
Frobenius norm (‖X‖F =

√
tr(XHX)) and σ2 denote the variance of receiver

noise. Though Θ is random, we estimate Θ for a particular realization
corresponding to the block of received data. The task of channel estimation
is to recover the channel matrix Θ based on the knowledge of X and R
as accurately as possible under a transmit power constraint on X. The
standard LS solution and the corresponding estimation error can then be
written as

Θ̂LS = RXH(XXH)−1 (106)

MSELS =
σ2t2r

P0
. (107)

Assuming co-located transmitter and receiver arrays [60, 61] and multiple
training periods available within the same coherency time (quasi-static) to
estimate the channel, the set of received signals at the N time steps given
by Ri = ΘXi + Mi, i = 1, 2, . . . , N , can be rewritten in the following form:

yi = H(Xi)θ + ni, i = 1, 2, . . . , N, (108)

where yi = vec(Ri),θ = vec(Θ),ni = vec(Mi), vec(·) denotes the column-
wise concatenation of the matrix, and H(Xi) = (Xi⊗I)T is a linear function
of the input Xi, which is the same model described in (2). In [40], a method
of linearly combining the estimates from each of the N stages was proposed
and the MSE of the N stage estimator was shown to be MSE(N)

LS = σ2t2r/P0,
where P0 is the total power used in the N steps, i.e.,

∑N
i=1 ‖Xi‖2

F ≤ P0. If
there are enough training samples, we could completely control the matrix
H(Xi) through the input Xi and make H(Xi) orthogonal. In this case (108)
along with the average power constraint E

[∑
i ‖Xi‖2

F

] ≤ P0 can benefit
from adaptive energy allocation designs in Sections 7 and 8.2, where the
problem is then separable into rt independent estimation problems of scalar
parameters. Having N steps in the training sequence suggests an N -step
energy allocation strategy. Hence it follows that using our strategy we are
guaranteed to achieve the optimal error given by MSE(N) ≈ GNσ2t2r/P0,
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which we have shown to be at least 5dB (in 50 steps) better than any non-
adaptive strategy.

9.2 Inverse Scattering Problem

The problem of imaging a medium using an array of transducers has been
widely studied in many research areas such as mine detection, ultrasonic
medical imaging [62], foliage penetrating radar, non-destructive testing [63],
and active audio. The goal in imaging is to detect and image small scatterers
in a known background medium. A recent approach [64] uses the concept of
time reversal, which works by exploiting the reciprocity of a physical chan-
nel, e.g., acoustic, optical, or radio-frequency. One implication of reciprocity
is that a receiver can reflect back a time reversed signal, thereby focusing the
signal at the transmitter source [65]. Furthermore, with suitable prefiltering
and aperture, the signal energy can also be focused on an arbitrary spatial
location. This analysis assumes the noiseless scenario. For the noisy case,
maximum likelihood estimation of point scatterers was performed for both
the single scattering and the multiple scattering models in [41]. We apply
our concept of designing a sequence of measurements to image a medium of
multiple scatterers using an array of transducers under a near-field approx-
imation of the scatterers in the medium.

9.2.1 Problem Setting

We have N transducers located at positions {ra
k}N

k=1, that transmit nar-
rowband signals with center frequency ω rad/sec. The imaging area (or
volume) is divided into V voxels at positions {rv

k}V
k=1. The channel, de-

noted ai, between a candidate voxel i and the N transducers is given by the
homogeneous Green’s function as

ai =
[(

exp(−jω/c‖ra
k − rv

i ‖)
‖ra

k − rv
i ‖

)
k=1...N

]T

, (109)

where c is the speed of light and j =
√−1. This channel model is a nar-

rowband near-field approximation, which ignores the effect of multiple scat-
tering and has been widely adopted in other scattering studies, e.g., [66].
Each voxel can be characterized by its scatter coefficient, e.g., radar cross-
section (RCS), {θv}V

v=1, which indicates the proportion of the received field
that is re-radiated. Thus the channel between the transmitted field and
the measured backscattered field at the transducer array is Adiag(θ)AT ,
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where A = [a1,a2, · · · ,aV ], θ = [θ1, . . . , θV ]T , and diag(θ) denotes a V × V
diagonal matrix with θi as its ith diagonal element.

