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Abstract

Nonparametric estimation of functionals of density from finite number of samples is
an important tool in domains such as statistics, signal processing and machine learning.
While several estimators have been proposed in literature, the performance of these
estimators is not known. We propose a kNN class of plug-in estimators for estimating
non-linear functionals of density, such as entropy, mutual information and support set
dimension. The plug-in estimators are designed to automatically incorporate boundary
corrections for densities with finite support. Based on the statistical properties of
kNN density estimators, we derive the bias and variance of the plug-in estimator in
terms of the sample size, the dimension of the samples and the underlying probability
distribution. We also establish a central limit theorem for the plug-in estimators. Based
on these results, we specify the optimal choice of tuning parameters for minimum mean
square error. The theory is illustrated by applications to problems such as intrinsic
dimension estimation and structure discovery in high dimensional data.

1 Introduction

Functionals of densities have important applications in domains such as statistics, signal
processing and machine learning. Divergence between densities is an important example of
such functionals. For example, the Jensen difference [21] and mutual information [26] are
used as similarity measures in multimodal image registration, information fusion and other
pattern recognition problems. Oftentimes, we do not have access to the density functions,
but rather to sample realizations of the underlying density. In this context, nonparametric
estimators of functionals of densities from finite number of samples becomes important.

These estimation problems can be treated as specific instances of estimation of non-linear
functionals of the density f(x) of the form

∫
g(f(x), x)f(x)dµ(x). Bickel and Ritov [1] treat

the problem for the specific case of
∫
f 2(x)dµ(x), which was generalized to

∫
g(f, x)f(x)dµ(x)

for arbitrary g(.) by Birge and Massart [3]. They show that for sufficiently smooth densities,
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the best possible rate that can be achieved is O(1/n) and suggest estimators that can achieve
this rate. However, the estimators proposed by these authors are quite intricate and in
general difficult to implement. Several other estimators of entropy measures of the form∫
g(f(x))f(x)dµ(x) have been proposed in literature for specific instances of g(.). These

include estimators based on entropic graphs [11], gap estimators [25] and nearest neighbor
distances [18]. While these estimators have been shown to be consistent, results on rates
of convergence of these estimators are in general unavailable. Hero et.al. [11], who provide
minimax rates of convergence, are an exception.

We present a simple class of estimators based on kNN graphs to estimate these non-linear
functionals

∫
g(f(x), x)f(x)dµ(x) for high dimensional data. Our class of estimators exploit a

close relation between density estimation and the geometry of proximity neighborhoods in the
data sample. For our proposed class of estimators, we will present an asymptotic statistical
analysis of the bias and variance. In addition, we will provide results on weak convergence of
these class of estimators. These results are useful for choosing estimator tuning parameters
and for predicting fundamental performance limits of these estimators.

The results in this report improve existing results on nearest neighbor estimators available
in literature. While our results apply to arbitrary smooth functionals g(.), the authors
of [23, 18, 16] only deal with the functionals g(u) = log(u) and g(u) = uα−1. Evans et.al. [8]
on the other hand analyze only positive moments of the k-NN distances (g(u) = uk, k ∈ N).
The authors of [23, 18, 8] show that the estimators they propose are asymptotically unbiased.
Evans et.al. [9] show that the variance is bounded by the rate O(k5/T ). From our analysis,
we are able to establish the exact rates of decay of the bias and the variance. Finally, CLT
for k-NN estimators of Rényi entropy was alluded to by Leonenko et.al. [18] by inferring
from experimental results. We successfully establish a CLT for k-NN estimators of arbitrary
functionals, including Rényi entropy.

We will illustrate the usefulness of our theory by applying it to diverse applications including
intrinsic dimension estimation and factor graph structure discovery. Our results on asymp-
totic theory of the estimators will be used to predict performance of these applications.

2 Plug-in estimators

We are interested in estimating non-linear functionals G(f) of d-dimensional multi-variate
densities f with support S, where G(f) has the specific form

G(f) =

∫
g(f(x), x)f(x)dµ(x) = E[g(f(x), x)], (1)

for some smooth function g(x, y). Here, µ denotes the Lebesgue measure and E denotes
statistical expectation w.r.t density f . We require that the density f be uniformly bounded
away from 0 and finite on the support S, i.e., there exist constants ε0, ε∞ such that 0 <
ε0 < ε∞ < ∞ such that ε0 ≤ f(x) ≤ ε∞ ∀x ∈ S. We assume that i.i.d realizations
{X1, . . . ,XN ,XN+1, . . . ,XN+M} are available from the density f .
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2.1 Notation

We will use bold face type to indicate random variables and random vectors and regular type
face for constants. We denote the expectation operator by the symbol E and the bias of an
estimator by B. We also denote conditional expectation given Z using the notation EZ.

Define the variance operator as

V[X] = E[(X− E[X])2],

and the covariance operator as

Cov[X,Y] = E[(X− E[X])(Y − E[Y])].

In addition to the parameters N and M , we have a parameter k which characterizes both the
uniform and the kNN density estimates. We talk about asymptotic behavior of the plug-in
estimates under the following limiting conditions:

• k/M → 0

• k →∞

• N →∞

As shorthand, we will collectively denote the above behavior by ∆(k,N,M)→ 0.

Under these asymptotic conditions, we use the following order notation:

• a = o(b): a is dominated by b asymptotically.

• a = O(b): a is bounded above by b (up to a constant factor) asymptotically.

• a = Θ(b): a is bounded above and below by b (up to constant factors) asymptotically.

• a =∼ (b): a is equal to b (up to a constant factor) asymptotically.

2.2 Plug-in estimators

We assume we have T = N +M i.i.d realizations {X1, . . . ,XN ,XN+1, . . . ,XN+M} from the
density f . We begin by defining an oracle estimate,

G̃(f) =

(
1

N

N∑
i=1

g(f(Xi),Xi)

)
. (2)

The oracle estimate G̃(f) is a unbiased and consistent estimator of G(f). To get a plug-
in estimate, we estimate density at the N points {X1, . . . ,XN} using the M realizations
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{XN+1, . . . ,XN+M} and plug the estimated density values into the oracle estimate in Eq.2
to estimate G(f). The plug-in estimate is therefore given by

Ĝ(f) =

(
1

N

N∑
i=1

g(f̂(Xi),Xi)

)
. (3)

The plug-in estimate is consistent if the density estimate f̂ is an consistent estimator of f .

2.3 Density estimation

We use two popular density estimation methods for plug-in estimation: (a) Kernel density
estimator (with uniform kernel) and (b) k nearest neighbor density estimator. In the main
body, we briefly discuss these k-NN density estimator. Full details can be found in Appendix
A and Appendix B respectively.

Let d
(k)
X denote the Euclidean distance between a point X and its k-th nearest neighbor

amongst XN+1, ..,XN+M . The k-NN region is Sk(X) = {Y : d(X, Y ) ≤ d
(k)
X } and the

volume of the k-NN region is Vk(X) =
∫

Sk(X)
dZ. The standard k-NN density estimator [17]

is defined as f̂k(X) = k−1
MVk(X)

. If a probability density function has bounded support, the kNN
balls centered at points close to the boundary are often are truncated at the the boundary as
shown in Fig. 2. As a consequence of this truncation, we show that k-NN density estimates
near the boundaries of the support suffer from significant bias. Define the set B to be the
set of boundary points where the kNN ball is truncated by the boundary of the support of
the density. We will show that the bias of the standard k-NN density estimate is of order
O((k/M)2/d) in the interior and is of order O(1) at these boundary points. We propose the
following method for compensating the bias of k-NN density estimates near the boundaries
of the support for general multivariate data without any prior knowledge of the support of
the density. This compensation is done in two stages: (i) we identify the set of boundary
points B using a non-parametric algorithm based on k-nearest neighbors and (ii) we estimate
corrected densities at these points by estimating densities at interior points which are close
to the boundary points. For a boundary point Xi ∈ B, i ∈ {1, . . . , N} the corrected density
estimate is given by

f̂C(Xi) =

{
2f̂k(Xn(i))− f̂k(Xp(i)) 2f̂k(Xn(i))− f̂k(Xp(i)) > 0

f̂k(Xn(i)) 2f̂k(Xn(i))− f̂k(Xp(i)) ≤ 0

where Xn(i) is the closest interior sample boundary pair to X(i), n(i) ∈ {1, . . . , N}. We show

that the bias for the corrected density estimate f̂C at the boundary is of the same order
O((k/M)2/d) as in the interior. The details can be found in the Appendix C.

We now define the boundary compensated k-NN density estimator at X(i), i ∈ {1, . . . , N} to
be

f̂k(Xi) =

{
f̂k(Xi) Xi ∈ Bc

f̂C(Xi) Xi ∈ B

4
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Figure 1: Detection of boundary points for 2D beta distribution.

Henceforth, when we refer to k-NN density estimates, it is to be understood that we are
referring to the boundary compensated versions.

3 Main results

In this section, we state the main results concerning plug-in estimators that are established
in this article. We assume we have T = N +M i.i.d. realizations {X1, . . . ,XN+M} from the
density f . The plug-in estimate is given by

Ĝ(f) =

(
1

N

N∑
i=1

g(f̂(Xi),Xi)

)
. (4)

3.1 Regularity conditions

The regularity conditions listed below are discussed in greater detail in Appendix D.

Polynomial growth rate

We assume that k grows polynomially in M , i.e. k = Mα for α ∈ (0, 1).
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Figure 2: kNN balls centered around a subsample of 2D uniformly distributed points. Note that
the original k-NN balls centered at points close to boundary (red) over spill the boundary. The
modified k-NN neighborhoods (black) corresponding to the corrected corrected density estimate f̂C
compensate for the over spill.

Conditions on density

We require that the density f be uniformly bounded away from 0 and finite on the support
S, i.e., there exist constants ε0, ε∞ such that 0 < ε0 < ε∞ < ∞ such that ε0 ≤ f(x) ≤ ε∞
∀x ∈ S.

We assume that the density f has continuous partial derivatives of order 2r in the interior
of the support S where r satisfies the condition 2r(1 − α)/d > 1. We also assume that the
functional g(x, y) has λ partial derivatives w.r.t. x, where λ satisfies the condition αλ > 1.

Conditions on functional

Finally we require that the functional g(x, y) satisfy the following properties. Let g′(x, y),
g′′(x, y), g′′′(x, y) and g′′′′(x, y) denote the first, second, third and fourth partial derivatives
of g(x, y) w.r.t the first argument x. We assume that the absolute value of the functional
g(x, y) and its partial derivatives are strictly bounded away from∞ in the range ε0 < x < ε∞
for all y. Let Y denote a random variable with density f .
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3.2 kNN plug-in estimator

We list theorems on the bias, variance and central limit of kNN plug-in estimators. Equivalent
results have been shown for uniform kernel plug-in estimators in Appendix F. Let Ĝk(f)
denote the kNN plug-in estimator and Y be a random variable with density f .

Theorem 3.1. Suppose that the density f , the functional g and the density estimate f̂k satisfy
the necessary conditions listed above. The bias of the plug-in estimator Ĝk(f) is then given
by

Bk(f) = c1

(
k

M

)2/d

+ c2

(
1

k

)
+ o

(
1

k
+

(
k

M

)2/d
)
,

where the constant c1 = E[g′(f(Y),Y)f−2/d(Y)(Γ(2/d)((n+ 2)/2)tr[∇2(f(Y))])], and the
constant c2 = E[f 2(Y)g′′(f(Y),Y)/2] are constants which depend on the underlying density
f .

Theorem 3.2. Suppose that the density f , the functional g and the density estimate f̂k satisfy
the necessary conditions listed above. The variance of the plug-in estimator Ĝk(f) is given
by

Vk(f) = c4

(
1

N

)
+ c5

(
1

M

)
+ o

(
1

M
+

1

N

)
,

where the constant c4 = V[g(f(Y),Y)] and the constant c5 = V[f(Y)g′(f(Y),Y)] depend on
the underlying density f .

Proof. We briefly sketch the proof here. The above theorems have been stated more generally
and proved in Appendix D.

The principal idea here involves Taylor series expansions of the functional g(f̂(X), X) about
the true value g(f(X), X), and subsequently (a) using the moment properties of density
estimates listed earlier to obtain the leading terms, and (b) bounding the remainder term in
the Taylor series and showing that it can be ignored in comparison to the leading terms.

Theorem 3.3. Suppose that the density f , the functional g and the density estimate f̂k satisfy
the necessary conditions listed above. The asymptotic distribution of the plug-in estimator
Ĝk(f) is given by

lim
∆(k,N,M)→0

Pr

(
Ĝk(f)− E[Ĝk(f)]√

V[f(Y)g′(f(Y),Y)]/N
≤ α

)
= Pr(Z ≤ α),

where Z is a standard normal random variable.
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Proof. Define the random variables {YM,i; i = 1, . . . , N} for any fixed M as

YM,i = g(̂f(Xi),Xi)− E[g(̂f(Xi),Xi)].

The key idea here is to recognize that YM,i are exchangeable random variables. Blum
et.al. [4] showed that for exchangeable 0 mean, unit variance random variables Zi, the
sum SN = 1√

N

∑N
i=1 Zi converges in distribution to N(0, 1) if and only if Cov(Z1,Z2) = 0

and Cov(Z2
1,Z

2
2) = 0. In our case,

Cov(YM,i,YM,j) = O(1/M),

Cov(Y2
M,i,Y

2
M,j) = O(1/M).

As M gets large, we then have that Cov(YM,i,YM,j) → 0 and Cov(Y2
M,i,Y

2
M,j) → 0. We

then extend the work by Blum et.al. to show that convergence in distribution to N(0, 1)
holds in our case as both N and M get large. These ideas are rigorously treated in Appendix
E.

The CLT for k-NN estimators of Rényi entropy was alluded to by Leonenko et.al. [18] by
inferring from experimental results. Theorem 3.3 establishes the CLT for k-NN estimators of
arbitrary functionals, including Rényi entropy. This result allows one to define approximate
finite sample confidence intervals on the estimated values of the functionals and define p-
values .

4 Analysis of M.S.E

The general form of the bias for the estimators discussed above is of the form:

B(f) = c1

(
k

M

)2/d

+ c2

(
1

k

)
. (5)

The general form of the variance for the estimators discussed above is of the form:

V(f) = c4

(
1

N

)
+ c5

(
1

M

)
. (6)

In both the above expressions, we ignore the higher order terms for the sake of analysis
presented below. This gives us the general form of the mean square error as
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Figure 3: Asymptotics. Variation of density estimate with increasing k and M

Figure 4: Asymptotics. Variation of plug-in estimate with increasing k, M and N

M(f) = B2(f) + V(f)

=

(
c1

(
k

M

)2/d

+ c2

(
1

k

))2

+ c4

(
1

N

)
+ c5

(
1

M

)
. (7)

From Eq.5 we see that we need we need k → ∞ and k/M → 0 for the estimator to be
unbiased. Likewise from Eq.6 we see that we need we need N → ∞ and M → ∞ for the
variance of the estimator to converge to 0. Figures 3 and 4 illustrate the asymptotic behavior
of the density estimate and the plug-in estimate with increasing sample size.
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4.1 Optimal choice of parameters

In this section, we obtain optimal values for k,M and N for minimum M.S.E.

4.1.1 Optimal choice of k

Minimizing the M.S.E. over k is equivalent to minimizing the square of the bias over k. We
observe that the constants c1 and c2 can possibly have opposite signs. We consider two
separate cases: c1c2 > 0 and c1c2 < 0. In either case the optimal choice of k is given by

kopt = arg min
k
|B(f)| = bk0M

2
2+d c, (8)

where bxc is the closest integer to x and we have defined the constant k0 = (|c2|d/2|c1|)
d
d+2

when c1c2 > 0 and k0 = (|c2|/|c1|)
d
d+2 when c1c2 < 0. When c1c2 > 0, the bias evaluated at

kopt is b+
0 M

−2
2+d (1 + o(1)) where the constant b+

0 = c1k
2/d
0 + c2/k0.

Let kfrac = k0M
2

2+d−kopt. When c1c2 < 0, we see that c1((kfrac+kopt)/M)2/d+c2/(kfrac+kopt)
is equal to zero. When this happens a higher order asymptotic analysis is required, yielding
(see Appendix E):

B(Ĝ(f)) = c1

(
k

M

)2/d

+ c2

(
1

k

)
+h1

(
k

M

)4/d

+ h2

(
1

k2

)
+ h3

((
k

M

)2/d
1

k

)

+o

((
k

M

)4/d

+
1

k2
+

(
k

M

)2/d
1

k

)

where the constants are given by

h1 = E[(1/2)g′′(f(Y))h2(X) + g′(f(Y))ho(Y)],

h2 = E[(2/3)g′′′(f(Y))f 3(Y)]

and
h3 = (1− 2/d)E[g′′(f(Y))f(Y)c(Y)].

The bias evaluated at kopt is then given by b−0 M
−4
2+d (1 + o(1)) where the constant b−0 =

h1k
4/d
0 + (h2 + c2kfrac)/k

2
0 + (h3 + 2c1kfrac/d)k

2/d−1
0 . In practice, the constants c1 and c2

have to be estimated with error of order o(1/k + (k/M)2/d) or smaller for the leading terms

to cancel using the optimal choice of kopt = bk0M
2

2+d c, where k0 depends on the estimated
values of c1 and c2.

We note that b2
0, c4 and c5 are all non-negative constants.
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4.1.2 Optimal choice of N as a function of M

For d = 1, the leading terms in the M.S.E are given by

M(f) ≈ c4

(
1

N

)
+ c5

(
1

M

)
. (9)

For d = 2, the leading terms in the M.S.E are given by

M(f) ≈ c4

(
1

N

)
+ (c5 + b2

0)

(
1

M

)
. (10)

For large dimensions (d > 6), the optimal choice of N as a function of M for minimum M.S.E.
is then given by

Nopt =

 bN+
0 M

6+d
2(2+d)

opt c c1c2 > 0

bN−0 M
10+d
2(2+d)

opt c c1c2 < 0

where the constant N+
0 is given by N+

0 =

√
c4(2+d)

2b+0
and the constant N−0 =

√
c4(2+d)

2
√

2b−0
.

