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Abstract

The field of adaptive sampling has generated a lot of excitement in the signal processing community.

It was shown that a certain class of inhomogeneous signals can be reconstructed with far fewer samples

than required by traditional sampling methods. However, this class does not cover interesting signals

for which adaptive sampling methods can be used. Applications such as target monitoring involve both

detecting targets locations, in a given domain, and estimating their parameters. Generally, reconstructing

the complete signal is equivalent to estimating nuisance parameters. We consider the problem of

reconstructing an unknown region of interest (ROI) within a given signal. We introduce a novel cost

function, trading the proportion of efforts distributed to the unknown ROI and its complement. We show

that minimizing our cost implies reducing both error probability over the unknown ROI and mean square

error (MSE) in estimating the ROI content. Two solutions to the effort allocation problem, subject to a

total effort constraint, are derived distributing search efforts in a data dependant manner. Our adaptive

measuring schemes sequentially concentrate search efforts to an estimated ROI, thus embedding the

detection task into the data acquisition process. Asymptotic analysis shows that this estimated ROI

converges to the true ROI. We evaluate performance and compare the two novel search policies to an

exhaustive search for both detection and estimation tasks. We show that our method both outperforms

an exhaustive search and approaches the theoretical limits of the possible performance gain in terms of

MSE reduction. An illustrative example of our method in the context of target detection and estimation

is also provided.

I. INTRODUCTION

Adaptive sampling has been an exciting research topic in the signal processing community in

recent years. Using spatial properties of signals, it was shown that a signal may be reconstructed
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from far fewer samples than required by traditional sampling scheme [1]–[5]. This paper consid-

ers the problem of detecting and estimating the content of an unknown region of interest (ROI)

within a signal. In many applications a signal is first completely reconstructed, then scanned to

extract a ROI, examples include: target detection and classification, computer aided diagnostic,

and screening. Our goal is to embed the detection process into the data acquisition process under

resource constraints.

In a reconnaissance mission, active radar may be used to image a given scene. A typical

system is designed to detect targets exceeding a minimal profile. This minimal target profile

dictates the scan parameters such as the energy level the radar transmits and the scan time

duration. Moreover, targets usually occupy a small section of the scanned area, namely the ROI.

Most systems consider exhaustive search with equal energy allocation1 to spread sensitivity over

all locations. As a result, a relatively large portion of the energy is allocated outside the ROI.

This excess energy could be used to better illuminate the ROI. Furthermore in surveillance

applications, by deploying energy over an unknown area the searcher risks exposure. Reducing

the scan energy outside the ROI reduces exposure risks.

As another application, consider the task of early detection of tumors using medical imaging.

Early detection implies a small tumor and usually no a priori knowledge about the tumor location

exists. We consider the area containing the tumor as an unknown ROI. Often, safety constraints

limit the total energy used in a specific scan, e.g., CT and X-rays expose patients to unsafe

radiation. There are two questions to answer: a) where are tumors located, i.e., detecting the

unknown ROI. b) what kind of tumors does the ROI contain, i.e., estimating the ROI content.

This classic combined detection/estimaiont task suggests using adaptive sampling scheme to

improve both detection and estimation performance.

Previous work on adaptive sampling concentrated at inhomogeneous signals [1]–[5]. We

consider general signals restricted only to have a small ROI2. Such signals may be thought of

as sparse. Most of the existing work on sparse signals considers post processing tasks [6]–[13],

while we utilize the ‘sparsity’ during the data acquisition phase. Resource allocation without the

1We define exhaustive search policy as a search policy where all possible locations (cells) are searched in an exhaustive

manner with equal effort allocated to each cell. This is different from exhaustive enumeration of all possible search policies.
2Formally stated, the ratio between the support of the ROI to the support of the entire signal has to be small.
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notion of ROI was considered in [14]–[16]. Resource allocation in a somewhat restricted manner

is discussed in [17]–[19] in the context of sensor management where the main concern is where

to point the sensor next. Search theory research produced a great deal of work but most of it

does not apply to the matter at hand, see [20] for a comprehensive survey. Finally, our results

have some similarity to Posner’s work on minimizing expected search time for finding a satellite

lost in the sky [21]. See Section I-A for an extended literature review.

In this work, we focus on adaptively concentrating search efforts at an estimated ROI. This

process yields a nonuniform, data dependent, measuring scheme. The main contributions of this

work is two-fold: (i) we formulate a novel framework for the problem of effort allocation leading

to solutions that minimize both the Chernoff bound on error probability and the Cramér-Rao

bound on estimating the content of the ROI, for certain cases. (ii) we provide a two-step optimal

and a suboptimal adaptive effort allocation policies with respect to (w.r.t.) our cost function. The

optimal policy is given in closed form and follows the same logic leading to the water-filling

algorithm. The suboptimal policy is a straight forward mapping from the data space to the search

space. Both policies outperforms an exhaustive search scheme for post processing tasks, such

as detection and estimation. Moreover, an asymptotic (high SNR) performance analysis is given

and we show that the estimated ROI converges to the true ROI and performance gain approaches

the theoretical limit inversely proportional to the sparsity of the problem.

The rest of this paper is organized as follows: In Section I-A, we review related work. Section

II formally states the problem and introduces our cost function. In Section III, we present

optimal and suboptimal solutions for the effort allocation problem. Section IV includes thorough

performance evaluation of the two policies as compared to an exhaustive search policy for both

detection and estimation tasks. An illustrative imaging example of our methods using synthetic

aperture radar data is given in Section V. Finally, we conclude and point to future work in

Section VI.
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A. Related work

Most of the previous work on adaptive sampling3 has concentrated on estimating functions

in noise. Castro et al. [1] present asymptotical analysis and shows that for piecewise constant

functions adaptive sampling methods can capitalize on spatial properties of the function. By

focusing samples to the estimated vicinity of the boundaries, adaptive sampling methods yield

nearly optimal convergence rate, in terms of estimation mean square error (MSE). It is also

shown that for spatially homogeneous functions adaptive sampling has no advantages over passive

sampling. Nowak et al. [2], Castro et al. [3], and Willett et al. [4] consider different applications

characterized by spatially inhomogeneous functions, for which adaptive sampling methods can

be efficiently used. In [5], Castro et al. show that for certain classes of piecewise constant

signals compressed sensing is as efficient as adaptive sampling, in terms of the estimation error

convergence rate. In our work, we are not interested in estimating the entire function but rather

finding an ROI and estimate its content.

Although we consider homogenous signals, we assume that the support of the ROI is small as

compared to the entire support of the signal. We refer to such signals as sparse. Sparsity is used

in a variety of applications: signal compression, reconstruction, approximation, source separation

and localization, and target tracking or detection [6]–[13]. Most of the related research considers

post processing tasks. Matching pursuit [6] use a greedy algorithm to select base elements

from the dictionary. Algorithms like FOCUSS [7] use sparsity to reconstruct a signal from

limited samples. Nafie et al. [8] address the problem of subset selection. Wohlberg [9] provides

reconstruction error bounds for several sparse signal bases. Sparse solutions using l1 penalty are

used in [10] to improve performance in direction-of-arrival estimation. Tropp lays theoretical

foundations for convex relaxation techniques for sparse optimization problems [11]. Escoda et

al. incorporate a priori knowledge of the signal structure to compensate for a potentially coherent

dictionary [12]. An algorithm that adapts a dictionary to a given training set is given in [13].

In our work, we would like to utilize the sparsity during the data acquisition phase as a pre-

processing task.

Resource allocation is also considered in the context of sensor scheduling/management [17]–

3In the literature this is also referred to as active learning or active sampling.
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[19]. In sensor management, an agile array of sensors is used to scan a certain domain4.

At each time step, one chooses which grid point (cell) to search next and in what mode.

Generally, a number of existing targets need to be tracked while new targets are being looked

for. Kastella looks at such task under low signal to noise ratio (SNR) [17]. He introduces the

discrimination gain based on the Kullback-Leibler information to quantify the usefulness of

the next measurement. Using a myopic strategy, Kastella shows that pointing the sensor to the

cell maximizing the discrimination gain decreases the probability of incorrectly detecting where

a target is. Kreucher et al. show that integrating the sensor management algorithm with the

target tracking algorithm via the posterior joint multi-target probability density (JMPD), allows

to predict which measurement provides the most information gain, [18] and [19]. Our approach

differs as we consider energy control in a continuous manner.

Adaptive energy allocation is addressed in [14]–[16]. Rangarajan et al. consider the problem

of adaptive amplitude design for estimating parameters of an unknown medium under average

energy constraints (fix energy constraints in [14]). They treat an N time-steps design problem

and provide an optimal solution for the case of N = 2 in terms of minimizing estimation MSE.

However, they do not consider the parameter vector of interest to be sparse and as a result

only minor gains are possible. Using our method we show asymptotic gains in MSE inversely

proportional to the sparsity of the scanned domain.

The field of Search Theory considers the following problem: a single target is hidden in

one of Q boxes. Each box is also equipped with prior, detection, and false alarm probabilities.

A desirable search policy maximizes the probability of correctly detecting the location of the

target. For review of the problem and reference therein see [20]. From the earlier work of Kadane

[22] on “whereabouts search” to a more recent work of Castanon [23] on “dynamic hypothesis

testing”, the question remains which cell to sample next in order to maximize the probability

of detecting the location of the target. Castanon shows that a myopic strategy is optimal for

certain noise characteristics. Although search theory has generated much research for more than

six decades, most of the work has concentrated on searching one box at a time. In our case, we

relax this stringent restriction. Song and Teneketzis [24] generalize the framework to a search

4We refer to the entire support of the signal as the scanned domain, which contains the ROI.
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of m cells at each step. They derive two condition under which a search policy is optimal for

either a fixed horizon K or for any horizon respectively. Most search theory literature considers

independent measurements between neighboring cells and over time. This model enables an

offline calculation of a compact static table listing the probability of detecting the target while

searching a cell at a given time. In turns, the table is used to find an optimal search policy.

Castanon extends this model and consider the case of dependent cells where the probability

table is dynamically updated [23]. This is also the case in our work, although we introduce

dependency between cells in a dual manner: over time and via a sparsity constraint.

To the best of our knowledge, Posner [21] was the first to consider searching more than one

box at a time. He considers the problem of using a radar to locate a satellite lost in a region of

the sky containing Q cells. His goal is to minimize the expected total search duration, and the

idea is to search the cells where the satellite is most likely to be first. Assuming a uniform prior,

the competing strategy exhaustively searches each cell for time t1 with an expected search time

of t1(Q+1)/2. Posner suggests a preliminary search yielding a non-uniform posterior, followed

by a search of all cells for a time t1 in a descending likelihood order. For the preliminary search

he allows to widen the radar beam and measure k cells for a time t in each measurement.

Moreover, Posner allows to take as many preliminary searches as necessary. In his model, the

detection probability increases in t and decreases in k. Posner shows that the optimal solution

minimizing the expected search time takes a single preliminary search, in which k = 1 and t is

small (i.e., to take a sneak peek at each cell) to create a posterior distribution then measure each

cell again in the new order. It is interesting to note that even though we consider a different

cost function our solution follows a similar approach. A portion of the search effort has to be

uniformly allocated to all cells to generate a posterior distribution; however we use the posterior

distribution to update the effort allocation for each cell.

In medical imaging, we are specifically interested in early detection of breast cancer tumors.