The probing mechanism for imaging of the scatter cross-section follows a
sequential process, generating the following sequence of noise contaminated
signals,

yi = Adiag(θ)AT xi + ni = H(xi)θ + ni, i = 1, 2, . . . , N, (110)

where H(xi) = Adiag(ATxi). The noises {ni} are i.i.d complex normal
random vectors with zero mean and a covariance matrix σ2I. The goal is
to find estimates for the scattering coefficients θ under the average energy
constraint to minimize the MSE. If A is a square matrix, then we can
condition diag(ATxi) to have a single non zero component on any one of
the diagonal elements, which translates to isolating the ith column of H for
any i. As in Section 8.2, we can perform V independent N -step experiments
to guarantee the N -step gains of at least 5dB over the standard single step
ML estimation for imaging [41]. If we are interested in optimally estimating
any linear combination of the scattering coefficients, then the sequential
strategy proposed in Section 8.1 can be used to achieve improvement in
performance.

10 Conclusions

In this paper we considered the N -step adaptive waveform amplitude design
problem for estimating parameters of an unknown channel under average
energy constraints. For a two-step problem, we found the optimal energy
allocation at the second step as a function of the first measurement for
a scalar parameter in the linear Gaussian model. We showed that this
two-step adaptive strategy resulted in an improvement of at least 1.65dB
over the optimal non-adaptive strategy. We then designed a suboptimal
N -stage energy allocation procedure based on the two-step approach and
demonstrated gains of more than 5dB in N = 50 steps. We extended our
results to the case of vector parameters and provided applications of our
design to MIMO and inverse scattering channel models.
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11 Appendix: Proof of equivalence

Denote the set of design parameters as X = {xi (y1, · · · ,yi−1)}N
i=1. Let

X+ = arg min
X

MSE(N)(X)SNR(N)(X) (111)

X∗ = arg min
X

MSE(N)(X) s.t SNR(N)(X) ≤ SNR0. (112)

Lemma 11.1. For any β ∈ �, βX+ is also a minimizer of the minimization
criterion in (111), where βX = {βxi (y1, · · · ,yi−1)}N

i=1.

Proof. From the energy definition in (6), the SNR definition in (10), and the
property ‖βx‖ = β‖x‖, we obtain SNR(N)(βX+) = β2SNR(N)(X+). Using
the scaling property of the linearity of h1(·), h1(βx) = β h1(x) in (5), we
have MSE(N)(βX+) = 1

β2 MSE(N)(X+). Hence MSE(N)(βX+)SNR(N)(βX+) =

MSE(N)(X+)SNR(N)(X+), which is the minimum value of the criterion in
(111).

Since X∗ minimizes the RHS of (112), we have

MSE(N)(X∗) ≤ MSE(N)(βX+), (113)

where β satisfies SNR(N)(βX+) ≤ SNR0. Similarly, from Lemma 11.1, we
obtain

MSE(N)(βX+)SNR(N)(βX+) ≤ MSE(N)(X∗)SNR(N)(X∗). (114)

Multiplying (113) by SNR(N)(βX+) and combining it with (114) yields

MSE(N)(X∗)SNR(N)(βX+) ≤ MSE(N)(βX+)SNR(N)(βX+) ≤ MSE(N)(X∗)SNR(N)(X∗),
(115)

for |β| ≤
√

SNR0

SNR(N)(X+)
. Choosing β =

√
SNR(N)(X∗)

SNR(N)(X+)
satisfies this constraint

and SNR(N)(βX+) = SNR(N)(X∗) ≤ SNR0. Replacing SNR(N)(βX+) with
SNR(N)(X∗) in (115), we obtain

MSE(N)(X∗)SNR(N)(X∗) ≤ MSE(N)(βX+)SNR(N)(X∗) ≤ MSE(N)(X∗)SNR(N)(X∗),
(116)

It follows that MSE(N)(X∗) = MSE(N)(βX+), i.e., βX+ with β =
√

SNR(N)(X∗)

SNR(N)(X+)

is the minimizer to the constrained minimization problem in (112). Further-
more,
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Lemma 11.2. SNR(N)(X∗) = SNR0.

