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Abstract

Wavelet transforms enable us to represent signals with a high degree of sparsity. This is the principle
behind a non-linear wavelet based signal estimation technique known as wavelet denoising. In this report we
explore wavelet denoising of images using several thresholding techniques such as SUREShrink, VisuShrink
and BayesShrink. Further, we use a Gaussian based model to perform combined denoising and compression
for natural images and compare the performance of these methods.
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“If you painted a picture with a sky,
clouds, trees, and flowers, you would use
a different size brush depending on the
size of the features.Wavelets are like those
brushes.”

-Ingrid Daubechies

1 Background and Motivation

1.1 Introduction

From a historical point of view, wavelet analysis is
a new method, though its mathematical underpin-
nings date back to the work of Joseph Fourier in the
nineteenth century. Fourier laid the foundations with
his theories of frequency analysis, which proved to be
enormously important and influential. The attention
of researchers gradually turned from frequency-based
analysis to scale-based analysis when it started to be-
come clear that an approach measuring average fluc-
tuations at different scales might prove less sensitive
to noise. The first recorded mention of what we now
call a ”wavelet” seems to be in 1909, in a thesis by
Alfred Haar.

In the late nineteen-eighties, when Daubechies and
Mallat first explored and popularized the ideas of
wavelet transforms, skeptics described this new field
as contributing additional useful tools to a growing
toolbox of transforms. One particular wavelet tech-
nique, wavelet denoising, has been hailed as “offering
all that we may desire of a technique from optimal-
ity to generality” [6]. The inquiring skeptic, how-
ever maybe reluctant to accept these claims based on
asymptotic theory without looking at real-world ev-
idence. Fortunately, there is an increasing amount
of literature now addressing these concerns that help
us appraise of the utility of wavelet shrinkage more
realistically.

Wavelet denoising attempts to remove the noise
present in the signal while preserving the signal char-
acteristics, regardless of its frequency content. It in-
volves three steps: a linear forward wavelet trans-
form, nonlinear thresholding step and a linear in-
verse wavelet transform.Wavelet denoising must not

be confused with smoothing; smoothing only removes
the high frequencies and retains the lower ones.

Wavelet shrinkage is a non-linear process and is
what distinguishes it from entire linear denoising
technique such as least squares. As will be explained
later, wavelet shrinkage depends heavily on the choice
of a thresholding parameter and the choice of this
threshold determines, to a great extent the efficacy of
denoising. Researchers have developed various tech-
niques for choosing denoising parameters and so far
there is no “best” universal threshold determination
technique.

The aim of this project was to study various
thresholding techniques such as SUREShrink [1], Vis-
uShrink [3] and BayeShrink [5] and determine the best
one for image denoising. In the course of the project,
we also aimed to use wavelet denoising as a means of
compression and were successfully able to implement
a compression technique based on a unified denoising
and compression principle.

1.2 The concept of denoising

A more precise explanation of the wavelet denoising
procedure can be given as follows. Assume that the
observed data is

X(t) = S(t) + N(t)

where S(t) is the uncorrupted signal with additive
noise N(t). Let W (·) and W−1(·) denote the forward
and inverse wavelet transform operators.. Let D(·, λ)
denote the denoising operator with threshold λ. We
intend to denoise X(t) to recover Ŝ(t) as an estimate
of S(t). The procedure can be summarized in three
steps

Y = W (X)
Z = D(Y, λ)
Ŝ = W−1(Z)

D(·, λ) being the thresholding operator and λ being
the threshold.
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Figure 1: A noisy signal
in time domain.
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Figure 2: The same sig-
nal in wavelet domain.
Note the sparsity of co-
efficients.

2 Thresholding

2.1 Motivation for Wavelet threshold-
ing

The plot of wavelet coefficients in Fig 2 suggests that
small coefficients are dominated by noise, while coef-
ficients with a large absolute value carry more signal
information than noise. Replacing noisy coefficients (
small coefficients below a certain threshold value) by
zero and an inverse wavelet transform may lead to
a reconstruction that has lesser noise. Stated more
precisely, we are motivated to this thresholding idea
based on the following assumptions:

• The decorrelating property of a wavelet trans-
form creates a sparse signal: most untouched
coefficients are zero or close to zero.

• Noise is spread out equally along all coefficients.

• The noise level is not too high so that we can
distinguish the signal wavelet coefficients from
the noisy ones.