About one out of every seven women will experience breast cancer over a 90-year life span. If de-

tected at an early stage, the patient stands an excellent recovery chance. However, detecting early

stage tumors is a hard task, especially among younger women. Microwave imaging technology

provides high contrast between normal breast fatty tissue and tumors and is a promising imaging

modality for this application [25]–[29]. Bond et al. [26] suggest an exhaustive search policy

October 24, 2007 DRAFT



7

for early detection of breast cancer. Although microwave energy is a non-ionizing radiation, it

generates heat within the scanned tissue, which limits the energy level that can be safely used

for a scan. Additionally, since this is an active radar system, the SNR depends on the amplitude

of the transmitted signal. Hence, a search policy that would concentrate energy around region

of interests should outperform an exhaustive search for a given total energy budget. We provide

an illustrative example showing how our methods can be used to improve image quality over

the ROI without exceeding safety limits, namely a total resource constraint, in Section V.

II. PROBLEM FORMULATION

Consider a discrete space X = {1, 2, . . . , Q} containing Q cells and equipped with a proba-

bility measure P . Let Ψ be a subset of X , i.e., Ψ ⊆ X . We use Ψ to denote an ROI5 in X and

in the sequel Ψ will be assumed to be a random subset of X . Let Ii be an indicator function of

the ROI such that

Ii =





1, i ∈ Ψ

0, Otherwise
(1)

and {pi = Pr(Ii = 1)}Q
i=1 is an associated set of prior probabilities. Let IΨ = [I1, . . . , IQ]′ be a

vector corresponding to the set of all indicators and (·)′ denotes the transpose operator. We say

that the presence of a target affects cell i if i ∈ Ψ. Define the random vector Y : X → RQ and

consider the conditional probability p(Y |IΨ).

Consider a sequential experiment where cell i may be sampled T times. By sampling we

mean that y(t), a realization of Y , is observed at time t. Let the distribution λ(i, t) > 0 denote

the search effort allocated to cell i at time t, with
T∑

t=1

Q∑
i=1

λ(i, t) = 1, 0 6 λ(i, t) 6 1 (2)

and {λ(i, t)} is a mapping from past observations y1, . . . , yt−1 to the probability simplex and is

called an effort allocation policy, or equivalently, a search policy. We focus here on deterministic

mapping λ, although in general random mapping can be considered if necessary. We assume

5Exact definition of the ROI is application dependent. In radar target localization it-may be sufficient if the ROI is the collection

of all cells containing targets and target related phenomena, e.g., target shadows. In a medical imaging application, such as an

early detection of breast cancer, seeing only the tumor is probably not enough. Therefore, in case of the latter, the ROI may be

defined as the collection of all cells containing targets plus some neighboring cells.
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that the ‘quality’ of the samples, e.g. measured in terms of information or inverse variance, is an

increasing function of the allocated effort to the associated cell. In general, effort might be: time,

computing power, complexity, cost, or energy, allocated to acquiring a particular cell location.

Define the cumulative search effort allotted to cell i, as

Λ(i) =
T∑

t=1

λ(i, t). (3)

Consider the following cost function

J(Λ) =

Q∑
i=1

IiA(Λ(i)) +

Q∑
i=1

B(Λ(i)), (4)

where A(·) and B(·) are decreasing functions that may depend on additional parameters. This

restriction ensures that allocating more effort to cells reduces the over all cost. Note that our

cost function (4) depends directly on the ROI via the summand of the first sum on the right

hand side (r.h.s.) of (4). Choosing B(·) = 0 requires focusing efforts onto the ROI to minimize

(4). Setting A(x) = 2ν−1
x

and B(x) = 1−ν
x

, with ν ∈ [1
2
, 1], simplifies J(Λ) to

J(Λ) =

Q∑
i=1

νIi + (1− ν)(1− Ii)

Λ(i)
. (5)

Minimizing this cost function concentrates ν of the total effort over the ROI Ψ and (1− ν) to

its complement Ψc with ν being the dividing factor. Setting ν = 1 focuses all the effort at the

ROI, while ν = 1
2

results in an exhaustive effort allocation scheme, i.e., equal energy allocated

to all cells inside and outside the ROI. Also, with ν = 1 minimizing (5) has some very intuitive

and appealing properties. For example, in the context of estimating a deterministic signal µ

in additive Gaussian noise, minimizing (5) is equivalent to minimizing the Cramér-Rao lower

bound on E{∑i Ii(µ̂i − µi)
2}, see Appendix I for details. In a sense, ν controls the tradeoff

between learning on parameters of interest and learning on nuisance parameters.

In addition, consider a binary Gaussian hypothesis testing problem. Define the null hypothesis,

H0(i), as µi = 0, and the alternative, H1(i), as µi > 0 with a prior probability p = Pr(H1).

Consider the task of deciding between the two hypothesis, ∀i ∈ Ψ. The probability of error, i.e.,

making the wrong decision, defined as Pe = Pr(decide H0|H1)p + Pr(decide H1|H0)(1 − p),

can be broken into two parts: misdetect probability Pm over Ψ, and false alarm probability Pfa

over Ψc. With ν = 1, we show in appendix II that minimizing (5) is equivalent to uniformly

minimizing the Chernoff bound on the probability of error Pm over the ROI. Setting ν = 1
2
, most
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of the energy is spread over Ψc, hence, minimizing (5) is equivalent to uniformly minimizing

the Chernoff bound on Pfa. If ν ∈ (1
2
, 1) we trade the two cases, either relaxing the upper bound

on Pm or on Pfa. In section IV we corroborate this theory with simulation results. Measurement

schemes derived from solutions to (5) are used to generate data as a pre-processing phase for

both estimation and detection task. We show that our adaptive search scheme provides significant

performance improvement for both estimation and detection.

Note that our cost function (4) is independent of time and depends only on the cumulative

search effort allocation Λ. This is similar to a multi arm bandit (MAB) problem with a ter-

minal/total reward function. The main difference to the MAB problem is that each action we

take, namely λ(i, t), affects the observation model. In a MAB problem, at each stage we choose

‘which arm to pull’, where here we also choose how ‘hard’ to pull the leaver. Pulling ‘harder’

yield a more informative observation.

Next, we provide an achievable lower bound on our cost function (5), derive an optimal effort

allocation scheme, and define a performance gain function.

Lemma 1: The cost function (5) is lower bounded by

J(Λ) >
[√

ν|Ψ|+√
1− ν(Q− |Ψ|)]2

. (6)

Proof: For a nonnegative series {ai}, Cauchy-Schwarz inequality provides
(

Q∑
i=1

ai

Λ(i)

)(
Q∑

i=1

Λ(i)

)
>

(
Q∑

i=1

√
ai

Λ(i)

√
Λ(i)

)2

. (7)

Since
∑Q

i=1 Λ(i) = 1, (7) simplifies to

Q∑
i=1

ai

Λ(i)
>

(
Q∑

i=1

√
ai

)2

. (8)

Substituting ai = νIi + (1− ν)(1− Ii), i.e.,

ai =





ν, i ∈ Ψ

(1− ν), i ∈ Ψc
, (9)

into the r.h.s. of (8) yields
(

Q∑
i=1

√
ai

)2

=
[√

ν|Ψ|+√
1− ν(Q− |Ψ|)]2

. (10)
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Noting that on the l.h.s. of (8) we have J(Λ) =
∑Q

i=1
ai

Λ(i)
completes the proof.

Lemma 2: The lower bound in Lemma 1 is achievable with a two-level effort allocation

scheme, uniform over the ROI and uniform over its complement.

Proof: The equality in Cauchy-Schwarz inequality is achieved when
√

ai

Λ(i)
= c

√
Λ(i) for

all i. Utilizing the sum-to-one property of the distribution Λ provides c =
∑Q

i=1

√
ai, thus

Λ(i) =

√
ai∑Q

j=1

√
aj

. (11)

Substituting (9) into (11), the lower bound in Lemma 1 is achieved for

Λo(i) =





√
ν√

ν|Ψ|+√1−ν(Q−|Ψ|) , i ∈ Ψ
√

1−ν√
ν|Ψ|+√1−ν(Q−|Ψ|) , i ∈ Ψc

. (12)

Note that

J(Λo) =
∑
i∈Ψ

ν

Λo(i)
+

∑
i∈Ψc

1− ν

Λo(i)
, (13)

and therefore

J(Λo) =
[√

ν|Ψ|+√
1− ν(Q− |Ψ|)]2

, (14)

which is exactly the r.h.s. of (6). This completes the proof.

Discussion: We would like to point out the potential gains in terms of our cost function (5).

As previously mentioned, for ν = 1
2

in (12) the optimal effort allocation scheme is the uniform

effort allocation ΛU(i) = 1
Q

. For a general ν, the cost (5) associated with ΛU is

J(ΛU) = Q [ν|Ψ|+ (1− ν)(Q− |Ψ|)] , (15)

with the two special cases of

J(ΛU) =





Q2

2
, ν = 0.5

Q|Ψ|, ν = 1
. (16)

Since ΛU does not offer any adaptivity, any good adaptive effort allocation scheme Λ should

result in J(Λ) 6 J(ΛU). Therefore, we define the performance gain in [dB] as

G(Λ) = −10 log
J(Λ)

J(ΛU)
. (17)
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For ν = 1, J(Λo) = |Ψ|2 and thus the optimal gain is

G(Λo) = −10 log
|Ψ|
Q

. (18)

Define p∗ = |Ψ|
Q

, then p∗ → 0 provides G(Λo) → ∞. Consequently, a good sampling method

should yield large gains in a sparse setting, i.e., when p∗ is small and only a few cells are in the

ROI. In the following, we will develop a sampling method that aims at attaining these gains.

Taking the derivative of the r.h.s. in (6) w.r.t. ν, it can be shown that J(·) > |Ψ|2 for all

ν ∈ [1
2
, 1] and |Ψ|

Q
6 1

2
(see Appendix III). In other words, if |Ψ|

Q
6 1

2
the optimal gain is achieved

by Λo for ν = 1. Unfortunately, Λo is not a feasible policy since we do not know the location

of the ROI in advance. Nevertheless, our goal is to derive an effort allocation policy λ(i, t) that

concentrate search efforts into an estimated ROI.

In this paper, we restrict our attention to minimizing the expected value of (5). This proba-

bilistic setting utilizes the conditional distribution p(Y |IΨ) in our model. Assuming we observe

realizations of Y , our goal is to find a search effort distribution6

λ̂(i, t) = arg min
λ(i,t)

E

{
Q∑

i=1

νIi + (1− ν)(1− Ii)

Λ(i)

}
, (19)

where Λ(i) is given by (3). Next, we reformulate this problem in the context of energy allocation

with a total energy constraint.

A. Energy allocation with energy constraint

Consider a stationary radar target localization in the presence of noise. We assume that a radar

transmits energy in some known beam pattern to probe a collection of cells. We further assume

that measuring is done under an energy constraint, and that observations obeys the following

model

yj(t) =

Q∑
i=1

hij(t)
√

λ(i, t)θi(t)Ii + nj(t), t = 1, 2, . . . , T, (20)

where hij(t) are known weights corresponding to the beam pattern, λ(i, t) is the energy allocated

for measuring cell i, θi(t) is a random return from cell i, and nj(t) is an additive observation

noise, all at time t. Note that since the indicator of the ROI Ii is independent of t, this model

6Throughout this paper we refer to a search effort distribution as an effort allocation policy or just a search policy for brevity.
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corresponds to a static scenario. We assume that the additive noise nj(t) is independent for

varying j and t. Also, θi(t) > 0 follows a prior distribution pΘ(θ) and is independent for

different i but may be dependent for different t. The model in (20) can be written as

y(t) = H(t)′diag{
√

λ(t)}diag{θ(t)}IΨ + n(t), (21)

where y(t) = [y1(t), y2(t), . . . , yMt(t)]
′, [H(t)]ij = h(t)ij , λ(t) = [λ(1, t), λ(2, t), . . . , λ(Q, t)]′,

θ(t) = [θ1(t), θ2(t), . . . , θQ(t)]′, IΨ = [I1, I2, . . . , IQ]′, and n(t) = [n1(t), n2(t), . . . , nMt(t)]
′.