Proof. By contradiction: If SNR(N)(X∗) < SNR0, let SNR(N)(X∗) = 1
β SNR0

for some β > 1. Then by using the property ‖αx‖ = α‖x‖ in (6) and (10),
we have SNR(N)(

√
βX∗) = SNR0. Using linearity of h1(·) in (5), we obtain

MSE(N)(
√

βX∗) = 1
β MSE(N)(X∗) < MSE(N)(X∗). It follows that

√
βX∗

satisfies the constraint and achieves a lower MSE than X∗ which contra-
dicts the fact that X∗ is the minimum.

12 Appendix: Solution to Problem 6.1

12.0.2 Properties of η(z) in (40)

We list some of the properties of η(z) which we will use to prove our results.

Proposition 12.1. η(z) achieves two-step minimum, i.e., η(z)|z=0 = η∗.

Proposition 12.2. η(z) is an even function of z, i.e., η(z) = η(|z|).
Proof. η(z) in (40) depends on z only through expected values of the form
Eñ1 [f(|ñ1 + z|)] for some continuous function f . Thus Eñ1 [f(|ñ1 + z|)] =
Eñ1

[
f(
∣∣e−∠zñ1 + |z|∣∣)]= Em̃1 [f(|m̃1 + |z||)], where m̃1 = e−∠zñ1 is another

complex Gaussian random variable with zero mean and unit variance.

Proposition 12.3. Optimal two-step minimum is achieved uniquely: η(z) >
η(0) ∀z ∈ � − {0}. Therefore, MSE(2)(z) × SNR(2)(z) = η(z) achieves a
global minimum at z = 0, or θg = θ1.

Proof. By contradiction. If there exists z+ such that η(z+) < η(0), then the
design parameters α∗

1 and α∗
2(ñ1 + z+) will yield a MSE(2) × SNR(2) < η(0)

which contradicts the fact that α∗
1 and α∗

2 achieves minimal η(0).

Proposition 12.4. Continuity of η(z): For any ε > 0,∃ δ > 0 such that
for any 0 ≤ z ≤ δ, η∗ ≤ η(z) ≤ (1 + ε)η∗, i.e., the optimal performance
MSE(2) × SNR(2) = η∗ can be approached within ε for any θg lying in the
sphere 0 ≤ |θg − θ1| ≤ δ

α1

√
SNR0

. Note that the sphere size increases as SNR
decreases.

Proof. It follows from the fact that the functions E [·] , α∗
2(·), f(ñ1) are con-

tinuous. If the solution to α∗
2(·) is the suboptimal thresholding function of

the form (25) then the MSE(2)(z) and SNR(2)(z) are integrals of the prob-
ability density function of an independent Gaussian random variable over
ellipsoids whose center is given through z and hence are still continuous
functions in z.
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12.1 The N× two-step procedure

In this section, we take advantage of Proposition 12.4 to prove our result, i.e.,
the fact that the suboptimal solution presented in Section 6.2 can approach
the optimal two-step solution in Section 3 when θg lies within a sphere
centered at θ1 with radius which increases as SNR decreases.

Consider N independent two-step experiments described below. The
observations from the kth experiment are

yk
1 = h1(xk

1)θ1 + nk
1 (117)

yk
2 = h1(xk

2)θ1 + nk
2, k = 1, 2, . . . , N, (118)

where nk
1 and nk

2 are i.i.d CN (0, σ2I). The input design vectors for the N
experiments are given by

xk
1 =

√
E0

N(1 + ε)
α∗

1vm (119)

xk
2 =

√
E0

N(1 + ε)
α∗

2

(∣∣∣∣ h1(vm)H

‖h1(vm)‖
(yk

1 − h1(xk
1)θg)

σ

∣∣∣∣)vm

=

√
E0

N(1 + ε)
α∗

2

(∣∣∣ñk
1(y

k
1 ; θ1) + z

′∣∣∣)vm, k = 1, 2, . . . , N, (120)

where

z
′

=
z√

N(1 + ε)
=

√
SNR0

N(1 + ε)
α∗

1(θ1 − θg), (121)

ñk
1(y

k
1 ; θ1) =

h1(vm)H

‖h1(vm)‖
(

yk
1 − h1(xk

1)θ1

σ

)
=

h1(vm)H

‖h1(vm)‖
nk

1

σ
, k = 1, 2, . . . , N, (122)

and ε > 0. The SNR in each experiment is

SNR(2),k(z
′
) =

λm(H1)
σ2

E
[
‖xk

1‖2 + ‖xk
2‖2
]