4.1.3 Optimal M.S.E.

For the optimal choices of k and N , the M.S.E in terms of M is given by

M(f) = b2
0M

−4
2+d +

(c4)

N0

M
−(6+d)
2(2+d) + c5M

−1. (11)

4.1.4 Relation between kopt and Nopt

Now consider the ratio of kopt to Nopt.

For d = 1 we have,

kopt
Nopt

=
k0

N0

(
1

M

)1/3

, (12)

and for d ≥ 2, we have

kopt
Nopt

=
k0

N0

√
1

M
, (13)

The ratio of kopt to Nopt therefore goes to 0 as M goes to ∞.
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4.2 Discussion on optimal parameter choices

1. Choice of k: The optimal k grows at a smaller rate as compared to the total number of
samples M used for density estimation. Furthermore, the rate at which k grows as compared
to M decreases as the dimension d increases. This can be explained by observing that the
choice of k primarily controls the bias of the entropy estimator. For a fixed choice of k
and M (k < M), we expect the bias in the density estimates (and correspondingly in the
entropy estimates) to increase as the dimension increases. For fixed M , to ensure optimal
bias, we would therefore require that the density estimates are based on realizations which lie
in smaller neighborhoods as the dimension increases. This in turn corresponds to choosing a
smaller k relative to M as the dimension d grows.

2. Choice of N : For large dimensions (d ≥ 2), the optimal choice of N (the number
of samples used for estimating entropy) grows at a smaller rate as compared to M (the
number of samples used for density estimation). This agrees with our intuition that in higher
dimensions, density estimation is the more difficult problem as compared to the problem of
entropy estimation when the density is known, and therefore a greater fraction of the total
realizations available should be used for estimation of the density.

4.2.1 Comparison of rates

We note that for high dimensions (d > 6), Nopt = o(Mopt), which in turn implies that

Mopt = Θ(T ). This then implies that the optimal bias decays as b+
0 (T

−2
2+d )(1 + o(1)) when

c1c2 > 0 and b−o (T
−4
2+d )(1 + o(1)) when c1c2 < 0. In addition, the optimal variance decays as

c5(1/T )(1 + o(1)). To date, rates of convergence of the bias for Shannon and Rényi entropy
estimators have been explicitly provided only by Liitiäinen et.al. [16]. Liitiäinen et.al. have
a leading term of order Θ(T−1/d) which arises due to boundary effects. This term can be
eliminated either by using the weighted estimator in [16] or by using boundary corrected
k-NN density estimates. Liitiäinen et.al. show the rate of decay of the subsequent term to be

o(T−1/d). From our analysis, we know that the optimal bias decays at the exact rate Θ(T
−2
2+d )

when c1c2 > 0 and Θ(T
−4
2+d ) when c1c2 < 0. Evans et.al. [9] have previously shown that the

variance of k-NN based functionals is bounded above by the rate O(k5/T ). Our result is an
improvement in that we are able to provide an sharper rate of Θ(1/T ).
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5 Application to estimation of Shannon and Rényi en-

tropy and Shannon MI

5.1 Estimation of entropy

In this section, we specifically discuss estimation of Shannon and Rényi entropies. The
Shannon entropy of a density f is given by H = −

∫
f log fdµ, while the Rényi-α entropy is

given by Hα = (1− α)−1 log
∫
fαdµ. For Shannon entropy, we choose the functional g(u) =

− log(u) to obtain the plug-in estimator Ĥ. For estimating Rényi entropy, we first estimate
the integral Iα =

∫
fαdµ by correspondingly choosing g(u) = uα−1 to obtain the plug-in

estimator Îα. We subsequently obtain the Rényi entropy estimator Ĥα = (1 − α)−1 log(Îα).
Assuming that the regularity conditions are satisfied, the bias and variance of the plug-in
estimators Ĥ and Îα are given by theorems 3.1 and 3.2 above and the asymptotic distribution
is described by theorem 3.3. We can then obtain expressions for the bias and variance of Ĥα

by using a Taylor series expansion of the log function about Iα. We can similarly obtain a
central limit theorem for Ĥα using the Delta method.

The functional form of the bias, variance and central limit theorem for these estimators is
given by (5), (5) and (5) respectively. The constants for the Shannon entropy estimate Ĥ are
given by c1 = E[−f−(1+2/d)(Y)(Γ(2/d)((d+ 2)/2)tr[∇2(f(Y))])], c2 = 0.5, c4 = V[log(f(Y))]
and c5 = 0. The corresponding constants for the Rényi entropy estimate Ĥα are given by c1 =
−(1/Iα)E[f (α−2−2/d)(Y)(Γ(2/d)((d+ 2)/2)tr[∇2(f(Y))])], c2 = (−1/2Iα)(α − 2)E[fα−1(Y)],
c4 = (1/(1− α)Iα)2V[fα−1(Y)] and c5 = (α− 1)c4.

Nearest neighbor estimators of Shannon entropy and Rényi entropy [18, 16] have been pre-
viously proposed in literature. Liitiäinen et.al. [16] provide finite sample bias rates for the
estimators proposed by Leonenko et.al. and propose weighted versions of the estimators
proposed by Leonenko et.al. to improve rate of convergence of the bias. Denote the data
split versions of the Shannon entropy estimator ((3.20) in [18]) and the Rényi entropy es-
timator ((3.13) in [18]) proposed by Leonenko et.al. by H̃ and H̃α respectively. We have
the following relations: H̃ = Ĥ + [log(k − 1) − Ψ(k − 1)] and H̃α = (1 − α)−1 log Ĩα where
Ĩα = (1/[(Γ(k + (1− α))/Γ(k))(k − 1)α−1])Îα.

An important distinction between our estimators and the estimators of Leonenko et.al. [18] is
that we require the additional condition that the bandwidth k to grow to ∞ for asymptotic
unbiasedness. This can be understood as follows: if we do not ignore the o(1/k) terms in the
expression for bias, we can show

E[Ĥ] = I + [log(M)−Ψ(M)]− [log(k − 1)−Ψ(k − 1)] + c1(k/M)2/d + o((k/M)2/d) (14)

and
E[Îα] = [(Γ(k + (1− α))/Γ(k))(k − 1)α−1]Iα + c1(k/M)2/d + o((k/M)2/d) (15)

Note that [(Γ(k+(1−α))/Γ(k))(k−1)α−1]→ 1 and Ψ(k−1) = log(k−1)−1/(2k−2)+O(1/k2)
as k →∞. From the above equations we see that the scale factor [(Γ(k+ (1−α))/Γ(k))(k−
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1)α−1] and the additive factor [log(k − 1) − Ψ(k − 1)] account for the O(1/k) terms in
the expressions for bias, thereby removing the requirement that k → ∞ for asymptotic
unbiasedness.

5.2 Estimation of Shannon Mutual information

The joint entropy of random vectors X and Y with joint density fXY is given by

H(X,Y) = −
∫
fXY log(fXY )dµ, (16)

where fXY is the joint density of X and Y. The Shannon MI between two random vectors
X and Y is then given by

I(X; Y) = H(X) +H(Y)−H(X,Y). (17)

We use a classic plug-in estimator to estimate MI from N + M d-dimensional i.i.d samples
{(Xi,Yi); i = 1, . . . , N +M} of the underlying joint density fXY . We estimate the Shannon
MI by estimating the individual entropies. We estimate the joint Shannon entropy H(X,Y)
from samples using the plug-in estimate

Ĥ(X,Y) =
1

N

N∑
i=1

− log(̂fXY(Xi,Yi)), (18)

where f̂XY is a k nearest neighbor density estimate (kNN) estimated using the remaining M
samples.

The kNN density estimate [17] is given by

f̂XY(X, Y ) =
k − 1

MVk(X, Y )
, (19)

where Vk(X, Y ) is the volume corresponding to the kth nearest neighbor distance between the
point of density estimation (X, Y ) and the M i.i.d samples {(Xi,Yi); i = N+1, . . . , N+M}.
We estimate the marginal entropies by first obtaining estimates of the marginal density using
kNN density estimates

f̂X(X) =
k − 1

MVk(X)
, (20)

where Vk(X) is the volume corresponding to the kth nearest neighbor distance between the
point of density estimation X and the M i.i.d samples {Xi; i = N +1, . . . , N +M}, and then
plugging the estimated marginals into Eq. 21.

Ĥ(X) =
1

N

N∑
i=1

− log(̂fX(Xi)). (21)
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Denote the estimated MI by Î.

Î = Ĥ(X) + Ĥ(Y)− Ĥ(X,Y). (22)

We make the assumption that fXY is three times continuously differentiable. Under this
assumption, as in the case of entropy, we can show the following results on bias, variance and
asymptotic distribution. Note that the results here require cross moments between density
estimates of the joint and marginal densities, which while not discussed in this report, can be
obtained in exactly the same manner as computing cross moments between the same density.

Bias The bias of the plug-in estimator Î is given by

Bias(̂I) = cb1

(
k

M

)2/d

+ cb2

(
1

k

)
+ o

((
k

M

)2/d

+
1

k

)
,

where

cb1 = E
[
−cdf−(d+2)/d

XY (X,Y)tr[∇2(fXY (X,Y))]
]
,

cb2 = 0.5,

are constants which depend on the underlying density fXY and the constant cd = (Γ(2/d)((d+
2)/2))/(π(d+ 2)).

Variance The variance of the plug-in estimator Î is given by

Var(̂I) = cv

(
1

N

)
+ o

(
1

M
+

1

N

)
,

where

cv = V ar

[
log

(
fX(X)fY (Y)

fXY (X,Y)

)]
,

is a constant which depends on the underlying density.fXY .

Asymptotic distribution Let Z be a standard normal random variable. Then,

lim
N,M→∞

Pr

(√
N (̂I− E[̂I])
√
cv

≤ α

)
= Pr(Z ≤ α).
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6 Simulations

We consider the problem of Shannon entropy estimation for a 2 dimensional distribution.
We consider two different types of densities:

1. Uniform distribution

2. 2 dimensional mixture density fm = pfβ + (1− p)fu; fβ: Beta density with parameters
a=4,b=4; fu: Uniform density; Mixing ratio p = 0.8

The first set of simulation results illustrates that the corrections suggested for density estim-
ates close to boundaries indeed works. The second set verifies the theoretical results on the
bias, variance and central limit theorem.

6.1 Boundary correction

For a fixed partition of N = 1000 and M = 9000, we vary the bandwidth parameter k and
plot the variation of bias of the entropy estimator for these two distributions. This is shown
in Fig. 5.

The uniform density clearly suffers from boundary effects. As discussed earlier, the theoret-
ically predicted bias (ignoring higher order terms) for this estimator is 1/2k for the uniform
distribution. From the figure, it is clear that the bias corrected entropy estimator agrees
well with the theoretical prediction for the uniform distribution. On the other hand, there is
significant discrepancy between the bias observed in the uncorrected estimator and the pre-
dicted bias, as we should expect. In fact, the bias of the uncorrected estimator increases with
increasing k, which is in direct contrast to the theoretically predicted trend of 1/2k. This
can be attributed to the fact that as k increases, the fraction of boundary points increase,
which in turn results in the bias contribution from these boundary points to increase.

On the other hand, for the mixture density, both the uncorrected and corrected estimators
agree well with the theoretical prediction. This can be attributed to the fact that for the
mixture density, the fraction of boundary points is much smaller as compared to the uniform
density (because the probability density has very small mass towards the boundary of the
support of the density). As a result, the boundary corrected estimator does not show any
significant improvement over the uncorrected estimator in this case.

6.2 Validation of theory

To validate our theory, we once again use the 2D mixture density defined above. In the
first experiment, we plot experimentally obtained and theoretically computed bias for fixed
N ,M . The results are shown in Fig. 6(a). The theoretically predicted optimal choice of
k minimizes the experimentally obtained bias curve. Our theory can therefore be used to
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Figure 5: Variation of bias of estimated Shannon entropy vs k for fixed N = 1000,M=9000.
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(b) Optimal choice of M and N = T − M .
Mopt = 14686, Nopt = 5314.

Figure 6: Optimal parameter selection.

specify bandwidth parameters for minimum bias. In the next experiment, we plot experi-
mentally obtained and theoretically computed MSE for fixed T . The results are shown in
Fig. 6(b). The theoretically predicted optimal choice of M and N minimizes the experiment-
ally obtained MSE curve. Our theory can therefore be used to specify optimal partitioning
of sample space for minimum MSE. Finally, we show the Q-Q plot of the normalized MI
estimate and the standard normal distribution in Fig. 6.2. The linear Q-Q plot validates our
theorem on asymptotic normality of the plug-in estimator.
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Figure 7: Asymptotic normal distribution of plug-in estimator for Shannon entropy.
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Figure 8: Variation of M.S.E. with sample size and corresponding confidence intervals for
Rényi plug-in estimator.

6.3 Comparison of estimators

For comparison purposes, we estimate Rényi entropy using the estimator Ĥα described in
Section 5.1 for the choice α = 0.5. We compare the M.S.E. performance of our estimator
with the entropic graph estimator of Hero et.al. [11], the k-nearest neighbor estimator of
Leonenko et.al. [18] and the weighted k-nearest neighbor estimator of Liitiäinen et.al. [16].

Finally, using the CLT, we plot the 95% confidence intervals for our estimator as a function
of sample size in Fig. 8(b).

6.4 Effect of dimension

As a final experiment, we plot the ratio of the variance against the squared bias and the
ratio of the optimal choice of k over M and the optimal choice of N over M as a function
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of dimension for the Rényi plug-in estimator. The results in Fig. 9 show that the bias
becomes dominant as dimension increaces as predicted by theory. In addition, the optimal
neighborhood size k/M and the ratio of optimal samples allocated for functional estimation
N compared to density estimation M decreace as a function of dimension in accordance with
theory.
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Ratio of optimal k over M
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Figure 9: Variation of ratio of variance w.r.t bias, and optimal parameter choices as a function of
dimension d for Rényi plug-in estimator. T = 10000.

7 Application to anomaly detection in wireless sensor

networks

We apply our theory to the problem of anomaly detection in wireless sensor networks. The
experiment was set up on a Mica2 platform, which consists of 14 sensor nodes randomly
deployed inside and outside a lab room. Wireless sensors communicate with each other by
broadcasting and the received signal strength (RSS), defined as the voltage measured by
a receiver’s received signal strength indicator circuit (RSSI), was recorded for each pair of
transmitting and receiving nodes. There were 14 × 13 = 182 pairs of RSSI measurements
over a 30 minute period, and each sample was acquired every 0.5 sec. During the measuring
period, students walked into and out of lab at random times, which caused anomaly patterns
in the RSSI measurements. Finally, a web camera was employed to record activity for ground
truth.

The mission of this experiment is to use the 182 RSS sequences to detect any intruders
(anomalies). We note that the ground truth indicator is only for evaluating the detecting
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Figure 10: ROC curve for sub-optimal and optimal entropy estimators. The performance of
the optimal estimator is clearly superior to the performance of the sub-optimal estimator.

performance and the detection schemes presented here are conduct in a completely unsu-
pervised way. To remove the temperature drifts of receivers we pre-process the data by
removing their local mean values. Let xi[n] be the n-th sample of the i-th signal and de-
note x[n] = (x1[n], . . . , x182[n])′. Due to temperature drifts, certain trends exist in x[n].
We de-trend the data by y[n] = x[n] − x̄[n] yielding y[n] for anomaly detection, where
x̄[n] = (2m+ 1)−1

∑n+m
i=n−m x[n] is the local mean value. We set m = 50 in this experiment.

We now estimate the Rényi entropy Hi[n] for the choice α = 0.5 for each 1-dimensional
sequence y[n] using the estimator Ĥα described in Section 5.1. We perform anomaly detection
by thresholding the entropy estimate Hi[n]. A time sample is regarded to be anomalous if
the entropy estimate Hi[n] exceeds a specified threshold. We estimate the Shannon entropy
for different choices of parameters {k,N,M} including the optimal choice {kopt, Nopt,Mopt}.
In this experiment, the estimated constants c1 and c2 are of opposite signs. The optimal

choice of k is given by kopt = bk0M
2

2+d c where k0 = (|c2|/|c1|)
d
d+2 . Because the dimension

d = 1, the optimal choice of N and M is given by Nopt =
√
c4/c5Mopt which in turn implies

Mopt = (1/(1 +
√
c4/c5)T ) and Nopt = T −Mopt = (

√
c4/c5/(1 +

√
c4/c5)T ). We find the

optimal partition to be Mopt = 84, Nopt = 182 − 84 = 98. The corresponding kopt for this
optimal partition is kopt = 46.

ROC curves corresponding to a sub-optimal estimator and the optimal plug-in estimator
are shown in Fig. 10 in addition to the ROC curves using the subspace method of Lakh-
ina et.al. [13] and the covariance based estimator of Chen et.al. [5]. It is clear that the
detection performance using the optimal estimator is superior to the performance using the
sub-optimal estimator and is marginally better than the subspace subspace and covariance
based estimators of Lakhina et.al. and Chen et.al. respectively.

In Fig. 11(a), the Area Under the ROC curve (AUC) is shown for varying choices of k for
fixed partition {N = 72,M = 110}. In Fig. 11(b), AUC is shown for varying choices of
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Figure 11: Variation of AUC with parameters {k,N,M}.

partition {N,M} with k being chosen optimally for each partition.

8 Application to structure discovery

Discovering structural dependencies among random variables from a multivariate sample is
an important task in signal processing, pattern recognition and machine learning. Based on
dependence relationships, the density function of the variables can be modeled using factor
graphs. When the sample is highly structured, the corresponding factor graph configuration is
sparse. Sparse factor graphs correspond to joint multivariate distributions which separate into
a parsimonious product of few lower dimensional distributions. The inherent low-dimensional
nature of this product leads to a compact representation of the variables having sparse factor
graph configurations.

