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I. INTRODUCTION

With the advent of high-throughput data collection techniques, low-dimensional matrix factorizations

have become an essential tool for pre-processing, interpreting or compressing high-dimensional data. They

are widely used in a variety of signal processing domains including electrocardiogram [1], image [2], or

sound [3] processing. These methods can take advantage of a large range of a priori knowledge on the

form of the factors, enforcing it through constraints on sparsity or patterns in the factors. However, these

methods do not work well when there are unknown misalignments between subjects in the population,

e.g., unknown subject-specific time shifts. In such cases, one cannot apply standard patterning constraints

without first aligning the data; a difficult task. An alternative approach, explored in this paper, is to impose

a factorization constraint that is invariant to factor misalignments but preserves the relative ordering of

the factors over the population. This order-preserving factor analysis is accomplished using a penalized

least squares formulation using shift-invariant yet order-preserving model selection (group lasso) penalties

on the factorization. As a byproduct the factorization produces estimates of the factor ordering and the

order-preserving time shifts.

In traditional matrix factorization, the data is modeled as a linear combination of a number of factors.

Thus, given an n× p data matrix X , the Linear Factor model is defined as:

X = MA + ε, (1)

where M is a n×f matrix of factor loadings or dictionary elements, A is a f ×p matrix of scores (also

called coordinates) and ε is a small residual. For example, in a gene expression time course analysis, n is

the number of time points and p is the number of genes in the study, the columns of M contain the features

summarizing the genes’ temporal trajectories and the columns of A represent the coordinates of each gene
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on the space spanned by M . Given this model, the problem is to find a parsimonious factorization that

fits the data well according to selected criteria, e.g. minimizing the reconstruction error or maximizing

the explained variance. There are two main approaches to such a parsimonious factorization. One, called

Factor Analysis, assumes that the number of factors is small and yields a low-rank matrix factorization

[4], [5]. The other, called Dictionary Learning [6], [7] or Sparse Coding [8], assumes that the loading

matrix M comes from an overcomplete dictionary of functions and results in a sparse score matrix A.

There are also hybrid approaches such as Sparse Factor Analysis [1], [9], [2] that try to enforce low rank

and sparsity simultaneously.

In many situations, we observe not one but several matrices Xs, s = 1, · · · , S and there are physical

grounds for believing that the Xs’s share an underlying model. This happens, for instance, when the

observations consist of different time-blocks of sound from the same music piece [3], [10], when they

consist of time samples of gene expression microarray data from different individuals inoculated with

the same virus [11], or when they arise from the reception of digital data with code, spatial and temporal

diversity [12]. In these situations, the fixed factor model (1) is overly simplistic.

An example, which is the main motivation for this work is shown in Figure 1, which shows the effect

of temporal misalignment across subjects in a viral challenge study reported in [11]. Figure 1 shows the

expression trajectory for a particular gene that undergoes an increase (up-regulation) after viral inoculation

at time 0, where the moment when up-regulation occurs differs over the population. Training the model

(1) on this data will produce poor fit due to misalignment of gene expression onset times.
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Fig. 1. Example of temporal misalignment across subjects of upregulated gene CCRL2. Subject 6 and subject 10 show the

earliest and the latest up-regulation responses, respectively.

A more sensible approach for the data in Figure 1 would be to separately fit each subject with a

translated version of a common up-regulation factor. This motivates the following extension of model

(1), where the factor matrices Ms, As are allowed to vary across observations. Given a number S of
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n× p data matrices Xs, we let:

Xs = MsAs + εs s = 1, · · · , S. (2)

Following the gene expression example, here n is the number of time points, p is the number of genes

in the study, and S is the number of subjects participating in the study. Hence, the n× f matrices Ms

contain the translated temporal features corresponding to the s-th subject and the f × p matrices As

accommodate the possibility of subjects having different mixing weights. For different constraints on

Ms, As, this model specializes to several well-known paradigms such as Principal Components Analysis

(PCA) [4], sparse PCA [1], k-SVD [6], structured PCA [2], Non-Negative Matrix Factorization (NNMF)

[13], Maximum-Margin Matrix Factorization (MMMF) [14], Sparse Shift-invariant models [3], Parallel

Factor Analysis (PARAFAC) [5], [15] or Higher-Order SVD (HOSVD) [16]. Table II summarizes the

characteristics of these decomposition models when seen as different instances of the general model (2).

TABLE I

SPECIAL CASES OF THE GENERAL MODEL (2).

Decomposition Structure of Ms Structure of As Uniqueness Reference

PCA Orthogonal Ms = F Orthogonal As Yes SVD

Sparse-PCA Sparse Ms = F Sparse As No Sparse PCA [1], [17],

k-SVD [6], PMD [9]

Structured-PCA Ms = F Structured Sparse As No [2]

NNMF Non-negative Ms = F Non-negative As No [13]

Sparse Ms = [M (F , d1) · · ·M (F , dD)] Sparse As No [18],

Shift-invariant where {dj}D
j=1 are all possible [3], [10]

models translations of the n-dimensional vectors in F .

PARAFAC/CP Ms = F As = diag (C·,s) B′
Yes [15]

HOSVD Orthogonal Ms = F As = (G ×3 C·,s) B′
Yes [16]

where slices of G

are orthogonal

OPFA Ms = M (F , ds), ds ∈ K Non-negative, No This work.

where F is smooth sparse As

and non-negative and

K enforces consistent

precedence order

In this paper, we will restrict the columns of Ms to be translated versions of a common set of factors,
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where these factors have onsets that occur in some relative order that is consistent across all subjects.

Our model differs from previous shift-invariant models considered in [18], [3], [10] in that it restricts the

possible shifts to those which preserve the relative order of the factors among different subjects. We call

the problem of finding a decomposition (2) under this assumption the Order Preserving Factor Analysis

(OPFA) problem.

The contributions of this paper are the following. First, we propose a non-negatively constrained

linear model that accounts for temporally misaligned factors and order restrictions. Second, we give a

computational algorithm that allows us to fit this model in reasonable time. Finally, we demonstrate that

our methodology is able to succesfully extract the principal features in a simulated dataset and in a real

gene expression dataset. In addition, we show that the application of OPFA produces factors that can be

used to significantly reduce the variability in clustering of gene expression responses.