=
SNR0

N(1 + ε)

(
α∗2

1 + E
[
α∗2

2

(∣∣∣ñk
1 + z

′
∣∣∣)]) . (123)
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Then the overall SNR in the 2N experiments (N two-step procedures) is
given by

SNR(2N)(z
′
) =

N∑
k=1

SNR(2),k(z
′
)

= N SNR(2),1(z
′
)

=
SNR0

(1 + ε)

(
α∗2

1 + E
[
α∗2

2

(∣∣∣ñ1
1 + z

′∣∣∣)]) , (124)

since {ñk
1}N

k=1 are i.i.d CN (0, 1) and hence the expected value of α∗2
2 (·) is

identical and independent of k. The ML estimator for the kth two-step
process, θ̂

(2),k
1 is given by

θ̂
(2),k
1 =

{h1(xk
1)}Hyk

1 + {h1(xk
2)}Hyk

2

‖h1(xk
1)‖2 + ‖h1(xk

2)‖2
. (125)

Since the N experiments are independent, the estimators {θ̂(2),k
1 }N

k=1 are i.i.d
random variables. The ML estimator for the N × 2-step procedure is

θ̂
(2N)
1 =

1
N

N∑
k=1

θ̂
(2),k
1 (126)

and the corresponding MSE is

MSE(2N)(z
′
) = E

[∣∣∣θ1 − θ̂
(2N)
1

∣∣∣2] =
1

N2

N∑
k=1

MSE(2),k(z
′
) =

1
N

MSE(2),1(z
′
),

(127)

where MSE(2),k(z
′
) = E

[∣∣∣θ1 − θ̂
(2),k
1

∣∣∣2] are identical as the N two-step ex-

periments are independent. Further, the input designs for each 2-step ex-
periment given by (119) and (120) are the same as the suboptimal input
designs in (37) and (38) with energy E0/(N(1 + ε)), and using a similar
derivation to (40), we obtain

MSE(2),k(z
′
) =

N(1 + ε)
SNR0

E

⎡⎢⎣α∗2
1

∣∣∣ñk
1 + z

′
∣∣∣2 + α∗2

2

(∣∣∣ñk
1 + z

′
∣∣∣)(

α∗2
1 + α∗2

2

(∣∣ñk
1 + z

′∣∣))2
⎤⎥⎦ .(128)

Lemma 12.5. Given ε > 0, θ1, θg ∈ [θmin, θmax], θmin, θmax ∈ �, ∃N0 such
that ∀N ≥ N0, SNR0

(1+ε) ≤ SNR(2N)(z
′
) ≤ SNR0.
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Proof. SNR0
(1+ε) ≤ SNR(2N)(z

′
),∀N ∈ � follows from the fact SNR(2N)(z

′
) is

an even function of z and achieves minimum at z
′
= 0. (12.5.1)

Since E [·] and α∗
2(·) are continuous functions, SNR(2N)(z

′
) is continuous

everywhere and hence at z
′

= 0. Thus for every ζ > 0, ∃δ > 0 such that
|z′ − 0| < δ implies |SNR(2N)(z

′
) − SNR0

(1+ε) | < ζ. Choose ζ = ε SNR0
(1+ε) , we have

SNR(2N)(z
′
) ≤ SNR0. (12.5.2)

Choose N0 =
⌈

α∗2
1 λm(H1)E0|θmax−θmin|2

σ2δ2(1+ε)

⌉
, from (12.5.1) and (12.5.2), the

result follows. Q.E.D.

Theorem 12.6. Given Δ > 0, θ1, θg ∈ [θmin, θmax], ∃N0 such that ∀N ≥ N0

we have η∗
SNR0

≤ MSE(2N)(z
′
) ≤ (1+Δ)η∗

SNR0
.

In other words, this theorem states that we can asymptotically achieve
the performance of the optimal two-step estimator η∗/SNR0 using the N×
two-step procedure when θ1 is bounded.