In practice, these structure dependencies have to be discovered from sample realizations of
the multivariate distribution. Discovering dependencies when parametric probability density
models are not known a priori is an important restriction of the above problem. For paramet-
ric distribution estimates, the errors are of order O(1/N) if the true distribution is included
in the parametric model. If not, a non-vanishing bias will dominate the error yielding an
even higher error than that of a nonparametric distribution estimate (e.g. kNN estimates).
In this restricted setting, recourse is therefore taken to nonparametric methods.

Chow et.al. [6] proposed an elegant solution to structure discovery of Markov tree distribu-
tions and provided a nonparametric algorithm to obtain the optimal tree. Ihler et.al. [12]
developed the method of nonparametric hypothesis tests for structure discovery.

Nonparametric methods, while asymptotically consistent, can uncover incorrect factor graph
structure when estimated from a finite number of samples. This is distinctly true for small
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sample sizes. While consistency is an important qualitative property, there is clearly an
important motivation for quantitative characterization of performance in structure discovery.
In this work, we analyze factor graph structure discovery in the finite sample size setting.

We present a class of k-nearest neighbor (kNN) based nonparametric geometric algorithms
to discover factor graph structure among variables. We provide results on mean square error
of the nonparametric estimates, which can be optimized over free parameters, thereby guar-
anteeing improved correct structure discovery. In addition, we provide confidence intervals
on these nonparametric estimates to determine the probability of false error in choosing an
incorrect structure model. These results are an direct extension of our work on optimized
nonparametric estimates of divergence measures introduced earlier.

As a consequence of our statistical analysis, we introduce the notion of dependence-based
dimension for factor graph models and show that comparing models within the same di-
mension class is an easier task with lower probability of false error as compared to comparing
models across different dimensions.

8.1 Factor graphs

Factor graphs are bipartite graphs used to represent factorizations of probability density func-
tions. Consider a set of variables X = {X1, X2, . . . , XT} and let {Sj ⊆ {X1, X2, . . . , Xn}, j =
1, . . . ,m} be a set of subsets of X. Let g(X1, . . . , XT ) denote a probability density function
on the random vector X. For the factorization g(X1, . . . , XT ) =

∏m
j=1 fj(Sj) of the density

function, the corresponding factor graph G = (X,F ,E) consists of variable vertice’s X ,
factor vertices’s F = {f1, f2, . . . , fm}, and edges E. The edges in the factor graph depend on
the factorization as follows: there is an undirected edge between factor vertex fj and variable
vertex Xk when Xk ⊆ Sj.

8.2 Factor graph discovery

Problem statement: Consider a set of factor graphs {gi(X1, . . . , XT ), i = 1, . . . , I}. We
seek to find the factor graph configuration from this set that best models the data.

The Kullback-Leibler (KL) divergence measure induces a geometry on the space of prob-
ability distributions. On this induced geometry, we naturally define the best factor graph
configuration go to be the one closest to the actual distribution p(X1, . . . , XT ) in terms of
KL divergence (c.f. [6]).

go = arg min
gi

KL(p||gi) = arg min
gi

Hc(p, gi), (23)

where Hc(p, gi) = −
∫
p log gi is the cross-entropy between p and gi. In practice, these cross-

entropy terms have to be estimated from the finite data sample. Errors in estimation of
cross-entropy terms can result in incorrect factor graph discovery.
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The problem considered by [6] is a specific instance of discovering factor graph structure.
For the class of Markov tree factor graphs considered by [6], the cross entropy reduces to
a sum of pairwise Shannon mutual information terms between variables with edges in the
Markov tree. In their work, they empirically estimate the mutual information terms from the
data using nonparametric estimators which are consistent. However, they do not take into
account the error in the mutual information estimates when estimated from finite samples.

8.3 Disjoint factor graph discovery

In order to illustrate the effect of nonparametric estimation from finite sample size on factor
graph discovery, we restrict our attention to disjoint factor graphs ([12]). For i = 1, . . . , I,
let

gi(X1, X2, . . . , XT ) =
m∏
j=1

p(S
(i)
j ), (24)

where S
(i)
j ∩S

(i)
k = φ whenever j 6= k, and p(.) denotes the marginal density function. In this

case of disjoint factor graphs, the cross-entropy takes the following simple form:

Hc(p, gi) =
∑
j

H(S
(i)
j ), (25)

where H(S
(i)
j ) is the Shannon entropy of the variables S

(i)
j under the true distribution p.

For example, consider the disjoint factor graph g(X1, . . . , X5) = p(X1, X2)p(X3)p(X4, X5).
The cross-entropy for this factor graph is given byHc(p, g) = H(X1, X2)+H(X3)+H(X4, X5).

Consider two disjoint factor graph configurations: (a) n(X1, . . . , XT ) =
∏m1

i=1 f(Ri) and (b)
l(X1, . . . , XT ) =

∏m2

j=1 f(Sj). Denote the dimension of Ri by dni and Sj by dlj. We note

that
∑m1

i=1 d
(n)
i =

∑m2

j=1 d
(l)
j = T . Based on the above formulation, in order to compare the

two potential factor graph models n and l, we need to compare the respective cross-entropy
terms. The cross entropy test is stated below.

Cross entropy test: The cross entropy test to compare between models n and l is given
by

Hc(p, n)−Hc(p, l) =

m1∑
i=1

H(Ri)−
m2∑
j=1

H(Sj) >< 0. (26)

We estimate these entropy terms in the test statistic Hc(p, n)−Hc(p, l) from sample realiz-
ations using kNN plug-in estimators introduced earlier.

8.4 Errors in factor graph discovery

To illustrate the effect of estimation error in factor graph discovery, again consider the two
factor graph models n(X1, . . . , XT ) =

∏m1

i=1 f(Ri) and l(X1, . . . , XT ) =
∏m2

j=1 f(Sj).
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The cross entropy test (Eq. 25) between models n and l is Hc(p, n)−Hc(p, l) >< 0. We replace
this optimal cross entropy test with the following surrogate cross entropy test:

Ĥc(p, n)− Ĥc(p, l) =

m1∑
i=1

Ĥ(Ri)−
m2∑
j=1

Ĥ(Sj) >< 0. (27)

where we estimate entropy terms Ĥ(Ri) or Ĥ(Sj) using independent realizations of the
underlying density p. To elaborate, if we have V samples {X(1), . . . , X(V )} from the density
p, we partition these V samples into m1 + m2 disjoint subsets of size N + M each. This
implies that N +M ≈ V/(m1 +m2). We then use each subset to estimate entropy using the
partitioning strategy as discussed earlier.

Denote the coefficients corresponding to the entropy estimate Ĥ(Ri) of the subset of variables
Ri in the factor graph model n by cni1, cni2 and cni4. Using the theorems established in this
report, we have the following results:

Mean: The mean of this surrogate test statistic is then given by

Ep[Ĥc(p, n)− Ĥc(p, l)] = Hc(p, n)−Hc(p, l)

+

m1∑
i=1

cni1

(
k

M

)2/d
(n)
i

−
m2∑
j=1

clj1

(
k

M

)2/d
(l)
j

+

m1∑
i=1

cni2/k −
m2∑
j=1

clj2/k. (28)

Variance: The variance of the surrogate test statistic is then given by the sum of the variance
of the individual entropy estimates (by independence)

Vp[Ĥc(p, n)− Ĥc(p, l)] =

(
m1∑
i=1

cni4 +

m2∑
j=1

clj4

)(
1

N

)
. (29)

Weak convergence: Again, by independence of the individual entropy estimates, we have
the following weak convergence law

lim
N,M→∞

Pr

√N(Ĥc(p, n)− Ĥc(p, l)− Ep[Ĥc(p, n)− Ĥc(p, l)])√
Vp[Ĥc(p, n)− Ĥc(p, l)]

≤ α

 = Pr (Z ≤ α), (30)

where Z is standard normal.

8.5 Discussion

From the above expressions for the mean, variance and weak convergence law of the surrogate
test statistic, we make the following observations:
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1. The bias term is dependent on the dimension of the factors of the factor graph models
d

(n)
i and d

(l)
j . The variance term is independent of dimension. Furthermore, it is clear

that the bias term dominates the MSE as the dimension of the factors grows.

2. For better performance in discovering factor graph structure using cross entropy tests,
it is clear that we want the MSE of the surrogate test statistic to be small. A significant
route to achieving this is to get the bias from each factor graph cross entropy estimate
in the estimated test statistic to cancel. This is to say, we want

Ep[Ĥc(p, n)− Ĥc(p, l)] ≈ Hc(p, n)−Hc(p, l)

⇒ Ep[Ĥc(p, n)]− Ĥc(p, n) ≈ Ep[Ĥc(p, l)]− Ĥc(p, l)

⇒
m1∑
i=1

cni1

(
k

M

)2/d
(n)
i

+

m1∑
i=1

cni2/k ≈
m2∑
j=1

clj1

(
k

M

)2/d
(l)
j

+

m2∑
j=1

clj2/k. (31)

3. This cancellation effect will be maximized when the dimensions of the factor graph
subsets Ri and Sj match. That is to say, we want m1 = m2 and furthermore d

(n)
i = d

(l)
j .

In this case, the bias from each cross entropy estimate are of the same order and will
nearly cancel.

On the other hand, when there is a mismatch in dimension, the bias from one cross
entropy estimate will dominate the bias from the other cross entropy estimate, resulting
in significant bias in the surrogate test statistic.

In both these cases, the variance of the surrogate test statistic will be of the same order
O(1/N).

4. This gives rise to notion of multivariate dimension for factor graphs. Index the fac-
torizations according to the vector E = [e1, e2, ..., ep], where ei is an integer between 0
and T that counts the number of factors of order i, i.e. involving a marginal density
over i variables. The dimension E of factor graph configurations partitions the factor
graphs into equivalence classes having nearly constant cross entropy estimate bias.

For two factor graph models n and l with dimensions En and El, we will refer to n as a
higher dimensional model relative to l if the last non-zero entry of En −El is positive.

5. As discussed earlier, the bias will not be a significant factor when comparing models
over an equivalence class having fixed values of E. On the other hand, the bias will
be significant when comparing models across different values of E, resulting in higher
probability of error in factor graph discovery.

6. Prior knowledge of the equivalence class will therefore translate into much improved
performance in factor graph discovery as compared to prior knowledge that mixes
between equivalence classes.

7. We note that the number of samples required to maintain a constant level of bias grows
geometrically with dimension E.
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8. Using the expressions for the bias and variance of the surrrogate test statistic, we can
optimize over the free parameters: (a) the choice of partition N and M for fixed total
sample size N +M and (b) the choice of bandwidth parameter k, for minimum MSE.

9. Using the weak convergence law, we can theoretically predict the probability of choosing
model n over model l using the surrogate cross entropy test.

8.6 Experiment

We illustrate the implications of our analysis with a toy example. Let fβ(x, a, b, d) denote a
beta density of dimension d with parameters a and b. Now let fµ(x, d) = 0.5fβ(x, 5, 2, d) +
0.5fβ(x, 2, 5, d) be a mixture of beta densities. When d > 1, the mixing of densities ensures
there is strong dependence between the variates.

X1

X2

X3

X4

X5

Figure 12: True factor graph representation of the 5-dimensional joint density p(X1, . . . , X5) =
fµ(X1, 1)fµ(X2, 1)fµ(X3, 1)fµ(X4, X5, 2).

We draw V = 105 independent sample realizations from the joint density p(X1, . . . , X5) =
fµ(X1, 1)fµ(X2, 1)fµ(X3, 1)fµ(X4, X5, 2).

E True False

l [1, 0, 0, 1, 0] f(X1, X2, X4, X5)f(X3) f(X1, X2, X3, X4)f(X5)

m [1, 2, 0, 0, 0] f(X1, X2)f(X4, X5)f(X3) f(X1, X3)f(X2, X4)f(X5)

n [3, 1, 0, 0, 0] f(X4, X5)f(X1)f(X2)f(X3) f(X2, X4)f(X1)f(X3)f(X5)

Experiment The table above shows six different factor graph models. We compare each
true model against each false model. Denote the true models by lT , mT and nT and the
corresponding false models by lF , mF and nF . We note that the true cross entropy terms
Hc(p, lT ) = Hc(p,mT ) = Hc(p, nT ) and Hc(p, lL) = Hc(p,mL) = Hc(p, nL). This guaran-
tees level playing field when comparing each true model against each false model using the
surrogate cross entropy test.
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For the surrogate cross entropy test, we set N = .2 ∗ 104, M = .8 ∗ 104 and k = 20. We note
that the maximum value of m1 +m2 for the above set of tests is 8 and that V/8 > (N +M).
This choice of N and M therefore ensures that there are enough samples V to guarantee
sufficient number of independent samples for estimating individual entropies (see Section 5).

The table below lists the probability (experimental/theoretical prediction1) of choosing the
false model over the true model for the various tests.

Same true vs Same false lT vs lF mT vs mF nT vs nF
Error (Exp/Theor) 0.071/0.032 0.067/0.066 0.068/0.028

High true vs Low false lT vs mF lT vs nF mT vs nF
Error (Exp/Theor) 0/0 0/0 0/0

Low true vs High false mT vs lF nT vs lF nT vs mF

Error (Exp/Theor) 0.689/0.732 0.995/1.000 0.691/0.665

Explanation For the class of models above, the set of constants {cni1, clj1} are always
negative. As a result, when comparing a high dimensional model to a low dimensional
model, the additional bias will strongly tilt the test statistic towards the higher dimensional
model. As a result, there is a greater chance of detecting the higher dimension model in the
surrogate cross entropy test, irrespective of whether the higher dimensional model is true or
false.

To elaborate, when the high dimensional model is true and the low dimensional model is
false, the bias will further tilt the test statistic towards the high dimensional model, resulting
in zero false detections. On the other hand, when the low dimensional model is true, the
bias in the surrogate test statistic deviates towards the high dimensional model, resulting in
a high number of false detections. When we compare factor graph models within the same
class of dimension, the bias from the cross entropy estimates for each model nearly cancel,
resulting in a surrogate test statistic with much smaller bias as compared to the above two
cases. As a result, the number of false detections is correspondingly low when comparing
models within the same dimension.

By the same argument, for factor graph models where the set of constants {cni1, clj1} are
positive, we can conclude that the surrogate test statistic will be biased towards lower di-
mensional models.

9 Application to intrinsic dimension estimation

In this work we introduce a new dimensionality estimator that is based on fluctuations of the
sizes of nearest neighbor balls centered at a subset of the data points. In this respect it is sim-
ilar to Costa’s k-nearest neighbor (kNN) graph dimension estimator [7] and to Farahmand’s

1The theoretical prediction requires estimation of constants cli1, cli2 and cli3. These constants were es-
timated from the data using oracle Monte Carlo methods which utilized the true form of the density p. In
practice, when the true form of p is never known, we adopt methods given by [22] to estimate these constants
from data.
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dimension estimator based on nearest neighbor distances [10]. The estimator can also be re-
lated to the Leonenko’s Rényi entropy estimator [14]. However, unlike these estimators, our
new dimension estimator is derived directly from a mean squared error (M.S.E.) optimality
condition for partitioned kNN estimators of multivariate density functionals. This guaran-
tees that our estimator has the best possible M.S.E. convergence rate among estimators in
its class. Empirical experiments are presented that show that this asymptotic optimality
translates into improved performance in the finite sample regime.

9.1 Problem formulation

Let Y = {Y1, . . . ,YT} be T independent and identically distributed sample realizations in
RD distributed according to density f . Assume the random vectors in Y are constrained
to lie on a d-dimensional Riemannian submanifold S of RD (d < D). We are interested in
estimating the intrinsic dimension d.

9.2 Log-length statistics

Let γ > 0 be any arbitrary number and α = γ/d. Partition the T samples in Y into two
disjoint sets X and Z of size bT/2c each. Denote the samples of X as X = {X1, . . . ,XbT/2c}
and Z as Z = {Z1, . . . ,ZbT/2c}.
Partition X into N ’target’ and M ’reference’ samples {X1, . . . ,XN} and {XN+1, . . . ,XbT/2c}
respectively with N + M = bT/2c. Partition Z in an identical manner. Now consider the
following statistics based on the partitioning of sample space:

Lk(X) =
γ

N

N∑
i=1

log (Rk(Xi)) ,

where Rk(Xi) is the Euclidean k nearest neighbor (kNN) distance from the target sample Xi

to the M reference samples {XN+1, . . . ,XbT/2c} . This partitioning of samples is illustrated
in Fig. 13.

9.3 Relation to kNN density estimates

Under the condition that k/M is small, the Euclidean kNN distance Rk(Xi) approximates
the kNN distance on the submanifold S. The kNN density estimate [19] of f at Xi based on
the M samples XN+1, . . . ,XN+M is then given by

f̂k(Xi) =
k − 1

M

1

cdRk(Xi)d
=
k − 1

M

1

Vk(Xi)
,
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Figure 13: kNN edges on sphere manifold with uniform distribution for d = 2, D = 3, and
k = 5.

where cd is the volume of the unit ball in d dimensions and therefore Vk(Xi) is the volume
of the kNN ball. This implies that Lk(X) can be rewritten as follows:

Lk(X) =
γ

N

N∑
i=1

log (Rk(Xi))

= log

(
k − 1

Mcd

)α
+

1

N

N∑
i=1

log
(
f̂k(Xi)

)−α
= α log(k − 1)− α

N

N∑
i=1

log f̂k(Xi)

−α log(cdM). (32)

As eq. (32) indicates, the log-length statistics is linear with respect to log(k−1) with a slope
of α. This prompts the idea of estimating α (and later d) from the slope of Lk(X) as a
function of log(k − 1).
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9.4 Intrinsic dimension estimate based on varying bandwidth k

Let k1 and k2 be two different choices of bandwidth parameters. Let Lk1(X) and Lk2(Z) be
the length statistics evaluated at bandwidths k1 and k2 using data X and Z respectively. A
natural choice for the estimate of α would then be

α̂ =
Lk2(Z)− Lk1(X)

log(k2 − 1)− log(k1 − 1)

= α +
ν

N

N∑
i=1

(
log f̂k2(Zi)− log f̂k1(Xi)

)
= α + ν(Êk2(Z)− Êk1(X)),

where

Êk(X) =
1

N

N∑
i=1

log(̂fk(Xi)),

and ν = −α/log((k2 − 1)/(k1 − 1)). The intrinsic dimension estimate is related to α̂ by the
simple relation d̂ = γ/α̂.