This paper is organized as follows. In Section II we present the biological problem that motivates OPFA

and introduce our mathematical model. In Section III, we formulate the non-convex optimization problem

associated with the fitting of our model and give a simple local optimization algorithm. In Section IV

we apply our methodology to both synthetic data and real gene expression data. Finally we conclude in

Section V. For lack of space many technical details are left out of our presentation but are available in

the accompanying technical report [19].

II. MOTIVATION: GENE EXPRESSION TIME-COURSE DATA

In this section we motivate the OPFA mathematical model in the context of gene expression time-

course analysis. Temporal profiles of gene expression often exhibit motifs that correspond to cascades

of up-regulation/down-regulation patterns. For example, in a study of a person’s host immune response

after inoculation with a certain pathogen, one would expect genes related to immune response to exhibit

consistent patterns of activation across pathogens, persons, and environmental conditions.

A simple approach to characterize the response patterns is to encode them as sequences of a few basic

motifs such as (see, for instance, [20]):

• Up-regulation: Gene expression changes from low to high.

• Down-regulation: Gene expression changes from a high to a low level.

• Steady: Gene expression does not vary.

If gene expression is coherent over the population of several individuals, e.g., in response to a common

viral insult, the response patterns can be expected to show some degree of consistency across subjects.

Human immune system response is a highly evolved system in which several biological pathways are
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Fig. 2. Example of gene patterns with a consistent precedence-order across 3 subjects. The down-regulation motif of gene

CD1C precedes the peak motif of gene ORM1 across these three subjects.

recruited and organized over time. Some of these pathways will be composed of genes whose expressions

obey a precedence-ordering, e.g., virally induced ribosomal protein production may precede toll-like

receptor activation and antigen presentation [21]. This consistency exists despite temporal misalignment:

even though the order is preserved, the specific timing of these events can vary across the individuals.

For instance, two different persons can have different inflammatory response times, perhaps due to a

slower immune system in one of the subjects. This precedence-ordering of motifs in the sequence of

immune system response events is invariant to time shifts that preserve the ordering. Thus if a motif in

one gene precedes another motif in another gene for a few subjects, we might expect the same precedence

relationship to hold for all other subjects. Figure 2 shows two genes from [11] whose motif precedence-

order is conserved across 3 different subjects. This conservation of order allows one to impose ordering

constraints on (2) without actually knowing the particular order or the particular factors that obey the

order-preserving property.

Often genes are co-regulated or co-expressed and have highly correlated expression profiles. This can

happen, for example, when the genes belong to the same signaling pathway. Figure 3 shows a set of

different genes that exhibit a similar expression pattern (up-regulation motif). The existence of high

correlation between large groups of genes allows one to impose a low rank property on the factorization

in (2).

In summary, our OPFA model is based on the following assumptions:

• A1: Motif consistency across subjects: Gene expression patterns have consistent (though not-necessarily

time aligned) motifs across subjects undergoing a similar treatment.
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Fig. 3. Example of gene patterns exhibiting co-expression for a particular subject in the viral challenge study in [11].

• A2: Motif sequence consistency across subjects: If motif X precedes motif Y for subject s, the same

precedence must hold for subject t 6= s.

• A3: Motif consistency across groups of genes: There are (not necessarily known) groups of genes

that exhibit the same temporal expression patterns for a given subject.

• A4: Gene Expression data is non-negative: Gene expression on a microarray is measured as an

abundance and standard normalization procedures, such as RMA [22], preserve the non-negativity

of this measurement.

A few microarray normalization software packages produce gene expression scores that do not satisfy the

non-negativity assumption A4. In such cases, the non-negativity constraint in the algorithm implementing

(9) can be disabled. Note that in general, only a subset of genes may satisfy assumptions A1-A3.

III. OPFA MATHEMATICAL MODEL

In the OPFA model, each of the S observations is represented by a linear combination of temporally

aligned factors. Each observation is of dimension n× p, where n is the number of time points and p is

the number of genes under consideration. Let F be an n× f matrix whose columns are the f common

alignable factors, and let M (F , d) be a matrix valued function that applies a circular shift to each

column of F according to the vector of shift parameters d, as depicted in Figure 12. Then, we can refine

model (2) by restricting Ms to have the form:

Ms = M (F ,ds) . (3)
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Fig. 4. Each subject’s factor matrix Ms is obtained by applying a circular shift to a common set of factors F parameterized

by a vector d.

where ds ∈ {0, · · · , dmax}f and dmax ≤ n is the maximum shift allowed in our model. This model is a

generalization of a simpler one that restricts all factors to be aligned but with a common delay:

Ms = UsF , (4)

where Us is a circular shift operator. Specifically, the fundamental characteristic of our model (3) is that

each column can have a different delay, whereas (4) is a restriction of (3) with ds
i = ds

j for all s and all

i, j.

The circular shift is not restrictive. By embedding the observation into a larger time window it can

accommodate transient gene expression profiles in addition to periodic ones, e.g., circadian rhythms [19].

There are several ways to do this embedding. One way is to simply extrapolate the windowed, transient

data to a larger number of time points nF = n + dmax. This is the strategy we follow in the numerical

experiments of Section IV-B.

This alignable factor model parameterizes each observation’s intrinsic temporal dynamics through the

f -dimensional vector ds. The precedence-ordering constraint A2 is enforced by imposing the condition

ds1
j1
≤ ds1

j2
⇔ ds2

j1
≤ ds2

j2
∀s2 6= s1, (5)

that is, if factor j1 precedes factor j2 in subject s1, then the same ordering will hold in all other subjects.

Since the indexing of the factors is arbitrary, we can assume without loss of generality that ds
i ≤ ds

i+1

for all i and all s. This characterization constrains each observation’s delays ds independently, allowing

for a computationally efficient algorithm for fitting model (3).
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A. Relationship to 3-way factor models.

Our proposed OPFA framework is significantly different from other factor analysis methods and these

differences are illustrated in the simulated performance comparisons below. However, there are some

similarities, especially to 3-way factor models [15], [23] that are worth pointing out.