The notation
√

λ(t) denotes an Q × 1 vector with [
√

λ(t)]i =
√

λ(i, t), while the operator

diag{x} corresponds to an Q × Q (square) diagonal matrix with x(i) as its iith element. Our

interest is in a resource allocation scheme that improves the ‘quality’ of the measurements over

the ROI, with respect to (w.r.t.) a uniform allocation. In addition we assume an energy constraint

1

λT

Q∑
i=1

T∑
t=1

λ(i, t) = 1, (22)

i.e., there is some total energy λT available for our disposal.

An important aspect to this problem is that at the time t, the energy allocated to cell i may

depend on past observations, i.e., λ(i, t) is a function of y(1), y(2), . . . , y(t−1). In other words,

we utilize information from past observation in our resource allocation scheme. While λ(i, t)

is used for brevity the full notation is λ(i, t; y(1),y(2), . . . , y(t − 1)). Following (3), define Λ

the cumulative energy distributed to cell i as Λ(i) =
∑T

t=1 λ(i, t). Our cost function is J(Λ),

as defined in (5), and our goal is to minimize the expected cost in the r.h.s. of (19) over all

possible energy allocations λ(i, t), subject to (22). Consider ν = 1 and let p = Pr(Ii = 1) be

a uniform prior distribution on the location of targets. Note that p represent the sparsity of the

vector IΨ, i.e. |Ψ| is a Binomial r.v. with E{|Ψ|} = pQ. Define p∗ = |Ψ|
Q

then E{p∗} = p and

var(p∗) = p(1−p)
Q

. Next,

J(Λo) 6 J(Λ) (23)

for all Λ provides

G(Λ) 6 G(Λo) = −10 log p∗. (24)

In Appendix IV we use (24) and Bernstein’s inequality to prove that

Pr(G(Λ) 6 −10 log p + ε) > 1− δ (25)
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for some δ > exp{−Q3
8

p
1−p
} and ε(δ, p, Q). For example, using the numbers from the SAR

imaging example in Section V we obtain

Pr(G(Λ) 6 20 + 0.333) > 0.999.

III. SEARCH POLICY

In the following section, we solve the optimization problem previously defined, for T = 2,

i.e., find

λ̂(i, t) = arg min
λ(i,t)

E

{
Q∑

i=1

νIi + (1− ν)(1− Ii)∑2
t=1 λ(i, t)

}
, (26)

subject to the energy constraint 1
λT

∑
i

∑
t λ(i, t) = 1. We assume a uniform prior to reflect no

prior knowledge on the whereabouts of targets, and set pi = p for all i. The idea is to spend

some energy to learn about the data domain and obtain a posterior distribution, then use the rest

of the energy to search an estimate of the ROI. Define the auxiliary variable λ(t) as the total

energy spent at search step t with 1
λT

∑
t λ

(t) = 1, our goal is to optimize the energy distribution

between steps and among cells in each step.

A. Optimal search policy

With T = 1 and a uniform prior, the minimizer of the cost in (26) is a uniform energy

allocation (see appendix V-A for details), i.e.,

λ(i, 1) =
λ(1)

Q

4
= λ1. (27)

For T = 2 we need to optimize over the energy allocation between steps and within each step

for the two steps together. In the rest of this section we restrict our discussion and consider only

two step energy allocation schemes in which λ(i, 1) = C, i.e., a uniform energy allocation at

the first step. Therefore, we set

λ(i, 1) = λ1, ∀i. (28)

Since, λT = Qλ1 +λ(2) optimizing the total effort allocated for each step is equivalent to finding

an optimal pair (Qλ1, λT −Qλ1), which is a single variable optimization task. Hence, our cost

function simplifies to

J(Λ) =

Q∑
i=1

E

{
νIi + (1− ν)(1− Ii)

λ1 + λ(i, 2)

}
, (29)
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where expectation is taken w.r.t. y(1) and IΨ. Note that λ(i, 2) depends only on y(1), thus y(2)

does not affect the cost function and can be omitted from the expectation. In addition, (29) is

constant in θ and therefore we omit it from the expectation as well. Next, we optimize over

the effort distribution between the two steps and within the second step. Rewriting (29) using

iterated expectation yields

J(Λ) =

Q∑
i=1

E

{
E

{
νIi + (1− ν)(1− Ii)

λ1 + λ(i, 2)

∣∣∣∣ y(1)

}}
. (30)

Note that Ii is binary random variable (r.v.). In addition, given y(1), λ(i, 2) is deterministic.

Hence (30) becomes
Q∑

i=1

E

{
E {νIi + (1− ν)(1− Ii)|y(1)}

λ1 + λ(i, 2)

}
= (31)

Q∑
i=1

E

{
νPr (Ii = 1|y(1)) + (1− ν)(1− Pr (Ii = 1|y(1)))

λ1 + λ(i, 2)

}
. (32)

Using Bayes rule for the numerator, we have

Pr(Ii = 1|y(1)) =
P (y(1)|Ii = 1)p

P (y(1)|Ii = 1)p + P (y(1)|Ii = 0)(1− p)

4
= pIi|y(1), (33)

where

P (y|Ii) =

∫
P (y|Ii, θi)pΘ(θ)dθ (34)

is the given conditional probability model describing the measurement dependency on the pres-

ence of targets. Finally, we can rewrite our cost function (26), and solve the following

λ̂(i, t) = arg min
λ1,λ(i,2)

E

{
Q∑

i=1

νpIi|y(1) + (1− ν)(1− pIi|y(1))

λ1 + λ(i, 2)

}
, (35)

where expectation is taken w.r.t. y(1). For a given pΘ(θ) and a general prior distribution we

derive an optimal solution for λ(i, 2) in appendix V. The special case of interest where the prior

distribution is uniform, i.e., λ(i, 1) = λ1 is given below. Let λ1 be the energy allocated to each

cell at the first step, with Qλ1 = λ(1) 6 λT . Define Wj = νpIj |Y + (1 − ν)(1 − pIj |Y ) with

a corresponding random realization w = [w1, w2, . . . , wQ]′. Let τ : X → X be a permutation

operator defined as

τ(j) = arg min
i=1,...,Q

{wi : wi > wτ(j−1)}, j ∈ {1, 2, . . . , Q}, (36)
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with wτ(0) ≡ 0. Whenever the r.h.s. of (36) is not unique we pick an arbitrary i satisfying

wτ(1) 6 wτ(2) 6 . . . 6 wτ(Q).

Assuming wτ(1) > 0, define k0 = 0 if

λT

λ1

>

∑Q
i=1

√
wτ(i)√

wτ(1)

, (37)

otherwise k0 ∈ {1, . . . , Q− 1} is the unique solution, satisfying
∑Q

i=k0+1

√
wτ(i)√

wτ(k0+1)

<
λT

λ1

− k0 6
∑Q

i=k0+1

√
wτ(i)√

wτ(k0)

. (38)

Given λ1 and k0, we show in Appendix V that the optimal energy allocation λ(τ(i), 2), mini-

mizing our cost, is

λ(τ(i), 2) =

(
λT − k0λ1∑Q
j=k0+1

√
wτ(j)

√
wτ(i) − λ1

)
I(i > k0). (39)

Therefore, the optimization problem has translate to; find λ∗1 minimizing

λ∗1 = arg min
λ1

E





Q∑
i=1

Wτ(i)

λ1 +

(
λT−k0λ1∑Q

j=k0+1

√
Wτ(j)

√
Wτ(i) − λ1

)
I(i > k0)





= (40)

arg min
λ1

E

{
1

λ1

k0∑
i=1

Wτ(i) +
1

λT − k0λ1

Q∑

i=k0+1

Q∑

j=k0+1

√
Wτ(i)Wτ(j)

}
, (41)

where if k0 = 0 then the first summation in (41) equals zero. We can find λ∗1 via a grid search.

In summary, define the optimal policy minimizing (35) as follows

Algorithm 1: Adaptive Resource Allocation Policy (ARAP)

Step 1: Allocate λ∗1 to each cell.

Step 2: Given y(1) derive wi via PIi|yi(1) defined in (33).

Step 3: Sort the wi’s then use λ∗1 and the ordered statistic wτ(i) to derive k0 using (37)

and (38).

Step 4: Given k0, define λ(i, 2) the allocated energy to cell i as

λ(τ(i), 2) =

(
λT − k0λ

∗
1∑Q

j=k0+1

√
wτ(j)

√
wτ(i) − λ∗1

)
I(i > k0). (42)

Let λA denote a search policy due to ARAP, then λA(i, 1) = λ∗1 and λA(i, 2) is given in

(42). Note that ARAP follows the same logic as the well known water-filling algorithm [30] (pp.
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277). Water-filling is the solution for an optimal power distribution among parallel Gaussian

communication channels, maximizing the over all capacity subject to a total power constraint. If

each channel has variance Ni and allotted power Pi, Water-filling maximizes
∑

i
1
2
log(1 + Pi

Ni
)

subject to
∑

i Pi = P . Both ARAP and Water-filling calculate a certain threshold and distribute

efforts only where it serve to reduce or increase the cost function respectively.

B. Properties of the optimal energy allocation

Theorem 1: For some ν ∈ [1
2
, 1] and λ∗1, let ΛA(i) be an effort allocation distribution, due to

ARAP. Then, for a uniform prior distribution, we have

J(ΛA) 6 J(ΛU), (43)

with equality achieved if PIi|y(1) = c, ∀i.

Proof: Note that a uniform effort allocation scheme can be broken into any arbitrarily

number, T , of consecutive search steps, as long as for all i

ΛU(i) =
T∑

t=1

λ(i, t) =
λT

Q
. (44)

Without loss of generality (wlog) let T = 2, let P denotes the family of all effort allocation

policies λ defined as

P =

{
λ(i, t) :

Q∑
i=1

2∑
t=1

λ(i, t) = λT , λ(i, 1) = λ1 > 0, λ(i, 2) > 0

}
, (45)

and note that ∃λ ∈ P satisfying (44). Also note that ARAP yields ΛA optimal over all λ ∈ P .

Hence, ΛU is just a special solution that ARAP may assume. Since ARAP yields the optimal

effort allocation for any posterior distributions {PIi|y(1)}Q
i=1, we have J(ΛA) 6 J(ΛU). To show

the equality part note that if PIi|y(1) = c for all i, then wi = c′, ∀i, for which ARAP yields

k0 = 0. Furthermore, from (42) we get

λA(i, 2) =
λT

Q
− λ1, (46)

or, equivalently, ΛA(i) = λT

Q
= ΛU(i). Therefore, the two sides of (43) are equal. This completes

the proof.
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ARAP is optimal over all policies that allocates energy uniformly at the first step. With a

uniform prior, allocating energy uniformly at the first step provides the most informative posterior

distribution p(IΨ|y) on the average. Note that in Appendix V we solve for the general case of

a non uniform prior. However, in the general case λ∗(i, 1) depends on the specific prior and

is a function of i. Therefore, the optimization problem is far more complex and in general not

tractable.

Note that ARAP uses k0 to concentrate effort allocation onto an estimated ROI. Define

Ψ̂ = {i : λA(i, 2) > 0}, (47)

then Λ(i) > Λ(j) for all i ∈ Ψ̂ and j ∈ Ψ̂c. We interpret this part as an intermittent detec-

tion/classification process. This is not equivalent to estimating the ROI based on the measurement

pair (y(1),y(2)), which is presented in Section IV-C.