9.5 Statistical properties of intrinsic dimension estimate

We can relate the error in estimation of α to the error in dimension estimation as follows:

d̂− d = γ

(
1

α̂
− 1

α

)
= γ

α− α̂
α̂α

= − γ

α2
(α̂− α) + o(α̂− α).

Define κ = −γν/α2. We recognize that the density functional estimate Êk(X) is in the form
of the plug-in estimators introduced in this report. Using the results on the bias, variance and
asymptotic distribution of the density functional estimate Êk(X) established in this report
and the above relation between the errors d̂ − d and α̂ − α, we then have the following
statistical properties for the estimate d̂:

Estimator bias

E[d̂]− d = κcb1

((
k2

M

)2/d

−
(
k1

M

)2/d
)

+ κcb2

((
1

k2

)
−
(

1

k1

))
+ o

(
1

k1

+
1

k2

+

(
k1

M

)2/d

+

(
k2

M

)2/d
)
.
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Estimator variance

V(d̂) = 2κ2cv

(
1

N

)
+ o

(
1

M
+

1

N

)
.

Central limit theorem

Let Z be a standard normal random variable. Then,

lim
N,M→∞

Pr

(
d̂− E[d̂]√
2κ2cv/N

≤ α

)
= Pr(Z ≤ α).

9.6 Optimal selection of parameters

We have theoretical expressions for the mean square error (M.S.E) of the dimension estimate
d̂, which we can optimize over the free parameters k1, k2, N and M [24]. We restrict our
attention to the case k2 = 2k; k1 = k. The M.S.E. of d̂ (ignoring higher order terms) is given
by

M.S.E.(d̂) = (E[d̂]− d)2 + V[d̂]

=

(
Cb1

(
k

M

)2/d

+ Cb2

(
1

k

))2

+ Cv

(
1

N

)
. (33)

where Cb1 = κ2(2/d−1), Cb2 = κ/4 and Cv = 2κ2cv.

Optimal choice of bandwidth

The optimal value of k w.r.t the M.S.E. is given by

kopt = bk0M
2

2+d c. (34)

where the constant k0 = (|Cb2|d/2|Cb1|)
d
d+2 .

Optimal partitioning of sample space

Under the constraint that N +M = bT/2c is fixed, the optimal choice of N as a function of
M is then given by

Nopt = bN0M
6+d

2(2+d) c, (35)

where the constant N0 =

√
Cv(2+d)

2b0
.
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9.7 Improved estimator based on correlated error

Consider the following alternative estimator for α:

α̃ =
Lk2(X)− Lk1(X)

log(k2 − 1)− log(k1 − 1)

= α + κ(Êk2(X)− Êk1(X)),

and the corresponding density estimate d̃ which satisfies

d̃− d = − γ

α2
(α̃− α) + o(α̂− α),

where both the length statistics at bandwidths k1 and k2 are evaluated using the same
sample X. The density functional estimates Êk1(X) and Êk2(X) will be highly correlated (as
compared to the independent quantities Êk1(X) and Êk2(Z)). This implies that the variance
of the difference Êk2(X)− Êk1(X) will be smaller when compared to Êk2(Z)− Êk1(X), (while
the expectation remains the same).

Since the estimator bias is unaffected by this modification, the variance reduction suggests
that d̃ will be an improved estimator as compared to d̂ in terms of M.S.E.. In order to obtain
statistical properties for the improved estimator d̃ (equivalent to the properties developed in
Section 9.5 for the original estimator d̂), we need to analyze the joint distribution between
f̂k1(Xi) and f̂k2(Xj) for two distinct values k1 and k2. Our theory, at present, cannot address
the case of distinct bandwidths k1 and k2.

Since the estimate d̃ has smaller M.S.E. compared to d̂, M.S.E. predictions for the estimate
d̂ can serve as upper bounds on the M.S.E. performance of the improved estimate d̃.

9.8 Simulations

We generate T = 105 samples B drawn from a d = 2 mixture density fm = .8fβ + .2fu, where
fβ is the product of two 1 dimensional marginal beta distributions with parameters α = 2,
β = 2 and fu is a uniform density in 2 dimensions. These samples are then projected to a
3-dimensional hyperplane in R3 by applying the transformation Y = UB where U is a 3× 2
random matrix whose columns are orthonormal. We apply our intrinsic dimension estimates
on the samples Y.

Optimal selection of free parameters

In our first experiment, we theoretically compute the optimal choice of k for a fixed partition
with M = 3.5 × 104 and N = 1.5 × 104. We then show the variation of the theoretical
and experimental M.S.E. of the estimate d̂ and the experimental M.S.E. of the improved
estimate d̃ with changing bandwidth k in Fig. 14. In our second experiment, we compute
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Figure 14: Comparison of theoretically predicted and experimental M.S.E. for varying choices
of k. The experimental performance of the estimator d̂ is in excellent agreement with the
theoretical expression and, as predicted by our theory, the modified estimator d̃ significantly
outperforms d̂.

the optimal partition according to eq. (35) and show the variation of M.S.E. with varying
choices of partition in Fig. 15.

From our experiments, we see that there is good agreement between our theory and sim-
ulations. As a consequence, we find the theoretically predicted optimal choices of k,Nand
M to minimize the observed M.S.E.. In addition, as predicted by our theory, the modified
estimator d̃ significantly outperforms d̂. The theoretically predicted M.S.E. for d̂ therefore
serves as a strict upper bound for the M.S.E. of the improved estimator d̃.

Comparison of dimension estimation methods

We compare the performance of our proposed dimension estimators to the estimated proposed
by Frahmand et. al. [10] (denote as d̂f ) and Costa et. al. [7] (denote as d̂j).

Expressions for the optimal bandwidth k (eq. (34)) and partition N,M (eq. (35)) depend on
the unknown intrinsic dimension d and constants cb1 , cb2 and cv which depend on unknown
density f . The constants cb1 , cb2 and cv can be estimated from the data using plug-in
methods similar to the ones used by Raykar et. al. [22] for optimal bandwidth selection for
kernel density estimation . To establish the potential advantages of our dimension estimators
we compare an omniscient optimal form of our estimator, for which the true values of these
constants are known, to a suboptimal form of our estimator that does not know the constants.

For the optimal estimator, we theoretically compute the optimal choice for k, N and M
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Figure 15: Comparison of theoretically predicted and experimental M.S.E. for varying choices
of M . The experimental performance of the estimator d̂ is in excellent agreement with the
theoretical expression and, as predicted by our theory, the modified estimator d̃ significantly
outperforms d̂.

for different choices of total sample size T (sub-sampled from the initial 105 samples), and
use these optimal parameters for the estimators d̂ and d̃. We use this optimal choice of
bandwidth k for the estimators d̂f and d̂j as well (partitioning not applicable). For the
suboptimal estimator, we arbitrarily choose the parameters as follows: fixed k = 20, N =
T/50, M = bT/2c −N .

The performance of these estimators as a function of sample size T is shown in Fig. 16.
Estimators with optimal choice of parameters are indicated in solid line, and the suboptimal
estimators are indicated in dashed lines.

From our experiments we see that the performance of the original estimator d̂ with sub-
optimal choice of parameters is marginally inferior when compared to the estimator with
optimal choice of parameters. This does not hold for the other estimators as can be expected
since the parameters are optimized w.r.t. the performance of d̂.

We note that the improved estimator d̃ outperforms all other estimators while the perform-
ance of our original estimator d̂ is sandwiched between d̂f and d̂j. We conjecture that the

performance of d̂j is superior to d̂ for the same reason that d̃ outperforms d̂: correlated error
between different length statistics.
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Figure 17: Comparison of performance of dimension estimates for anomaly detection in
Abilene network data.

Anomaly detection in Abilene network data

Anomalies can be detected in router netowrks by estimating the local dimension at each time
point and monitoring change in dimension. The data used is the number of packets sent by
each of the 11 routers on the abiline network between January 1-2, 2005. A sample is taken
every 5 minutes, leading to 576 samples with an extrinsic dimension pf 11.

The performance of different dimension estimators is shown in Fig. 17. We know that sim-
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ulataneous peaks in router traffic should imply strong correlation between the routers and
therefore lower intrinsic dimension. This behaviour is clearly reflected better by the optimized
estimator as compared to the estimator of Costa et. al. [7] and Levina and Bickel [15].

10 Conclusion

Development of theoretical performance predictions for estimators of functionals of densities
is important. We proposed plug-in estimators for smooth non-linear functionals of densities.
We derived the bias, variance and mean square error of the estimator in terms of the sample
size, the dimension of the samples and the underlying probability distribution. In addition,
we developed a Gaussian central limit result for these estimators. In addition, we established
rates of convergence of these plug-in estimators to the Gaussian distribution.

Our theory has two important by-products: (1) We established similarity between the mo-
ments of kNN density estimates and kernel density estimates. This in turn implies that
plug-in estimators based on kNN density estimators and kernel density estimators have
asymptotically equal rates of convergence. (2) We developed an algorithm for detection
and correction of density estimates at boundary points for densities with finite support. This
correction helps reduce the bias of density estimates at the boundaries of the support of the
density, thereby reducing the overall bias of the plug-in estimators.

We verified the validity of our theorems through simulations. We applied the results de-
veloped in this report to specify optimal choice of bandwidth parameters and optimal parti-
tioning of data samples, one part of which is used for density estimation while the remaining
is used for functional estimation. We applied our theory to obtain statistical convergence
results on estimators of entropy and mutual information and illustrated the applicability of
our theory for determining confidence intervals of MI estimates.

We applied our theory to the problem of estimating Shannon entropy and Shannon mutual
information. Furthermore, we used the Shannon entropy estimator to discover structure in
high dimensional data and to determine the intrinsic dimension of data samples.

As a consequence of our work, we can tune the parameters of the plug-in estimator for
optimal performance. Furthermore, we can specify the necessary sample size required to
obtain requisite accuracy. This in turn can be used to predict and optimize performance
in higher level applications like structure discovery and dimension estimation. This is not
possible using current estimation methods in literature and underlines the significance of the
results established in this work.
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Appendices

A Uniform kernel density estimation

Throughout this section, we will derive results on moments of the uniform kernel density
estimates for points in the set S′ = {X : Su(X) ⊂ S}. This definition implies that the
density f has continuous partial derivatives of order 2r in the uniform ball neighborhood for
each X ∈ S′ where r satisfies the condition 2r(1− t)/d > 1. This excludes the set of points
close to the boundary of the support, where the continuity assumption of the density is not
satisfied. We will deal with these points in Appendix C.

Let X1, ..,XM denote M i.i.d realizations of the density f. We will assume that f is continu-
ously differentiable evrywhere in the interior of the sWe seek to estimate the density at X
from the M i.i.d realizations X1, ..,XM . Let cd denote the volume of a unit hyper-sphere in
d dimensions. The uniform kernel density estimator is defined as follows:

A.1 Uniform kernel density estimator

The uniform kernel density estimator is defined below. The volume of the uniform kernel is
given by

Vu(X) =
k

M
, (36)

and the kernel region is given by

Su(X) = {Y : cd||X − Y ||d ≤ Vu}. (37)

lu(X) denotes the number of points falling in Su(X)

lu(X) = ΣM
i=11Xi∈Su(X), (38)

and the uniform kernel density estimator is defined by

f̂u(X) =
lu(X)

MVu(X)
. (39)

The coverage of the uniform kernel is defined as

U(X) =

∫
Su(X)

f(z)dz = E[1Z∈Su(X)]. (40)
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We observe that lu(X) is a binomial random variable with parameters M and U(X). Figure
18 illustrates the uniform kernel density estimate.

Figure 18: Uniform kernel density estimator.

A.2 Taylor series expansion of coverage

We assume that the density f has continuous partial derivatives of third order
in a neighborhood of X. For small volumes Vu(X) (which is equivalent to the condition that
k/M is small), we can represent the coverage function U(X) by using a third order Taylor
series expansion of f about about X [19].

U(X) =

∫
Su(X)

f(Z)dZ

= f(X)Vu(X) + c(X)V 1+2/d
u (X) + o(V 1+2/d

u (X))

= f(X)
k

M
+ c(X)

(
k

M

)1+2/d

+ o

((
k

M

)1+2/d
)
, (41)

38



where c(X) = Γ(2/d)(n+2
2

)tr[∇2(f(X))].

A.3 Concentration inequalities for uniform kernel density

Because lu(X) is a binomial random variable, we can apply standard Chernoff inequalities to
obtain concentration bounds on the density estimate. lu(X) is a binomial random variable
with parameters M and U(X).

A.3.1 Concentration around true density

For 0 < p < 1/2,

Pr(lu(X) > (1 + p)MU(X)) ≤ e−MU(X)p2/4, (42)

and
Pr(lu(X) < (1− p)MU(X)) ≤ e−MU(X)p2/4. (43)

Using the Taylor expansion of coverage, we then have

Pr(f̂u(X) > (1 + p)(f(X) +O((k/M)2/d))) ≤∼ e−p
2kf(X)/4, (44)

and
Pr(f̂u(X) < (1− p)(f(X) +O((k/M)2/d))) ≤∼ e−p

2kf(X)/4. (45)

This then implies that

Pr(f̂u(X) > (1 + p)f(X)) ≤∼ e−p
2kf(X)/4, (46)

and
Pr(f̂u(X) < (1− p)f(X)) ≤∼ e−p

2kf(X)/4. (47)

Let X be a random variable with density f independent of the M i.i.d realizations X1, ..,XM .
Then,

Pr(f̂u(X) > (1 + p)f(X)) = EX[Pr(f̂u(X) > (1 + p)f(X))]

≤ E[∼ (e−p
2kf(X)/4)]

= ∼ e−p
2k/4, (48)

and

Pr(f̂u(X) < (1− p)f(X)) = EX[Pr(f̂u(X) < (1− p)f(X))]

≤ E[∼ (e−p
2kf(X)/4)]

= ∼ e−p
2k/4. (49)
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A.3.2 Concentration away from 0

We can also bound the density estimate away from 0 as follows:

Pr(f̂u(X) = 0) = EX[Pr(f̂u(X) = 0]

= E[(1− U(X))M ]

= E[(1− (kf(X) + o(k)/M)M ]

= E[((1− (kf(X) + o(k)/M)M/(kf(X)+o(k)))kf(X)+o(k)]

= E[∼ (1/e)kf(X)+o(k)]

= ∼ e−k. (50)

A.4 Central Moments

Define the error function of the uniform kernel density,

eu(X) = f̂u(X)− E[f̂u(X)]. (51)

The probability mass function of the binomial random variable lu(X) is given by

Pr(lu(X) = lx) =

(
M

lx

)
(U(X))lx(1− U(X))M−lx .

Since lu(X) is a binomial random variable, we can easily obtain moments of the uniform
kernel density estimate. These are listed below.

First Moment:

E[f̂u(X)]− f(X) =
M

k
U(X)− f(X)

= c(X)

(
k

M

)2/d

+ o

((
k

M

)2/d
)
. (52)

Second Moment:

V[f̂u(X)] = E[e2
u(X)]

=
M

k2
U(X)(1− U(X))

= f(X)
1

k
+ o

(
1

k

)
. (53)

Higher Moments: For any integer r ≥ 3,

E[eru(X)] = O

(
1

kr/2

)
. (54)
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A.5 Covariance

Let X and Y be two distinct points. Clearly the density estimates at X and Y are not
independent. We expect the density estimates to have positive covariance if X and Y are
close and have negative covariance if X and Y are far. This is illustrated in Figure 19.

Figure 19: Covariance between uniform kernel density estimates.

Observe that the uniform kernels are disjoint for the set of points given by Ψu := {X, Y } :
||X − Y || ≥ 2(k/cdM)1/d, and have finite intersection on the complement of Ψu. Indeed
we will show that when the uniform balls intersect (and therefore X and Y are close), the
density estimates have positive covariance and that they have negative covariance when the
uniform kernels are disjoint. Intersecting and disjoint balls are illustrated in Figure 20.

Define,
U(X, Y ) := E[1Z∈Su(X)1Z∈Su(Y )]. (55)

Intersecting balls

Lemma A.1. For a fixed pair of points {X, Y } ∈ Ψu,
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Figure 20: Intersecting and disjoint balls.

Cov[eu(X), eu(Y )] =
−f(X)f(Y )

M
+ o

(
1

M

)
.

Proof. For {X, Y } ∈ Ψu, we have that 1Z∈Su(X)1Z∈Su(Y ) = 0 and therefore U(X, Y ) = 0.

We then have,

Cov[eu(X), eu(Y )] = E[(f̂u(X)− E[f̂u(X)])(f̂u(Y )− E[f̂u(Y )])]

=
M

k2
E[(1Z∈Su(X) − U(X))(1Z∈Su(Y ) − U(Y ))]

=
M

k2
E[1Z∈Su(X)1Z∈Su(Y ) − U(X)U(Y )]

=
M

k2
(U(X, Y )− U(X)U(Y ))

= −M
k2

[U(X)U(Y )] =
−f(X)f(Y )

M
+ o

(
1

M

)
.

Disjoint balls For {X, Y } ∈ Ψc
u, there is no closed form expression for the covariance.

However we have the following lemmas:
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Let Ru(X) and Ru(Y ) denote the (constant and equal) radii of the uniform balls respectively.
Define ℵ(||X − Y ||/Ru(X)) = V (Su(X) ∩ Su(Y ))/Vu(X) where V (Su(X) ∩ Su(Y )) is the
volume of the intersection of the two balls.