As it turns out, this method is indeed effective and
thresholding is a simple and efficient method for noise
reduction. Further, inserting zeros creates more spar-
sity in the wavelet domain and here we see a link be-
tween wavelet denoising and compression which has
been described in sources such as [5].
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Figure 3: Hard Thresh-
olding.
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Figure 4: Soft Thresh-
olding.

2.2 Hard and soft thresholding

Hard and soft thresholding with threshold λ are de-
fined as follows

The hard thresholding operator is defined as

D(U, λ) = U for all|U | > λ

= 0 otherwise

The soft thresholding operator on the other hand is
defined as

D(U, λ) = sgn(U)max(0, |U | − λ)

Hard threshold is a “keep or kill” procedure and
is more intuitively appealing. The transfer function
of the same is shown in Fig 3. The alternative, soft
thresholding (whose transfer function is shown in Fig
4 ), shrinks coefficients above the threshold in abso-
lute value. While at first sight hard thresholding may
seem to be natural, the continuity of soft threshold-
ing has some advantages. It makes algorithms math-
ematically more tractable [3]. Moreover, hard thresh-
olding does not even work with some algorithms such
as the GCV procedure [4]. Sometimes, pure noise co-
efficients may pass the hard threshold and appear
as annoying ’blips’ in the output. Soft thesholding
shrinks these false structures.

2.3 Threshold determination

As one may observe, threshold determination is an
important question when denoising. A small thresh-
old may yield a result close to the input, but the
result may still be noisy. A large threshold on the
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other hand, produces a signal with a large number
of zero coefficients. This leads to a smooth signal.
Paying too much attention to smoothness, however,
destroys details and in image processing may cause
blur and artifacts.

To investigate the effect of threshold selection,
we performed wavelet denoising using hard and soft
thresholds on four signals popular in wavelet litera-
ture: Blocks, Bumps, Doppler and Heavisine[2].

The setup is as follows:

• The original signals have length 2048.

• We step through the thresholds from 0 to 5 with
steps of 0.2 and at each step denoise the four
noisy signals by both hard and soft thresholding
with that threshold.

• For each threshold, the MSE of the denoised sig-
nal is calculated.

• Repeat the above steps for different orthogonal
bases, namely, Haar, Daubechies 2,4 and 8.

The results are tabulated in the table 1

2.4 Comparison with Universal
threshold

The threshold λUNIV =
√

2lnNσ (N being the signal
length, σ2 being the noise variance) is well known in
wavelet literature as the Universal threshold. It is
the optimal threshold in the asymptotic sense and
minimises the cost function of the difference between
the function and the soft thresholded version of the
same in the L2 norm sense(i.e. it minimizes E ‖
YThresh − YOrig. ‖2 ). In our case, N=2048, σ = 1,
therefore theoretically,

λUNIV =
√

2ln(2048)(1) = 3.905 (1)

As seen from the table, the best empirical thresh-
olds for both hard and soft thresholding are much
lower than this value, independent of the wavelet
used. It therefore seems that the universal thresh-
old is not useful to determine a threshold. However,
it is useful for obtain a starting value when nothing is
known of the signal condition. One can surmise that

Blocks
Hard Soft

Haar 1.2 1.6
Db2 1.2 1.6
Db4 1.2 1.6
Db8 1.2 1.8

Bumps
Hard Soft

Haar 1.2 1.6
Db2 1.4 1.6
Db4 1.4 1.6
Db8 1.4 1.8

Heavy Sine
Hard Soft

Haar 1.4 1.6
Db2 1.4 1.6
Db4 1.4 1.6
Db8 1.4 1.6

Doppler
Hard Soft

Haar 1.6 2.2
Db2 1.6 1.6
Db4 1.6 2.0
Db8 1.6 2.2

Table 1: Best thresholds, empirically found with differ-
ent denoising schemes, in terms of MSE

the universal threshold may give a better estimate
for the soft threshold if the number of samples are
larger (since the threshold is optimal in the asymp-
totic sense).

3 Image Denoising using
Thresholding

3.1 Introduction: Revisiting the un-
derlying principle

An image is often corrupted by noise in its acquisition
or transmission. The underlying concept of denoising
in images is similar to the 1D case. The goal is to
remove the noise while retaining the important signal
features as much as possible.