1) Asymptotic properties of the optimal solution: Next we analyze some asymptotic properties

of the optimal solution (42), when ν = 1. By asymptotic conditions we mean high SNR7 for

the exhaustive search policy and large Q. For ARAP, we show:

E{k0} → (1− p)Q, (48)

λ∗1 → 0, (49)

G(ΛA) → −10 log p. (50)

Note that pIi|y(1) defined in (33) is the conditional mean estimator of Ii. We prove the asymptotic

properties described above assuming that

pIi|y(1) → Ii, (51)

for high SNR, in either probability or in the mean squared error. This can be easily shown (see

Appendix VI) for the Gaussian case, where yi(1) ∼ N (
√

λ1θiIi, σ
2), and we speculate that (51)

holds for other cases as well. Hence, for high SNR, the set {pIi|yi
}Q

i=1 can be approximated as,

7From hereon, we use the term SNR to denote the signal to noise ratio per cell, that an exhaustive search policy with equal

energy allocation scheme would exhibit, i.e., SNR= λT /Q

σ2 .
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i.i.d., Bernoulli r.v.’s, with Pr(pIi|yi
= 1) = p. Therefore, for any realization, ∃k̃ such that the

ordered posterior probabilities obey

pIτ(i)|yτ(i)
=





0, i 6 k̃

1, i > k̃
. (52)

Evaluating inequalities (38) for k0 = k̃, yields

Q <
λT

λ1

6 ∞. (53)

Hence, ∀λ1 > 0, the desired solution of (38) is k0 = k̃. Moreover, k̃ = Q −∑
i I(pIi|yi

= 1)

equals the total number of zeros in the sequence, and is a Binomial random variable distributed

k̃ ∼ B(Q, 1− p), thus

E{k0} = (1− p)Q. (54)

Substituting k̃ for k0 and using the fact that wτ(i) = pIτ(i)|yτ(i)
= 0 for τ(i) 6 k̃ in (41) yields

λ∗1 = arg min
λ1

E

{
(Q− k̃)2

λT − k̃λ1

}
, (55)

and since k̃ ∈ {1, 2, . . . , Q − 1}, (Q−k̃)2

λT−k̃λ1
is monotonically increasing in λ1, regardless of the

expectation operator. Thus, the minimizer w.r.t. λ1 is achieved at the lowest possible value for

λ1. Since λ1 ∈ (0, λT

Q
), the best one can do is to allocate the minimum feasible positive energy

value to all cells at the first step. For large Q, this leads our optimal search policy to approach

the lower bound for the cost function. Recall from (12) that the best possible search policy

uniformly allocate the total among all cells in the ROI. Hence the expected minimal cost is

E{ |Ψ|2
λT
} = p2Q2+p(1−p)Q

λT
, letting λ1 → 0 in our cost function yields

lim
SNR→∞

E

{
(Q− k̃)2

λT − k̃λ1

}
∼= E{(Q− k̃)2}

λT

=
p2Q2 + p(1− p)Q

λT

, (56)

therefore, G(ΛA) → −10 log p. Figure 1 in section IV shows G(ΛA) for SNR values ranging

from 0 to 40 [dB]. The three curve pairs corresponds to p values of 1
1000

, 1
100

, and 1
10

, with

asymptotic gain values of 30, 20, and 10 [dB] respectively. Both our methods, the optimal and

suboptimal (described below), are shown to converge to the theoretical limit.

For ν ∈ (1
2
, 1), at high SNR, wτ(i) converges to a discrete r.v. W , with Pr(W = ν) = p

and Pr(W = 1 − ν) = 1 − p. As before, ∃k̃ such that wτ(i) = 1 − ν for all τ(i) 6 k̃, and
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wτ(i) = ν, ∀τ(i) > k̃. Evaluating inequalities (38), for this case yield one of two solutions:

λT

λ1

> k̃ + (Q− k̃)

√
ν

1− ν
⇒ k0 = 0, (57)

λT

λ1

6 k̃ + (Q− k̃)

√
ν

1− ν
⇒ k0 = k̃. (58)

Note that as ν → 1 the r.h.s. of the inequalities in (57)-(58) approaches infinity, thus we have

convergence to the result previously shown.

C. Suboptimal search policy

Next, as a simple alternative to ARAP, we consider a search policy where λ(i, 1) = C and

λ(i, 2) =
λT −QC∑Q

j=1

√
wj

√
wi,

leading to a corresponding cumulative energy allocation Λ. Substituting Λ in (35) yields a single

variable optimization problem and we grid search C to find C∗ minimizing the expected cost.

Finally we define λso(i, 1) = C∗ and

λso(i, 2) =
λT −QC∗
∑Q

j=1

√
wj

√
wi, (59)

with its equivalent cumulative energy allocation Λso. On top of being simple, (59) is optimal for

two extreme cases: (i) uniform posterior distribution, (ii) high SNR posterior distribution with

L elements for which pIi|y(1) = 1 and (Q−L) elements for which pIi|y(1) = 0, when ν = 1. For

(i) we get a uniform energy allocation, while for (ii), (59) results in

λso(i, 2) =





λT−Qλ1

L
, pIi|y(1) = 1

0, Otherwise
, (60)

both equivalent to the optimal mapping (42). Although (59) does not make the analytical

evaluation of the expectation in (29) tractable, it is less computational demanding than the

optimal solution. Both λA and λso has complexity level of O(Q), albeit there is an O(log Q)

difference in their complexity levels. This stems from the fact that ARAP requires both sorting

of the wi’s and finding the threshold k0. Therefore, performance comparison between the two

is interesting since it shows what we loose by the much simpler suboptimal solution. In section

IV we compare the two policies and show that λso is nearly optimal in terms of our cost

function. Moreover, it turns out that considering a detection problem as a post processing task

the suboptimal solution is equivalent or better than the more computational demanding optimal

solution.
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D. A note on multi-step search

An outline for the optimal solution in the case where T > 2 is given in appendix V-C. We show

how to simplify the problem from optimizing the energy allocated to each cell to optimizing the

over all energy allocated per search step. Define λ(t) the total energy used in step t, where λ(t) =
∑Q

i=1 λ(i, t) and λT =
∑T

t=1 λ(t). An optimal solution for the last step, {λ(i, t)}Q
i=1, is provided

but a global optimum requires solving a backward induction optimizing over {λ(1), . . . , λ(T−1)}.

Unfortunately, the problem becomes numerically intractable as T increases. Nevertheless, for any

step t, we may use the general version of ARAP, proposed in (136) in Appendix V, as a “two

step lookahead” optimal search policy. Appendices V-A and V-B provide a solution for a general

prior distribution. Hence, at any step t we may treat the latest posterior distribution, obtained

by steps {1, 2, . . . , t − 1}, as the new prior distribution and solve a two step energy allocation

problem. Once we find the optimal two-step energy allocation, we use the solution given in

appendix V-A for step t while the rest of the energy is kept for search steps {t + 1, . . . , T}.

IV. COMPARISON OF SEARCH ALGORITHMS

Assume either λA or λso were used to generate data vectors (y(1), y(2)). A natural question

is whether or not this data is better in some sense than the measurement vector y obtained

using the standard exhaustive search policy. In this section, we compare performance of both the

optimal effort allocation policy and the suboptimal solution to those achieved by an exhaustive

search scheme for different tasks. We start by comparing the averaged cost achieved by λA and

λso, and proceed by comparing two post-processing tasks estimation and detection, based on data

measured using each policy. In the following section we assumed θi(t) = θi is an independent

and identically distributed (i.i.d.) truncated Gaussian random variables with mean µθ = 1 and

standard deviation σθ = 0.25, for all i.

A. Achievable cost

First we compare the average performance gain G(·), defined in (17), achieved by the two

search policies for ν = 1. We chose Q = 8192 as the total number of cells and the sparsity

values of p ∈ { 1
10

, 1
100

, 1
1000

}, i.e., a mean of roughly 800, 80, and 8 targets per realization,

respectively. Results are shown in Figures 1(a) and 1(b) where the curves with crosses describe

the gain from the optimal allocation ARAP G(ΛA) and curves with circles describe the gain
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from the suboptimal allocation G(Λso), for all three p values. Figure 1(a) shows the behavior

of the gain for the two policies for SNR values of 0[dB] to 40[dB]. Figure 1(b) zooms in on

SNR values of 0[dB] to 13[dB]. Each point on a graph represents 500 runs in a Monte Carlo

simulation. As can be seen from Fig. 1(a), at extreme high or low SNR values the performance

gain of the two policies is equal. We use Fig. 1(a) to establish that the gain converges to its

theoretical limit given by (50). The largest gap in gain between the two algorithms is at the

transition zone: SNR between 5-15 [dB], and the gap is less than 2 [dB]. Evidently, the simpler

suboptimal mapping rule does not significantly degrade performance gain.
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Fig. 1. We display the cost gain compared to an exhaustive search for both our optimal and suboptimal energy allocation

schemes. (a) shows that both algorithms converges to the asymptotic predicted gain, at −10 log p. (b) enhances the difference

between our two policies for SNR values in the range of 0− 13 [dB].

Figure 2 compares the percentage of effort λ(1)

λT
allocated in the first step for both policies.

While for SNR values greater than 25 [dB] the curves overlap, this is not the case for low

SNR values. As measurement quality decreases, ARAP invests more energy at the first step.
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Considering the difference between the two policies, this result makes sense: after the first step

ARAP ignores all cells with posterior probability values lower than some threshold. Wrong

decision at that stage can no longer be compensated, i.e., the cumulative effort distribution Λλ(i)

for those cells will remain unchanged. Hence, more effort has to be allocated to the first step so

that decisions would be made to improve the agreement between Ψ̂ and Ψ. On the other hand,

the suboptimal mapping invests energy in all Q cells at the second step. Thus, it has a chance

to compensate for poor estimated posterior probability values.
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Fig. 2. We compare the proportion of energy invested at the first step for the two algorithms λA and λso. Curves correspond to

prior probability values of 0.001, 0.01 and 0.1. As seen, the optimal search policy invest more energy at the first step. However,

for SNR > 25[dB] the two are essentially equivalent.

B. Post-processing estimation task

Consider the problem of estimating the true value of each target return θi in (20). For estimation

the choice of ν = 1 seems natural. Recall that in Section II we claimed that minimizing our cost
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is entirely equivalent, in the Gaussian case, to minimizing the estimation mean squared error

(MSE). Assuming θi ∼ N (µθ, σ
2
θ) we use a Bayesian framework for estimating θi based on its

prior distribution. The optimal estimator minimizing the MSE is the conditional mean estimator

(CME). We compare the performance of E{θ|y} the CME for an exhaustive search policy to

E{θ|y(1), yi(2)} a CME for either ARAP or the suboptimal search policy. The MSE of the CME

for the exhaustive search policy is given by

var{θi|yi) = σ2
θ −

ε0σ
4
θ

σ2 + ε0σ2
θ

=
σ2

θ

1 + ε0
σ2

θ

σ2

. (61)

The competing estimator is a Naive Bayes estimator of E{θ|y(1), yi(2)}, which assumes that

(y(1), yi(2)) are independent [31], defined as

θ̂i = µθ +
yi(1)

√
λ1 + yi(2)

√
λ(i, 2)− µθ(λ1 + λ(i, 2))

λ1 + λ(i, 2) + σ2/σ2
θ

. (62)

Monte-Carlo simulations were used to estimate the MSE of (62). In Fig. 3, we plot the perfor-

mance gain, defined as 10 log var(θi|yi)

MSE(θ̂i)
as a function of SNR. We chose Q = 4096, p ∈ { 1

10
, 1

100
},

and each point on the figure represents an average over θ based on 2000 realizations. Note that

the MSE performance gain follows the performance gain for the cost function (5), as seen on

Figure 1. In addition ARAP yield better estimation performance compared to the suboptimal

policy. This reinforces the connection between our cost function (5) and estimation MSE.