We observe that,

ℵ(||X − Y ||/Ru(X)) = V (Su(X) ∩ Su(Y ))/Vu(X)

=
V [1Z∈B(0,Ru(X))1Z∈B(||Y−X||,Ru(Y ))]

Vu(X)

=
V [1Z∈B(0,1)1Z∈B(||Y−X||/Ru(X),1)]

V [1Z∈B(0,1)]

= O(1). (56)

Because f is assumed to be continuous, we have

U(X, Y ) = E[1Z∈Su(X)1Z∈Su(Y )] = [f(X) + o(1)]V (Su(X) ∩ Su(Y )). (57)

Lemma A.2. For a fixed pair of points {X, Y } ∈ Ψu
c,

Cov[eu(X), eu(Y )] = O(1/k).

Proof.

M

k2
U(X, Y ) =

M

k2
[f(X) + o(1)]V (Su(X) ∩ Su(Y ))

=
f(X) + o(1)

k

V (BX ∩BY )

Vu(X)

=
f(X) + o(1)

k
ℵ(||X − Y ||/Ru(X))

=
f(X)

k
ℵ(||X − Y ||/Ru(X)) + o(1/k)

= O(1/k).

Therefore,

Cov[eu(X), eu(Y )] = E[(f̂u(X)− E[f̂u(X)])(f̂u(Y )− E[f̂u(Y )])]

=
M

k2
(U(X, Y )− U(X)U(Y ))

=
M

k2
U(X, Y )− M

k2
U(X)U(Y )

= O(1/k)−Θ(1/M)

= O(1/k).
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Lemma A.3. ∫
y

U(X, y)dy = [f(X) + o(1)]Vu(X)2.

Proof. We note that for U(X, y) 6= 0, we need {X, y} ∈ Ψc
u. We therefore have, f(y) =

f(X) + o(1).

∫
y

U(X, y)dy =

∫
[f(X) + o(1)]V (Su(X) ∩ Su(Y ))dy

= Vu(X)[f(X) + o(1)]

∫
ℵ(||X − y||/Ru(X))dy

= Vu(X)[f(X) + o(1)]Ru(X)d
∫
ℵ(||y||/Ru(X))d(y/Ru(X))

= Vu(X)[f(X) + o(1)]
Vu(X)

cd

∫
ℵ(||y||/Ru(X))d(y/Ru(X))

= [f(X) + o(1)]
V 2
u (X)

cd

∫
ℵ(δ)d(δ).

The integral
∫
ℵ(δ)d(δ) can be shown to be equal to cd for all dimensions d.

We then have,

∫
y

U(X, y)dy = [f(X) + o(1)]V 2
u (X)

= [f(X) + o(1)]

(
k

M

)2

.

Lemma A.4. Let γ1(X), γ2(X) be arbitrary continuous functions. Let X1, ..,XM ,X,Y
denote M + 2 i.i.d realizations of the density f . Then,

Cov[γ1(X)eu(X), γ2(Y)eu(Y)] =
Cov[γ1(X)f(X), γ2(X)f(X)]

M
+ o(1/M).
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Proof.

Cov[γ1(X)eu(X), γ2(Y)eu(Y)] = E
[
γ1(X)γ2(Y)(f̂u(X)− E[f̂u(X)])(f̂u(Y )− E[f̂u(Y )])

]
=

1

MVu(X)Vu(Y )
E[γ1(X)γ2(Y)(U(X,Y)− U(X)U(Y))]

=
1

MV 2
u (X)

E[γ1(X)γ2(Y)U(X,Y)]

− 1

MV 2
u (X)

E[γ1(X)γ2(Y)U(X)U(Y)]

= I − II.

II =
1

M
(E[γ1(X)f(X)]E[γ2(Y)f(Y)]) .

I =
1

MV 2
u (X)

E[γ1(X)γ2(Y)U(X,Y)]

=
1

MV 2
u (X)

∫ ∫
γ1(x)γ2(y)f(x)f(y)U(x, y)dxdy.

Now for U(x, y) 6= 0, we need {x, y} ∈ Ψc
u. We therefore have, γ2(y)f(y) = γ2(x)f(x) + o(1).

We then have,

I =
1

MV 2
u (X)

∫ ∫
[γ1(x)γ2(x)f 2(x) + o(1)]U(x, y)dxdy

=
1

MV 2
u (X)

∫
[γ1(x)γ2(x)f 2(x) + o(1)]

(∫
U(x, y)dy

)
dx

=
1

MV 2
u (X)

∫
[γ1(x)γ2(x)f 2(x) + o(1)]

(
(f(x) + o(1))Vu(x)2

)
dx

=
1

M

∫
[γ1(x)γ2(x)f 2(x) + o(1)](f(x) + o(1))dx

=
1

M

(
E[γ1(X)γ2(X)f 2(X)] + o(1)

)
=

1

M
E[γ1(X)γ2(X)f 2(X)] + o(1/M).

A.6 Higher cross moments

Disjoint balls We have the following results concerning higher cross moments for disjoint
balls:
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Lemma A.5. Let q,r be positive integers satisfying q + r > 2. For a fixed pair of points
{X, Y } ∈ Ψu

c,

Cov(equ(X), eru(Y )) = o(1/M).

Proof. For a fixed pair of points {X, Y } ∈ Ψu
c, the joint probability mass function of the

functions lu(X),lu(Y ) is given by

Pr(lu(X) = lx, lu(Y ) = ly) = 1lx+ly≤M

(
M

lx, ly

)
(U(X))lx(U(Y ))ly(1− U(X)− U(Y ))M−lx−ly .

We also have from chernoff inequalities for binomial random variables that

Pr((1− p)k < lu(X) < (1 + p)k) = 1− e−p2k,
P r((1− p)k < lu(Y ) < (1 + p)k) = 1− e−p2k.

Denote the high probability event χ by (1− p)k < lu(X), lu(Y ) < (1 + p)k. Define l̂u(X),
l̂u(Y ) to be binomial random variables with parameters {U(X),M − q} and {U(Y ),M − r}
respectively. The covariance between powers of density estimates is then given by

Cov(f̂ qu(X), f̂ ru(Y )) =
1

kq+r
Cov(lqu(X), lru(Y ))

=
1

kq+r

∑
lqxl

r
yPr(lu(X) = lx, lu(Y ) = ly)−

1

kq+r

∑
lqxl

r
yPr(lu(X) = lx)Pr(lu(Y ) = ly)

=
∑
χ

lqxl
r
y

kq+r
[Pr(lu(X) = lx, lu(Y ) = ly)− Pr(lu(X) = lx)Pr(lu(Y ) = ly)] +O(e−p

2k)

=
∑
χ

f q(X)f r(Y )lqxl
r
yU

q(X)U r(Y )

kq+r(lx × . . .× lx − q + 1)(ly × . . .× ly − r + 1)
×

[(M × . . .×M − (q + r − 1))Pr(̂lu(X) = lx, l̂u(Y ) = ly)

−(M × . . .×M − q + 1)(M × . . .×M − r + 1)Pr(̂lu(X) = lx)Pr(̂lu(Y ) = ly)]

+ o(1/M)

=

(
f q(X)f r(Y )

M q+r
+O

(
1

kM q+r

))
×∑

χ

[(M × . . .×M − (q + r − 1))Pr(̂lu(X) = lx, l̂u(Y ) = ly)

−(M × . . .×M − (q − 1))(M × . . .×M − (r − 1))Pr(̂lu(X) = lx)Pr(̂lu(Y ) = ly)]

+ o(1/M)
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=

(
f q(X)f r(Y )

M q+r
+O

(
1

kM q+r

))
×

[(M × . . .×M − (q + r − 1))− (M × . . .×M − (q − 1))(M × . . .×M − (r − 1))]

+ o(1/M)

=
−qrf q(X)f r(Y )

M
+ o

(
1

M

)
.

Then, the covariance between the powers of the error function is given by

Cov(equ(X), eru(Y )) = Cov((f̂u(X)− E[f̂u(X)])q, (f̂u(Y )− E[f̂u(Y )])r)

=

q∑
a=1

r∑
b=1

(
q

a

)(
r

b

)
(−E[f̂u(X)])a(−E[f̂u(Y )])bCov(f̂au(X), f̂ bu(Y ))

=

q∑
a=1

r∑
b=1

(
q

a

)(
r

b

)
[(−f(X))a(−f(Y ))b + o(1)]Cov(f̂au(X), f̂ bu(Y ))

= −f q(X)f r(Y )

q∑
a=1

r∑
b=1

(
q

a

)(
r

b

)
(−1)aa(−1)bb

M
+ o

(
1

M

)
= 1{q=1,r=1}

(
−f(X)f(Y )

M

)
+ o(1/M)

= o(1/M).

where the last step follows from the condition that q + r > 2.

Intersecting balls For {X, Y } ∈ Ψu
c, we have the following bounds

Lemma A.6. Let γ1(X), γ2(X) be arbitrary continuous functions. Let X1, ..,XM ,X,Y
denote M + 2 i.i.d realizations of the density f . Also let the indicator function 1∆u(X, Y )
denote the event ∆u : {X, Y } ∈ Ψu

c. For q,r positive integers satisfying q + r > 1,

E[1∆u(X,Y)γ1(X)γ2(Y)equ(X)eru(Y)] = o

(
1

M

)
,

(58)
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Proof. For 1∆u(X, Y ) 6= 0, we have {X, Y } ∈ Ψc
u. Then,

E[1∆u(X,Y)γ1(X)γ2(Y)equ(X)eru(Y)]

= E[1∆u(X,Y)γ1(X)γ2(Y)EX,Y[equ(X)eru(Y )]]

≤ E
[
1∆u(X,Y)γ1(X)γ2(Y)

√
EX[e2q

u (X)]EY[e2r
u (Y )]

]
= E

[
1∆u(X,Y)γ1(X)γ2(Y)O

(
1

kq+r/2

)]
=

∫ [
O

(
1

kq+r/2

)
(γ1(x)γ2(x) + o(1))

](∫
∆u(x, y)dy

)
dx

=

∫ [
O

(
1

kq+r/2

)
(γ1(x)γ2(x) + o(1))

](
2d
k

M

)
dx

= o

(
1

M

)
.

where the bound is obtained using the Cauchy-Schwarz inequality and using Eq.54.

We can succinctly state the results derived in the last two lemmas in the form of the following
lemma:

Lemma A.7. Let γ1(X), γ2(X) be arbitrary continuous functions. Let X1, ..,XM ,X,Y
denote M+2 i.i.d realizations of the density f . If q,r are positive integers satisfying q+r > 2

Cov[γ1(X)equ(X), γ2(Y)eru(Y)] = o(1/M).

Proof. The result for the case q = 1, r = 1 was established earlier in Lemma A.4.

Cov[γ1(X)equ(X), γ2(Y)eru(Y)] = I +D,

where ’I’ stands for the contribution form the intersecting balls and ’D’ for the contribution
from the dis-joint balls. I and D are given by

I = E[1∆u(X,Y)Cov [γ1(X)equ(X), γ2(Y )eru(Y )]],

D = E[(1− 1∆u(X,Y))Cov [γ1(X)equ(X), γ2(Y )eru(Y )]].

We have already established in the previous lemma that

I = o

(
1

M

)
.

Now,

D = E[(1− 1∆u(X,Y))γ1(X)γ2(Y)EX,Y[Cov(equ(X), eru(Y ))]] (59)

= E[(1− 1∆u(X,Y))γ1(X)γ2(Y)o(1/M)]

= o

(
1

M

)
.
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This concludes the proof.

B k-NN density estimation

Throughout this section, we will derive results on moments of k-NN density estimates for
points in the set S′ = {X : Sk(X) ⊂ S}. This definition implies that the density f has
continuous partial derivatives of order 2r in the k-NN ball neighborhood for each X ∈ S′

where r satisfies the condition 2r(1 − t)/d > 1. This excludes the set of points close to the
boundary of the support, where the continuity assumption of the density is not satisfied. We
will deal with these points in Appendix C.

B.1 Concentration inequality for coverage probability

It has been previously established that P(X) has a beta distribution with parameters k,
M − k + 1. [19]. Consider a binomial random variable with parameters M and P with
distribution function Bi(.|M,P ) and a beta random variable with parameters k and M−k+1
with distribution function Be(.|k,M − k + 1). We have the following identity,

Be(P |k,M − k + 1) = 1−Bi(k − 1|M,P ). (60)

The following Chernoff bounds for binomial random variables have also been established
previously. When k < MP , Bi(k|M,P ) ≤ exp[−(MP − k)2/2PM ], and when k > MP ,
1−Bi(k|M,P ) ≤ exp[−(MP − k)2/2PM ]. We therefore have that for some 0 < p < 1/2,

Pr((1− p)(k − 1)/M < P(X) < (p+ 1)(k − 1)/M) = O(e−p
2k/2). (61)

B.2 Taylor series expansion of coverage probability

Let X ∈ S′. We can then represent the coverage function P(X) in terms of the volume of
the k-NN ball Vk(X) by expanding the density f in a Taylor series about X [19].

P(X) =

∫
Sk(X)

f(z)dz

= f(X)Vk(X) + c(X)Vk
1+2/d(X) +

r−1∑
i=2

ci(X)Vk
1+2i/d(X) + cr(X̃)Vk

1+2r/d(X)(62)

where c(X) = Γ(2/d)(n+2
2

)tr[∇2(f(X))] and cr(X̃) is the coefficient of the reminder term.
Also define h(X) = c(X)f−2/d(X). We note that r satisfies the condition 2r(1 − α)/d > 1.
We can now rearrange terms to get the following representation of 1/Vk(X) [19].

1

Vk(X)
=
f(X)

P(X)
+

h(X)

P1−2/d(X)
+
∑
t∈T

ht(X)P1−t(X) + hr(X) (63)
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where T is some countable set with inf{T} = 4/d and hr(X) = o(1/P1−2r/d(X)). Let \(X)
denote the event (1− pk)(k− 1)/M < P(X) < (pk + 1)(k− 1)/M where pk = 1/(kδk/2) with
δk = 1 − (log(log k)/ log k). From the concentration inequality, 1 − Pr(\(X)) = O(e−p

2
kk/2).

From the choice of pk, O(e−p
2
kk/2) = o(1/ka) for arbitrarily large values of a. From the

polynomial growth condition on k which specifies k = Mα, we have o(1/ka) = o(1/Mαa). We
can then summarize that 1− Pr(\(X)) = E[1\c(X)] = o(1/Ma) for arbitrarily large values of
a.

B.3 Bias of the k-NN density estimates

Let X ∈ S′. Using the above Taylor series expansion, it has been previously shown [19] that
the bias of the k-NN density estimate is given by

E[f̂k(X)]− f(X) = h(X)

(
k

M

)2/d

+ o

((
k

M

)2/d
)
.

This gives

E[1{X∈S′}γ(X)(f̂k(X)− f(X))] = E[γ(X)h(X)]

(
k

M

)2/d

+ o

((
k

M

)2/d
)
.

B.4 Approximation to the k-NN density estimator

Define the coverage density estimate to be,

f̂c(X) = f(X)
k − 1

M

1

P(X)
. (64)

We see that the estimate f̂c(X) is not tractable. We also note that the two estimates -
f̂c(X) and f̂k(X) - are identical in the case of the uniform density. Define the error functions
ec(X) = f̂c(X) − E[f̂c(X)] and ek(X) = f̂k(X) − E[f̂k(X)]. Note that the coverage density
estimate corresponds to the leading term in the Taylor series expansion of the volume. We
can therefore write

f̂k(X) = f̂c(X) +
∑
t

(
k − 1

M

)t
ht(X)×

(
k − 1

M

)1−t

(1/P1−t(X)) +
k − 1

M
hr(X) (65)

We can then establish the following lemmas:

Lemma B.1. Let X1, ..,XM ,X denote M + 1 i.i.d realizations of the density f . Let q be
any positive integer. Let γ(X) be any arbitrary continuous function satisfying that E[γ(X)]
is finite. Then,

E
[
1{X∈S′}γ(X)eqk(X)

]
= E[γ(X)eqc(X)](1 + o(1)) + o(1/M)

50



Lemma B.2. Let γ1(X), γ2(X) be arbitrary continuous functions. Let X1, ..,XM ,X,Y
denote M + 2 i.i.d realizations of the density f .

Cov
[
1{X∈S′}γ1(X)ek

q(X), 1{Y∈S′}γ2(Y)ek
r(Y)

]
= Cov[γ1(X)eqc(X), γ2(Y)erc(Y)] + o(1/M).

As a consequence of these lemma, forX ∈ S′, we can compute all central and cross moments of
the k-NN density f̂k(X) up to o(1/M) by equivalently computing the corresponding moments
for the coverage density estimate. We will first prove the above lemmas and subsequently
work on obtaining the exact rates for the coverage density estimate.

Define the operator M(Z) = Z−E[Z] and the terms et(X) = M(
∑

t((k−1)/M)ht(X)(1/P1−t(X)))
and er(X) = M(((k− 1)/M)hr(X)). Note that for X ∈ S′, ek(X) = ec(X) + et(X) + er(X).
Also define et(X) = M(((k − 1)/M)1−t(1/P1−t(X))). We will next establish moment prop-
erties of the coverage function.

B.5 Moments of coverage function

Since P(X) is a beta random variable, the probability density function of P(X) is given by

f(pX) =
M !

(k − 1)!(M − k)!
pk−1
X (1− pX)M−k.

Under the event \(X), we can clearly see that E[1\(X)P
−t(X)] = Θ((k/M)−t). For large

enough k, M , we also see that E[P−2t(X)] is bounded between 0 and 1, which implies
that E[1\c(X)P

−t(X)] = o(1/Ma/2) using Cauchy-Schwartz and the concentration inequality.
This then gives E[P−t(X)] = Θ((k/M)−t). We then get E[1\(X)e

q
t (X)] = O

(
k−(δkq/2)

)
. We

can again bound E[1\c(X)e
q
t (X)] by o(1/Ma/2) using Cauchy-Schwartz inequality and the

concentration bound. This gives E[eqt (X)] = O
(
k−(δkq/2)

)
. Noting that δk → 1 as k → ∞

gives
E[eqt (X)] = O(k−q/2). (66)

Let X1, ..,XM ,X,Y denote M + 2 i.i.d realizations of the density f . Before we address this,
we seek to answer the following question: For which set of pair of points {X, Y } are the
k-NN balls disjoint?