The noisy image is represented as a two-
dimensional matrix {xij}, i, j = 1, · · · , N. The noisy
version of the image is modelled as

yij = xij + nij i, j = 1, · · · , N.

where {nij} are iid as N(0,σ2). We can use the same
principles of thresholding and shrinkage to achieve
denoising as in 1-D signals. The problem again boils
down to finding an optimal threshold such that the
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Figure 5: MSE V/s Threshold values for the four test
signals.

mean squared error between the signal and its esti-
mate is minimized.

The wavelet decomposition of an image is done as
follows: In the first level of decomposition, the im-
age is split into 4 subbands,namely the HH,HL,LH
and LL subbands. The HH subband gives the diag-
onal details of the image;the HL subband gives the
horizontal features while the LH subband represent
the vertical structures. The LL subband is the low
resolution residual consisiting of low frequency com-
ponents and it is this subband which is further split
at higher levels of decomposition.

The different methods for denoising we investigate
differ only in the selection of the threshold. The basic
procedure remains the same :

• Calculate the DWT of the image.

• Threshold the wavelet coefficients.(Threshold
may be universal or subband adaptive)

• Compute the IDWT to get the denoised esti-
mate.

Soft thresholding is used for all the algorithms due
to the following reasons: Soft thresholding has been
shown to achieve near minimax rate over a large num-
ber of Besov spaces[3]. Moreover, it is also found to
yield visually more pleasing images. Hard threshold-
ing is found to introduce artifacts in the recovered
images.

We now study three thresholding techniques- Vis-
uShrink,SureShrink and BayesShrink and investigate
their performance for denoising various standard im-
ages.

3.2 VisuShrink

Visushrink is thresholding by applying the Univer-
sal threshold proposed by Donoho and Johnstone [2].
This threshold is given by σ

√
2logM where σ is the

noise variance and M is the number of pixels in the
image.It is proved in [2] that the maximum of any M
values iid as N(0,σ2)will be smaller than the univer-
sal threshold with high probability, with the proba-
bility approaching 1 as M increases.Thus, with high
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(a) 512 × 512 image of ‘Lena’

(b) Noisy version of ‘Lena’

(c) Denoised using Hard Thresh-
olding

(d) Denoised using Soft Thresh-
olding

Figure 6: Denoising using VisuShrink

probabilty, a pure noise signal is estimated as being
identically zero.

However, for denoising images, Visushrink is found
to yield an overly smoothed estimate as seen in Fig-
ure 6. This is because the universal threshold(UT)
is derived under the constraint that with high prob-
ability the estimate should be at least as smooth as
the signal. So the UT tends to be high for large val-
ues of M, killing many signal coefficients along with
the noise. Thus, the threshold does not adapt well to
discontinuities in the signal.

3.3 SureShrink

3.3.1 What is SURE ?

Let µ = (µi : i = 1, . . . d) be a length-d vector, and
let x = {xi} (with xi distributed as N(µi,1)) be multi-
variate normal observations with mean vector µ. Let
µ̂ = µ̂(x) be an fixed estimate of µ based on the obser-
vations x. SURE (Stein’s unbiased Risk Estimator)
is a method for estimating the loss ‖µ̂ − µ‖2 in an
unbiased fashion.

In our case µ̂ is the soft threshold estimator
µ̂

(t)
i (x) = ηt(xi). We apply Stein’s result[1] to get

an unbiased estimate of the risk E‖µ̂(t)(x)− µ‖2:

SURE(t; x) = d−2·#{i : |xi| < T}+
d∑

i=1

min(|xi|, t)2.

(2)
For an observed vector x(in our problem, x is

the set of noisy wavelet coefficients in a subband),
we want to find the threshold tS that minimizes
SURE(t;x),i.e

tS = argmintSURE(t; x). (3)

The above optimization problem is computation-
ally straightforward. Without loss of generality, we
can reorder x in order of increasing |xi|.Then on inter-
vals of t that lie between two values of |xi|, SURE(t)
is strictly increasing. Therefore the minimum value
of tS is one of the data values |xi|. There are only
d values and the threshold can be obtained using
O(d log(d)) computations.
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3.3.2 Threshold Selection in Sparse Cases

The SURE principle has a drawback in situations of
extreme sparsity of the wavelet coefficients. In such
cases the noise contributed to the SURE profile by the
many coordinates at which the signal is zero swamps
the information contributed to the SURE profile by
the few coordinates where the signal is nonzero. Con-
sequently, SureShrink uses a Hybrid scheme.