C. Post-processing detection task

Consider the problem of correctly detecting whether cell i contains a target. As before, we

assume an i.i.d. additive white Gaussian noise in (20) and θi ∼ N (µθ, σ
2
θ). Thus, for an exhaustive

search policy yi ∼ N (
√

λ0µθIi, σ
2
y), where σ2

y = σ2 + λ0σ
2
θ . Given yi the measurement of pixel

i, our goal is to decide between

H0 : yi ∼ N (0, σ2
y),

H1 : yi ∼ N (
√

λ0µθ, σ
2
y).

(63)

The uniformly most powerful test for this simple binary hypothesis testing problem is a likelihood

ratio test (LRT). The performance of the LRT in terms of its receiver operating characteristic

October 24, 2007 DRAFT



24

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

20

SNR [dB]

M
S

E
 g

ai
n 

[d
B

]

Opt:p=.01
Opt:p=.1
SO:p=.01
SO:p=.1

Fig. 3. Gain in MSE for the CME in (62) based on an adaptive search compared to the MSE of the CME for an exhaustive

search policy (61). Curves with crosses correspond to ARAP, for p values of 1
100

and 1
10

, while curves with circles represent

the suboptimal adaptive policy. The MSE gain for ARAP is slightly higher than that of the suboptimal mapping. Note that using

our methods results in about 6[dB] gain in MSE at SNR value of 12[dB] for sparsity level of 1%. In addition MSE gain is

inversely proportional to the sparsity, hence higher gains can be expected for application where |Ψ| ¿ Q.

(ROC) curve are easily calculated in this Gaussian case. The power β of a level α LRT is [32]8

β = 1− Φ

(
Φ−1(1− α)−

√
λ0µ2

θ

σ2 + λ0σ2
θ

)
, (64)

where Φ(·) is the normal cumulative distribution function. In the following few lines we derive

the likelihood function f(y(2), y(1); IΨ). Bayes rule provides

f(y(2),y(1)) = f(y(2)|y(1))f(y(1)), (65)

8see pp. 69. Note that Kay defines Q = 1− Φ and replace SNR= NA2

σ2 and α = PFA.
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but given y(1) the measurements at the second step are independent for different cells and thus

f(y(2),y(1)) =

Q∏
i=1

f(yi(2)|y(1))f(yi(1)). (66)

Therefore, the LRT statistics Tj is

Tj =

∏Q
i=1 f(yi(2)|y(1), Ij = 1)f(yi(1)|Ij = 1)∏Q
i=1 f(yi(2)|y(1), Ij = 0)f(yi(1)|Ij = 0)

= (67)

f(yj(2)|y(1), Ij = 1)f(yj(1)|Ij = 1)

f(yj(2)|y(1), Ij = 0)f(yj(1)|Ij = 0)
. (68)

For our model, we have yi(1) ∼ N (
√

λ1µθIi, σ
2 + λ1σ

2
θ) and given y(1) the second step

measurements yi(2) ∼ N (
√

λ(i, 2)µθIi, σ
2 + λ(i, 2)σ2

θ). Substituting those distributions in (68)

provides the following LRT

exp

{
− 1

2(σ2+λ(i,2)σ2
θ)

(
yi(2)− µθ

√
λ(i, 2)

)2

− 1
2(σ2+λ1σ2

θ)

(
yi(1)− µθ

√
λ1

)2
}

exp
{
− y2

i (1)

2(σ2+λ1σ2
θ)
− y2

i (2)

2(σ2+λ(i,2)σ2
θ)

} ≷ γ,

which simplifies to

Ti = µθ

(
yi(1)

√
λ1

σ2 + λ1σ2
θ

+
yi(2)

√
λ(i, 2)

σ2 + λ(i, 2)σ2
θ

)
− µ2

θ

2

(
λ1

σ2 + λ1σ2
θ

+
λ(i, 2)

σ2 + λ(i, 2)σ2
θ

)
≷ γ′, (69)

where γ′ = log γ. Note that for all cells where λ(i, 2) = 0 this test is a function of yi(1) alone.

As an alternative to (69), we also used the Benjamini-Hochberg procedure for controlling the

false discovery rate (FDR) as a method for jointly detecting the structure of IΨ. We used Monte-

Carlo simulation of the test statistic Ti to compute its empiric cumulative distribution function

and empiric p-values. The p-values were then processed according to the algorithm suggested

in [33] to jointly detect elements in IΨ containing targets.

We compared the ROC curve (64) to an empiric ROC curve calculated for the test (69)

performed on the data pair (y(1),y(2)) generated via both ARAP and the suboptimal mapping

and to an empiric ROC curve of the FDR procedure using (y(1),y(2)) generated via ARAP.

We conducted multiple runs for varying SNR levels and observed that with ν = 1 (69) provides

higher detection probability than (64) for test levels lower than roughly 30% for both our adaptive

measurements scheme. At SNR values close to 0 [dB] the difference between the two tests is

negligible, but the incentive to use our methods increases with SNR. Also, for very low false

alarm levels ARAP performs better than the suboptimal mapping in terms of detection probability.

October 24, 2007 DRAFT



26

However, for higher test levels the suboptimal search policy yield better detection performances.

In addition, using the Benjamini-Hochberg procedure to perform a joint detection test did not

yield any performance gain.

Results are presented here for SNR=10 [dB], Q = 1024, and either p = 0.1 or p = 0.01.

Monte-Carlo simulations were conducted with ν = 1 and the results are shown in Figure 4 (a)

and (b). Each point at the figures represents an average over 2000 realizations, and detection

probability was averaged over the entire ensemble. At 10 [dB] the ROC curves are very sharp,

hence plotted on a logarithmic scale. The solid curve represent a test based on an exhaustive

with equal energy allocation (64). Curves with crosses represent the optimal policy, curves with

circles represent the sub-optimal policy, and curves with triangles represent the FDR procedure.

Figure 4(a) shows the entire ROC curves, it is evident that the different tests exhibits different

slopes for low false alarm values. Moreover, for high false alarm values no adaptive policy

outperforms the exhaustive search policy when ν = 1. Figure 4(b) zooms in to enhance the

difference between tests for Pfa ∈ [0.008, 0.5]. One can see that the optimal search policy

has the best performances up to α = 3%, at which point the suboptimal policy yields higher

detection probability. The exhaustive search policy outperforms both the adaptive methods for

α > 30%. Our results suggest that performance of detector with false alarm less than 25% would

be improved by the optimal and suboptimal search policies.

Since an exhaustive search policy is a special case of the adaptive search policy for ν = 1
2
,

we scanned all ν values to search for the best ν, maximizing PD for a given Pfa. For every ν,

we performed a grid search to find the optimal λ∗1(ν) when substituting it to (42) then plugging

everything back to (35). Next we generated an ROC curve for each pair (ν, λ∗1(ν)) and selected

ν0, the maximizer of the detection probability for every given false alarm probability. The set

of points (PD(ν0), Pfa) represent an envelope of all the different ROC curves achievable by

our adaptive sampling scheme and the text (69). Next, we treated (42) as a function of two free

variables (ν, λ1) and grid searched the domain [.5, 1]×(0, 1) for the best combination in terms of

detection probability. Figures 5(a) and 5(b) compare the global detection optimum (dash-dotted

curve with asterisks) with the envelope over ν (solid curve with crosses), to the ROC curve for

ν = 1 (dashed curve with plus markers) and to the exhaustive search ROC curve (solid) (64), as

a function of the false alarm probability pfa. Figure 5(a) has the full view, while 5(b) zooms in

on an area of interest where pfa ∈ (0.07, .5). Figure 5(b) shows that ν = 1
2
, i.e., an exhaustive
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Fig. 4. We compare ROC curves for the LRT tests based on an exhaustive search scheme and the two adaptive policies

measurements scheme using (69) and a FDR procedure, for p = 0.1 and p = 0.01 and SNR of 10 [dB]. (a) shows the entire

ROC curve while (b) zooms in on false alarm probability values between 0.08 and 0.5. Our simulation result suggests that our

adaptive search policies outperforms an exhaustive search policy in terms of detection probability for test values lower than

30%.

search, is the best that adaptive search can do for high false alarm probabilities (see discussion

below). Two other things to notice: (i) Remarkably, minimizing the surrogate cost function (5)

results in detection performance that are nearly optimal. (ii) By fixing ν = 1 we do not lose

a lot in terms of detection. Next we check the tradeoff between different ν values, detection

probability and estimation MSE gain.

Finally we compare detection probability values, for a fixed false alarm rate, with estimation

MSE gain as a function of ν. Results are shown in Figure 6. The curve with triangle markers on

represent estimation MSE gain and its corresponding ‘Y-axis’ values are on the right hand side

of the figure. The rest of the curves represent detection probability, as a function of ν, for a
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Fig. 5. We compare ROC curves for different tests. (a) shows the entire ROC curves while (b) focus on the area where the

different curves crosses and merge. The solid with cross markers curve corresponding to the ν optimized detection test (‘max

Pd(ν)’) does not significantly outperform the dashed curve with plus markers, which is due to choosing ν = 1, for small false

alarm probability values. Moreover, the ‘envelope’ curve is very similar to the detection optimized test curve (dashed-dotted

with asterisks), suggesting that minimizing our cost function provides a near optimal detection performances.

given test level, with the corresponding ‘Y-axis’ values at the left hand side. For the selected

operating point it is clear that it is best to choose ν = 1 (or very close to 1), since it maximizes

both detection and estimation performance.

D. Discussion

The following may help understand the nature of the optimal adaptive search algorithm, when

ν = 1. At the first step, the entire medium is scanned with some energy to generate a posterior

distribution. At which point inequality (38) yields a specific k0. This k0 dictates the cardinality

of the intermittent estimated ROI, Ψ̂. If k0 = 0, then Ψ̂ = X and all Q cells are in Ψ̂. However,
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Fig. 6. We compare detection probability, for a fixed test level, and estimation MSE gain as a function of ν when SNR is 10

[dB] and p = 0.01. Note that the MSE gain values (curve with triangular markers) are given on the r.h.s. of the figure. Since

MSE gain is defined over the true ROI it increases with ν.

Pr(k0 > 0) increases with Q and SNR, and as was shown in section III-B1, at high SNR

E{k0} → (1 − p)Q. As soon as k0 6= 0 cells are being excluded from the estimated ROI.

The performance of our algorithm can be further explained using table I. The table entries are

TABLE I

POSSIBLE CELL COMBINATIONS

Ψ Ψc

Ψ̂ A B

Ψ̂c C D
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formally defined as follows
A = {i : i ∈ (Ψ ∩ Ψ̂)},
B = {i : i ∈ (Ψc ∩ Ψ̂)},
C = {i : i ∈ (Ψ ∩ Ψ̂c)},
D = {i : i ∈ (Ψc ∩ Ψ̂c)}.

Sets A and D correspond to the case where cells were correctly classified, after the first step,

as belonging either to the true ROI, Ψ, or to its complement Ψc. Sets B represent false alarms,

i.e., cells that were incorrectly detected as part of the true ROI, while group C represent miss

detections. For estimation purposes it is best if B=C=∅. This way all the remaining energy,

at the second step, would be allocated to Ψ. This is not the case for detection though. Good

detection performance requires that Ψc would be well characterized. An exhaustive search policy

allocate most of the energy characterizing Ψc. In our case, group D is usually the largest, but the

size of groups A, B, and C depends strongly on SNR. A large group B affects only estimation

performance as some part of the remaining energy is invested at Ψc. On the other hand, a large

group C affects both estimation and detection performances. Cells in group C are only probed at

the first step, and with less energy compared to what is used in an exhaustive search. Therefore

it is: a) hard to estimate the true value of those cells b) any test performed after the second step

has a hard task trying to classify them correctly.