Intersecting and disjoint balls Define Ψε := {X, Y } : ||X − Y || ≥ Rε(X) + Rε(Y )
where Rε(X) and Rε(Y ) are the ball radii corresponding to coverages Qε(X) = Qε(Y ) =
(1 + pk)((k− 1)/M). We will now show that for {X, Y } ∈ Ψε, the k-NN balls will be disjoint

with exponentially high probability. Let d
(k)
X and d

(k)
Y denote the k-NN distances from X

and Y and let Υ denote the event that the k-NN balls intersect. For {X, Y } ∈ Ψε, we then

51



have

Pr(Υ) = Pr(d
(k)
X + d

(k)
Y ≥ ||X − Y ||)

≤ Pr(d
(k)
X + d

(k)
Y ≥ Rε(X) +Rε(Y )).

≤ Pr(d
(k)
X ≥ Rε(X)) + Pr(d

(k)
Y ≥ Rε(Y ))

= Pr(P(X) ≥ (pk + 1)((k − 1)/M)) + Pr(P(Y ) ≥ (pk + 1)((k − 1)/M))

= O(e−p
2
kk/3), (67)

where the last inequality follows from the concentration inequality. We conclude that for
{X, Y } ∈ Ψε, the probability of intersection of k-NN balls centered at X and Y decays
exponentially in p2

kk. Stated in a different way, we have shown that for a given pair of points
{X, Y }, if the ε balls around these points are disjoint, then the k-NN balls will be disjoint
with exponentially high probability. Let ∆ε(X, Y ) denote the event {X, Y } ∈ Ψc

ε.

Let {X, Y } ∈ Ψε and let q, r be non-negative integers satisfying q + r > 1. The event that

the k-NN balls intersect is given by Υ := {d(k)
X + d

(k)
Y > ||X − Y ||}. The joint probability

distribution of P(X) and P(Y ) when the k-NN balls do not intersect =: Υc is given by

fΥc(pX , pY ) =
M !

(k − 1)!2(M − 2k)!
(pXpY )k−1(1− pX − pY )M−2k.

Figure 21 shows the distribution of the M samples when the k-NN balls are disjoint.
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Figure 21: Distribution of samples when k-NN balls are disjoint.

Define

i(pX , pY ) =
Γ(t)Γ(β)Γ(γ)

Γ(t+ β + γ)
pt−1
X pβ−1

Y (1− pX − pY )γ−1,

and note that ∫ 1

pX=0

∫ 1

pY =0

1{pX+pY ≤1}i(pX , pY )dpXdpY = 1.

Now note that i(pX , pY ) corresponds to the density function fΥc(pX , pY ) for the choices t = k,
β = k and γ = M−2k+1. Furthermore, for {X, Y } ∈ Ψε, the set C := {pX , pY } : (1−pk)(k−
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1)/M ≤ pX , pY ≤ (1 + pk)(k− 1)/M is a subset of the region T := {pX , pY } : 0 ≤ pX , pY ≤ 1;
pX + pY ≤ 1. Note that E[1C] = 1− o(1/Ma). This implies that expectations over the region
R := {pX , pY } : 0 ≤ pX , pY ≤ 1; should be of the same order as the expectations over T with
differences of order o(1/Ma). In particular,

E[1/Pt(X)Pβ(Y )] = E[1T/P
t(X)Pβ(Y )] + o(1/Ma).

From the joint distribution representation, we also get

E[1T/P
t(X)Pβ(Y )]

E[1/Pt(X)]E[1/Pβ(Y )]
= − tβ

M
+ o(1/M).

Now observe that(
k − 1

M

)t+β
Cov(1/Pt(X), 1/Pβ(Y ))

=

(
k − 1

M

)t+β
[E[1/Pt(X)Pβ(Y )]− E[1/Pt(X)]E[1/Pβ(Y )]]

=

(
k − 1

M

)t+β
E[1/Pt(X)]E[1/Pβ(Y )]

[
E[1/Pt(X)Pβ(Y )]

E[1/Pt(X)]E[1/Pβ(Y )]
− 1

]
= (1 + o(1/k))

[
1− tβ

M
+ o(1/M)− 1

]
= −

(
tβ

M

)
+ o(1/M). (68)

Then, the covariance between the powers of the error function et is given by

Cov(eqt (X), erβ(Y )) =

(
k − 1

M

)tq+βr
Cov

([
1

Pt(X)
− E

[
1

Pt(X)

]]q
,

[
1

Pβ(Y )
− E

[
1

Pβ(Y )

]]r)
=

q∑
a=1

r∑
b=1

(
q

a

)(
r

b

)
[(−1)a+b + o(1)]

(
k − 1

M

)ta+βb

Cov(1/Pta(X), 1/Pβb(Y ))

= −tβ
q∑

a=1

r∑
b=1

(
q

a

)(
r

b

)
(−1)aa(−1)bb

M
+ o

(
1

M

)
= 1{q=1,r=1}

(
−tβ
M

)
+ o(1/M)

= 1{q=1,r=1}Θ(1/M) + o(1/M). (69)

B.6 Analysis of central terms

E
[
1{X∈S′}γ(X)eqk(X)

]
= E

[
γ(X)EX[1{X∈S′}e

q
k(X)]

]
= E

[
γ(X)EX[1{X∈S′}(ec(X) + et(X) + er(X))q]

]
= E

[
1{X∈S′}γ(X)EX[(ec(X) + et(X) + er(X))q]

]
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Let us focus on the inner expectation first. From the analysis in the previous section on
et(X), it is easy to see that E[er

l(X)] = O((k/M)2rl/d) = o(1/M) for any l > 1. Similarly,
we can see that E[ec

l(X)] = O(k−l/2). Now, we can write et
l(X) as a sum of terms of

the form
∏

t((k/M)tht(X)et
lt(X)) where

∑
t lt = l. The coefficients in the product form

(k/M)t = o(1) while each et
lt(X) term contributes O(k−lt/2) by (66). By repeatedly using

Cauchy-Schwartz, we can show that the expectation of each of these terms and therefore
E[et

l(X)] is o(k−l/2).

We note that ek
q(X) will contain terms of the form (ec(X) + et(X))l(er(X))q−l. If l 6= q,

the expectation of this term can be bounded as follows:

|E[(et(X))l(er(X))q−l]| ≤
√
E[(ec(X) + et(X))2l]E[(er(X))2(q−l)]

= O(1)× o(1/M) = o(1/M).

Let us concentrate on the case l = q. In this case, ek
q(X) will contain terms of the form

(ec(X))m(et(X))q−m. For q 6= m, we then have

|E[(ec(X))m(et(X))q−m]| ≤
√
E[(ec(X))2l]E[(et(X))2(q−l)]

= O(k−m/2)× o(k−(q−m)/2) = o(k−q/2).

Noting that E[ec
q(X)] = O(k−q/2) gives us

E
[
1{X∈S′}γ(X)eqk(X)

]
= E

[
1{X∈S′}γ(X)eqc(X)

]
(1 + o(1)) + o(1/M)

Finally, we have that E[1{X∈S′}c ] = O((k/M)1/d). Using this fact and Cauchy-Schwartz
therefore gives us Lemma B.1.

B.7 Analysis of cross terms

Similarly,

Cov
[
1{X∈S′}γ1(X)ek

q(X), 1{Y∈S′}γ2(Y)ek
r(Y)

]
= Cov

[
1{X∈S′}γ1(X)(ec(X) + et(X) + er(X))q, 1{Y∈S′}γ2(Y)(ec(Y) + et(Y) + er(Y))r

]
.

Using the same arguments as in the previous section, we can show that the contribution of
terms with er(X) or er(Y) is o(1/M). We can then reduce,

Cov
[
1{X∈S′}γ1(X)ek

q(X), 1{Y∈S′}γ2(Y)ek
r(Y)

]
= Cov

[
1{X∈S′}γ1(X)(ec(X) + et(X))q, 1{Y∈S′}γ2(Y)(ec(Y) + et(Y))r

]
+ o(1/M).

= E[1∆ε
c(X,Y)γ1(X)γ2(Y)Cov{X,Y}[(ec(X) + et(X))q, (ec(Y ) + et(Y ))r]]

+E[1∆ε(X,Y)γ1(X)γ2(Y)Cov{X,Y}[(ec(X) + et(X))q, (ec(Y ) + et(Y ))r]] + o(1/M)

= I + II + o(1/M).
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Now note that ek
q(X) will contain terms of the form (ec(X))m(et(X))q−m. For q 6= m,

the term (ec(X))m(et(X))q−m will be a sum of terms of the form (k/M)q−m−βh̃(X) ×
(k/M)m+βP−(m+β)(X) for arbitrary β < q −m.

For {X, Y } ∈ Ψε, the covariance term Cov[(ec(X))m(et(X))q−m, (ec(Y ))n(et(Y ))r−m] will be
o(1/M) if either m < q or n < r by (68) and recognizing that the coefficients (k/M)q−m−β =
o(1) for m < q. On the other hand, if m = q and n = r, Cov[(ec(X))q, (ec(Y ))r] =
1{q=1,r=1}O(1/M) + o(1/M) by (68) and recognizing that the error ec is a special instance of
et and subsequently invoking (69).

For {X, Y } ∈ Ψc
ε, the covariance term Cov[(ec(X))m(et(X))q−m, (ec(Y ))n(et(Y ))r−m] using

(66) and Cauchy-Schwartz can be shown to be o(k−(q+r)/2). On the other hand, if m = q and
n = r, Cov[(ec(X))q, (ec(Y ))r] = O(k−(q+r)/2).

We therefore have

I = E[1∆ε
c(X,Y)γ1(X)γ2(Y)Cov{X,Y}[(ec(X) + et(X))q, (ec(Y ) + et(Y ))r]]

= E
[
1∆ε

c(X,Y)γ1(X)γ2(Y)
(
1{q=m=1,r=n=1}O(1/M) + o(1/M)

)]
= 1{q=m=1,r=n=1}O(1/M) + o(1/M).

where the last step follows from the probability of the region Ψc
ε being 1−O(k/M) = O(1).

Similarly,

II = E[1∆ε(X,Y)γ1(X)γ2(Y)Cov{X,Y}[(ec(X) + et(X))q, (ec(Y ) + et(Y ))r]]

= E
[
1∆ε(X,Y)γ1(X)γ2(Y)

(
O

(
1{q=m,r=n}
kq+r/2

)
+ o

(
1

kq+r/2

))]
=

∫ [(
O

(
1{q=m,r=n}
kq+r/2

)
+ o

(
1

kq+r/2

))
(γ1(x)f(x)γ2(x) + o(1))

](∫
∆ε(x, y)f(y)dy

)
dx

=

∫ [(
O

(
1{q=m,r=n}
kq+r/2

)
+ o

(
1

kq+r/2

))
(γ1(x)f(x)γ2(x) + o(1))

]
O

(
k

M

)
dx

= 1{q=m=1,r=n=1}O(1/M) + o(1/M).

where the last but one step follows from the probability of the region Ψε being O(k/M). This
then gives

Cov
[
1{X∈S′}γ1(X)ek

q(X), 1{Y∈S′}γ2(Y)ek
r(Y)

]
= Cov

[
1{X∈S′}γ1(X)(ec(X))q, 1{Y∈S′}γ2(Y)(ec(Y))r

]
+ o(1/M).

Using the fact that E[1{X∈S′}c ] = O((k/M)1/d) and Cauchy-Schwartz inequality gives us
Lemma B.2. In the next section, we will investigate the central and cross moments of the
coverage density estimate.
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B.8 Central moments

P (X) has a beta distribution with parameters k,M − k + 1. This implies

E[γ(X)eqc(X)] = 1{q=2}E
[
γ(X)f 2(X)

](1

k

)
+ o

(
1

k

)
.

B.9 Cross Moments for the Coverage density estimate

In the previous section, we showed

Cov[γ1(X)eqc(X), γ2(Y)erc(Y)] =
(
1{q=1,r=1}O(1/M) + o(1/M)

)
.

We now concentrate on the case {q = 1, r = 1}. We separately analyze the case for disjoint
balls and intersecting balls:

Cov[γ1(X)ec(X), γ2(Y)ec(Y)] = E[[γ1(X)γ2(Y)ec(X)ec(Y)]]

= E[1∆ε
c(X,Y)γ1(X)γ2(Y)E{X,Y}[ec(X), γ2(Y )ec(Y )]]

+E[1∆ε(X,Y)γ1(X)γ2(Y)E{X,Y}[ec(X), γ2(Y )ec(Y )]]

= I + II.

• The Disjoint balls case: For {X, Y } ∈ Ψε, we can explicitly evaluate the cross-correlation
between the coverage density estimates using (68)as follows:

I = E[1∆ε
c(X,Y)γ1(X)γ2(Y)Cov{X,Y}[ec(X), ec(Y )]]

= E[1∆ε
c(X,Y)γ1(X)γ2(Y)] (−1/M + o(1/M))

= E[γ1(X)γ2(Y)] (−1/M + o(1/M))

= −E[γ1(X)]E[γ2(Y)]
1

M
+ o(1/M).

where the last but one step follows by applying the Cauchy-Schwartz inequality and
subsequently using the fact that E[1∆ε

c(X,Y)] = 1− o(1).

• The Intersecting balls case: For {X, Y } ∈ Ψc
ε, we will directly show that the cross-

correlations of the coverage and the ε ball density estimates are identical up to leading
terms (without explicitly evaluating the cross-correlation between the coverage density
estimates) and then make use of the results developed for the ε ball density estimate
to obtain corresponding rates for the k-NN estimates.

ε ball density estimate

In order to estimate cross moments for the coverage (and thereby k-NN density estimates),
we first introduce the ε ball density estimator. The ε ball density estimator is an oracle
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uniform kernel density estimator with varying bandwidth which depends on the unknown
density f . Let the volume of the kernel be Vε(X) and the corresponding kernel region
be Sε(X) = {Y : cd||X − Y ||d ≤ Vε(X)}. The volume is chosen such that the coverage
Qε(X) =

∫
Sε(X)

f(z)dz is set to (1 + pk)((k − 1)/M) where pk is a function of k which we

choose such that p2
kk → 0 polynomially in k as k → ∞. Let lε(X) denote the number

of points among {X1, ..,XM} falling in Sε(X): lε(X) = ΣM
i=11Xi∈Sε(X). The ε ball density

estimator is defined as

f̂ε(X) =
lε(X)

MVε(X)
. (70)

Also define the error eε(X) as eε(X) = f̂ε(X) − E[f̂ε(X)]. It is then possible to prove the
following lemma. This involves computing volumes of intersections of hyper spheres.

Lemma B.3. Let γ1(X), γ2(X) be arbitrary continuous functions. Let X1, ..,XM ,X,Y
denote M + 2 i.i.d realizations of the density f . Then,

E
[
1∆ε(X,Y)γ1(X)eε(X)γ2(Y)eε(Y)

]
= E[γ1(X)γ2(X)f 2(X)]

(
1

M
+ o

(
1

M

))
.

We would like to now establish that the cross-correlations of the coverage density estimator
and the ε ball density estimator are equal up to the leading terms. We will first show that,

Lemma B.4. E[ec(X)eε(X)] = f 2(X)
(

1
k

+ o
(

1
k

))
.

Proof. We begin by establishing the conditional density and expectation of f̂ε(X) given f̂c(X):

Conditional density

We have lε(X) = ΣM
i=11Xi∈Sε(X). Since we are dealing with a fixed X, we drop the dependence

on X and denote the k-NN coverage by P and the ε ball coverage by Q. Let q = Q/P and
r = (Q − P)/(1 − P). We have the following expressions for conditional densities and
expectations [20]:

Pr{lε = l/P; P > Q} =

{ (
k−1
l

)
ql(1− q)k−1−l l = 0, 1, . . . , k − 1

0 l = k, k + 1, . . . ,M

Pr{lε = l/P; P ≤ Q} =

{
0 l = 0, 1, . . . , k − 1(

M−k
l−k

)
rl−k(1− r)M−l l = k, k + 1, . . . ,M

Conditional Expectation

E[lε = l/P; P > Q] = (k − 1)q = (k − 1)Q/P

E[lε = l/P; P ≤ Q] = k + r(M − k) =

(
1−Q
1−P

)
(k −M) +M
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Joint Expectation

Denote the density of the coverage P by fk,M(p). Also let P̂ be the coverage corresponding
to the k − 2 nearest neighbor in a total field of M − 3 points. We can show that

E[ec(X)eε(X)] = E[f̂ε(X)f̂c(X)]− E[f̂c(X)]E[f̂ε(X)]

= E
[((

1−Q
P(1−P)

)
(k −M) +M/P

)
1P≤Q

]
+
f 2(X)(k − 1)

kM
E
[(

(k − 1)Q/P2
)

1P>Q

]
− f 2(X)

k
MQ.

=
f 2(X)

k

(M − 1)(M − 2)

(k − 2)(M − k)
×

E[(1−QP̂)(k −M) +MP̂(1− P̂)]− f 2(X)

k
MQ

+E[((k − 1)Q(1− P̂)− (1−QP̂)(k −M) +MP̂(1− P̂))(1P̂>Q)]

= C × (I − II + III).

We can show that C × (I − II) = f2(X)
k

(1−Q) using the fact that P̂ has a beta distribution.
Note that from the definition of Q = ((1 + pk)(k− 1)/M), from the concentration inequality
we have that E[1P̂>Q] = O(e−p

2
kk/6). The remainder (C×III) can be simplified and bounded

using the Cauchy-Schwartz inequality and the concentration inequality to show C × III =
o(1/M).

Therefore, we have

E[ec(X)eε(X)] =
f 2(X)

k
(1−Q) +O(e−p

2
kk/6).