The idea behind this hybrid scheme is that the
losses while using an universal threshold, tFd =√

2 log d, tend to be larger than SURE for dense sit-
uations, but much smaller for sparse cases.So the
threshold is set to tFd in dense situations and to tS

in sparse situations. Thus the estimator in the hy-
brid method works as follows

µ̂x(x)i =
{

ηtF
d
(xi) s2

d ≤ γd

ηtS (xi) s2
d > γd,

(4)

where

s2
d =

∑
i(x

2
i − 1)
d

γd =
log

3/2
2 (d)√

d
(5)

η being the thresholding operator.

3.3.3 SURE applied to image denoising

We first obtain the wavelet decomposition of the
noisy image. The SURE threshold is determined
for each subband using (2) and (3). We choose be-
tween this threshold and the universal threshold us-
ing (4).The expressions s2

d and γd in (5), given for
σ = 1 have to suitably modified according to the
noise variance σ and the variance of the coefficients
in the subband.

The results obtained for the image ’Lena’ (512×512
pixels) using SureShrink are shown in Figure 7(c).
The ‘Db4’ wavelet was used with 4 levels of decom-
position. Clearly, the results are much better than
VisuShrink. The sharp features of the image are
retained and the MSE is considerably lower. This
because SureShrink is subband adaptive- a separate
threshold is computed for each detail subband.

3.4 BayesShrink

In BayesShrink [5] we determine the threshold for
each subband assuming a Generalized Gaussian
Distribution(GGD) . The GGD is given by

GGσX ,β(x) = C(σX , β)exp−[α(σX , β)|x|]β (6)

−∞ < x < ∞, β > 0, where

α(σX , β) = σ−1
X [Γ(3/β)

Γ(1/β) ]
1/2

and

C(σX , β) = β·α(σX ,β)

2Γ( 1
β )

and Γ(t) =
∫∞
0

e−uut−1du.
The parameter σX is the standard deviation and β

is the shape parameter It has been observed[5] that
with a shape parameter β ranging from 0.5 to 1, we
can describe the the distribution of coefficients in a
subband for a large set of natural images.Assuming
such a distribution for the wavelet coefficients, we em-
pirically estimate β and σX for each subband and try
to find the threshold T which minimizes the Bayesian
Risk, i.e, the expected value of the mean square error.

τ(T ) = E(X̂ −X)2 = EXEY |X(X̂ −X)2 (7)

where X̂ = ηT (Y ), Y |X ∼ N(x, σ2) and X ∼
GG

X ,β . The optimal threshold T ∗ is then given by

T ∗(σx, β) = arg min
T

τ(T ) (8)

This is a function of the parameters σX and β. Since
there is no closed form solution for T ∗, numerical
calculation is used to find its value.

It is observed that the threshold value set by

TB(σX) =
σ2

σX
(9)

is very close to T ∗.
The estimated threshold TB = σ2/σX is not only

nearly optimal but also has an intuitive appeal. The
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normalized threshold, TB/σ. is inversely propor-
tional to σ, the standard deviation of X, and pro-
portional to σX , the noise standard deviation. When
σ/σX ¿ 1, the signal is much stronger than the noise,
Tb/σ is chosen to be small in order to preserve most
of the signal and remove some of the noise; when
σ/σX À 1, the noise dominates and the normalized
threshold is chosen to be large to remove the noise
which has overwhelmed the signal. Thus, this thresh-
old choice adapts to both the signal and the noise
characteristics as reflected in the parameters σ and
σX .

3.4.1 Parameter Estimation to determine
the Threshold

The GGD parameters, σX and β, need to be esti-
mated to compute TB(σX) . The noise variance σ2

is estimated from the subband HH1 by the robust
median estimator[5],

σ̂ =
Median(|Yij |)

0.6745
, Yij ∈ subbandHH1 (10)

The parameter β does not explicitly enter into the
expression of TB(σX). Therefore it suffices to esti-
mate directly the signal standard deviation σX . The
observation model is Y = X + V , with X and V in-
dependent of each other, hence

σ2
Y = σ2

X + σ2 (11)

where σ2
Y is the variance of Y. Since Y is modelled

as zero-mean, σ2
Y can be found empirically by

σ̂2
Y =

1
n

n∑

i,j=1

Y 2
ij (12)

where n× n is the size of the subband under consid-
eration. Thus

T̂B(σ̂X) =
σ̂2

σ̂X
(13)

where
σ̂X =

√
max(σ̂2

Y − σ̂2, 0) (14)

In the case that σ̂2 ≥ σ̂2
Y , σ̂X is taken to be

zero, i.e, T̂B(σ̂X) is ∞, or, in practice,T̂B(σ̂X) =
max(|Yij |), and all coefficients are set to zero.