An n-th order tensor or n-way array is a data structure whose elements are indexed by an n-tuple

of indices [23]. n-way arrays can be seen as multidimensional generalizations of vectors and matrices:

an 1-way array is a vector and a 2-way array is a matrix. Thus, we can view our observations Xs as

the slices of a third order tensor X of dimension p× n× S: Xs = X·,·,i. Tensor decompositions aim at

extending the ideas of matrix (second order arrays) factorizations to higher order arrays [15], [23] and

have found many applications in signal processing and elsewhere [23], [15], [16], [12], [24]. Since our

data tensor is of order 3, we will only consider here 3-way decompositions, which typically take the

following general form:

Xi,j,k =
P∑

p=1

Q∑
q=1

R∑
r=1

GpqrFipBjqCkr (6)

where P , Q, R are the number of columns in each of the factor matrices F , B, C and G is a P ×Q×R

tensor. This class of decompositions is known as the Tucker model. When orthogonality is enforced

among F , B, C and different matrix slices of G, one obtains the Higher Order SVD [16]. When G is a

superdiagonal tensor1 and P = Q = R, this model amounts to the PARAFAC/Canonical Decomposition

(CP) model [5], [12], [24]. The PARAFAC model is the closest to OPFA. Under this model, the slices

of Xi,j,k can be written as:

XCP
s = F diag (C·,s) B′. (7)

This expression is to be compared with our OPFA model, which we state again here for convenience:

XOPFA
s = M (F , ds) As. (8)

Essentially, (7) shows that the PARAFAC decomposition is a special case of the OPFA model (8)

where the factors are fixed (Ms = F ) and the scores only vary in magnitude across observations

(As = diag (C·,s) B′). This structure enhances uniqueness (under some conditions concerning the linear

independence of the vectors in F , B, C, see [15]) but lacks the additional flexibility necessary to model

possible translations in the columns of the factor matrix F . If ds = 0 for all s, then the OPFA (8) and

1G is superdiagonal tensor when Gijk = 0 except for i = j = k.
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the Linear Factor model (1) also coincide. The OPFA model can be therefore seen as an extension of

the Linear Factor and PARAFAC models where the factors are allowed to experiment order-preserving

circular translations across different individuals.

B. OPFA as an optimization problem

OPFA tries to fit the model (2)-(5) to the data {Xs}Ss=1. For this purpose, we define the following

penalized and constrained least squares problem:

min
∑S

s=1 ||Xs −M (F , ds) As||2F + λP1 (A1, · · · , AS) + βP2 (F ) (9)

s.t. {ds}s ∈ K, F ∈ F , As ∈ As

where ||·||F is the Frobenius norm, λ and β are regularization parameters, and the set K constrains the

delays ds to be order-preserving:

K =
{

d ∈ {0, · · · , dmax}f : di+1 ≥ di,∀i
}

. (10)

where dmax ≤ n. The other soft and hard constraints are briefly described as follows.

For the gene expression application we wish to extract factors F that are smooth over time and non-

negative. Smoothness will be captured by the constraint that P2(F ) is small where P2(F ) is the squared

total variation operator

P2 (F ) =
f∑

i=1

||WF·,i||22 (11)

where W is an appropriate weighting matrix and F·,i denotes the i-th column of matrix F . From A4, the

data is non-negative and hence non-negativity is enforced on F and the loadings As to avoid masking of

positive and negative valued factors whose overall contribution sums to zero. To avoid numerical instability

associated with the scale invariance MA = 1
αMαA for any α > 0, we constrain the Frobenius norm

of F . This leads to the following constraint sets:

F =
{

F ∈ Rn×f
+ : ||F ||F ≤ δ

}
(12)

As = Rf×p
+ , s = 1, · · · , S

The parameter δ above will be fixed to a positive value as its purpose is purely computational and

has little practical impact. Since the factors F are common to all subjects, assumption A3 requires that

the number of columns of F (and therefore, its rank) is small compared to the number of genes p. In

order to enforce A1 we consider two different models. In the first model, which we shall name OPFA,
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we constrain the columns of As to be sparse and the sparsity pattern to be consistent across different

subjects. Notice that A1 does not imply that the mixing weights As are the same for all subjects as this

would not accommodate magnitude variability across subjects. We also consider a more restrictive model

where we constrain A1 = · · · = AS = A with sparse A and we call this model OPFA-C, the C standing

for the additional constraint that the subjects share the same sequence A of mixing weights. The OPFA-C

model has a smaller number of parameters than OPFA, possibly at the expense of introducing bias with

respect to the unconstrained model. A similar constraint has been succesfully adopted in [25] in a factor

model for multi-view learning.

Similarly to the approach taken in [26] in the context of simultaneous sparse coding, the common

sparsity pattern for OPFA is enforced by constraining P1 (A1, · · · ,AS) to be small, where P1 is a

mixed-norm group-Lasso type penalty function [27]. For each of the p× f score variables, we create a

group containing its S different values across subjects:

P1 (A1, · · · ,AS) =
p∑

i=1

f∑
j=1

‖ [A1]j,i · · · [AS ]j,i ‖2. (13)

Table II summarizes the constraints of each of the models considered in this paper.

Following common practice in factor analysis, the non-convex problem (9) is addressed using Block

Coordinate Descent, displayed in the figure labeled Algorithm 1, which iteratively minimizes (9) with

respect to the shift parameters {ds}Ss=1, the scores {As}Ss=1 and the factors F while keeping the other

variables fixed. This algorithm is guaranteed to monotonically decrease the objective function at each

iteration. Since both the Frobenius norm and P1 (·), P2 (·) are non-negative functions, this ensures that

the algorithm converges to a (possibly local) minima or a saddle point of (9).

The subroutines EstimateFactors and EstimateScores solve the following penalized regression problems:

min
F

∑S
s=1 ||Xs −M (F ,ds) As||2F + β

∑f
i=1 ||WF·,i||22 (14)

s.t.


||F ||2F ≤ δ

Fi,j ≥ 0 i = 1, · · · , n,

j = 1, · · · , f
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Algorithm 1: BCD algorithm for finding a local minima of (9).

OPFAObjective
(
F , {As}Ss=1 , {ds}Ss=1

)
denotes the objective function in (9)

Input: Initial estimate of F and {As}Ss=1, ε, λ, β.

Output: F , {As}Ss=1, {ds}Ss=1

c0 =∞

c1 ← OPFAObjective
(
F , {As}Ss=1 , {ds}Ss=1

)
t = 1

while ct−1 − ct ≥ ε do

{ds}Ss=1 ← EstimateDelays
(
F , {As}Ss=1

)
{As}Ss=1 ← EstimateScores

(
F , {ds}Ss=1

)
F ← EstimateFactors

(
{As}Ss=1 , {ds}Ss=1

)
ct ← OPFAObjective

(
F , {As}Ss=1 , {ds}Ss=1

)
t← t + 1

and

min
{As}S

s=1

∑S
s=1 ||Xs −M (F , ds) As||2F + λ

∑p
i=1

∑f
j=1 ‖ [A1]j,i · · · [AS ]j,i ‖2 (15)

s.t.