V. APPLICATION - DETECTING AND ESTIMATING A ROI IN A SAR IMAGE

Consider the task of imaging a large area using a satellite equipped with a synthetic aperture

radar (SAR) system. Assume we have satellite access at two different incidents each limited in

time. In SAR imaging the measurements quality improves as the dwell time increases. Therefore,

with limited access to satellite time we face the question of how to best utilize the resource

available to us, i.e., where and for how long to point the SAR system at each measurement.

Assuming our goal is to detect and identify targets spread out in a large area we propose the

following search policy based on ARAP: At first stage, use all the time available to perform an

exhaustive search yielding a preliminary image or y(1) in ARAP. At second stage, let ARAP

distribute the available time in a non uniform manner between different cells via (42), i.e.,

focusing the search on Ψ̂. Finally, we combine both measurements to form an image with non

uniform spatial properties on which we detect the ROI and estimate its content. The competing
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strategy performs an exhaustive search twice, with no adaptation between scans, than uses the

arithmetic mean of the two independent scans as the estimated image.

We used a SAR image, taken from Sandia National Laboratories website9 as an example of

a “sparse” image. The image displays two columns of tanks in a field and its sparsity ratio

p < 0.01. Let X denote the original image and let x be a lexicographic ordering of X . We

emulated the effect of the SAR varying dwell time as modulated speckle noise variance in the

post-processed SAR image. In particular, the SAR image after the first stage (equal dwell time

at all pixels) is modeled as:

x1 = (1 + z1)x, (70)

where z1 is a zero mean uniform random variable with var(z1) = 1
λ0

noted as z1 ∼ U[−
√

3
λ0

,
√

3
λ0

].

A tank template shown in Figure 7, was applied as a matched filter to the noisy image X1 yielding

X̃1. The input to our algorithm y(1) = x̃1−x1√
1
Q

(x̃1−x1)′(x̃1−x1)
was the normalized version of X̃1,

where x1 = 1
Q

∑Q
i=1 x̃1(i). ARAP was used to obtain a search policy for the second step λ(i, 2)

via (42). All indices i with λ(i, 2) < λ0 were set to zero and their cumulative search effort was

redistribute among the rest of the cells in a proportional manner. Next, x2 was generated via

x2 = (x + x¯ z2)¯ IΨ̂, (71)

where z2(i) ∼ U[0,
√

12
λ(i,2)

] for all i ∈ Ψ̂ and zero otherwise, and ¯ denotes an element by

element multiplication operator. Note that x2 = 0 for all i ∈ Ψ̂c. We tried several suboptimal

linear estimators based on (x1,x2) and present here the one that performed best in terms of

image ‘quality’. The estimator X̂ was defined via x̂ as

x̂ =

(
x1 ¯ I{i ∈ Ψ̂c}√

1 + 1/λ1

+ x2 ¯ vec

{
1√

1 + 1/λ(i, 2)

})
¯ s, (72)

where vec{ri} = [r1, r2, . . . , rQ]′ and s(i) =

(√
1 + 1

λ1
+

√
1 + I{i∈Ψ̂}

λ(i,2)

)−1

. The estimator (72)

is compared to an image reconstructed from two exhaustive searches with equal effort allocation

(xU1, xU2) given in (70), defined as xU = (xU1 + xU2)/2. SNR was defined as 10 log 2λ0.

Results are presented in Figures 8 and 9 for SNR values of 4 and 0 [dB] respectively. Fig.

8(a) show the original image, Fig. 8(b) and (d) show a single realization of images reconstructed

9http://www.sandia.gov/RADAR/images/rtv tanks 9in.jpg
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Fig. 7. The above (13× 13) tank template was used as a matched filter to filter the noisy data X1 and generate y(1).

using exhaustive search and ARAP via (72) respectively. Fig. 8(c) show the effort allocated by

ARAP at the second stage for that specific realization. Although all targets are identifiable in Fig.

8(b) they seem clearer in Fig. 8(d). Figure 9 focus on the ROI to demonstrate the superiority

of ARAP compared to an exhaustive search. Figures 9(a) and (b) show a single realization of

the two search methods exhaustive and ARAP at 0 [dB] respectively, while Figs. 9(c) and (d)

display a 1D profile, going through the left columns of tanks, of 100 different realizations of

each policy respectively. It is evident that variations in profiles in images reconstructed using

ARAP are much smaller than those in images resulted from an exhaustive search.

This illustrative example demonstrates a potential usage of our method to SAR imaging. Note

that in the previous sections we had developed the problem in a context of energy allocation

while we currently consider dwell time allocation as the resource at hand. We believe that our

general framework is suitable for a variety of application including: medical imaging, target

monitoring, and airport security screening by replacing ‘energy’ with the relevant resource.

VI. CONCLUSIONS AND FUTURE WORK

We introduced a novel convex cost function and showed that minimizing it relates to minimiz-

ing error probability or estimation MSE over an unknown ROI. A closed form solution for the

second step in a two-step optimal search policy was provided, and numeric search for the first

step was presented. A closed form low complexity approximation for the two step minimization

problem was also presented and it was shown to perform comparably to the optimal solution. In a

high SNR the performance of the optimal and approximated algorithms was shown to converge to
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Fig. 8. SAR imaging example, SNR=4[dB]. (a) Original image. (b) Image reconstructed using two exhaustive searches. (c)

Effort allocation using ARAP at the second stage. (d) Image resulted from (72) using ARAP.

the ideal omniscient limit. For the detection task, the two search policies introduced outperformed

the one step exhaustive measurement scheme for false alarm values less than 30%. For estimation,

comparing the MSE of estimated values within the ROI, our adaptive search policies dominate

exhaustive search policy. The search policy is parameterized by ν which varies from 1
2

to 1 and

controls the energy allocated within the ROI. An offline lookup table can be generated for the

optimal ν in terms of the sparseness p and SNR. Finally, an illustrative example of our method

for SAR imaging was presented and potential benefits were discussed.

This approach is applicable to tumor detection where a cluster of calcification may appear

around the lesion. In this case multiscale hypothesis testing methods presented in [34] may

be relevant. [34] deals with anomaly detection once measurements, at a fine resolution, have
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Fig. 9. SAR imaging example, SNR=0[dB]. (a) Image reconstructed using two exhaustive searches, targets are not easily

identifiable. (b) Image resulted from (72) using ARAP. Figures (c) and (d) compare a 1D profile going through the targets on the

lower left column for 100 different realizations. (c) Profiles of images reconstructed from an exhaustive search. (d) Profiles of

images reconstructed using ARAP. The bold bright line on both figures represent the mean profile of the different realizations.

Evidently, variations of profiles of images due to ARAP are much smaller compared to variations of profiles of images resulted

from an exhaustive scan.

been acquired. Our goal is to generate fine resolution measurements only where it is necessary.

Another interesting area of application is to compressive sensing. Work such as [35] and [36]

consider the problem of sampling a sparse medium via an arbitrary affine transformation. In

cases of sparse signals complete reconstruction of the underlying signal can be accomplished

with only a few samples. This exploitation of sparsity is analogous to the methods proposed in

this report.
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APPENDIX I

EQUIVALENCY OF MINIMIZING OUR COST TO MINIMIZING THE Cramér-Rao BOUND

Consider the problem of estimating an unknown signal in the presence of a Gaussian noise.

Let ym×1 be a measurements vector given by

y = diag{
√

λ}µ + n, (73)

where n ∼ N (0, σ2I). Let Ψ be a collection of indices, namely the ROI, with |Ψ| ¿ m.

Assume that the effort to be distributed is the measurement energy λi associated with measuring

an element of y, with
∑

i λi = 1. Define zi = yi√
λi

, hence

zi ∼ N
(

µi,
σ2

λi

)
. (74)

Recall that the Cramér-Rao bound on the variance of any unbiased estimator µ̂i(zi) of µi is

given as

VAR(µ̂i) > σ2

λi

, (75)

which is also the measurement variance for this case. From (12) we know that the minimizer

of our cost (5) when ν = 1 is a uniform energy allocation within the ROI. Hence the optimal

solution minimizing our cost λi = 1
|Ψ|I(i ∈ Ψ) also uniformly minimizes the Cramér-Rao bound

on all µ̂i where i ∈ Ψ.

APPENDIX II

CHERNOFF BOUND ON THE PROBABILITY OF ERROR AND OUR COST FUNCTION

Let us consider simple binary, hypothesis testing problem of classifying an observation X as

coming from one of two possible classes (hypotheses) H0, H1. Let π0, π1 denote the a priori

probabilities on the hypotheses, and let p0(x), p1(x) denote the conditional probability density

functions given the true hypothesis. Then Bayes decision rule minimizes the probability of error

Pe by choosing the hypothesis with the largest a posteriori probability. The Chernoff bound on

Pe states that for any α ∈ [0, 1]

Pe 6 πα
0 π1−α

1

∫

X

[p0(x)]α [p1(x)]1−α dx. (76)
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Further let X be a Gaussian r.v. with known variance σ2 and unknown mean with the two

hypothesis corresponds to
H0 : µ0 = 0

H1 : µ1 > 0
.

In this case (76) yields

Pe 6 πα
0 π1−α

1

∫
1√

2πσ2
e−

α
2σ2 x2

e−
1−α

2σ2 (x−µ1)2dx = (77)

Pe 6 πα
0 π1−α

1

∫
1√

2πσ2
e−

1
2σ2 [αx2+(1−α)(x2−2µ1x+µ2

1)]dx = (78)

Pe 6 πα
0 π1−α

1 e−
α(1−α)µ2

1
2σ2

∫
1√

2πσ2
e−

1
2σ2 [x2−(1−α)µ1]

2

dx, (79)

and integration is over (−∞,∞). Note that the integrand in the last equation is a Gaussian

density, with mean (1− α)µ1 and variance σ2, that integrates to 1. Finally we get,

Pe 6 πα
0 π1−α

1 e−
α(1−α)µ2

1
2σ2 , (80)

so the Chernoff bound on the probability of error, Pe, is a decreasing function of the unknown

mean µ and an increasing function of the variance σ2. Let wQ×1 ∼ N (µ, σ2I) and consider

the problem of detecting between µi = 0 and µi > 0. Let Ψ = {i : µi > 0} and assume

|Ψ| ¿ Q. Further assume that by allocating energy λ(i) to the ith measurement we increase the

detectability index µi

σ
, e.g. as in (20). For such a scenario, minimizing our cost function (5) with

ν = 1 results in uniformly allocating energy to all cells in Ψ. Utilizing (80) it implies uniformly

minimizing Pe over Ψ.

APPENDIX III

SHOWING A GLOBAL LOWER BOUND ON OUR COST

In Section II we claimed that the r.h.s. of (6) is lower bounded by |Ψ|2 for all ν ∈ [1
2
, 1] and

|Ψ|
Q

6 1
2
. To prove this claim let f(ν) = [

√
ν|Ψ|+√

1− ν(Q− |Ψ|)]2, then we need to show

f(ν) > |Ψ|2. (81)

First note that

f(
1

2
) =

Q2

2
> |Ψ|2 = f(1), (82)
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since |Ψ|
Q

6 1
2
. Next we show that ḟ(ν) 6 0 for all ν ∈ [1

2
, 1], i.e., f(ν) is a decreasing function

over the interval of interest. When combined with (82) this proves the claim. Note that

ḟ(ν) = 2
[√

ν|Ψ|+√
1− ν(Q− |Ψ|)]

[ |Ψ|√
ν
− Q− |Ψ|√

1− ν

]
, (83)

hence it suffice to show [ |Ψ|√
ν
− Q− |Ψ|√

1− ν

]
6 0. (84)

Rearranging (84) we need to show
√

1− ν

ν
6 Q− |Ψ|

|Ψ| =
Q

|Ψ| − 1. (85)

But ν ∈ [1
2
, 1] provides 1−ν

ν
6 1, while |Ψ|

Q
6 1

2
results in Q

|Ψ| − 1 > 1 and hence the inequality

in (85) holds. This completes the proof.