To summarize,Bayes Shrink performs soft-
thresholding, with the data-driven, subband-
dependent threshold,

T̂B(σ̂X) =
σ̂2

σ̂X
.

The results obtained by BayesShrink for the image
’Lena’ (512× 512 pixels) is shown in figure 7(d).The
’Db4’ wavelet was used with four levels of decompo-
sition. We found that BayesShrink performs better
than SureShrink in terms of MSE. The reconstruction
using BayesShrink is smoother and more visually ap-
pealing than the one obtained using SureShrink. This
not only validates the approximation of the wavelet
coefficients to the GGD but also justifies the approx-
imation to the threshold to a value independent of β.

4 Denoising and Compression
using Gaussian-based MMSE
Estimation

4.1 Introduction

The philosophy of compression is that a signal typ-
ically has structural redundancies that can be ex-
ploited to yield a concise representation.White noise,
however does not have correlation and is not easily
compressible. Hence, a good compression method
can provide a suitable method for distinguishing be-
tween signal and noise.So far,we have investigated
wavelet thresholding techniques such as SureShrink
and BayesShrink for denoising.We now use MMSE
estimation based on a Gaussian prior and show
that significant denoising can be achieved using this
method. We then perform compression of the de-
noised coefficients based on their distribution and
find that this can be done without introducing sig-
nificant quantization error. Thus, we achieve simul-
taneous denoising and compression.
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(a) 512 × 512 image of ‘Lena’

(b) Noisy version of ‘Lena’

(c) Denoised using SureShrink

(d) Denoised using BayesShrink

Figure 7: Denoising by BayesShrink and
SureShrink(σ = 30)

4.2 Denoising using MMSE estima-
tion

As explained in the previous section,the Generalized
Gaussian distribution (GGD) is a good model for
the distribution of wavelet coefficients in each detail
subband of the image. However, for most images,a
Gaussian distribution is found to be a satisfatory ap-
proximation. Therefore, the model for the ith detail
subband becomes

Y i
j = Xi

j + N i
j j = 1, 2, · · · ,Mi. (15)

where Mi is the number of wavelet coefficients in the
ith detail subband.The coefficients {Xi

j} are inde-
pendent and identically distributed as N(0, σ2

Xi) and
are independent of {N i

j}, which are iid draws from
N(0, σ2). We want to get the best estimate of {Xi

j}
based on the noisy observations {Y i

j }.This is done
through the following steps:

1. The noise variance σ2 is estimated as described
in the previous section.

2. The variance σ2
Y i is calculated as

σ̂2
Y i =

1
n2

Mi∑

j=1

Y i
j

2

3. σ̂X for the subband i is estimated as before as

σ̂Xi =
√

max(σ̂2
Y i − σ̂2, 0).

This comes about because

σ̂2
Y i = σ̂2

Xi + σ̂2

and in the case that σ̂2 ≥ σ̂2
Y i , σ̂Xi is taken

to be zero. This means that the noise is more
dominant than the signal in the subband and so
the signal cannot be estimated with the noisy
observations.

4. Based on (15),the MMSE estimate of Xi
j based

on observing Y i
j is

X̂i
j = E[X/Y ] =

σ̂2
Xi

σ̂2
Y i

· Y i
j (16)
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We observe the similarity of this step to wavelet
shrinkage, since each coefficient Y i

j is brought
closer to zero in absolute value by multiplying

with
σ̂2

Xi

σ̂2
Y i

(< 1). This effect is similar to that of

wavelet shrinkage in soft thresholding.

Steps 2 through 4 are repeated for each
detail subband i. Note that the coefficients
in the low resolution LL subband are kept
unaltered.

The results obtained using this method for the
’Elaine’ image with a Db4 wavelet with 4 levels are
shown in the first three parts of Figure 8.The MSE
comparison plot in Figure 9 shows that denoising
by Gaussian estimation performs slightly better than
SureShrink for the ’Clock’ image. The slightly infe-
rior performance to BayesShrink is to be expected
since a GGD prior is a more exact representation of
the wavelet coefficients in a subband than the Gaus-
sian prior.