=
f 2(X)

k
− f 2(X)

M
+ o

(
1

M

)
. (71)

Now denote (ec(X)− eε(X))2 =: E(X). Note that E[E(X)] = E[ec(X)2]−2E[ec(X)eε(X)]+
E[eε(X)2]. We know that E[ec(X)2] = f 2(X) 1

k
+ o(1/k) and E[eε(X)2] = f 2(X)(1/k +

o(1/k)). Then from the above Lemma B.4, we have that E[E(X)] = o(1/k). This result
should mean that ec(X) and eε(X) are almost perfectly correlated. Intuitively this would
makes sense in that if more than k points fall in ε-ball to give a density estimate that
is higher than the mean, then the k-NN distance will be correspondingly smaller and the
coverage density estimate will also be higher than the mean and vice versa.

We can now write the covariance between the coverage density estimates in terms of the
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covariance between the ε ball estimates as follows:

E[ec(X)ec(Y )] = E[(eε(X) + [ec(X)− eε(X)])(eε(Y ) + [ec(Y )− eε(Y )])]

= E[eε(X)eε(Y )] + E[eε(X)(ec(Y )− eε(Y ))] +

+E[eε(Y )(ec(X)− eε(X))] + E[(ec(X)− eε(X))(ec(Y )− eε(Y ))]

= I + II + III + IV. (72)

To establish the similarity of the cross-correlation’s, we would like to find out that terms
II,III and IV are negligible compared to term I. Using Cauchy-Schwartz, we can bound
each of the terms II, III and IV in terms of E[E(X)] as |II| ≤

√
E[E(Y )]E[eε2(X)],

|III| ≤
√

E[E(X)]E[eε2(Y )] and |IV | ≤
√

E[E(X)]E[E(Y )]. Note that the above application
of Cauchy-Schwartz helps decouple the problem of joint expectation of density estimates
located at two different points Xand Y to a problem of estimating the error E between two
different density estimates at the same point(s). We then have that all the three terms II,
III and IV are f(X)f(Y )o(1/k) and therefore,

E[ec(X)ec(Y )] = E[eε(X)eε(Y )] + o(1/k),

for any X and Y . For this result to be useful, we would want E[eε(X)eε(Y )] to be orders
of magnitude larger than the error o(1/k), which is indeed the case for {X, Y } ∈ Ψε

c since
E[eε(X)eε(Y )] = O(1/k) for such X and Y . We can then use this lemma and the previously
established results on co-variance of ε-ball density estimates to obtain the corresponding
result for coverage density estimates:

Lemma B.5. Let γ1(X), γ2(X) be arbitrary continuous functions. Let X1, ..,XM ,X,Y
denote M + 2 i.i.d realizations of the density f . Then,

E[1∆ε(X,Y)γ1(X)γ2(Y)ec(X)ec(Y)] = E[γ1(X)γ2(X)f 2(X)]

(
1

M
+ o

(
1

M

))
.

Proof.

E[1∆ε(X,Y)γ1(X)γ2(Y)ec(X)ec(Y)]

= E[1∆ε(X,Y)γ1(X)γ2(Y)EX,Y[ec(X)ec(Y )]]

= E[1∆ε(X,Y)γ1(X)γ2(Y)(EX,Y[eε(X)eε(Y )] + f(X)f(Y )o(1/k))

= E[1∆ε(X,Y)γ1(X)γ2(Y)eε(X)eε(Y)]

+E[1∆ε(X,Y)γ1(X)γ2(Y)f(X)f(Y)]o(1/M)

= E[γ1(X)γ2(X)f 2(X)]

(
1

M
+ o

(
1

M

))
.

In the last but one step, we obtain o(1/M) for the second term by recognizing that the volume
V (Ψε

c) = O(k/M) and O(k/M)× o(1/k) = o(1/M).
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This implies that

Cov[γ1(X)ec(X), γ2(Y)ec(Y)]

= Cov[γ1(X)f(X), γ2(Y)f(Y)]

(
1

M
+ o

(
1

M

))
.

C Boundary correction for density estimates

In the previous section, we established results for points in the level set S′ = {X : Sk(X) ⊂ S}
for the k-NN density estimator. In this section we extend results to the entire set S.

C.1 Bias of k-NN density estimator in the interior

We showed that the bias at a point X in the interior of the density S′ is given by

E[f̂k(X)]− f(X) = h(X)

(
k

M

)2/d

+ o

((
k

M

)2/d
)
. (73)

C.2 Bias in the k-NN density estimator near boundary

If a probability density function has bounded support, the kNN balls centered at points close
to the boundary are often are truncated at the the boundary as shown in Fig. 2. Let

αk(X) =

∫
Sk(X)∩S dZ∫
Sk(X)

dZ

be the fraction of the volume of the k-NN ball inside the boundary of the support. For
interior points, αk(X) = 1, while for boundary points αk(X) can range between 0 and 1,
with αk(X) closer to 0 when the points are closer to the boundary. For boundary points we
then have

E[f̂k(X)]− f(X) = (1− αk(X))f(X) + o(1).

We therefore see that the bias is much higher at the boundary of the support (O(1)) as
compared to the interior (O((k/M)2/d)). Furthermore, the bias at the support does not
decay to 0 as k/M → 0.

C.3 Boundary corrected k-NN density estimates

Denote the set of N i.i.d. realizations {X1, . . . ,XN} from the density f by XN. We formally
define boundary points to be the set of points among {X1, . . . ,XN} whose kNN ball are

60



truncated by the boundary of the support of the density. Denote the set of boundary points
by BN and the complementary set of interior points by IN. In this section, we suggest a
simple way to compensate for this problem. A correction is performed in two stages: (i)
Identification of boundary points and (ii) Correction of density estimates at these boundary
points.

C.4 Boundary point detection

From the concentration inequality and Taylor series expansion of the coverage function, we
have

1− Pr
(

(1− p(k,M))
k − 1

Mαk(X)f(X)
≤ Vk(X) ≤ (1 + p(k,M))

k − 1

Mαk(X)f(X)

)
≤ o(1/M),

where p(k,M) is any positive function that satisfies p(k,M) = Θ((k/M)2/d). To detect the
boundary points IN, we pool all the samples {X1, . . . ,XN+M} together and construct a K-
NN graph where K = bk × (T/M)c. This choice of K guarantees that the size of the k-NN
ball in the partitioned sample is the same as the the size of the K-NN ball in the pooled
sample. Denote the set of interior points in the pooled sample by IT and the boundary points
by BT. We can then obtain the set of interior points in IN = XN ∩ IT.

C.4.1 Identification of interior points IT

Using the K-NN tree, for each sample X ∈ XT, we compute the number of points in XT that
have X as one their l-NN, l = {1, . . . , K}. Denote this count as count(X). For any X ∈ XT,
from the concentration inequality and Taylor series expansion of the coverage function, we
have

1− Pr
(

(1− p(K,T ))
K − 1

TαK(X)f(X)
≤ VK(X) ≤ (1 + p(K,T ))

K − 1

TαK(X)f(X)

)
≤ o(1/T ).

This implies that with high probability, the radius of the K-NN ball at X concentrates around
(K − 1/cdTαK(X)f(X))1/d. Let Y be the l-nearest neighbor of X, l = {1, . . . , K}. Then we
can represent Y as Y = X +RK(X)u where u is any arbitrary vector with ||u|| ≤ 1.

ForX to be one of theK-NN of Y , we needRK(Y ) ≥ ||Y−X|| or equivalently, RK(Y )/RK(X) ≥
||u||. Using the concentration inequality for RK(X) and RK(Y ), a sufficient condition for
this is

αK(X)f(X)

αK(Y )f(Y )
(1− 2p(K,T )) ≥ ||u||. (74)

Assume that f is Lipschitz continuous with Lipschitz constant L. Then, we have |f(Y ) −
f(X)| ≤ q(K,T ) where q(K,T ) = L(K − 1/cdTε0)1/d. A further sufficient restriction for X
to be one of the K-NN of Y is

αK(X)

αK(Y )
(1− q(K,T )) ≥ ||u||, (75)
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Figure 22: Detection of boundary points for 2D beta distribution.

For interior points, αK(X) = 1. This implies that X will one of the K-NN of Y provided
||u|| ≤ 1− q(K,T ). From (7) in [18], this implies that count(X) ≥ K(1− q(K,T )) whenever
X ∈ IT. On the other hand, for X ∈ BT, αK(X) < 1. It is also clear that for small
values of k/M , αK(X) < αK(Y ) for at least k/2 l-NN Y of X. This then implies that
count(X) < K(1− q(K,T )) for X ∈ BT. We therefore use the threshold K(1− q(K,T )) to
detect interior points IT in the pooled sample. As a final step, we obtain the set of interior
points in IN = XN ∩ IT.

Algorithm 1 Detect boundary points BT

1. Construct K-NN tree on X

2. Compute count(X) for each X ∈ XT

3. Detect boundary points BT:
for each X ∈ XT do

if count(X) < (1− q(K,T )) ∗K then
BT ← X

else
IT ← X

end if
end for

C.5 Correction of density estimate

The idea for density correction at points close to the boundary is based on the following idea:
To estimate the density at a boundary point X ∈ B, we find a point Y ∈ I that is close to
X. Because of the proximity of X and Y, f(X) ≈ f(Y). We can then estimate the density
at Y instead and use this as an estimate of f(Y).

Then, for each Xi ∈ BN, we identify its nearest neighbor Xn(i) ∈ IN, for some n(i) =
{1, .., N}. The volume of the region containing the boundary samples is of order O(k/M).
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This guarantees that the maximum distance between any Xi ∈ B, i = {1, .., N} and its
closest neighbor Xn(i) ∈ I, for some n(i) = {1, .., N}, is of order O((k/M)1/d). Fig. C.4.1
depicts the detection of boundary points and pairing of boundary points with interior points.
Clearly, the algorithm identifies the boundary points in this example.

Let Xi be a boundary point. From Eq. 74, we see that the bias is significant for the density
estimate f̂(Xi). We suggest an alternative estimator to correct for the bias. Let Xp(i) =
2Xn(i) −Xi. Defining h = Xn(i) −Xi, it is easy to see that ||h|| = O((k/M)1/d). Define the
corrected estimator as

f̂C(Xi) =

{
2f̂k(Xn(i))− f̂k(Xp(i)) 2f̂k(Xn(i))− f̂k(Xp(i)) > 0

f̂k(Xn(i)) 2f̂k(Xn(i))− f̂k(Xp(i)) ≤ 0

From the concentration inequality, the event 2f̂k(Xn(i))− f̂k(Xp(i)) ≤ 0 will occur with prob-
ability o(1/M).

We claim that this estimator has bias of order O(||h||2) = O((k/M)2/d). This can be shown
as follows. Define v =< h, f ′(Xn(i)) > as the inner product between h and the first order
partial derivatives f ′(Xn(i))

f(Xi) = f(Xn(i))− v +O(||h||2),

f(Xp(i)) = f(Xn(i)) + v +O(||h||2).

Eqs. 9 and 10 imply
f(Xi) = 2f(Xn(i))− f(Xp(i)) +O(||h||2).

Because Xn(i) and Xp(i) are located in the interior of the density, by Eq. 73,

E[f̂k(Xn(i))] = f(Xn(i)) +O(||h||2),

E[f̂k(Xp(i))] = f(Xp(i)) +O(||h||2),

and therefore

E[̂fC(Xi)] = E[2f̂k(Xn(i))− f̂k(Xp(i))] + o(1/M)

= 2f(Xn(i))− f(Xp(i)) +O(||h||2) + o(1/M)

= f(Xi) +O((k/M)2/d).

The corrected density estimate at the boundary therefore has bias which is of the same order
as the bias of the uncorrected density estimate at any interior point (compare to Eq. 73
and Eq. 74). Thus the compensation has reduced the bias of the estimator from O(1) to
O((k/M)2/d). In the definition of the corrected estimator in Eq.76, f̂k(Xn(i)) and f̂k(Xp(i))
are standard k-NN density estimates. It therefore follows that the variance and other central
and cross moments of the corrected density estimate will continue to decay at the same rate
as the standard k-NN density estimates in the interior.
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Note that prior to the correction, the contribution to the bias from the interior wasO((k/M)2/d)
while the contribution from the boundary was O(1) × O((k/M)1/d) = O((k/M)1/d). Given
these identical rates and that the probability of a point being in a boundary region is
O((k/M)1/d) = o(1), the contribution of the corrected estimator to the overall bias, vari-
ance and other cross moments are negligible compared to the contribution from the interior.
As a result we can now generalize the results from Appendix B to include the boundary
regions.

Bias

E[γ(X)(f̂k(X)− f(X))] = E[γ(X)h(X)]

(
k

M

)2/d

+ o

((
k

M

)2/d
)
.

Central moments

E[γ(X)eqk(X)] = 1{q=2}E
[
γ(X)f 2(X)

](1

k

)
+ o

(
1

k

)
.

Cross moments

Cov[γ1(X)eqk(X), γ2(Y)erk(Y)]

= 1{q=1,r=1}Cov[γ1(X)f(X), γ2(Y)f(Y)]

(
1

M

)
+ o

(
1

M

)
.

Equivalent corrections exist for the uniform kernel density estimator and will be left to the
reader.

D Proof of theorems on bias and variance

In this section we provide results on the bias and variance of the k-NN plug-in estimators, and
therefore the mean square error (M.S.E). We assume we have T = N +M i.i.d. realizations
{X1, . . . ,XN+M} from the density f . The plug-in estimate is given by

Ĝ(f) =

(
1

N

N∑
i=1

g(f̂k(Xi),Xi)

)
. (76)

D.1 Bias

Theorem D.1. The bias of the plug-in estimator Ĝk(f) is then given by

B(Ĝ(f)) = c1

(
k

M

)2/d

+ c2

(
1

k

)
+ o

(
1

k
+

(
k

M

)2/d
)
,
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where the constants c1 = E[g′(f(Y),Y)f−2/d(Y)(Γ(2/d)((n+ 2)/2)tr[∇2(f(Y))])], and c2(δ) =
E[f 2(Y)g′′(f(Y),Y)/2] depend on the underlying density f .

Proof. Let Z be a random variable with density f . By the continuity of g′′′(x, y), we can con-
struct the following third order Taylor series of g(f̂k(Z),Z) around the conditional expected
value EZ [f̂k(Z)].

g(f̂k(Z),X) = g(EZ[f̂k(Z)],Z) + g′(EZ[f̂k(Z)],Z)(f̂k(Z)− f(Z)) +
1

2
g′′(EZ[f̂k(Z)],Z)(f̂k(Z)− f(Z))2

+
1

6
g(3)(ζZ,Z)(f̂k(Z)− f(Z))3,

where we are guaranteed the existence of ζZ ∈ (g(EZ[f̂k(Z)],Z), g(f̂k(Z),Z) by the mean value
theorem. This gives,

E[(g(f̂k(Z),Z)− g(EZ[f̂k(Z)],Z))] = E
[
g′(EZ[f̂k(Z)],Z)(f̂k(Z)− EZ[f̂k(Z)])

]
+E
[

1

2
g′′(EZ[f̂k(Z)],Z)(f̂k(Z)− EZ[f̂k(Z)])2

]
+ E

[
1

6
g(3)(ζZ,Z)(f̂k(Z)− EZ[f̂k(Z)])3

]
= 0 + E[f 2(Y)g′′(EZ[f̂k(Z)],Y)/2]

((
1

k

)
+ o

((
1

k

)))
+ E

[
1

6
g(3)(ζZ,Z)(f̂k(Z)− f(Z))3

]
= c2

(
1

k

)
+ o

(
1

k

)
+ E

[
1

6
g(3)(ζZ,Z)(f̂k(Z)− f(Z))3

]
.

where the last but one step follows from the joint continuity of g(3)(x, y) (in the interval
x ∈ (δ, f∞)) and the moment properties of density estimates. Let ∆(Z) = 1

6
g(3)(ζZ,Z). From

the consistency of k-NN density estimates, it follows that ∆(Z) converges in probability to
1
6
g(3)(f(Z),Z). This combined with the fact that ∆(Z) is uniformly bounded implies that

E[∆2(Z)] = O(1). By Cauchy-schwartz,∣∣∣∣E[1

6
∆(Z)(f̂(Z)− f(Z))3

]∣∣∣∣ ≤
√

E
[

1

36
∆2(Z)

]
E
[
(f̂(Z)− f(Z))6

]
= o

(
1

k

)
.

From the analysis of bias of k-NN density estimates and using Taylor series, the second term
can similarly be reduced to

E[g(EZ[f̂k(Z)],Z)− g(f(Z),Z)] = c1

(
k

M

)2/d

+ o

((
k

M

)2/d
)
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D.2 Variance

Theorem D.2. The variance of the plug-in estimator Ĝk(f) is given by

V(Ĝ(f)) = c4

(
1

N

)
+ c5

(
1

M

)
+ o

(
1

M
+

1

N

)
,

where the constants c4 = V[g(f(Y),Y)] and c5 = V[f(Y)g′(f(Y),Y)] depend on the under-
lying density f .

Proof. Let Z be a random variable with density f . By the continuity of g(λ)(x, y), we can
construct the following Taylor series of g(f̂k(Z),Z) around the conditional expected value
EZ [f̂k(Z)].

g(f̂k(Z),Z) = g(EZ[f̂k(Z)],Z) + g′(EZ[f̂k(Z)],Z)(f̂k(Z)− EZ[f̂k(Z)])

+

(
λ−1∑
i=2

g(i)(EZ[f̂k(Z)],Z)

i!
(f̂k(Z)− EZ[f̂k(Z)])i

)

+
g(λ)(ξZ,Z)

λ!
(f̂k(Z)− EZ[f̂k(Z)])λ,

where we are guaranteed the existence of ξZ ∈ (g(f(Z)), g(f̂k(Z))) by the mean value theorem.
Denote (g′(ξZ,Z))/λ! by Ψ(Z). Define the operator M(Z) = Z− E[Z] and

pi = M(g(EXi
[f̂k(Xi)],Xi)),

qi = M(g′(EXi
[f̂k(Xi)],Xi)(f̂(Xi)− EXi

[f̂k(Xi)])),

ri = M

(
λ∑
i=2

g(i)(EXi
[f̂k(Xi)],Xi)

i!
(f̂(Xi)− EXi

[f̂k(Xi)])
i

)
,

si = M
(

Ψ(Xi)(f̂k(Xi)− EXi
[f̂k(Xi)])

λ
)
.