[As]j,i ≥ 0 i = 1, · · · , n,

j = 1, · · · , f,

s = 1, · · · , S

(16)

Notice that in OPFA-C, we also incorporate the constraint A1 = · · · = AS in the optimization problem

above. The first is a convex quadratic problem with a quadratic and a linear constraint over a domain of

dimension fn. In the applications considered here, both n and f are small and hence this problem can be

solved using any standard convex optimization solver. EstimateScores is trickier because it involves a non-

differentiable convex penalty and the dimension of its domain is equal to2 Sfp, where p can be very large.

In our implementation, we use an efficient first-order method [28] designed for convex problems involving

a quadratic term, a non-smooth penalty and a separable constraint set. These procedures are described in

more detail in Appendix C and therefore we focus on the EstimateDelays subroutine. EstimateDelays is

2This refers to the OPFA model. In the OPFA-C model, the additional constraint A1 = · · · = AS = A reduces the dimension

to fp.
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a discrete optimization that is solved using a branch-and-bound (BB) approach [29]. In this approach a

binary tree is created by recursively dividing the feasible set into subsets (“branch”). On each of the nodes

of the tree lower and upper bounds (“bound”) are computed. When a candidate subset is found whose

upper bound is less than the smallest lower bound of previously considered subsets these latter subsets

can be eliminated (“prune”) as candidate minimizers. Whenever a leaf (singleton subset) is obtained, the

objective is evaluated at the corresponding point. If its value exceeds the current optimal value, the leaf

is rejected as a candidate minimizer, otherwise the optimal value is updated and the leaf included in the

list of candidate minimizers. Details on the application of BB to OPFA are given below.

The subroutine EstimateDelays solves S uncoupled problems of the form:

min
d∈K
||Xs −M (F , d) As||2F , (17)

where the set K is defined in (10). The “branch” part of the optimization is accomplished by recursive

splitting of the set K to form a binary tree. The recursion is initialized by setting So = {0, · · · , dmax}f ,

Io = {d ∈ K ∩ So}. The splitting of the set Io into two subsets is done as follows

I1 = {d ∈ K ∩ So : dω1 ≤ γ1} (18)

I2 = {d ∈ K ∩ So : dω1 > γ1} ,

and we update S1 = {d ∈ So : dω1 ≤ γ1}, S2 = {d ∈ So : dω1 > γ1}. Here γ1 is an integer 0 ≤ γ1 ≤

dmax, and ω1 ∈ {1, · · · , f}. I1 contains the elements d ∈ K whose ω1-th component is strictly larger

than γ1 and I2 contains the elements whose ω1-th component is smaller than γ1. The same kind of

splitting procedure is then subsequently applied to I1, I2 and its resulting subsets. After k−1 successive

applications of this decomposition there will be 2k−1 subsets and the k-th split will be :

It := {d ∈ K ∩ St} (19)

It+1 := {d ∈ K ∩ St+1}

where

St = {d ∈ Sπk
: dωk

≤ γk}

St+1 = {d ∈ Sπk
: dωk

> γk} .

and πk ∈
{
1, · · · , 2k−1

}
denotes the parent set of the two new sets t and t + 1, i.e. pa(t) = πk and

pa(t + 1) = πk. In our implementation the splitting coordinate ωk is the one corresponding to the

coordinate in the set Iπk
with largest interval. The decision point γk is taken to be the middle point of

this interval.
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The “bound” part of the optimization is as follows. Denote g (d) the objective function in (17) and

define its minimum over the set It ⊂ K:

gmin (It) = min
d∈It

g (d) . (20)

A lower bound for this value can be obtained by relaxing the constraint d ∈ K in (19):

min
d∈St

g (d) ≤ gmin (It) (21)

Letting Xs = X⊥
s + X

‖
s where X

‖
s = XsA

†
sAs and X⊥

s = Xs

(
I −A†

sAs

)
, we have:

||Xs −M (F , d) As||2F =
∣∣∣∣∣∣(XsA

†
s −M (F , d)

)
As

∣∣∣∣∣∣2
F

+
∣∣∣∣Xs

⊥∣∣∣∣2
F

,

where A†
s denotes the pseudoinverse of As. This leads to:

λ
(
AsA

T
s

) ∣∣∣∣∣∣XsA
†
s −M (F , d)

∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣Xs

⊥
∣∣∣∣∣∣2

F
≤ g (d) , (22)

where λ
(
AsA

T
s

)
denotes the smallest eigenvalue of the symmetric matrix AsA

T
s . Combining the

relaxation in (21) with inequality (22), we obtain a lower bound on gmin (It):

Φlb (It) = mind∈St
λ

(
AsA

T
s

) ∣∣∣∣∣∣XsA
†
s −M (F ,d)

∣∣∣∣∣∣2
F

+
∣∣∣∣Xs

⊥∣∣∣∣2
F

≤ gmin (It) , (23)

which can be evaluated by performing f decoupled discrete grid searches. At the k-th step, the splitting

node πk will be chosen as the one with smallest Φlb (It). Finally, this lower bound is complemented by

the upper bound

gmin (It) ≤ Φub (It) = g (d) for ∀d ∈ It. (24)

These bounds enable the branch-and-bound optimization of (17).

C. Selection of the tuning parameters f , λ and β

From (9), it is clear that the OPFA factorization depends on the choice of f , λ and β. This is a

paramount problem in unsupervised learning, and several heuristic approaches have been devised for

simpler factorization models [30], [31], [9]. These approaches are based on training the factorization

model on a subset of the elements of the data matrix (training set) to subsequently validate it on the

excluded elements (test set).
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Fig. 5. Dictionary used to generated the 2-factor synthetic data of Section IV.

The variational characterization of the OPFA decomposition allows for the presence of missing vari-

ables, i.e. missing elements in the observed matrices {Xs}Ss=1. In such case, the Least Squares fitting

term in (9) is only applied to the observed set of indices3. We will hence follow the approach in [9] and

train the OPFA model over a fraction 1− δ of the entries in the observations Xs. Let Ωs denote the set

of δ (n× p) excluded entries for the s-th observation. These entries will constitute our test set, and thus

our Cross-Validation error measure is:

CV (f, λ, β) =
1
S

S∑
s=1

∣∣∣∣∣∣∣∣[Xs −M
(
F̂ , d̂s

)
Âs

]
Ωs

∣∣∣∣∣∣∣∣2
F

where F̂ ,
{

d̂s
}S

s=1
,
{

Âs

}S

s=1
are the OPFA estimates obtained on the training set excluding the entries

in {Ωs}Ss=1, for a given choice of f , λ, and β.