4.3 Compression

We now introduce a quantization scheme for a
concise representation of the denoised coefficients
{X̂i

j}. From (16), the {X̂i
j} are iid with distribu-

tion N(0,
σ̂4

Xi

σ̂2
Y i

). The number of bits used to encode

each coefficient X̂i
j is determined as follows. For sim-

plicity of notation , we denote X̂i
j as Aj , keeping in

mind that Aj is a part of subband i

1. We first fix the maximum allowable distortion,
say D, for each coefficient.

2. The variance of each coefficient Aj is found
empirically by calculating the variance of a 3×3
block of coefficients centered at Aj .

It is assumed that we have available a fi-
nite set of optimal Lloyd Max quantizers for
the N(0, 1) distribution. In our experiments, we
took 5 quantizers with number of quantization
levels M = 2, 4, 8, 16 and 32.

3. Each coefficient Aj is encoded using the quan-
tizer with the least M so that (Aj − Âj)2 ≤ D.
Note that both D and the quantizer levels, de-
fined for N(0, 1) have to scaled by σAj for each
coefficient Aj .

4. Steps 2 and 3 are repeated for all the coefficients
Aj in a subband and for all the detail subbands.

5. The coefficents in the low resolution subband are
quantized assuming a uniform distribution [5].
This is motivated by the fact that the LL coeffi-
cients are essentially local averages of the image
and are not characterized by a Gaussian distri-
bution.

4.4 Results

Figure 8 shows the results obtained when this de-
noising and compression scheme is applied to the
image ’Elaine’ with σ = 30.We used Db-4 discrete
wavelet series with 4 levels of decomposition.We see
the denoised version has much lower MSE (143.7 vs
σ2 = 900)and better visual quality too. The com-
pressed version looks very similar to the denoised
image with an additional MSE of around 20. It has
been encoded using 1.52 bpp (distortion value D set
at=0.1). The rate can be controlled by changing the
distortion level D. If we fix a large distortion level D,
we get a low encoding rate, but have a price to pay-
larger quantization error. We choose to operate at
a particular point on the ’Rate v Distortion’ curve
based on the distortion we are prepared to tolerate.

The performance of the different denoising schemes
is compared in Figure 9. A 200 × 200 image ’Clock’
is considered and the MSEs for different values of σ
are compared. Clearly, VisuShrink is the least ef-
fective among the methods compared. This is due
to the fact that it is based on a Universal threshold
and not subband adaptive unlike the other schemes.
Among these, BayesShrink clearly performs the best.
This is expected since the GGD models the distribu-
tion of coefficients in a subband well. MMSE esti-
mation based on a Gaussian distribution performs
slightly worse than BayesShrink. We also see that
a quantization error(approximately constant) is in-
troduced due to compression. Among the subband
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(a) 200 × 200 image of ‘Elaine’
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(b) Noisy version of ‘Elaine’

Denoised Elaine with estimation with wavelet db4 # levels=4

(c) Denoised version of ‘Elaine’

Quantized version of Denoised Elaine

(d) Quantized image of ‘Elaine’

Figure 8: MMSE Denoising and Quantization
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Figure 9: Comparison of MSE of various denoising
schemes

adaptive schemes, SureShrink has the highest MSE.
But it should be noted that SureShrinkhas the de-
sirable property of adapting to the discontinuities in
the signal. This is more evident in 1-D signals such
as ’Blocks’ than in images.

5 Conclusions

We have seen that wavelet thresholding is an ef-
fective method of denoising noisy signals. We first
tested hard and soft on noisy versions of the stan-
dard 1-D signals and found the best threshold.We
then investigated many soft thresholding schemes
viz.VisuShrink, SureShrink and BayesShrink for de-
noising images. We found that subband adaptive
thresholding performs better than a universal thresh-
olding. Among these, BayesShrink gave the best re-
sults. This validates the assumption that the GGD
is a very good model for the wavelet coefficient dis-
tribution in a subband. By weakening the GGD as-
sumption and taking the coefficients to be Gaussian
distributed, we obtained a simple model that facili-
tated both denoising and compression.

An important point to note is that although
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SureShrink performed worse than BayesShrink and
Gaussian based MMSE denoising, it adapts well to
sharp discontinuities in the signal. This was not ev-
ident in the natural images we used for testing. It
would be instructive to compare the performance of
these algorithms on artificial images with disconti-
nuities (such as medical images). It would also be
interesting to try denoising (and compression) using
other special cases of the GGD such as the Laplacian
(GGD with β = 1).Most images can be described
with a GGD with shape parameter β ranging from
0.5 to 1. So a Laplacian prior may give better results
than a Gaussian prior (β = 2) although it may not
be as easy to work with.
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