APPENDIX IV

SHOWING AN UPPER BOUND ON THE GAIN

Let Ii be a Bernoulli r.v. with Pr(Ii = 1) = p. Define |Ψ| = ∑Q
i=1 Ii, then |Ψ| is a Binomial

r.v. and |Ψ| ∼ B(p,Q). Further let p∗ = |Ψ|
Q

then E{p∗} = p and var(p∗) = p(1−p)
Q

.

Claim 1: For an arbitrary effort allocation policy Λ and δ > exp{−Q 3p
8(1−p)

} we have

Pr(G(Λ) 6 −10 log p + ε) > 1− δ, (86)

where ε = −10 log ε′ and ε′ < 1 is the solution of

(1− ε′)2 + (4− ε′)
2

3

1− p

pQ
ln δ = 0. (87)

Proof: For all Λ

J(Λo) 6 J(Λ), (88)

and therefore

G(Λ) 6 G(Λo) = −10 log p∗, (89)

thus

Pr(G(Λ) 6 −10 log p + ε) > Pr(−10 log p∗ 6 −10 log p + ε), (90)

for some ε > 0. Next, we evaluate the expression on the r.h.s. of (90). Note that

Pr(−10 log p∗ 6 −10 log p + ε) = (91)
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Pr
(
log p∗ > log p− ε

10

)
= (92)

Pr
(
p∗ > p

10
ε
10

)
= Pr(p∗ > ε′p) = 1− Pr(p∗ 6 ε′p), (93)

where ε′ = 1

10
ε
10

< 1. Note that

Pr(p∗ 6 ε′p) = Pr(p∗ − p 6 p(ε′ − 1)) = (94)

Pr(p− p∗ > p(1− ε′)). (95)

For a sequence of i.i.d. r.v.’s {Xi}n
i=1 with E{Xi} = 0, Bernstein’s inequality provides

Pr

(
n∑

i=1

Xi > t

)
6 exp

{
− t2/2∑

i EX2
i + M t

3

}
, (96)

for t > 0, and where |Xi| 6 M with probability 1. Let Xi = p− Ii, then assuming p 6 1
2

yield

M = 1− p and

Pr(p− p∗ > t) 6 exp

{
− Q t2

2

(1− p)
(
p + t

3

)
}

. (97)

Utilizing (97) we obtain

Pr(p− p∗ > p(1− ε′)) 6 exp

{
−Q

3

2

p

1− p

(1− ε′)2

4− ε′

}
4
= δ. (98)

When combined, (90)-(98) provide

Pr(G(Λ) 6 −10 log p + ε) > 1− δ. (99)

This completes the proof.

Discussion: Bernstein’s inequality requires t > 0 which hold provided that ε′ ∈ (0, 1).

Unfortuntaely, this means that we do not have δ → 0 since substituting ε′ = 0 in (98) yields

δ > exp

{
−Q

3

8

p

1− p

}
, (100)

and Q and p are given. Nevertheless, δ may still be sufficiently small to make Claim 1 attractive.

In Section V we provide a SAR imaging example of our methods. A (450[pix]×570[pix]) image

containing 13 targets each roughly (13[pix]× 13[pix]) is examined. This translates to p < 0.01

and Q = 256, 500. Therefore, setting δ = 10−3 yields ε = 0.333 or

Pr(G(Λ) 6 −10 log p + 0.333) > 1− 10−3,

i.e., the gain of any effort allocation policy Λ is smaller than 20.333[dB] with probability grater

than 0.999.
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APPENDIX V

MINIMIZING THE COST FUNCTION

Let Y (t) ∈ Y be a (Q × 1) random vector (r.v.) with pdf pY (t)(y) > 0, for all y ∈ Y and

t ∈ {1, 2, . . . , T}, representing random observations. Let IΨ = [I1, I2, . . . , IQ]′ be a r.v. with

Pr(Ii = 1) = pi. Let Y t
1 = {Y (1), Y (2), . . . , Y (t)} be a collection of all observation up to time

t. Define

x(i, t) : Y t−1
1 → R+, (101)

then, for some ν ∈ (1
2
, 1], our goal is to find {x̂(i, t)} with i = 1, . . . , Q and t = 1, . . . , T , such

that

x̂(i, t) = arg min
x(i,t)

E

{
Q∑

i=1

νIi + (1− ν)(1− Ii)∑T
t=1 x(i, t)

}
, (102)

where expectation is taken w.r.t. IΨ and Y T−1
1 , subject to

Q∑
i=1

T∑
t=1

x(i, t) = X. (103)

A. The case of T = 1

For T = 1, our cost function has the following form

x̂(i) = arg min
x(i)

E

{
Q∑

i=1

νIi + (1− ν)(1− Ii)

x(i)

}
, (104)

subject to
∑Q

i=1 x(i) = X , with the expectation taken w.r.t. IΨ. Note that E{Ii} = pi, so x̂i can

be derived using Lagrange multiplier, i.e., finding the minimizer of

L(x, λ) =

Q∑
i=1

νpi + (1− ν)(1− pi)

x(i)
+ λ

(
Q∑

i=1

x(i)−X

)
. (105)

Taking derivatives and setting them equal to zero, yields

x̂(i) =
X

√
νpi + (1− ν)(1− pi)∑Q

j=1

√
νpj + (1− ν)(1− pj)

. (106)

October 24, 2007 DRAFT



40

B. The case of T = 2

Consider the following problem, given a set {ci}Q
i=1, where ci = x(i, 1) > 0 and

∑Q
i=1 ci = C,

our goal is minimize the cost, i.e., find

x̂(i, 2) = arg min
x(i,2)

E

Q∑
i=1

νIi + (1− ν)(1− Ii)

ci + x(i, 2)
, (107)

subject to
Q∑

i=1

x(i, 2) = X − C > 0, (108)

and x(i, 2) : Y (1) → R+. For brevity, let xi(Y ) = x(i, 2), and note that in (107) expectation is

taken w.r.t. IΨ and Y (1). Using iterated expectation, we obtain

E

{
Q∑

i=1

νIi + (1− ν)(1− Ii)

ci + x(i, 2)

}
= E

{
Q∑

i=1

E

{
νIi + (1− ν)(1− Ii)

ci + xi(Y )

∣∣∣∣ Y (1)

}}
. (109)

Given Y (1) the denominator is deterministic and expectation can be applied to the numerator,

therefore (109) becomes

E

{
Q∑

i=1

νPr(Ii = 1|Y (1)) + (1− ν)(1− Pr(Ii = 1|Y (1)))

ci + xi(Y )

}
. (110)

Define pIi|Y = Pr(Ii = 1|Y (1)) and Wi = νpIi|Y +(1−ν)(1−pIi|Y ), we use Lagrange multiplier

to minimize

E

{
Q∑

i=1

Wi

ci + xi(Y )

}
+

∫

Y
λ′(y)

(
Q∑

i=1

xi(y)− (X − C)

)
dy = (111)

Q∑
i=1

∫

Y

[
wi

ci + xi(y)
fY (y) + λ′(y) (xi(y)− (X − C))

]
dy. (112)

where wi = Wi(y) is a realization of the r.v. Wi. Since fY (y) is strictly positive, define λ(y) =

λ′(y)
fY (y)

, then, x̂i, the minimizer of (112) is also the minimizer of

Q∑
i=1

∫

Y

[
wi

ci + xi(y)
+ λ(y)xi(y)

]
dy, (113)

Note that our problem has translated to minimizing a separable sum of integrals of a positive

integrands. Hence, finding

x̂i(Y ) = arg min
xi(Y )

wi

ci + xi(Y )
+ λ(Y )xi(Y ), (114)
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suffice. Solving for xi(y) given the Lagrange multiplier λ(Y ) yields

xi(Y ) =





√
wi

λ(Y )
− ci,

√
wi

λ(Y )
> ci

0, Otherwise
, (115)

which can be also written as

xi(Y ) =

(√
wi

λ(Y )
− ci

)
I

(
λ(Y ) <

wi

c2
i

)
, (116)

where I(·) is an indicator function. Utilizing the constraint
∑

i xi(Y ) = X − C, we obtain

1√
λ(Y )

Q∑
i=1

√
wiI

(
λ(Y ) <

wi

c2
i

)
= X −

(
C −

Q∑
i=1

ciI

(
λ(Y ) <

wi

c2
i

))
. (117)

Note that

C =

Q∑
i=1

ciI

(
λ(Y ) <

wi

c2
i

)
+

Q∑
i=1

ciI

(
λ(Y ) > wi

c2
i

)
, (118)

substituting (118) into (117) and rearranging, yields

√
λ(Y ) =

∑Q
i=1

√
wiI

(
λ(Y ) < wi

c2i

)

X −∑Q
i=1 ciI

(
λ(Y ) > wi

c2i

) . (119)

Next, use τ : X → X such that

zτ(1) 6 zτ(2) 6 . . . 6 zτ(Q), (120)

where zτ(i) =
wτ(i)

c2
τ(i)

.,

1) Case λ(Y ) < zτ(1): If λ(Y ) < zτ(1), for all Y , then λ(Y ) < zτ(i) for all i and

√
λ(Y ) =

∑Q
i=1

√
wτ(i)

X
. (121)

For which case, the cost minimizer is achieved at

xτ(i)(Y ) =
X
√

wτ(i)∑Q
j=1

√
wj

− cτ(i), (122)

and, for all i
X

cτ(i)

>
∑Q

j=1

√
wj√

wτ(i)

. (123)

2) Case λ(Y ) > zτ(Q): For the other extreme, we have λ(Y ) > zτ(i) for all i, which in turn

provides λ(Y ) = 0, due to (119). This can only hold if both ν = 1 and pIi|Y = 0 for all i. If

this is the case, then for any choice of xi(Y ) the overall cost is zero.
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3) Case zτ(k) 6 λ(Y ) < zτ(k+1), for some k ∈ {1, 2, . . . , Q − 1}: The interesting case is

when λ(Y ) has some intermittent value, i.e.,

√
zτ(k) 6

∑Q
i=k+1

√
wτ(i)

X −∑k
i=1 cτ(i)

<
√

zτ(k+1). (124)

Since all the terms in (124) are positive, we rewrite the inequality as

cτ(k+1)

∑Q
i=k+1

√
wτ(i)√

wτ(k+1)

+
k∑

i=1

cτ(i) < X 6
cτ(k)

∑Q
i=k+1

√
wτ(i)√

wτ(k)

+
k∑

i=1

cτ(i). (125)

Define
LB(k) =

cτ(k+1)

∑Q
i=k+1

√
wτ(i)√

wτ(k+1)
+

∑k
i=1 cτ(i),

UB(k) =
cτ(k)

∑Q
i=k+1

√
wτ(i)√

wτ(k)
+

∑k
i=1 cτ(i).