IV. NUMERICAL RESULTS

A. Synthetic data: Periodic model

First we evaluate the performance of the OPFA algorithm for a periodic model observed in additive

Gaussian white noise:

Xs = M (F , ds) As + εs s = 1, . . . , S. (25)

Here εs ∼ Nn×p

(
0, σ2

ε I
)
, ds = sort (ts) where σ2

ε is the variance of εs and ts ∼ U
(
0,

√
12σ2

d + 1
)

are

i.i.d. The f = 2 columns of F are non-random smooth signals from the predefined dictionary shown in

Figure 5. The scores As are generated according to a consistent sparsity pattern across all subjects and

its non zero elements are i.i.d. normal truncated to the non-negative orthant.

3See the Appendix C and D for the extension of the EstimateFactors, EstimateScores and Estimatedelays procedures to the

case where there exist missing observations.
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TABLE II

MODELS CONSIDERED IN SECTION IV-A.

Model Ms As

OPFA Ms = M (F , ds) Non-negative

ds ∈ K, F smooth sparse As

and non-negative

OPFA-C Ms = M (F , ds) Non-negative

ds ∈ K, F smooth sparse

and non-negative A1 = · · · = AS

SFA Ms = M (F , ds), Non-negative

ds = 0 ,F smooth sparse As

and non-negative

Here the number of subjects is S = 10, the number of variables is p = 100, and the number of

time points is n = 20. In these experiments experiments we choose to initialize the factors F with

temporal profiles obtained by hierarchical clustering of the data. Hierarchical clustering [32] is a standard

unsupervised learning technique that groups the p variables into increasingly finer partitions according

to the normalized euclidean distance of their temporal profiles. The average expression patterns of the

clusters found are used as initial estimates for F . The loadings {As}Ss=1 are initialized by regressing the

obtained factors onto the data.

We compare OPFA and OPFA-C to a standard Sparse Factor Analysis (SFA) solution, obtained by

imposing dmax = 0 in the original OPFA model. Table II summarizes the characteristics of the three

models considered in the simulations. We fix f = 2 and choose the tuning parameters (λ, β) using the

Cross-Validation procedure of Section III-C with a 5× 3 grid and δ = .1.

In these experiments, we consider two measures of performance, the Mean Square Error (MSE) with

respect to the generated data:

MSE :=
1
S

S∑
s=1

E
∣∣∣∣∣∣Ds − D̂s

∣∣∣∣∣∣2
F

,

where E is the expectation operator, Ds = M (F , ds) As is the generated noiseless data and D̂s =

M
(
F̂ , d̂s

)
Âs is the estimated data, and the Distance to the True Factors (DTF), defined as:

DTF := 1− 1
f

f∑
i=1

E
F T
·,iF̂·,i

||F·,i||2
∣∣∣∣∣∣F̂·,i

∣∣∣∣∣∣
2

,

where F , F̂ are the generated and the estimated factor matrices, respectively.
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Figure 6 shows the estimated MSE and DTF performance curves as a function of the delay variance

σ2
d for fixed SNR= 15dB (which is defined as SNR = 10 log

(
1
S

∑
s

E(||M(F ,ds)As||2F )
npσ2

ε

)
). OPFA and

OPFA-C perform at least as well as SFA for zero delay (σd = 0) and significantly better for σd > 0

in terms of DTF. OPFA-C outperforms OPFA for high delay variances σ2
d at the price of a larger MSE

due to the bias introduced by the constraint A1 = · · · = AS . In Figure 7 the performance curves are

plotted as a function of SNR, for fixed σ2
d = 5. Note that OPFA and OPFA-C outperform SFA in terms

of DTF and that OPFA is better than the others in terms of MSE for SNR> 0db. Again, OPFA-C shows

increased robustness to noise in terms of DTF.

We also performed simulations to demonstrate the value of imposing the order-preserving constraint

in (17). This was accomplished by comparing OPFA to a version of OPFA for which the constraints in

(17) are not enforced. Data was generated according to the model (25) with S = 4, n = 20, f = 2,

and σ2
d = 5. The results of our simulations (not shown) were that, while the order-preserving constraints

never degrade OPFA performance, the constraints improve performance when the SNR is small (below

3dB for this example).

Finally, we conclude this sub-section by studying the sensitivity of the final OPFA estimates with

respect to the initialization choice. To this end, we initialize the OPFA algorithm with the correct model

perturbed with a random gaussian vector of increasing variance. We analyze the performance of the

estimates in terms of MSE and DTF as a function of the norm of the model perturbation relative to

the norm of the noiseless data, which we denote by ρ. Notice that larger ρ corresponds to increasingly

random initialization. The results in Table III show that the MSE and DTF of the OPFA estimates are

very similar for a large range of values of ρ, and therefore are robust to the initialization.

B. Experimental data: Predictive Health and Disease (PHD)

The PHD data set was collected as part of a viral challenge study that is described in [11]. In this

study 20 human subjects were inoculated with live H3N2 virus and Genechip mRNA gene expression in

peripheral blood of each subject was measured over 16 time points. The raw Genechip array data was

pre-processed using robust multi-array analysis [22] with quantile normalization [33]. In this section we

show results for the constrained OPFA model (OPFA-C). While not shown here, we have observed that

OPFA-C gives very similar results to unconstrained OPFA but with reduced computation time.

Specifically, we use OPFA-C to perform the following tasks:

1) Subject Alignment: Determine the alignment of the factors to fit each subject’s response, therefore

revealing each subject’s intrinsic response delays.
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TABLE III

SENSITIVITY OF THE OPFA ESTIMATES TO THE INITIALIZATION CHOICE WITH RESPECT TO THE RELATIVE

NORM OF THE PERTURBATION (ρ).