Proof. Comparing the product of expressions in (128) and (124) to the ex-
pression for η(·) in (40) and using Proposition 12.2, we have for a single
two-step procedure that

MSE(2),k(z
′
) × SNR(2),k(z

′
) = η

(
z
′)

= η

(
α∗

1|θ1 − θg|
√

SNR0

N(1 + ε)

)
. (129)

Since MSE(2N) = 1
N MSE(2),k and SNR(2N) = NSNR(2),k, the total MSE

satisfies

MSE(2N)(z
′
) × SNR(2N)(z

′
) =

1
N

MSE(2),k(z
′
) × NSNR(2),k(z

′
)

= η

(
α∗

1|θ1 − θg|
√

SNR0

N(1 + ε)

)
. (130)

Using Proposition 12.3, MSE(2N)(z
′
)× SNR(2N)(z

′
) ≥ η∗. From RHS of

Lemma 12.5, it follows that

MSE(2N)(z
′
) ≥ η∗

SNR(2N)(z′)
≥ η∗

SNR0
. (131)

Since η(·) is continuous everywhere and at z
′
= 0, it follows that for every

μ
′
> 0, ∃δ

′
> 0 such that |z′ − 0| ≤ δ

′
implies |η(z

′
)− η∗| ≤ μ

′
. Choose μ

′
=
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η∗ε′ , we obtain η(z
′
) ≤ (1+ε

′
)η∗. Thus for N0 =

⌈
α∗2

1 λm(H1)E0|θmax−θmin|2
σ2(1+ε)

⌉
max

(
1
δ , 1

δ′

)2
,

we have

MSE(2N)(z
′
) ≤ (1 + ε

′
)η∗

SNR(2N)(z′)

≤ (1 + ε
′
)(1 + ε)η∗

SNR0
from Lemma 12.5

≤ (1 + Δ)η∗

SNR0
, (132)

where ε
′

=
(

Δ−ε
1+ε

)
and 0 < ε < Δ. From (131) and (132), we have the

result.

13 Appendix: Derivation of the N-step procedure

The design of the N -step procedure given by (42) can be written as

αi = Ai

i−1∏
s=1

I
(|ws|2 ≥ ρs+1

)
, 1 ≤ i ≤ N, (133)

where

ws =

∑s
j=1 Aj ñj√∑s

j=1 |Aj |2
. (134)

Then w = [w1, . . . , wN ]T is a zero mean complex normal vector. Define the
sets Ui = {|wi|2 ≥ ρi+1}, 1 ≤ i ≤ N . For the set of events {Ui}N−1

i=1 , the set
of events {Di = ∩i−1

k=1Uk ∩ U c
i , 1 ≤ i ≤ N − 1,∩N−1

k=1 Uk, i = N} are disjoint
and satisfy I (w ∈ {Di}N

i=1) = 1, ∀w ∈ �N . Hence

I

(
I (|w1|2 < ρ2) +

N−1∑
i=2

I (|wi|2 < ρi+1)
i−1∏
s=1

I (|ws|2 ≥ ρs+1) +
N−1∏
s=1

I (|ws|2 > ρs+1)

)
= 1.

Substituting this expression inside the expectation for the MSE(N) in (5),
we obtain

MSE(N) = E

[
|∑N

i=1 h1(xi)Hni|2
|∑N

i=1 ‖h1(xi)‖2|2

(
I (|w1|2 < ρ2)+

N−1∑
i=2

I (|wi|2 < ρi+1)
i−1∏
s=1

I (|ws|2 ≥ ρs+1) +
N−1∏
s=1

I (|ws|2 > ρs+1)

)]
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=
σ2

λm(H1)

(
1

|A1|2 E
[|w1|2I (|w1|2 < ρ2)

]
+

N−1∑
i=2

1∑i
j=1 |Aj |2

E

[
|wi|2I (|wi|2 < ρi+1)

i−1∏
s=1

I (|ws|2 > ρs+1)

]

+∑N
j=1 |Aj |2

E

[
|wN |2

N−1∏
s=1

I (|ws|2 > ρs+1)

])

MSE(N) =
σ2

λm(H1)

{
N−1∑
i=1

Ti

Qi
+

T̃N

QN

}
, (135)

where

Qi =
i∑

s=1

|As|2, (136)

T1 = E
[|w1|2I (|w1|2 < ρ2)

]
= 1 − (1 + ρ2)e−ρ2 ,

Ti = E

[
|wi|2I (|wi|2 < ρi+1)

i−1∏
s=1

I (|ws|2 > ρs+1)

]
, (137)

T̃i = E

[
|wi|2

i−1∏
s=1

I (|ws|2 > ρs+1)

]
.