The variance of the estimator Ĝ(f) is given by

V(Ĝ(f)) = E[(Ĝ(f)− E[Ĝ(f)])2]

=
1

N
E
[
(p1 + q1 + r1 + s1)2

]
+

N − 1

N
E[(p1 + q1 + r1 + s1)(p2 + q2 + r2 + s2)].

Because X1,X2 are independent, we have E[(p1)(p2 + q2 + r2 + s2)] = 0. We also have,

E
[
(p1 + q1 + r1 + s1)2

]
= E[p1

2] + o(1)

= V[g(EY[f̂(Y)],Y)] + o(1)

= c4 + o(1).

66



From the results on cross moments for density estimates we then have the following results.

E[q1q2] = c5

(
1

M

)
+ o

(
1

M

)
,

and additionally E[q1r2] = o
(

1
M

)
and E[r1r2] = o

(
1
M

)
. Also note that q1 and s2 are 0 mean

random variables. This implies that

E[q1s2] = E
[
q1Ψ(X2)(f̂(X2)− EX2 [f̂k(X2)])λ

]
= E

[
q1Ψ(X2)(f̂(X2)− EX2 [f̂k(X2)])λ

]
≤

√
E [Ψ2(X2)]E

[
q2

1(f̂(X2)− EX2 [f̂k(X2)])2λ
]

=
√

E [Ψ2(Z)]o

(
1

kλ

)
We can show that E [Ψ2(Z)] = O(1) (in an identical manner to showing E [∆2(Z)] = O(1)
in the proof for the result on bias). Note that from the polynomial growth condition on k,
o
(

1
kλ

)
= o(1/M) . In a similar manner, we can show E[r1s2] = o

(
1
M

)
and E[s1s2] = o

(
1
M

)
.

This implies that

V(Ĝ(f)) =
1

N
E
[
p1

2
]

+
(N − 1)

N
E[q1q2] + o

(
1

M
+

1

N

)
.

= c4

(
1

N

)
+ c5

(
1

M

)
+ o

(
1

M
+

1

N

)
.

E Asymptotic normality

In this section we provide results on the asymptotic distribution of the plug-in estimators.
We assume we have T = N +M i.i.d. realizations {X1, . . . ,XN+M} from the density f . The
plug-in estimate is given by

Ĝ(f) =

(
1

N

N∑
i=1

g(f̂(Xi),Xi)

)
. (77)

E.1 Interchangeable random variables

Define the random variables {YM,i; i = 1, . . . , N} for any fixed M as
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YM,i = g(̂f(Xi),Xi)− E[g(̂f(Xi),Xi)], (78)

and define the sum SN,M as

SN,M =
1√
N

N∑
i=1

YM,i, (79)

where the indices N and M explicitly stress the dependence of the sum SN,M on the number of

random variables N+M . We let f̂ be either the uniform kernel or the kNN density estimates.
We observe that the random variables {YM,i; i = 1, . . . , N} belong to an interchangeable
process for all values of M .

E.2 Covariance properties

From the regularity conditions listed in Section 3.1, we obtain the following lemma on the
covariance properties of this interchangeable process.

Lemma E.1.

V(YM,i) = V(g(f(X),X)) + o(1),

Cov(YM,i,YM,j) =
V(g′(f(X),X)f(X))

M
+ o

(
1

M

)
,

Cov(Y2
M,i,Y

2
M,j) =

V(g′(f(X),X)(g(f(X),X)− E[g(f(X),X)])f(X))

M
+ o

(
1

M

)
.

Proof. From the properties of the density estimates listed in Section 3.1,

V(YM,i) = Vg(̂f(Xi),Xi) = V(g(f(X),X)) + o(1),

and

Cov(YM,i,YM,j) = Cov(g(̂f(Xi),Xi), g(̂f(Xj),Xj)) =
V(g′(f(X),X)f(X))

M
+ o

(
1

M

)
.

Define d(x, y) = g(x, y)(g(x, y) − c), where the constant c = E[g(̂f(X1),X1)]. Then, using
the properties of the density estimates listed in Section 3.1,

Cov(Y2
M,i,Y

2
M,j) = Cov(d(̂f(Xi),Xi), d(̂f(Xj),Xj))

=
V(d′(f(X),X)f(X))

M
+ o

(
1

M

)
=

V(g′(f(X),X)(g(f(X),X)− E[g(f(X),X)])f(X))

M
+ o

(
1

M

)
.
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E.3 CLT for Interchangeable Processes

Let {Zi; i = 1, 2, . . .} be an interchangeable stochastic process with 0 mean and variance ρ.
Blum et.al.[4] showed that the random variable SN = 1√

N

∑N
i=1 Zi converges in distribution

to N(0, ρ) if and only if Cov(Z1,Z2) = 0 and Cov(Z2
1,Z

2
2) = 0.

E.3.1 De Finetti’s Theorem

De Finetti showed that the probability measure of any interchangeable process is a mixture
of probability measures each consisting of independent and identically distributed random
variables. Specifically, let z be the class of one dimensional distribution functions and for
each pair of real numbers x and y define

z(x, y) = {F ∈ z|F (x) ≤ y}. (80)

Let B be the Borel field of subsets of z generated by the class of sets z(x, y). Then De
Finetti’s theorem asserts that for any interchangeable process {Zi} there exists a probability
measure µ defined on B such that

Pr{B} =

∫
z
PrF{B}dµ(F ), (81)

for any Borel measurable set defined on the sample space of the sequence {Zi}. Here Pr{B}
is the probability of the event B and PrF{B} is the probability of the event B under the
assumption that component random variables Xi of the interchangeable process are inde-
pendent and identically distributed with distribution F .

E.3.2 Necessary and Sufficient conditions for CLT

The Central Limit theorem [2] is said to hold if for any real number α if we have

lim
N→∞

Pr{SN ≤ α} = φ(α), (82)

where φ(α) is the distribution function of a Gaussian random variable with 0 mean and
variance ρ.

From Eq.81 we have

Pr{SN ≤ α} =

∫
z
PrF{SN ≤ α}dµ(F ). (83)

For each F ∈ z define m(F ) and σ2(F ) as
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m(F ) =

∫ ∞
−∞

xdF (x), (84)

σ(F ) =

∫ ∞
−∞

x2dF (x)− ρ. (85)

Also define

κ(F ) =

∫ ∞
−∞
|x−m(F )|3dF (x), (86)

and for all real numbers m and non-negative real numbers σ2 let zm,σ2 be the set of F ∈ z
for which m(F ) = m and σ2(F ) = σ2.

Blum et.al show that the process {Zi} will satisfy the CLT if and only if µ(z0,0) = 1.
Furthermore, they show that the condition µ(z0,0) = 1 is equivalent to the condition that
Cov(Z1,Z2) = 0 and Cov(Z2

1,Z
2
2) = 0.

We state the classical Berry-Esseen Theorem for i.i.d sequences in the next section.

E.3.3 Classical Berry-Esseen Theorem

Let X1,X2, ..., be i.i.d. random variables with E(X1) = 0, E(X2
1) = σ2 > 0, and E(|X1|3) =

κ < ∞. Also, let Sn = (X1 + X2 + . . . + Xn)/
√
n be the sample mean, with Fn the C.D.F

of Sn, and ψ the C.D.F of Gaussian distribution with 0 mean and variance σ2. Then there
exists a positive constant C such that for all x and n,

|Fn(x)− ψ(x)| ≤ Cκ

σ3
√
n
. (87)

E.4 CLT for Asymptotically Uncorrelated Interchangeable pro-
cesses

Consider the array of random variables {YM,i} defined earlier. We make the observation
that Cov(YM,i,YM,j) and Cov(Y2

M,i,Y
2
M,j) approach 0 as M → ∞. We refer to this array

as an interchangeable process that is asymptotically uncorrelated in M .

We will now establish that the Central Limit Theorem will hold for the sum SN,M =
1√
N

∑N
i=1 YM,i as M approaches ∞.
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E.4.1 Details

Denote V(YM,i) by ρ. Let κ = E[|YM,i|3], the absolute third order central moment, be finite.
From the definition of κ(F ), it is clear that κ(F ) ≤ κ for any F ∈ z, and therefore κ(F ) is
finite for any F ∈ z.

Let δµ(M) and δσ(M) be a strictly positive functions parameterized by M such that

δµ(M) = o(1);
1

Mδµ(M)
= o(1), (88)

δσ(M) = o(1);
1

Mδσ(M)
= o(1). (89)

Figure 23: Partition.

Denote the set of F ∈ z with

1. {m2(F ) ≥ δµ(M)} by zm,δ,M ; µm,δ,M := µ(zm,δ,M).

2. {σ2(F ) ≥ δσ(M)} by zσ,δ,M ; µσ,δ,M := µ(zσ,δ,M).
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3. {m2(F ) ∈ (0, δµ(M))} by z∗m,δ,M ; µ∗m,δ,M := µ(z∗m,δ,M).

4. {σ2(F ) ∈ (0, δσ(M))} by z∗σ,δ,M ; µ∗σ,δ,M := µ(z∗σ,δ,M).

We have from Eq.81 that

∫
z
m2(F )dµ(F ) = Cov(YM,i,YM,j) (90)∫

z
[EF [Z2 − ρ]]2dµ(F ) = Cov(Y2

M,i,Y
2
M,j) (91)

Applying the Chebyshev inequality, we get

δµ(M)µm,δ,M ≤ Cov(YM,i,YM,j), (92)

δσ(M)µσ,δ,M ≤ Cov(Y2
M,i,Y

2
M,j). (93)

From Eq.92 and Eq.88 we therefore have that µm,δ,M and µσ,δ,M → 0 as M →∞. From the
definition of z∗m,δ,M and z∗σ,δ,M , we also have that µ∗m,δ,M and µ∗σ,δ,M → 0 as M →∞.

We first establish the following lemma,

Lemma E.2.

lim
N,M→∞

∫
z0,0

PrF{SN,M ≤ α}dµ(F ) = φ(α),

where φ(.) is the distribution function of a Gaussian random variable with mean 0 and vari-
ance ρ.

Proof. For F ∈ z0,0, the mean and variance are respectively given by 0 and ρ respectively.
We then have the following upper and lower bounds -

Lower bound

∫
z0,0

PrF{SN,M ≤ α}dµ(F )∫
z0,0

[
φ (α)− Cκ(F )

ρ3
√
N

]
dµ(F )

≥ φ (α)µ(z0,0)− Cκ

ρ3
√
N
.
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Upper bound

∫
z0,0

PrF{SN,M ≤ α}dµ(F )

≤
∫
z0,0

[
φ (α) +

Cκ(F )

ρ3
√
N

]
dµ(F )

≤ φ (α)µ(z0,0) +
Cκ

ρ3
√
N
.

We also have

1− (µm,δ,M + µσ,δ,M + µ∗m,δ,M + µ∗σ,δ,M) ≤ µ(z0,0) ≤ 1,

and therefore

lim
M→∞

µ(z0,0) = 1.

Combining the above equations, we get

lim
N,M→∞

∫
z0,0

PrF{SN,M ≤ α}dµ(F ) = φ(α).

In order to apply the Berry-Esseen bounds, we require κ = E[|YM,i|3] to be finite. We show

that a sufficient condition to guarantee this is to require E[|g(̂f(Xi),Xi)|3] to be finite. To
see this,

κ = E[|YM,i|3]

= E[|g(̂f(Xi),Xi)− E[g(̂f(Xi),Xi)]|3]

≤ E[(|g(̂f(Xi),Xi)|+ |E[g(̂f(Xi),Xi)]|)3]

≤ 8E[|g(̂f(Xi),Xi)|3]. (94)

We now state and prove the Central Limit theorem for asymptotically uncorrelated Inter-
changeable processes.

Theorem E.3. Suppose that the density f , the functional g and the density estimate f̂
satisfy the conditions listed in Section 3.1. Further suppose E[|g(̂f(Xi),Xi)|3] is finite. The
asymptotic distribution of the plug-in estimator Ĝ(f) is given by

lim
∆(k,N,M)→0

Pr

(
Ĝ(f)− E[Ĝ(f)]√

V[g(f, x)]/N
≤ α

)
= Pr(Z ≤ α),
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where Z is a standard normal random variable.

Proof. Since all probability measures are bounded between 0 and 1, we have the following
upper and lower bounds

Lower bound

Pr{SN,M ≤ α} =

∫
z
PrF{SN,M ≤ α}dµ(F )

≥
∫
z0,0

PrF{SN,M ≤ α}dµ(F ).

Upper bound

Pr{SN,M ≤ α} =

∫
z
PrF{SN,M ≤ α}dµ(F )

≤
∫
z0,0

PrF{SN,M ≤ α}dµ(F ) +

µm,δ,M + µσ,δ,M + µ∗m,δ,M + µ∗σ,δ,M .

The above bounds along with Lemma E.2 gives the required result.

E.5 Berry-Esseen bounds

We now establish Berry-Esseen bounds for the case where N
M
→ 0. In particular, we assume

that there exists a δ : 0 < δ < 1, such that N = O(M δ). We also assume that the
interchangeable process has finite absolute third order moment E(|ZM,i|3) = ρM <∞ ∨M .

E.5.1 Details

Define the subset z̃ of z as follows: z̃ = z− {zm,δ,M

⋃
zσ,δ,M}.

We recognize that for F ∈ z̃, we have

−
√
δµ(M) ≤ m(F ) ≤

√
δµ(M),

−
√
δσ(M) ≤ σ(F ) ≤

√
δσ(M).

The mean and variance of YM,i under the distribution F are given by m(F ) and σ(F ) + ρ−
m2(F ) respectively.
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As in the previous section, let φ be the distribution function of a Gaussian random variable
with 0 mean and ρ variance.

Lower bound

Pr{SN,M ≤ α} =

∫
z
PrF{SN,M ≤ α}dµ(F )

≥
∫
z̃
PrF{SN,M ≤ α}dµ(F )

≥
∫
z̃

[
φ

(
α−
√
Nm(F )

1 + (σ(F )−m2(F ))/ρ

)
− Cκ(F )

(σ(F ) + ρ−m2(F ))3
√
N

]
dµ(F )

≥ φ

(
α−

√
Nδµ(M)

1 + (
√
δσ(M))/ρ

)
µ(z̃)−

∫
z̃

Cκ(F )

(ρ−
√
δσ(M)− δµ(M))3

√
N
dµ(F )

≥ φ

(
α−

√
Nδµ(M)

1 + (
√
δσ(M))/ρ

)
µ(z̃)− Cκ

(ρ−
√
δσ(M)− δµ(M))3

√
N
.

Upper bound

Denote µ(z̃c) := µ̃. We note that µ̃ ≤ µm,δ,M + µσ,δ,M .

Pr{SN,M ≤ α} =

∫
z
PrF{SN,M ≤ α}dµ(F )

≤
∫
z̃
PrF{SN,M ≤ α}dµ(F ) + µ̃

≤
∫
z̃

[
φ

(
α−
√
Nm(F )

1 + (σ(F )−m2(F ))/ρ

)
+

Cκ(F )

(σ(F ) + ρ−m2(F ))3
√
N

]
dµ(F ) + µ̃

≤ φ

(
α +

√
Nδµ(M)

1− (
√
δσ(M) + δµ(M))/ρ

)
µ(z̃) +

∫
z̃

Cκ(F )

(ρ+
√
δσ(M))3

√
N
dµ(F ) + µ̃

≤ φ

(
α−

√
Nδµ(M)

1− (
√
δσ(M) + δµ(M))/ρ

)
µ(z̃) +

Cκ

(ρ+
√
δσ(M))3

√
N

+ µm,δ,M + µσ,δ,M

≤ φ

(
α−

√
Nδµ(M)

1− (
√
δσ(M) + δµ(M))/ρ

)
µ(z̃) +

Cκ

(ρ+
√
δσ(M))3

√
N

+
1

Mδµ(M)
+

1

Mδσ(M)
.

The result in Theorem E.3 therefore gives us that the appropriately normalized plug-in
estimator SN,M converges in distribution to a normal random variable. Also for the case
where N grows slower than M . we have established Berry-Esseen type bounds on the error.
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F Uniform kernel based plug-in estimator

In this section, we will state the main results concerning uniform kernel plug-in estimators.
The proofs for these results rely on the propoerties of the uniform kernel density estimates
established in Appendix A and proofs for equivalent results for the k-NN plug-in estimators.
Let f̂u denote the boundary corrected uniform kernel density estimate. Denote the uniform
kernel plug-in estimator by

Ĝu(f) =

(
1

N

N∑
i=1

g(f̂u(Xi),Xi)

)
. (95)

Let Y denote a random variable with density function f .

F.1 Results

Corollary F.1. Suppose that the density f , the functional g and the density estimate f̂u
satisfy the necessary conditions listed above. The bias of the plug-in estimator Ĝu(f) is then
given by

Bu(f) = c1

(
k

M

)2/d

+ c2

(
1

k

)
+ o

(
1

k
+

(
k

M

)2/d
)
,

where c1 = E[g′(f(Y),Y)c(Y)], c2 = E[g′′(f(Y),Y)f(Y)/2] are constants which depend on
the underlying density f .

Corollary F.2. Suppose that the density f , the functional g and the density estimate f̂u
satisfy the necessary conditions listed above. The variance of the plug-in estimator Ĝu(f) is
given by

Vu(f) = c4

(
1

N

)
+ c5

(
1

M

)
+ o

(
1

M
+

1

N

)
,

where c4 = V[g(f(Y),Y)] and c5 = V[f(Y)g′(f(Y),Y)] are constants which depend on the
underlying density f .

Corollary F.3. Suppose that the density f , the functional g and the density estimate f̂u sat-
isfy the necessary conditions listed above. Further suppose E[|g(f)|3] is finite. The asymptotic
distribution of the plug-in estimator Ĝu(f) is given by

lim
∆(k,N,M)→0

Pr

(
Ĝu(f)− E[Ĝu(f)]√

V[f(Y)g′(f(Y),Y)]/N
≤ α

)
= Pr(Z ≤ α),

where Z is a standard normal random variable.
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