DTF [ mean (standard deviation) ] ×10−3

SNR ρ = 0.002 ρ = 1.08 ρ = 53.94

22.8 0.0 (0.0) 3.4 (9.4) 1.9 (3.2)

−2 1.3 (0.5) 1 (9.4) 1.25 (1.5)

−27.1 46 (20) 58 (17) 63 (8)

MSE [ mean (standard deviation ×10−3) ]

SNR ρ = 0.002 ρ = 1.08 ρ = 53.94

22.8 0.02 (1.5) 0.05 (69) 0.11 (99)

−2 0.35 (7.9) 0.36(22) 0.38 (32)

−27.1 0.96 (19) 0.99 (18) 1.00 (24)
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Fig. 6. MSE (top) and DTF (bottom) as a function of delay variance σ2
d for OPFA and Sparse Factor Analysis (SFA). These

curves are plotted with 95% confidence intervals. For σ2
d > 0, OPFA outperforms SFA both in MSE and DTF, maintaining its

advantage as σd increases. For large σd, OPFA-C outperforms the other two.

2) Gene Clustering: Discover groups of genes with common expression signature by clustering in

the low-dimensional space spanned by the aligned factors. Since we are using the OPFA-C model,

the projection of each subject’s data on this lower dimensional space is given by the scores A :=

A1 = · · · = AS . Genes with similar scores will have similar expression signatures.

3) Symptomatic Gene Signature discovery: Using the gene clusters obtained in step 2 we construct

temporal signatures common to subjects who became sick.

The data was normalized by dividing each element of each data matrix by the sum of the elements in



19

−27 −20 −13 −6 1 9 16 23
10

−1

10
0

SNR

M
S

E

−27 −20 −13 −6 1 9 16 23

10
−2

10
−1

10
0

SNR

D
T

F

 

 

OPFA
SFA
OPFA−C

Fig. 7. Same as Figure 6 except that the performance curves are plotted with respect to SNR for fixed σ2
d = 5.

its column. Since the data is non-negative valued, this will ensure that the mixing weights of different

subjects are within the same order of magnitude, which is necessary to respect the assumption that

A1 = · · · = AS in OPFA-C. In order to select a subset of strongly varying genes, we applied one-way

Analysis-Of-Variance [34] to test for the equality of the mean of each gene at 4 different groups of time

points, and selected the first p = 300 genes ranked according to the resulting F-statistic. To these gene

trajectories we applied OPFA-C to the S = 9 symptomatic subjects in the study. In this context, the

columns in F are the set of signals emitted by the common immune system response and the vector ds

parameterizes each subject’s characteristic onset times for the factors contained in the columns of F . To

avoid wrap-around effects, we worked with a factor model of dimension n = 24 in the temporal axis.

The OPFA-C algorithm was run with 4 random initializations and retained the solution yielding the

minimum of the objective function (6). For each f = 1, · · · , 5 (number of factors), we estimated the

tuning parameters (λ, β) following the Cross-Validation approach described in III-C over a 10× 3 grid.

The resulting results, shown in Table IV resulted in selecting β = 1×10−8, λ = 1×10−8 and f = 3. The

choice of three factors is also consistent with an expectation that the principal gene trajectories over the

period of time studied are a linear combination of increasing, decreasing or constant expression patterns

[11].

To illustrate the goodness-of-fit of our model, we plot in Figure 8 the observed gene expression patterns

of 13 strongly varying genes and compare them to the OPFA-C fitted response for three of the subjects,

together with the relative residual error. The average relative residual error is below 10% and the plots

demonstrate the agreement between the observed and the fitted patterns. Figure 9 shows the trajectories
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TABLE IV

CROSS VALIDATION RESULTS FOR SECTION IV-B.

f = 1 f = 2 f = 3 f = 4 f = 5

min CV (f, λ, β) 20.25 13.66 12.66 12.75 12.72

Relative residual 7.2 4.8 4.5 4.5 4.4

error (×10−3)

λ̂(×10−8) 5.99 1 1 1 35.9

β̂ (×10−6) 3.16 3.16 0.01 0.01 100
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Fig. 8. Comparison of observed (O) and fitted responses (R) for three of the subjects and a subset of genes in the PHD data

set. Gene expression profiles for all subjects were reconstructed with a relative residual error below 10%. The trajectories are

smoothed while respecting each subject’s intrinsic delay.

for each subject for four genes having different regulation motifs: up-regulation and down-regulation. It

is clear that the gene trajectories have been smoothed while conserving their temporal pattern and their

precedence-order, e.g. the up-regulation of gene OAS1 consistently follows the down-regulation of gene

ORM1.

In Figure 10 we show the 3 factors along with the factor delays and factor loading discovered by OPFA-

C. The three factors, shown in the three bottom panels of the figure, exhibit features of three different

motifs: factor 1 and factor 3 correspond to up-regulation motifs occurring at different times; and factor 2

is a strong down-regulation motif. The three top panels show the onset times of each motif as compared

to the clinically determined peak symptom onset time. Note, for example, that the strong up-regulation
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Fig. 9. Comparison of observed (O) and fitted responses (R) for four genes (OAS1, CCR1, CX3CR1, ORM1) showing up-

regulation and down-regulation motifs and three subjects in the PHD dataset. The gene trajectories have been smoothed while

conserving their temporal pattern and their precedence-order. The OPFA-C model revealed that OAS1 up-regulation occurs

consistently after ORM1 down-regulation among all subjects.
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Fig. 10. Top plots: Motif onset time for each factor (2) and peak symptom time reported by expert clinicians (O). Bottom

plots: Aligned factors for each subject. Factor 1 and 3 can be interpreted as up-regulation motifs and factor 2 is a strong

down-regulation pattern. The arrows show each factor’s motif onset time.

pattern of the first factor coincides closely with the onset peak time. Genes strongly associated to this

factor have been closely associated to acute anti-viral and inflammatory host response [11]. Interestingly,

the down-regulation motifs associated with factor 2 consistently precedes this up-regulation motif.

Finally, we consider the application of OPFA as a pre-processing step preceding a clustering analysis.

Here the goal is to find groups of genes that share similar expression patterns and determine their
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characteristic expression patterns. In order to obtain gene clusters, we perform hierarchical clustering on

the raw data ({Xs}Ss=1) and on the lower dimensional space of the estimated factor scores ( {As}Ss=1),

obtaining two different sets of 4 well-differentiated clusters. We then compute the average expression

signatures of the genes in each cluster by averaging over the observed data ({Xs}Ss=1) and averaging over

the data after OPFA correction for the temporal misalignments. Figure 11 illustrates the results. Clustering

using the OPFA-C factor scores produces a very significant improvement in cluster concentration as

compared to clustering using the raw data {Xs}Ss=1. The first two columns in Figure compare the variation

of the gene profiles over each cluster for the temporally realigned data (labeled `A´) as compared to to

the profile variation of these same genes for the misaligned observed data (labeled `M´). For comparison,

the last column shows the results of applying hierarchical clustering directly to the original misaligned

dataset {Xs}Ss=1. It is clear that clustering on the low-dimensional space of the OPFA-C scores unveils

interesting motifs from the original noisy temporal expression trajectories.