The SNR of this N -step process is given by

SNR(N) =
λm(H1)

σ2
E

[
N∑

i=1

‖xi‖2

]

=
λm(H1)

σ2

{
A2

1E
[
I (|w1|2 < ρ2)

]
+

N−1∑
i=2

⎛⎝ i−1∑
j=1

|Aj |2
⎞⎠E

[
I (|wi|2 < ρi+1)

i−1∏
s=1

I (|ws|2 ≥ ρs+1)

]

+

⎛⎝ N∑
j=1

|Aj |2E
[

N−1∏
s=1

I (|ws|2 ≥ ρs+1)

]⎞⎠⎫⎬⎭
=

λm(H1)
σ2

{
N−1∑
i=1

QiPi + QN P̃N

}
, (138)
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where

P1 = E
[
I (|w1|2 < ρ2)

]
= |A1|2(1 − e−ρ2),

Pi = E

[
I (|wi|2 < ρi+1)

i−1∏
s=1

I (|ws|2 ≥ ρs+1)

]
, (139)

P̃i = E

[
i−1∏
s=1

I (|ws|2 ≥ ρs+1)

]
= 1 −

i−1∑
k=1

Pk.

From (135) and (138), we have

MSE(N) × SNR(N) =

(
N−1∑
i=1

Ti

Qi
+

T̃N

QN

)(
N−1∑
i=1

QiPi + QN P̃N

)
.(140)

14 Appendix: Derivation of two-step minmax cri-
teria

The ML estimate and the MSE for the two-step process described by (54)
and (55) are given by

θ̂
(2)

=
1√
E0

WumH(um)HR−1
n

(
α1y1 + α2(y1)y2

α2
1 + α2

2(y1)

)
,

MSE(2) =
1

E0
E
[
(θ − θ̂

(2)
)(θ − θ̂

(2)
)H
]

=
1

E0
E

[
WumH(um)HR−1

n

(
α2

1n1nH
1 + α2

2(y1)Rn(
α2

1 + α2
2(y1)

)2
)

R−1
n H(um)Wum

]
.
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Then,

Φ(u,MSE(2)) = uHMSE(2)u

=
1
E0

E
[

α2
1

(α2
1 + α2

2(y1))2
∣∣uHWumH(um)HR−1

n n1

∣∣2
+

α2
2

(α2
1 + α2

2(y1))2
uHWumu

]

=
1
E0

uHWumu E

⎡⎣ α2
1

(α2
1 + α2

2(y1))2

∣∣∣∣∣uHWumH(um)HR−1
n n1√

uHWumu

∣∣∣∣∣
2

+
α2

2

(α2
1 + α2

2(y1))2

]
= Φ(u,MSE(1)) E

[
α2

1 |ñ1(y1;θ)|2 + α2
2(ñ1(y1;θ))

(α2
1 + α2

2(ñ1(y1;θ)))2

]
, (141)

where

ñ1(y1;θ) =
uHWumH(um)HR−1

n (y1 − H(x1)θ)√
uHWumu

=
uHWumH(um)HR−1

n n1√
uHWumu

(142)
is distributed CN (0, 1).

15 Appendix: Distribution of Gaussian Mixture

Let Y =
∑N

i=1 αiX
2
i where {Xi}N

i=1 are independent unit normal random
variables. Denote α = [α1, . . . , αN ]. Then the density (gN (α, y)) and dis-
tribution (GN (α, y)) function of Y is given as [46]

gN (α, y) =
(y

2

)n
2
−1

∞∑
k=0

ck(−1)k
(y

2

)k
2Γ(n

2 + k)
(143)

GN (α, y) =
(y

2

)n
2

∞∑
k=0

ck(−1)k
(y

2

)k
Γ(n

2 + k + 1)
, (144)
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where ck are determined by

c0 = Πn
j=1α

− 1
2

j (145)

dk =
1
2

n∑
j=1

α−k
j , k ≥ 1 (146)

ck =
1
k

k−1∑
r=0

dk−rcr (147)

Since w1 = 1
N

∑N
i=1 |n̂1,i|2 = 1

2N

∑2N
i=1 X2

i where {Xi =
√

2Re(n̂1,i)}N
i=1 and

{Xi =
√

2Im(n̂1,i)}2N
i=N+1 are independent unit normal random variables.