(126)

To show that (125) makes sense, we need to show that for any X of interest there exists a unique

k = k0 ∈ {1, 2, . . . , Q− 1} such that X ∈ (LB(k0), UB(k0)]. To do so we show that following:

(i) LB(k) 6 UB(k), (ii) LB(k− 1) = UB(k), and (iii) X ∈ (LB(Q− 1), UB(1)]. Start with (i)

cτ(k+1)

∑Q
i=k+1

√
wτ(i)√

wτ(k+1)

+
k∑

i=1

cτ(i) −
(

cτ(k)

∑Q
i=k+1

√
wτ(i)√

wτ(k)

+
k∑

i=1

cτ(i)

)
= (127)

(
cτ(k+1)√
wτ(k+1)

− cτ(k)√
wτ(k)

)
Q∑

i=k+1

√
wτ(i) =

(√
zτ(k) −√zτ(k+1)√

zτ(k)zτ(k+1)

)
Q∑

i=k+1

√
wτ(i) 6 0, (128)

since zτ(k) 6 zτ(k+1). Note that zτ(k) = zτ(k+1) implies that the interval (LB(k), UB(k)] is empty.

To prove (ii) we substitute (k − 1) for k in the expression for LB(k) in (126). This yields

LB(k − 1)− UB(k) = (129)

cτ(k)

∑Q
i=k

√
wτ(i)√

wτ(k)

+
k−1∑
i=1

cτ(i) −
(

cτ(k)

∑Q
i=k+1

√
wτ(i)√

wτ(k)

+
k∑

i=1

cτ(i)

)
= (130)

cτ(k)

∑Q
i=k

√
wτ(i)√

wτ(k)

− cτ(k)

∑Q
i=k+1

√
wτ(i)√

wτ(k)

− cτ(k) = 0. (131)

Combining (i) and (ii) we obtain

LB(k) 6 UB(k) = LB(k − 1), (132)

i.e., LB(k) is decreasing in k. Finally, we need to show

X ∈ (LB(Q− 1), UB(1)]. (133)
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From (126) we obtain

LB(Q− 1) =

Q∑
i=1

ci. (134)

If
∑

i ci = X then xi(Y ) = 0, for all i, due to the constraint (108). Thus, for a two-step problem

we must have X >
∑

i ci = LB(Q− 1). In addition (126) provides

UB(1) = cτ(1)

Q∑
i=1

√
wτ(i)

wτ(1)

. (135)

However, if X > UB(1), then from (123) we know that this corresponds to the case λ(Y ) < zτ(1),

for which we had already derived a solution. Together (i), (ii), and (iii) proves existence and

uniqueness of the solution, since

1. X ∈ (LB(Q− 1), UB(1)],

2.
⋃Q

k=1(LB(k), UB(k)] = (LB(Q− 1), UB(1)],

3. (LB(i), UB(i)] ∩ (LB(j), UB(j)] = ∅, ∀i 6= j.

To conclude this section we provide the following algorithm to find, x̂i(Y ), the minimizer of

(107);

Algorithm 2: Step two minimizer

(i) For a given Y , if X >UB(1), then k0 = 0, else k0 is the unique solution of

(125).

(ii) For k0 ∈ {0, 1, . . . , Q− 1} the cost minimizer is achieved at

xτ(i)(Y ) =

(
X −∑k0

j=1 cτ(j)∑Q
j=k0+1

√
wτ(j)

√
wτ(i) − cτ(i)

)
I(i > k0). (136)

Note that this is the optimal solution given the set {ci}Q
i=1. To derive a two step optimal

effort allocation scheme one has to specify the set {ci}Q
i=1. In general, this involves a Q + 1

degrees of freedom grid search and is not feasible for large Q. Nevertheless, one can derive a

suboptimal solution for any given prior probabilities {pi} using the following myopic approach:

(i) Start with distributing the total effort to the two steps as (αX, (1 − α)X), with α ∈ (0, 1).

(ii) Distribute effort optimally, within each step, according to (106) and (136). (iii) Grid search

over α to find the optimal effort allocation between the two steps.
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C. The case of T > 2

For T > 2, we first find x̂(i, T ) the minimizer of the last step, then use a backward induction

to find x̂(i, t), for t < T . First, define

X(t) =

Q∑
i=1

x(i, t), (137)

with
∑T

t=1 X(t) = X . Next, rewrite (107) as

x̂(i, T ) = arg min
x(i,T )

E

{
Q∑

i=1

νIi + (1− ν)(1− Ii)

ci + x(i, T )

}
, (138)

where

ci =
T−1∑
t=1

x(i, t), (139)

with
∑

i ci = C =
∑T−1

t=1 X(t), subject to
Q∑

i=1

x(i, T ) = X − C > 0, (140)

and x(i, T ) : Y T−1
1 → R+. Let xi(Y ) = x(i, T ), and note that in (138) expectation is taken

w.r.t. IΨ and Y T−1
1 . Using smoothing we get

E

{
Q∑

i=1

νIi + (1− ν)(1− Ii)

ci + x(i, 2)

}
= EY T−1

1

{
Q∑

i=1

E

{
νIi + (1− ν)(1− Ii)

ci + xi(Y )

∣∣∣∣Y T−1
1

}}
, (141)

and since, given Y T−1
1 the denominator is not random anymore, we get

E

{
Q∑

i=1

νIi + (1− ν)(1− Ii)

ci + x(i, 2)

}
= (142)

EY T−1
1

{
Q∑

i=1

νPr(Ii = 1|Y T−1
1 ) + (1− ν)(1− Pr(Ii = 1|Y T−1

1 ))

ci + xi(Y )

}
. (143)

Define pIi|Y = Pr(Ii = 1|Y T−1
1 ), we use Lagrange multiplier to minimize

L(x, λ) =

Q∑
i=1

[
EY T−1

1

{
wi

ci + xi(Y )

}
+

∫

Y
λ′(Y )xi(Y )dy

]
, (144)

and, if fY T−1
1

(y) > 0, then we can derive the exact same solution as in algorithm 2. To solve

for x̂(i, t) for t < T , we define ci(t) as follows

ci(t) =
t−1∑
j=1

x(i, j), (145)
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and solve

x̂(i, t) = arg min
x(i,t)

E

{
Q∑

i=1

νIi + (1− ν)(1− Ii)

ci + x(i, t)

}
, (146)

subject to
Q∑

i=1

x(i, t) = X(t) − C > 0, (147)

with C =
∑

i ci(t). Conditioning on the past and using Lagrange multiplier technique, we arrive

again at a result similar to algorithm 2. The optimization problem translate to the following

question, assuming we use the optimal mapping at each step how do we allocate X(t) for

t ∈ {1, 2, . . . , T}.

APPENDIX VI

CONVERGENCE OF pIi|y(1) FOR THE GAUSSIAN CASE

Consider a simplified version of the measurement model (20) given as

yi(1) =
√

λ1Iiθi(1) + ni(1), (148)

where we substitute t = 1, λ(i, 1) = λ1, and hij(1) = δij with δij being the Kronecker delta. We

further assume that the r.v. θi > 0. For brevity we suppress the time dependency from here on.

In addition we assumed Pr(Ii = 1) = p for all i and the noise samples are i.i.d. Gaussian with

ni ∼ N (0, σ2). Furthermore, setting εi = λ1 for all i, results in i.i.d. measurements, distributed

according to

yi ∼ N (
√

λ1Iiθi, σ
2), (149)

Therefore, the posterior probabilities pIi|y depends only on the ith sample, i.e., pIi|y = pIi|yi
. For

the Gaussian case, pIi|yi
has an explicit form given as

pIi|yi
=

p exp{− 1
2σ2 (yi − θi

√
λ1)

2}
p exp{− 1

2σ2 (yi − θi

√
λ1)2}+ (1− p) exp{− 1

2σ2 y2
i }

, (150)

which can be rearranged as

pIi|yi
=

1

1 + 1−p
p

exp
{
− θiεi

σ2

(
yi√
λ1
− θi

2

)} . (151)
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Let zi = yi√
λ1

, then zi ∼ N (θiIi, η
2) where η2 = σ2

λ1
and at high SNR η2 → 0. Substituting yi

with zi in (151) provides

pIi|yi
= pIi|zi

=
1

1 + 1−p
p

exp
{
− θi

η2

(
zi − θi

2

)} . (152)

Claim 2: The conditional probability pIi|yi
defined in (152) converges in probability to Ii as

η → 0 for any θi > 0, i.e., ∀ε > 0 and some δ > 0 there exists η0(ε), such that ∀η 6 η0(ε)

Pr(|pIi|yi
(η)− Ii| > δ) 6 ε, (153)

The intuition behind Claim 2 is derived from the following limit

lim
η2→0

pIi|yi
=





0, zi < θi

2

1, zi > θi

2

. (154)

Proof: Using Chebyshev’s inequality we prove Claim 2 for the case of Ii = 0. A symmetry

argument suggests that the same line of proof can be applied for the case of Ii = 1. Define

A = {zi : zi > θi

2
} then

Pr(|pIi|yi
− Ii| > δ) = Pr(A)Pr(|pIi|yi

− Ii| > δ|A)+

Pr(Ac)Pr(|pIi|yi
− Ii| > δ|Ac). (155)

For Ii = 0 we have10

Pr(pIi|yi
> δ) 6 Pr(A) + Pr

(
pIi|yi

> δ

∣∣∣∣zi 6 θi

2

)
. (156)

We show that both elements on the r.h.s. (156) approach zero as η → 0. For some α > 0,

Chebyshev’s inequality provides

Pr (|zi − θiIi| > α) 6 η2

α2
. (157)

Note that
Pr(zi > θi

2
) 6 Pr(|zi − θiIi| > θi

2
), Ii = 0,

Pr(zi < θi

2
) 6 Pr(|zi − θiIi| > θi

2
), Ii = 1,

(158)

10Since pIi|yi
> 0 we can replace pIi|yi

= |pIi|yi
|.
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and therefore

Pr(A) 6 Pr

(
|zi| > θi

2

)
6 4η2

θ2
i

. (159)

Next, we examine the term on r.h.s. of (156). Note that

Pr

(
pIi|yi

> δ

∣∣∣∣zi 6 θi

2

)
= (160)

Pr


 1

1 + 1−p
p

exp
{

θi

η2

(
θi

2
− zi

)} > δ

∣∣∣∣∣∣
zi 6 θi

2


 = (161)

Pr

(
θi

2
− zi <

η2

θi

ln
p

1− p

1− δ

δ

∣∣∣∣ zi 6 θi

2

)
. (162)

Let

ε′ =
η2

θi

ln
p

1− p

1− δ

δ
, (163)

then (160) is equivalent to

Pr

(
zi ∈

[
θi

2
− ε′,

θi

2

])
(164)

First, note that δ > p results in ε′ < 0 and hence (164) equals zero. Second, since fZ(z) 6
fZ(0) = 1√

2πη2
we have the following simple bound for any ε′ > 0

Pr

(
zi ∈

[
θi

2
− ε′,

θi

2

])
6 ε′

1√
2πη2

= η
1

θi

√
2π

ln
p

1− p

1− δ

δ
, (165)

thus

Pr

(
pIi|yi

> δ

∣∣∣∣zi 6 θi

2

)
6 η

1

θi

√
2π

ln
p

1− p

1− δ

δ
. (166)

Finally, substituting (166) and (159) in (156) we obtain

Pr(pIi|yi
> δ) 6 4η2

θ2
i

+ η
1

θi

√
2π

ln
p

1− p

1− δ

δ
. (167)

Define η0(ε) as

η0(ε) = sup
η>0

{
4η2

θ2
i

+ η
1

θi

√
2π

ln
p

1− p

1− δ

δ
6 ε

}
, ∀δ > 0, (168)

then using (167) we have

pIi|yi
→ 0 (169)

in probability when Ii = 0. In a similar manner, it can be shown that

pIi|yi
→ 1 (170)

in probability for Ii = 1.
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