V. CONCLUSIONS

We have proposed a general method of order-preserving factor analysis that accounts for possible

temporal misalignments in a population of subjects undergoing a common treatment. We have described

a simple model based on circular-shift translations of prototype motifs and have shown how to embed

transient gene expression time courses into this periodic model. The OPFA model can significantly

improve interpretability of complex misaligned data. The method is applicable to other signal processing

areas beyond gene expression time course analysis.

A Matlab package implementing OPFA and OPFA-C will be available at the Hero Group Reproducible

Research page (http://tbayes.eecs.umich.edu).

APPENDIX

A. Circulant time shift model

Using circular shifts in (3) introduces periodicity into our model (2). Some types of gene expression

may display periodicity, e.g. circadian transcripts, while others, e.g. transient host response, may not. For

transient gene expression profiles such as the ones we are interested in here, we use a truncated version

of this periodic model, where we assume that each subject’s response arises from the observation of a

longer periodic vector within a time window (see Figure 12):

Xs = [M (F , ds) As + εs]Ω . (26)
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Fig. 11. The first two columns show the average expression signatures and their estimated upper/lower confidence intervals for

each cluster of genes obtained by: averaging the estimated Aligned expression patterns over the S = 9 subjects (A) and directly

averaging the misaligned observed data for each of the gene clusters obtained from the OPFA-C scores (M). The confidence

intervals are computed according to +/− the estimated standard deviation at each time point. The cluster average standard

deviation (σ) is computed as the average of the standard deviations at each time point. The last column shows the results of

applying hierarchical clustering directly to the original misaligned dataset {Xs}S
s=1. In the first column, each gene expression

pattern is obtained by mixing the estimated aligned factors F according to the estimated scores A. The alignment effect is clear,

and interesting motifs become more evident.

Here, the factors are of dimension nF ≥ n and the window size is of dimension n (in the special case

that n = nF , we have the original periodic model). In this model, the observed features are non-periodic

as long as the delays ds are sufficiently small as compared to nF . More concretely, if the maximum

delay is dmax, then in order to avoid wrap-around effects the dimension should be chosen as at least

nF = n + dmax. Finally, we define the index set Ω corresponding to the observation window as:

Ω =
{
ω1, ω1 + 1, ω1 + 2..., ω2

}p (27)

where ω1 and ω2 are the lower and upper observation endpoints, verifying n = ω2 − ω1.
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Fig. 12. Right: Each subject’s factor matrix Mi is obtained by applying a circular shift to a common set of factors F

parameterized by a vector d. Left: In order to avoid wrap-around effects when modeling transient responses, we consider

instead a higher dimensional truncated model of dimension nF from which we only observe the elements within the window

characterized by Ω.

B. Delay estimation and time-course alignment

The solution to problem (9) yields an estimate d̂s for each subject’s intrinsic factor delays. These

delays are relative to the patterns found in the estimated factors and therefore require conversion to a

common reference time.

For a given up-regulation or down-regulation motif, I , which we call the feature of interest, found in

factor g, we choose a time point of interest tI . See Figure 13 (a) for an example of choice of tI for an

up-regulation feature.

Then, given tI and for each subject s and each factor k, we define the absolute feature occurrence

time as follows:

ts,k =
(
d̂s

k + tI

)
mod nF − ω1. (28)

where d̂s
g is the estimated delay corresponding to factor k and subject s and ω1 is the lower endpoint of

the observation window (see (27)). Figure 13 illustrates the computation of ts,k in a 2-factor example.

The quantities ts,k can be used for interpretation purposes or to realign temporal profiles in order to

find common, low-variance gene expression signatures, as shown in Section IV-B.

C. Implementation of EstimateFactors and EstimateScores

We consider here the implementation of EstimateFactors and EstimateScores under the presence of

missing data. Let Ωs =
[
ωs

1, · · · , ωs
p

]
∈ {0, 1}n×p be the set of observed entries in observation Xs. The
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Fig. 13. (a) Time point of interest (tI ) for the up-regulation feature of factor 1. (b) The absolute time points t1,1, t1,2 are

shown in red font for two different subjects and have been computed according to their corresponding relative delays and the

formula in (28).

objective in (9) is then:
S∑

s=1

∣∣∣∣[Xs −M (F , ds) As]Ωs

∣∣∣∣2
F

(29)

We will show how to reformulate problems EstimateFactors (14) and EstimateScores (15) in a standard

quadratic objective with linear and/or quadratic constraints.

First, we rewrite the objective (29) as:
S∑

s=1

p∑
j=1

∣∣∣∣∣∣diag
(
ωs

j

)
[Xs]·,j − diag

(
ωs

j

)
M (F , ds) [As]·,j

∣∣∣∣∣∣2
F

.

Expanding the square we obtain:
S∑

s=1

∣∣∣∣[Xs −M (F , ds) As]Ωs

∣∣∣∣2
F

=
∑S

s=1

∑p
j=1 [As]

T
·,j M (F , ds)T diag

(
ωs

j

)
M (F , ds) [As]·,j

−2 [Xs]
T
·,j diag

(
ωs

j

)
M (F , ds) [As]·,j

+
∑S

s=1

∣∣∣∣[Xs]Ωs

∣∣∣∣2
F

. (30)

To obtain the EstimateFactors objective, first we will rewrite the OPFA model (26) using matrix

notation. Let Ui be a circular shift matrix Ui parameterized by the i-th delay d component. Then

M (F , d) = [U1F1, · · · , UfFf ] = HF̃



26

where Fj denotes the j-th column of F , H is the concatenation of the Ui matrices and F̃ is a matrix

containing the columns of F with the appropriate padding of zeros. With this notation and (30) we

obtain:
S∑

s=1

∣∣∣∣[Xs −M (F , ds) As]Ωs

∣∣∣∣2
F
∝F

∑S
s=1

∑p
j=1 tr

(
[As]·,j [As]

T
·,j F̃ T HT

s diag
(
ωs

j

)
HsF̃

)
−2tr

(
[As]·,j [Xs]

T
·,j diag

(
ωs

j

)
HsF̃

)
.