α = 1
2N [1, . . . , 1] yields

ck =
(

N + k − 1
k

)
(2N)N+k, k ≥ 0 (148)

and the distribution of w1 can then be written as

fw1(y) =
NN

(N − 1)!
yn−1e−Ny, y ≥ 0 (149)

Fw1(y) = 1 − e−Ny
N∑

j=0

(Ny)j

j!
, (150)

Note that when all αi’s are equal, we have a mean of 2N independent unit
normal random variables equivalent to a sum of N independent exponential
random variables which is indeed a gamma distribution.

16 Appendix: Proof of Theorem 7.1

Proof. Since the shape of the design vectors xi is vm, we can write the set
of transmitted signals as

xi (y1, . . . ,yi−1) = vm

√
E0αi (y1 − h1(x1)θ1, . . . ,yi−1 − h1(xi−1)θ1) , i = 1, 2, . . . ,K.

(151)
The inherent problem with any design S is the fact that the transmitted sig-
nal depend on the past through the noise magnitudes in the previous stages,
i.e., we need to know the value of θ1 to achieve the optimal performance.
We overcome the dependence on the parameter of interest using a strategy
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similar to the one in Section 12.1. We replace θ1 with a guess of θ1 namely
θg in the solution in (151). Then we have,

xi = vm

√
E0αi

({yk − h1(xk)θg}i−1
k=1

)
= vm

√
E0αi

({
nk +

√
E0h1(vm)αk(θ1 − θg)

}i−1

k=1

)
= vm

√
E0αi

({nk + αkz}i−1
k=1

)
, (152)

where z = h1(vm)
√

E0(θ1 − θg). Then the MSE of this N -step procedure
can be written as

MSE(K)(z) =
σ2

λmE0
E

⎡⎢⎣
∣∣∣∑K

i=1 αi

({nk + αkz}i−1
k=1

)
ñi

∣∣∣2(∑K
i=1 α2

i

({nk + αkz}i−1
k=1

))2

⎤⎥⎦ (153)

under the average constraint given by

SNR(K)(z) = SNR0E

[
K∑

i=1

α2
i

({nk + αkz}i−1
k=1

)] ≤ SNR0. (154)

Denote η(K)(z) as

η(K)(z) = MSE(K)(z) × SNR(K)(z) (155)

Proposition 16.1. MSE(K)(z) and SNR(K)(z) are continuous functions of
z

Proof. If the functions {αi

({nk + z}i−1
k=1

)K
i=1

are continuous, then it follows
that MSE(K)(z) and SNR(K)(z) are continuous since E [·] and pdf of {nk}K

k=1

are continuous functions. Also if the solution to {αi}K
i=1 are thresholding

functions of the form (42) then the MSE(K)(z) and SNR(K)(z) are integrals
of the probability density function of independent gaussian random variable
over ellipsoids whose center is given through z and hence are still continuous
functions in z. It then implies that η(K)(z) is also continuous in z.

16.0.1 N × K-step procedure

Similar to the N × 2-step procedure, we now construct an N × K-step
process, where we assume that the average energy in each of the N steps
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equals E0/N . Then the ML estimate of θ1 for the kth K-step procedure is
given by

θ̂
(K),k
1 =

∑N
j=1{h1(xk

j }Hyk
j∑N

j=1 ‖h1(xk
j )‖2

, (156)

where the input design vector is

xk
j = vm

√
E0

N(1 + ε)
αj

⎛⎝{nk
i +

αiz√
N(1 + ε)

}j−1

i=1

⎞⎠ , 1 ≤ i ≤ N, 1 ≤ j ≤ K

(157)
and {nk

i }K,N
i=1,k=1 are independent complex normal noises generated at the kth

step on the ith stage. Then the overall ML estimate of θ1 for the N ×K-step
procedure is given by

θ̂
(K),N
1 =

1
N

N∑
i=1

θ̂
(K),i
1 (158)

and the corresponding MSE is

MSE(K),N (z) = E
[
‖θ1 − θ̂

(K),N
1 ‖2

]
=

1
N2

N∑
i=1

E
[
‖θ1 − θ̂

(K),i
1 ‖2

]
=

1
N

MSE(K),1(z),

(159)
where MSE(K),1(z) indicates the MSE of the first Kth estimator from the
N stages and is given by

MSE(K),1(z) = E

⎡⎣∥∥∥∥∥∥θ1 − θ̂
(K),1
1

⎛⎝αj

⎛⎝{n1
k +

z√
N(1 + ε)

}j−1

k=1

⎞⎠⎞⎠∥∥∥∥∥∥
2⎤⎦(160)

= N(1 + ε)MSE(K)

(
αkz√

N(1 + ε)

)
(161)

Substituting the expression for MSE(K),1(z) in (161), we obtain

MSE(K),N (z) = (1 + ε)MSE(K)

(
z

N(1 + ε)

)
(162)
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The SNR of the N × K-step procedure is

SNR(K),N (z) =
N∑

j=1

SNR(K),j

=
N∑

j=1

K∑
i=1

E

⎡⎣∥∥∥∥∥∥xj
i

⎛⎝{nj
k +

αkz√
N(1 + ε)

}i−1

k=1

⎞⎠∥∥∥∥∥∥
2⎤⎦

=
N∑

j=1

SNR0

N(1 + ε)
E

⎡⎣ K∑
i=1

α2
i

⎛⎝{nj
k +

αkz√
N(1 + ε)

}i−1

k=1

⎞⎠⎤⎦
=

SNR0

(1 + ε)
E

⎡⎣ K∑
i=1

α2
i

⎛⎝{n1
k +

αkz√
N(1 + ε)

}i−1

k=1

⎞⎠⎤⎦
=

1
(1 + ε)

SNR(K)

(
z√

N(1 + ε)

)
. (163)

From (162),(163), and (155), it follows that

MSE(K),N (z)SNR(K),N (z) = MSE(K)

(
z√

N(1 + ε)

)
SNR(K)

(
z√

N(1 + ε)

)

= η(K)

(
z√

N(1 + ε)

)
(164)

Using continuity of SNR(K)(z), for θ1 ∈ [θmin, θmax], we have for any ζ1 > 0,

∃δ1 > 0 such that for
∣∣∣∣ z√

N(1+ε)

∣∣∣∣ ≤ δ1 we have |SNR(K),N (z) − SNR0
(1+ε) | ≤ ε1.

Choosing ζ1 = ε
(1+ε)SNR0, we obtain

1 − ε

(1 + ε)
SNR0 ≤ SNR(K),N (z) ≤ SNR0. (165)

The condition
∣∣∣∣ z√

N(1+ε)

∣∣∣∣ ≤ δ1 is equivalent to N ≥ N0, where N0 =⌈
λmE0|θmax−θmin|2

δ1(1+ε)

⌉
. Similarly continuity of η(K)(z) yields, for any ζ2 > 0,

∃δ2 > 0 such that for
∣∣∣∣ z√

N(1+ε)

∣∣∣∣ ≤ δ2, or equivalently N ≥ N1, where
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N1 =
⌈

λmE0|θmax−θmin|2
δ2(1+ε)

⌉
, we have

|η(K)

(
z√

N(1 + ε)

)
− η∗| ≤ ζ2. (166)

Choose ζ2 = ε2η
∗, then ∃N ≥ max(N0, N1), such that

MSE(K),N (z) =
η(K)

(
z√

N(1+ε)

)
SNR(K),N (z)

(167)

≤ (1 + ε2)η∗

SNR(K),N (z)

≤ (1 + ε2)(1 + ε)
1 − ε

η∗

SNR0

≤ (1 + δ)
η∗

SNR0
, (168)

where δ = (1 + ε2)
(1+ε)
(1−ε) − 1. Further

MSE(K),N (z) =
η(K)

(
z√

N(1+ε)

)
SNR(K),N (z)

≥ (1 − ε2)
η∗

SNR0
. (169)

Since 1 + δ > 1 + ε2 implies δ > ε2 implies 1 − ε2 > 1 − δ. Therefore from
(168) and (169), ∣∣∣∣MSE(K),N (z) − η∗

SNR0

∣∣∣∣ ≤ δ (170)

Hence we can achieve the performance of a K-step design asymptotically
using an N × K-step design strategy. However in practice, an N × K-step
procedure might be an overkill to achieve the optimal performance ε close.
This is because for the K-step strategy, the energy at each time step is
already scaled by a factor proportional to 1/K which implies the effect of
the unknown parameter θ1 has a reduced effect on the overall performance
even without the N × K-step approach.
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