We now use the identity ([35], Thm. 3 Sec. 4):

tr
(
ZXT Y W

)
= vec (W )T Z ⊗ Y T vec (X) ,

to write:
S∑

s=1

∣∣∣∣[Xs −M (F , ds) As]Ωs

∣∣∣∣2
F
∝F vec

(
F̃

)T (∑S
s=1

∑p
j=1 [As]·,j [As]

T
·,j ⊗HT

s diag
(
ωs

j

)
Hs

)
vec

(
F̃

)
−2vec

(∑S
s=1

∑p
j=1 HT

s diag
(
ωs

j

)
[Xs]·,j [As]

T
·,j

)
vec

(
F̃

)
.

Finally, making use of the fact that F̃ is a block-column matrix with the columns of F padded by zeros,

we conclude:
S∑

s=1

∣∣∣∣[Xs −M (F , ds) As]Ωs

∣∣∣∣2
F
∝F vec (F )T QF vec (F )− 2qT

F vec (F )

where we have defined

QF =

 S∑
s=1

p∑
j=1

[As]·,j [As]
T
·,j ⊗HT

s diag
(
ωs

j

)
Hs


J ,J

(31)

qF =

vec

 S∑
s=1

p∑
j=1

HT
s diag

(
ωs

j

)
[Xs]·,j [As]

T
·,j


J

(32)

and J are the indices corresponding to the non-zero elements in vec
(
F̃

)
. Hence, EstimateFactors can

be written as:

min
F

vec (F )T (
QF + βdiag

(
W T W , · · · , W T W

))
vec (F )− 2qT

F vec (F )

s.t.


||F ||2F ≤ δ

Fi,j ≥ 0 i = 1, · · · , n,

j = 1, · · · , f

The dimension of the variables in this problem is nf . In the applications considered here, both n and f

are relatively small and hence this program can be solved with a standard convex solver such as SeDuMi

[36] (upon conversion to a standard conic problem).
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On the other hand, we can follow the same procedure to reformulate the objective in EstimateScores

(15) into a penalized quadratic form. First we use (30) and (31) to write:
S∑

s=1

∣∣∣∣[Xs −M (F , ds) As]Ωs

∣∣∣∣2
F
∝{As}S

i=1

∑S
s=1 vec (As)

T Qs
Avec (As)− 2qs

A
T vec (As)

where

Qs
A =


M (F ,ds)T diag (ωs

1) M (F ,ds) 0 . . . 0

0 0 · · · 0

0 · · · 0 M (F , ds)T diag
(
ωs

p

)
M (F , ds)

 (33)

qs
A =

[
[Xs]

T
·,1 diag (ωs

1) M (F , ds) · · · [Xs]
T
·,p diag

(
ωs

p

)
M (F , ds)

]
. (34)

Thus EstimateFactors can be written as:

min
F

∑S
s=1 vec (As)

T Qs
Avec (As)− 2qs

A
T vec (As) + λ

∑p
i=1

∑f
j=1 ‖ [A1]j,i · · · [AS ]j,i ‖2 (35)

s.t.


||F ||2F ≤ δ

Fi,j ≥ 0 i = 1, · · · , n,

j = 1, · · · , f

This is a convex, non-differentiable and potentially high-dimensional problem. For this type of opti-

mization problems, there exists a class of simple and scalable algorithms which has recently received

much attention [37], [38], [39], [28]. These algorithms rely only on first-order updates of the type:

xt ← TΓ,λ

(
v − 2xt−1 (αI −Q)

)
, (36)

which only involves matrix-vector multiplications and evaluation of the operator T , which is called the

proximal operator [39] associated to Γ and C and is defined as:

TΓ,λ (v) := min
1
2
x′x + v′x + λΓ (x)

s.t. x ∈ C.

This operator takes the vector v as an input and outputs a shrunk/thresholded version of it depending on

the nature of the penalty Γ and the constraint set C. For some classes of penalties Γ (e.g. l1, l2, mixed

l1− l2) and the positivity constraints considered here, this operator has a closed form solution [40], [39].

Weak convergence of the sequence (36) to the optimum of (35) is assured for a suitable choice of the

constant α [28], [41].
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D. Delay Estimation lower bound in the presence of Missing Data

As we mentioned earlier, the lower bound (23) does not hold anymore under the presence of missing

data. We derive here another bound that can be used in such case. From expression (30), we first obtain

the objective in EstimateDelays (17) in a quadratic form:
S∑

s=1

∣∣∣∣[Xs −M (F ,ds) As]Ωs

∣∣∣∣2
F
∝ds

∑S
s=1

∑p
j=1 tr

(
M (F , ds)T diag

(
ωs

j

)
M (F , ds) Ps,j

)
−2tr (Qs,jM (F , ds)) .

Where we have let Ps,j := [As]·,j [As]
T
·,j and Qs,j = [As]·,j [Xs]

T
·,j diag

(
ωs

j

)
. Notice that each of the

terms indexed by s is independent of the others. Using (31), we obtain∣∣∣∣[Xs −M (F , ds) As]Ωs

∣∣∣∣2
F
∝ vec (M (F ,ds))T ∑p

j=1

(
Ps,j ⊗ diag

(
ωs

j

))
vec (M (F , ds))

−2vec
(∑p

j=1 QT
s,j

)T
vec (M (F , ds)) .

We now can minorize the function above by:∣∣∣∣[Xs −M (F , ds) As]Ωs

∣∣∣∣2
F
≥ λ

(∑p
j=1 Ps,j ⊗ diag

(
ωs

j

))
vec (M (F , ds))T vec (M (F , ds))

−2vec
(∑p

j=1 QT
s,j

)T
vec (M (F , ds)) +

∑S
s=1

∣∣∣∣[Xs]Ωs

∣∣∣∣2
F

which leads to:∣∣∣∣[Xs −M (F , ds) As]Ωs

∣∣∣∣2
F

≥ λ
(∑p

j=1 Ps,j ⊗ diag
(
ωs

j

))
||F ||2F

−2vec
(∑p

j=1 QT
s,j

)T
vec (M (F , ds)) +

∣∣∣∣[Xs]Ωs

∣∣∣∣2
F

.

Using the relaxation in (21), we can now compute a lower bound Φlb (It) as

Φlb (It) = λ
(∑p

j=1 Ps,j ⊗ diag
(
ωs

j

))
||F ||2F +

∣∣∣∣[Xs]Ωs

∣∣∣∣2
F

−2maxd∈St
vec

(∑p
j=1 QT

s,j

)T
vec (M (F , ds)) .
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